JPS6320016B2 - - Google Patents

Info

Publication number
JPS6320016B2
JPS6320016B2 JP21850084A JP21850084A JPS6320016B2 JP S6320016 B2 JPS6320016 B2 JP S6320016B2 JP 21850084 A JP21850084 A JP 21850084A JP 21850084 A JP21850084 A JP 21850084A JP S6320016 B2 JPS6320016 B2 JP S6320016B2
Authority
JP
Japan
Prior art keywords
silicon wafer
transparent electrode
light emitting
light
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21850084A
Other languages
Japanese (ja)
Other versions
JPS60100449A (en
Inventor
Noriaki Honma
Tadasuke Munakata
Katsumi Takami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21850084A priority Critical patent/JPS60100449A/en
Publication of JPS60100449A publication Critical patent/JPS60100449A/en
Publication of JPS6320016B2 publication Critical patent/JPS6320016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体測定装置、特にシリコン・ウエ
ハ中の少数キヤリヤの寿命の測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF APPLICATION OF THE INVENTION The present invention relates to a semiconductor measurement device, and more particularly to a device for measuring the lifetime of minority carriers in silicon wafers.

〔発明の背景〕[Background of the invention]

従来、半導体中の少数キヤリヤの寿命は、シリ
コン・ウエハにオーミツク接触を有する電極を取
り付け、キセノン・ランプ光をインパルス照射し
て、出力信号の減衰を測定することによつて求め
ていた(JIS規格H0604、1978)。この方法は接触
法であり、抜取り検査にしか向かない。また測定
をオン・ラインで行なうことができない。
Conventionally, the lifetime of a minority carrier in a semiconductor was determined by attaching an electrode with ohmic contact to a silicon wafer, irradiating it with impulse light from a xenon lamp, and measuring the attenuation of the output signal (JIS standard). H0604, 1978). This method is a contact method and is suitable only for sampling inspections. Also, measurements cannot be performed on-line.

他方、非接触で測定する方法として、光を照射
してキヤリヤを注入し、さらにマイクロ波を当
て、その吸収の時間的応答から、少数キヤリヤの
寿命を知る方法を挙げることができる。しかしな
がら、この方法は、高価で複雑なマイクロ波発信
機、受波器、その他を必要とし、装置全体が複雑
でかつ高価となるという欠点がある。
On the other hand, as a non-contact measurement method, there is a method in which carriers are injected by irradiating light, microwaves are further applied, and the lifetime of minority carriers can be determined from the time response of absorption. However, this method has the disadvantage that it requires expensive and complicated microwave transmitters, receivers, etc., making the entire device complicated and expensive.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、したがつて、非接触でシリコ
ン・ウエハ中の少数キヤリヤの寿命を測定するた
めの、簡単で安価な半導体測定装置を提供するこ
とである。
The object of the invention is therefore to provide a simple and inexpensive semiconductor measuring device for contact-free determination of the lifetime of minority carriers in silicon wafers.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明による半導
体測定装置は、測定しようとするシリコン・ウエ
ハを載置する、一方の電極の役をする架台と、上
記架台の上に載置されたシリコン・ウエハの上に
それと容量結合するように設けられた透明電極
と、一端が上記透明電極を介して上記シリコン・
ウエハと対向するように設けられた複数個の光学
フアイバと、上記複数個の光学フアイバの他端に
設けられた発光ダイオードと、上記発光ダイオー
ドを所定の順序にしたがつて順次発光させるため
の制御回路と、上記透明電極に発生した電位を検
出するための検出器とから成り、光照射に伴つて
生じる光起動力を上記透明電極のシリコン・ウエ
ハとの容量結合による電位の変化を検出すること
を要旨とする。
In order to achieve the above object, a semiconductor measuring device according to the present invention includes a pedestal serving as one electrode on which a silicon wafer to be measured is placed, and a silicon wafer placed on the pedestal. A transparent electrode is provided on top of the transparent electrode to be capacitively coupled thereto, and one end is connected to the silicon layer through the transparent electrode.
A plurality of optical fibers provided to face the wafer, a light emitting diode provided at the other end of the plurality of optical fibers, and control for sequentially causing the light emitting diodes to emit light in a predetermined order. It consists of a circuit and a detector for detecting the potential generated in the transparent electrode, and detects the change in potential due to capacitive coupling of the transparent electrode with the silicon wafer and the optical activation force generated due to light irradiation. The gist is:

