JP4877486B2 - 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法 - Google Patents

絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法 Download PDF

Info

Publication number
JP4877486B2
JP4877486B2 JP2006151339A JP2006151339A JP4877486B2 JP 4877486 B2 JP4877486 B2 JP 4877486B2 JP 2006151339 A JP2006151339 A JP 2006151339A JP 2006151339 A JP2006151339 A JP 2006151339A JP 4877486 B2 JP4877486 B2 JP 4877486B2
Authority
JP
Japan
Prior art keywords
group
insulating film
component
composition
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006151339A
Other languages
English (en)
Other versions
JP2007324283A (ja
Inventor
恭志 中川
洋平 野辺
将宏 秋山
輝一 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2006151339A priority Critical patent/JP4877486B2/ja
Priority to PCT/JP2007/060681 priority patent/WO2007139004A1/ja
Priority to TW096119467A priority patent/TW200808907A/zh
Publication of JP2007324283A publication Critical patent/JP2007324283A/ja
Application granted granted Critical
Publication of JP4877486B2 publication Critical patent/JP4877486B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Formation Of Insulating Films (AREA)
  • Silicon Polymers (AREA)
  • Organic Insulating Materials (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法に関し、さらに詳しくは、半導体素子における層間絶縁膜などに好適に用いることができる絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法に関する。
従来、半導体素子などにおける層間絶縁膜として、CVD法などの真空プロセスにより形成されたシリカ(SiO)膜が多用されている。そして、近年、より均一な膜厚を有する層間絶縁膜を形成することを目的として、SOG(Spin on Glass)膜と呼ばれるテトラアルコキシランの加水分解生成物を主成分とする塗布型の絶縁膜も使用されるようになっている。また、半導体素子などの高集積化に伴い、有機SOGと呼ばれるポリオルガノシロキサンを主成分とする低比誘電率の層間絶縁膜の開発も行なわれている。
しかしながら、半導体素子などのさらなる高集積化や多層化に伴い、より優れた導体間の電気絶縁性が要求されており、したがって、保存安定性が良好で、より低比誘電率で、より機械的強度に優れる層間絶縁膜が求められるようになっている。
また、半導体装置の製造過程では、絶縁層を平坦化するためのCMP(Chemical Mechanical Planarization)工程や、各種洗浄工程が行なわれる。そのため、半導体装置の層間絶縁膜や保護膜などに適用するためには、誘電率特性の他に機械的強度や薬液による侵食に耐えられる程の薬液耐性を有することも求められている。
低比誘電率の材料としては、アンモニアの存在下にアルコキシシランを縮合して得られる微粒子とアルコキシシランの塩基性部分加水分解物との混合物からなる組成物(特開平5−263045号公報、特開平5−315319号公報)や、ポリアルコキシシランの塩基性加水分解物をアンモニアの存在下で縮合することにより得られた塗布液(特開平11−340219号公報、特開平11−340220号公報)が提案されている。しかしながら、これらの方法で得られる材料は、反応の生成物の性質が安定せず、塗膜の比誘電率、クラック耐性、機械的強度、密着性などのバラツキも大きいため、工業的生産には不向きであった。