本発明によれば、電位の変化を非接触で捕え、
しかも光学フアイバでスポツト照射するので、少
数キヤリヤの寿命を分布として測定することがで
きる。さらに、光源として発光ダイオードを用い
るので、電子回路によつて簡単に光変調すること
が可能であり、測定系に最適な変調周波数を自由
に選択することができる。さらに、発光ダイオー
ドから成る光源は小型で応答が速いので、電子ス
イツチにより多数個の発光ダイオードを順次切り
換え、走査することができ、寿命の分布を短時間
にかつ極めて簡単に行なうことができる。
According to the present invention, changes in potential are captured without contact,
Furthermore, since spot irradiation is performed using an optical fiber, the lifetime of minority carriers can be measured as a distribution. Furthermore, since a light emitting diode is used as a light source, it is possible to easily modulate the light using an electronic circuit, and the optimum modulation frequency for the measurement system can be freely selected. Furthermore, since the light source made of light emitting diodes is small and has a quick response, it is possible to sequentially switch and scan a large number of light emitting diodes using an electronic switch, making it possible to perform life distribution very easily and in a short time.

〔発明の実施例〕[Embodiments of the invention]

以下に、付図を参照しながら、実施例を用いて
本発明を一層詳細に説明するけれども、それらは
例示に過ぎず、本発明の枠を越えることなしにい
ろいろの変形や改良があり得ることは勿論であ
る。
Hereinafter, the present invention will be explained in more detail using examples with reference to the accompanying drawings, but these are merely illustrative, and it is understood that various modifications and improvements may be made without going beyond the scope of the present invention. Of course.

第1図は、シリコン・ウエハ1を紙面に垂直な
方向には機械的に移動させ、紙面に平行な方向に
は光学フアイバを配置することによつて走査を行
なう、本発明による半導体測定装置の構成を示す
ブロツク図である。移動架台2は金属で構成さ
れ、接地電極の役も兼ね、シリコン・ウエハ1は
この上に真空チヤツクで固定される。光学フアイ
バ4の一端は発光ダイオード3と対向するように
設けられている。光学フアイバ4の他端はアレー
を形成し、その上にIn2O3等のネサ膜で構成され
る透明電極5が設けられている。電源8から制御
回路9を介して所定の順序にしたがつて発光ダイ
オード3を順次発光させ、その光照射に伴つて生
じる光起電力の変化が前置増幅器6および位相検
出器7によつて検出される。
FIG. 1 shows a semiconductor measuring device according to the present invention, which performs scanning by mechanically moving a silicon wafer 1 in a direction perpendicular to the plane of the paper and by arranging an optical fiber in a direction parallel to the plane of the paper. FIG. 2 is a block diagram showing the configuration. The movable pedestal 2 is made of metal and also serves as a ground electrode, and the silicon wafer 1 is fixed thereon by a vacuum chuck. One end of the optical fiber 4 is provided to face the light emitting diode 3. The other end of the optical fiber 4 forms an array, on which a transparent electrode 5 made of a Nesa film such as In 2 O 3 is provided. The light emitting diodes 3 are caused to emit light sequentially in a predetermined order from a power source 8 via a control circuit 9, and changes in photovoltaic force caused by the light irradiation are detected by a preamplifier 6 and a phase detector 7. be done.