また、ポリカルボシラン溶液とポリシロキサン溶液を混合することにより塗布液を調製し、低誘電率絶縁膜を形成する方法(特開2001−127152号公報、特開2001−345317号公報)が提案されているが、この方法では、カルボシランとポリシロキサンのドメインが不均一な状態で塗膜中にそれぞれ分散してしまうという問題があった。
また、有機金属シラン化合物からカーボンブリッジ含有シランオリゴマーを製造した後、加水分解縮合して得られる有機シリケート重合体を用いる方法(WO2002−098955)も提案されているが、この方法で得られる材料は、反応生成物の安定性が悪く長期保管に向かない材料であり、加えて、基板への密着性が悪いという問題点があった。
さらに、高分岐なポリカルボシランを加水分解縮合して得られる低誘電率絶縁膜の形成方法(US−6,807,041)も提案されているが、ポリマーを基板に塗布後、アンモニアによるエージング処理、トリメチルシリル化処理、500℃の高温キュア等のプロセス処理が必要であり、実用プロセスには不向きな材料であった。
一方、本出願人は、(A)加水分解性基含有シラン化合物と、(B)加水分解性基含有ポリカルボシランとを混合し、加熱することで半導体製造プロセスに対する耐性を向上する方法を提案している(特開2005−350651号公報)。特開2005−350651号公報の実施例に記載されたポリマーは、1つのケイ素原子が4つの酸素原子で置換された部位が存在する。このように、ポリマー構造中において1つのケイ素原子が4つの酸素原子で置換された部位が存在する場合、前記部位のないものと比較して、より長時間の加工プロセス(ウエットエッチングやドライエッチング)に対する耐性が劣る場合がある。
特開平5−263045号公報 特開平5−315319号公報 特開平11−340219号公報 特開平11−340220号公報 特開2001−127152号公報 特開2001−345317号公報 国際公開第02/098955号パンフレット 米国特許第6,807,041号明細書 特開2005−350651号公報
本発明の目的は、高集積化および多層化が望まれている半導体素子などにおいて好適に用いることができ、低比誘電率であり、機械的強度、保存安定性および薬液耐性などにも優れた絶縁膜を形成することができる絶縁膜形成用組成物およびその製造方法を提供することにある。
本発明の他の目的は、低比誘電率であり、機械的強度、保存安定性および薬液耐性などにも優れたシリカ系絶縁膜およびその形成方法を提供することにある。
本発明の第1の態様の絶縁膜形成用組成物は、
(A)成分;下記一般式(1)で表される化合物および下記一般式(2)で表される化合物の群から選ばれた少なくとも1種のシラン化合物と、(B)成分;下記一般式(3)で表される構造を有するカルボシランとを加水分解縮合して得られた加水分解縮合物と、
有機溶媒と、
を含む。
Si(OR4−a ・・・・・(1)
(式中、Rは1価の有機基を示し、Rは1価の有機基を示し、aは1〜2の整数を示す。)
(RO)3−bSi−(R−Si(OR3−c ・・・(2)
(式中、R〜Rは同一または異なり、それぞれ1価の有機基を示し、bおよびcは同一または異なり、0〜2の数を示し、Rはフェニレン基または−(CH−で表される基(ここで、mは1〜6の整数である)を示し、dは0または1を示す。)
Figure 0004877486
・・・・・(3)
(式中、Rは、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、アシロキシ基、スルホン基、メタンスルホン基、トリフルオロメタンスルホン基、アルキル基、アリール基、アリル基、およびグリシジル基からなる群より選ばれる基を示し、Rはハロゲン原子、ヒドロキシ基、アルコキシ基、アシロキシ基、スルホン基、メタンスルホン基、トリフルオロメタンスルホン基、アルキル基、アリール基、アリル基、およびグリシジル基からなる群より選ばれる基を示し、R10,R11は同一または異なり、ハロゲン原子、ヒドロキシ基、アルコキシ基、アシロキシ基、スルホン基、メタンスルホン基、トリフルオロメタンスルホン基、炭素数2〜6のアルキル基、アリール基、アリル基、およびグリシジル基からなる群より選ばれる基を示し、R12〜R14は同一または異なり、置換または非置換のメチレン基、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基を示し、e,f,gは、それぞれ0〜10,000の数を示し、10<e+f+g<10,000の条件を満たす。)
上記絶縁膜形成用組成物において、前記(A)成分は、前記一般式(1)で表される化合物からなることができる。
この場合、前記一般式(1)で表される化合物を少なくとも1種含み、前記一般式(1)で表される化合物のうち、前記一般式(1)においてaが1である化合物の割合が50質量%以上であることができる。
上記絶縁膜形成用組成物において、前記(A)成分を(A)成分の完全加水分解縮合物に換算した100重量部に対して、前記(B)成分が1〜1000重量部であることができる。
上記絶縁膜形成用組成物において、前記(B)成分のポリスチレン換算重量平均分子量が500〜10,000であることができる。
上記絶縁膜形成用組成物において、前記加水分解縮合は、塩基性触媒、酸性触媒、または金属キレート触媒の存在下で行なわれることができる。
この場合、前記加水分解縮合は、塩基性触媒の存在下で行なわれることができる。
上記絶縁膜形成用組成物において、前記塩基性触媒は、下記一般式(4)で表される含窒素化合物であることができる。
(XN)Y ・・・・・(4)
(式中、X,X,X,Xは同一または異なり、それぞれ水素原子、炭素数1〜20のアルキル基、ヒドロキシアルキル基、アリール基、およびアリールアルキル基からなる群より選ばれる基を示し、Yはハロゲン原子または1〜4価のアニオン性基を示し、hは1〜4の整数を示す。)
上記絶縁膜形成用組成物は、1つのケイ素原子が4つの酸素原子で置換された部位が実質的に存在しないものであることができる。
本発明の第2の態様の絶縁膜形成用組成物の製造方法は、
(A)成分;下記一般式(1)で表される化合物および下記一般式(2)で表される化合物の群から選ばれた少なくとも1種のシラン化合物と、(B)成分;下記一般式(3)で表される構造を有するカルボシランとを加水分解縮合する工程を含む。
Si(OR4−a ・・・・・(1)
(式中、Rは1価の有機基を示し、Rは1価の有機基を示し、aは1〜2の整数を示す。)
(RO)3−bSi−(R−Si(OR3−c ・・・(2)
(式中、R〜Rは同一または異なり、それぞれ1価の有機基を示し、bおよびcは同一または異なり、0〜2の数を示し、Rはフェニレン基または−(CH−で表される基(ここで、mは1〜6の整数である)を示し、dは0または1を示す。)
Figure 0004877486
・・・・・(3)
(式中、Rは、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、アシロキシ基、スルホン基、メタンスルホン基、トリフルオロメタンスルホン基、アルキル基、アリール基、アリル基、およびグリシジル基からなる群より選ばれる基を示し、Rはハロゲン原子、ヒドロキシ基、アルコキシ基、アシロキシ基、スルホン基、メタンスルホン基、トリフルオロメタンスルホン基、アルキル基、アリール基、アリル基、およびグリシジル基からなる群より選ばれる基を示し、R10,R11は同一または異なり、ハロゲン原子、ヒドロキシ基、アルコキシ基、アシロキシ基、スルホン基、メタンスルホン基、トリフルオロメタンスルホン基、炭素数2〜6のアルキル基、アリール基、アリル基、およびグリシジル基からなる群より選ばれる基を示し、R12〜R14は同一または異なり、置換または非置換のメチレン基、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基を示し、e,f,gは、それぞれ0〜10,000の数を示し、10<e+f+g<10,000の条件を満たす。)
本発明の第3の態様の加水分解縮合ポリマーは、上記絶縁膜形成用組成物の製造方法によって得られる。
本発明の第4の態様のシリカ系絶縁膜の形成方法は、上記絶縁膜形成用組成物を基板に塗布し、塗膜を形成する工程と、
前記塗膜について、加熱、電子線照射、紫外線照射、および酸素プラズマから選ばれる少なくとも1種の硬化処理を行なう工程と、を含む。
本発明の第5の態様のシリカ系絶縁膜は、上記シリカ系絶縁膜の形成方法により得られる。
上記絶縁膜形成用組成物によれば、(A)成分と(B)成分とを加水分解縮合して得られた加水分解縮合物を含む。この加水分解縮合においては、(A)成分が、加水分解を起こしシラノール基(−Si−OH)を形成すると同時に、(B)成分内にも加水分解によるシラノール基の生成が進行する。このシラノール基が縮合反応を起こしてSi−O−Si結合を形成することが可能である。また、この加水分解縮合物は、(B)成分が、(A)成分に由来するポリシロキサンと化学的結合を形成し、三次構造内に取り込まれた構造を有する。このため、本発明の絶縁膜形成用組成物を用いることにより、機械的強度が高く、密着性に優れ、かつ膜中の層分離がない絶縁膜を形成することができる。さらに、(A)成分は1つのケイ素原子が4つの酸素原子で置換された部位が存在しないため、当該部位を有する加水分解性シランモノマーと(B)成分との加水分解縮合物に比べ、薬液耐性をより向上させることができる。これにより、より長時間の加工プロセス(ウエットエッチングやドライエッチング)に対する耐性を確保することができる。
また、上記絶縁膜形成用組成物の製造方法によれば、(A)成分と(B)成分とを加水分解縮合する工程を含むことにより、比較的穏和な条件にて加水分解縮合物を得ることができるため、反応の制御が容易である。
さらに、上記シリカ系絶縁膜の形成方法によれば、上記絶縁膜形成用組成物を基板に塗布し、塗膜を形成する工程と、前記塗膜について、加熱、電子線照射、紫外線照射、および酸素プラズマから選ばれる少なくとも1種の硬化処理を行なう工程と、を含む。これにより、得られるシリカ系絶縁膜は、比誘電率が小さく、機械的強度、密着性、および薬液耐性に優れ、かつ膜中の相分離がない。