本発明による半導体測定装置の動作はつぎのよ
うにして行なわれる。制御回路9によつて発光ダ
イオード3は、光学フアイバ4のシリコン・ウエ
ハ1と対向する方の端から光が紙面に平行な方向
に逐次発生するような順序に発光させられ、その
ようにして一次元走査が行なわれる。光学フアイ
バ4は点光源としてシリコン・ウエハ1を照射
し、微小な領域に起電力を発生させる。光は交流
変調されており、透明電極5がシリコン・ウエハ
1から離れていても、上記起電力は容量結合によ
つて容易に外部に取り出される。容量結合を介
し、位相検出器7で検出される信号の位相θは、
電源8の出力に対して次のようになる。
The semiconductor measuring device according to the present invention operates as follows. The light emitting diodes 3 are caused to emit light by the control circuit 9 in such a sequence that light is emitted successively from the end of the optical fiber 4 facing the silicon wafer 1 in a direction parallel to the plane of the paper, and in this way An original scan is performed. The optical fiber 4 irradiates the silicon wafer 1 as a point light source and generates an electromotive force in a minute area. The light is alternating current modulated, and even if the transparent electrode 5 is away from the silicon wafer 1, the electromotive force can be easily extracted to the outside by capacitive coupling. The phase θ of the signal detected by the phase detector 7 through capacitive coupling is
The output of the power supply 8 is as follows.

θ=θ0+1/2tan-1(−2πfτ) ……(1) ここで、θ0は接合インピーダンスや結合の静電
容量などの測定系から生じる位相変化分、fは発
光ダイオードの断続周波数、また、τはウエハの
少数キヤリヤ寿命である。θ0は波長の短い光を用
いて予め求めておけば、(1)式からτの変化がθの
変化として得られる。すなわち、電源8の電圧と
信号電圧との位相差を位相検出器で測定すれば、
シリコン・ウエハ中の少数キヤリヤの寿命の値は
非接触で測定できることになる。架台2は紙面に
垂直な方向に移動させられ、電気的に行なわれる
一次元走査とあわせて二次元の走査が行なわれ
る。
θ=θ 0 +1/2tan -1 (-2πfτ) ...(1) Here, θ 0 is the phase change caused by the measurement system such as junction impedance and coupling capacitance, f is the intermittent frequency of the light emitting diode, Also, τ is the minority carrier lifetime of the wafer. If θ 0 is determined in advance using light with a short wavelength, a change in τ can be obtained as a change in θ from equation (1). That is, if the phase difference between the voltage of the power supply 8 and the signal voltage is measured with a phase detector,
The lifetime value of minority carriers in silicon wafers can be measured without contact. The pedestal 2 is moved in a direction perpendicular to the plane of the paper, and two-dimensional scanning is performed in addition to electrical one-dimensional scanning.

第2図は光学フアイバのシリコン・ウエハと対
向する方の端をモザイツク状に配置し、機械的に
行なわれる走査をなくした実施例を示す。この実
施例においては、走査はすべてエレクトロニツク
スによつて行なわれるので、装置は簡単となり、
安価に構成される。
FIG. 2 shows an embodiment in which the ends of the optical fibers facing the silicon wafer are arranged in a mosaic pattern, eliminating mechanical scanning. In this embodiment, all scanning is done by electronics, so the device is simple and
Configured inexpensively.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、非接触
でシリコン・ウエハ中の少数キヤリヤの寿命を測
定する、簡単で安価な半導体測定装置を得ること
ができる。
As described above, according to the present invention, it is possible to obtain a simple and inexpensive semiconductor measuring device that non-contactly measures the lifetime of minority carriers in a silicon wafer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施の態様における半導体
測定装置の構成を示すブロツク図、第2図は本発
明による、走査をすべてエレクトロニツクスによ
つて行なう実施の態様における、光学フアイバの
シリコン・ウエハと対向する方の端の平面図であ
る。 1……シリコン・ウエハ、2……架台、3……
発光ダイオード、4……光学フアイバ、5……透
明電極、6……前置増幅器、7……位相検出器、
8……電源、9……制御回路。
FIG. 1 is a block diagram showing the configuration of a semiconductor measuring device according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the structure of a semiconductor measuring device according to an embodiment of the present invention in which scanning is performed entirely by electronics. FIG. 3 is a plan view of the end facing the wafer. 1... Silicon wafer, 2... Mount, 3...
Light emitting diode, 4... Optical fiber, 5... Transparent electrode, 6... Preamplifier, 7... Phase detector,
8...Power supply, 9...Control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 測定しようとするシリコン・ウエハを載置す
る一方の電極の役をする架台と、上記架台の上に
載置されたシリコン・ウエハの上にそれと容量結
合するように設けられた透明電極と、一端が上記
透明電極を介して上記シリコン・ウエハと対向す
るように設けられた複数個の光学フアイバと、上
記複数個の光学フアイバの他端に設けられた発光
ダイオードと、上記発光ダイオードを所定の順序
にしたがつて順次発光させるための制御回路と、
上記透明電極の電位を検出するための検出器とか
ら成ることを特徴とする半導体測定装置。
1. A pedestal serving as one electrode on which the silicon wafer to be measured is placed; a transparent electrode provided on the silicon wafer placed on the pedestal so as to be capacitively coupled thereto; A plurality of optical fibers are provided such that one end thereof faces the silicon wafer through the transparent electrode, a light emitting diode is provided at the other end of the plurality of optical fibers, and the light emitting diode is connected to a predetermined position. a control circuit for sequentially emitting light in accordance with the order;
A semiconductor measuring device comprising: a detector for detecting the potential of the transparent electrode.
JP21850084A 1984-10-19 1984-10-19 Semiconductor measuring device Granted JPS60100449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21850084A JPS60100449A (en) 1984-10-19 1984-10-19 Semiconductor measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21850084A JPS60100449A (en) 1984-10-19 1984-10-19 Semiconductor measuring device

Publications (2)

Publication Number Publication Date
JPS60100449A JPS60100449A (en) 1985-06-04
JPS6320016B2 true JPS6320016B2 (en) 1988-04-26

Family

ID=16720899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21850084A Granted JPS60100449A (en) 1984-10-19 1984-10-19 Semiconductor measuring device

Country Status (1)

Country Link
JP (1) JPS60100449A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697248A (en) * 1992-09-16 1994-04-08 Shin Etsu Handotai Co Ltd Life time measuring device and measurement therewith
CN108762316A (en) * 2018-06-13 2018-11-06 华北电力大学 A kind of photoelectric sensor, solar energy heating control system and method

Also Published As

Publication number Publication date
JPS60100449A (en) 1985-06-04

Similar Documents

Publication Publication Date Title
JPH06222087A (en) Voltage detector
US4891584A (en) Apparatus for making surface photovoltage measurements of a semiconductor
US5091691A (en) Apparatus for making surface photovoltage measurements of a semiconductor
US5159486A (en) Instrumentation apparatus and methods utilizing photoconductors as light-modulated dielectrics
KR100193977B1 (en) Photovoltaic Oxide Charge Measurement Probe Technology
US7642772B1 (en) Non-contact method and apparatus for measurement of leakage current of p-n junctions in IC product wafers
US5177351A (en) Method and apparatus for determining the minority carrier diffusion length from linear constant photon flux photovoltage measurements
US4464627A (en) Device for measuring semiconductor characteristics
US4581578A (en) Apparatus for measuring carrier lifetimes of a semiconductor wafer
US7019513B1 (en) Non-contact method and apparatus for measurement of sheet resistance and leakage current of p-n junctions
JPS593360A (en) Optical fiber measuring device
WO2008013923A1 (en) Probes and methods for semiconductor wafer analysis
KR20160071453A (en) Method and apparatus for non-contact measurement of sheet resistance and shunt resistance of p-n junctions
US7414409B1 (en) Non-contact method and apparatus for measurement of leakage current of p-n junctions in IC product wafers
US4551674A (en) Noncontacting conductivity type determination and surface state spectroscopy of semiconductor materials
JPS6320016B2 (en)
CN113484620B (en) Method and system for rapidly measuring amplitude and phase distribution of optical scanning electromagnetic wave
EP0325453B1 (en) Noninvasive method for characterization of semiconductors
RU2080689C1 (en) Device for detection of electric characteristics of semiconductor plates
KR20010089733A (en) Measuring device for measuring small forces and displacements
CA1301954C (en) Noninvasive method and apparatus for characterization of semiconductors
SU1686466A1 (en) Thotoelectric transducer for highlighting pattern characters
CN120334699A (en) A wafer conductivity type detection device and marking device
JP2683821B2 (en) Vacuum processing device and bias sputtering device
JPS6144437A (en) Semiconductor characteristics measurement equipment