以下に、本発明について具体的に説明する。
1.膜形成用組成物およびその製造方法
本発明の一実施形態に係る膜形成用組成物(絶縁膜形成用組成物)は、(A)成分;下記一般式(1)で表される化合物および下記一般式(2)で表される化合物の群から選ばれた少なくとも1種のシラン化合物を、(B)成分;下記一般式(3)で表される構造を有するカルボシランの存在下で加水分解し、縮合した加水分解縮合物(以下、「特定加水分解縮合物」という)と、有機溶媒とを含む。すなわち、本発明の一実施形態に係る絶縁膜形成用組成物の製造方法は、(A)成分と、(B)成分とを加水分解縮合する工程を含む。以下、各成分について説明する。
本発明の一実施形態に係る膜形成用組成物では、1つのケイ素原子が4つの酸素原子で置換された部位が実質的に存在しない。ここで、「1つのケイ素原子が4つの酸素原子で置換された部位が実質的に存在しない」ことは、29Si NMR測定にて−90〜−120ppmにピークが観測されないことにより確認することができる。また、ここで、「29Si NMR測定にて−90〜−120ppmにピークが観測されない」とは、29Si NMR測定において、50〜−80ppmに存在するピークの積分値の総和を1としたとき、−90〜−120ppmに存在するピークの積分値の総和が0.01未満であることをいう。ここで、50〜−80ppmのピークは、1つのケイ素原子が3つ以下の酸素原子で置換された部位の成分に相当する。このため、本発明の一実施形態に係る膜形成用組成物によれば、当該部位を有する加水分解性シランモノマーと(B)成分との加水分解縮合物に比べ、薬液耐性をより向上させることができる。これにより、より長時間の加工プロセス(ウエットエッチングやドライエッチング)に対する耐性を確保することができる。
1.1.(A)成分
(A)成分は、下記一般式(1)で表される化合物(以下、「化合物1」という)、下記一般式(2)で表される化合物(以下、「化合物2」という)の群から選ばれた少なくとも1種のシラン化合物である。(A)成分は、1つのケイ素原子が4つの酸素原子で置換された部位が存在しない。
Si(OR4−a ・・・・・(1)
(式中、Rは1価の有機基を示し、Rは1価の有機基を示し、aは1〜2の整数を示す。)
(RO)3−bSi−(R−Si(OR3−c ・・・(2)
(式中、R〜Rは同一または異なり、それぞれ1価の有機基を示し、bおよびcは同一または異なり、0〜2の数を示し、Rはフェニレン基または−(CH−で表される基(ここで、mは1〜6の整数である)を示し、dは0または1を示す。)
ここで、加熱、電子線照射、紫外線照射、および酸素プラズマなどの処理における、硬化性が良好な加水分解縮合物が得られる点で、(A)成分は、化合物1からなるのが好ましい。この場合、硬化性を一定の水準以上に保つ点で、(A)成分は化合物1を少なくとも1種含み、化合物1のうち、前記一般式(1)においてaが1である化合物(化合物1−1)の割合が50質量%以上であるのがより好ましく、60質量%以上であることがさらに好ましく、70質量%以上であることが特に好ましい。
この場合、化合物1のうち前記一般式(1)においてaが1である化合物(化合物1−1)と、化合物1のうち前記一般式(1)においてaが2である化合物(化合物1−2)とを含む場合、化合物1−1および化合物1−2の総量に対する化合物1−2が50質量%以下であるのが好ましく、30質量%以下であるのがより好ましい。ここで、化合物1−1および化合物1−2の総量に対する化合物1−2が50質量%以下であることにより、加熱、電子線照射、紫外線照射、および酸素プラズマなどの処理における、硬化性が良好な加水分解縮合物が得られる。
1.1.1.化合物1
前記一般式(1)において、R,Rで表される1価の有機基としては、アルキル基、アルケニル基、アリール基などを挙げることができる。ここで、アルキル基としては、メチル基、エチル基、プロピル基、ブチル基などが挙げられ、好ましくは炭素数1〜5であり、これらのアルキル基は鎖状でも、分岐していてもよい。前記一般式(1)において、アルケニル基としては、ビニル基、アリル基などが挙げられる。また、前記一般式(1)において、アリール基としては、フェニル基、ナフチル基、メチルフェニル基、エチルフェニル基、クロロフェニル基、ブロモフェニル基、フルオロフェニル基などを挙げることができる。
が1価の有機基であることにより、1つのケイ素原子が4つの酸素で置換された部位の生成を防止することができる。
化合物1の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリイソプロポキシシラン、メチルトリ−n−ブトキシシラン、メチルトリ−sec−ブトキシシラン、メチルトリ−tert−ブトキシシラン、メチルトリフェノキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ−n−プロポキシシラン、エチルトリイソプロポキシシラン、エチルトリ−n−ブトキシシラン、エチルトリ−sec−ブトキシシラン、エチルトリ−tert−ブトキシシラン、エチルトリフェノキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−プロピルトリ−n−プロポキシシラン、n−プロピルトリイソプロポキシシラン、n−プロピルトリ−n−ブトキシシラン、n−プロピルトリ−sec−ブトキシシラン、n−プロピルトリ−tert−ブトキシシラン、n−プロピルトリフェノキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、イソプロピルトリ−n−プロポキシシラン、イソプロピルトリイソプロポキシシラン、イソプロピルトリ−n−ブトキシシラン、イソプロピルトリ−sec−ブトキシシラン、イソプロピルトリ−tert−ブトキシシラン、イソプロピルトリフェノキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ブチルトリ−n−プロポキシシラン、n−ブチルトリイソプロポキシシラン、n−ブチルトリ−n−ブトキシシラン、n−ブチルトリ−sec−ブトキシシラン、n−ブチルトリ−tert−ブトキシシラン、n−ブチルトリフェノキシシラン、sec−ブチルトリメトキシシラン、sec−ブチルイソトリエトキシシラン、sec−ブチルトリ−n−プロポキシシラン、sec−ブチルトリイソプロポキシシラン、sec−ブチルトリ−n−ブトキシシラン、sec−ブチルトリ−sec−ブトキシシラン、sec−ブチルトリ−tert−ブトキシシラン、sec−ブチルトリフェノキシシラン、tert−ブチルトリメトキシシラン、tert−ブチルトリエトキシシラン、tert−ブチルトリ−n−プロポキシシラン、tert−ブチルトリイソプロポキシシラン、tert−ブチルトリ−n−ブトキシシラン、tert−ブチルトリ−sec−ブトキシシラン、tert−ブチルトリ−tert−ブトキシシラン、tert−ブチルトリフェノキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリ−n−プロポキシシラン、フェニルトリイソプロポキシシラン、フェニルトリ−n−ブトキシシラン、フェニルトリ−sec−ブトキシシラン、フェニルトリ−tert−ブトキシシラン、フェニルトリフェノキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ−n−プロポキシシラン、ビニルトリイソプロポキシシラン、ビニルトリ−n−ブトキシシラン、ビニルトリ−sec−ブトキシシラン、ビニルトリ−tert−ブトキシシラン、ビニルトリフェノキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ−n−プロポキシシラン、ジメチルジイソプロポキシシラン、ジメチルジ−n−ブトキシシラン、ジメチルジ−sec−ブトキシシラン、ジメチルジ−tert−ブトキシシラン、ジメチルジフェノキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジ−n−プロポキシシラン、ジエチルジイソプロポキシシラン、ジエチルジ−n−ブトキシシラン、ジエチルジ−sec−ブトキシシラン、ジエチルジ−tert−ブトキシシラン、ジエチルジフェノキシシラン、ジ−n−プロピルジメトキシシラン、ジ−n−プロピルジエトキシシラン、ジ−n−プロピルジ−n−プロポキシシラン、ジ−n−プロピルジイソプロポキシシラン、ジ−n−プロピルジ−n−ブトキシシラン、ジ−n−プロピルジ−sec−ブトキシシラン、ジ−n−プロピルジ−tert−ブトキシシラン、ジ−n−プロピルジ−フェノキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン、ジイソプロピルジ−n−プロポキシシラン、ジイソプロピルジイソプロポキシシラン、ジイソプロピルジ−n−ブトキシシラン、ジイソプロピルジ−sec−ブトキシシラン、ジイソプロピルジ−tert−ブトキシシラン、ジイソプロピルジフェノキシシラン、ジ−n−ブチルジメトキシシラン、ジ−n−ブチルジエトキシシラン、ジ−n−ブチルジ−n−プロポキシシラン、ジ−n−ブチルジイソプロポキシシラン、ジ−n−ブチルジ−n−ブトキシシラン、ジ−n−ブチルジ−sec−ブトキシシラン、ジ−n−ブチルジ−tert−ブトキシシラン、ジ−n−ブチルジ−フェノキシシラン、ジ−sec−ブチルジメトキシシラン、ジ−sec−ブチルジエトキシシラン、ジ−sec−ブチルジ−n−プロポキシシラン、ジ−sec−ブチルジイソプロポキシシラン、ジ−sec−ブチルジ−n−ブトキシシラン、ジ−sec−ブチルジ−sec−ブトキシシラン、ジ−sec−ブチルジ−tert−ブトキシシラン、ジ−sec−ブチルジ−フェノキシシラン、ジ−tert−ブチルジメトキシシラン、ジ−tert−ブチルジエトキシシラン、ジ−tert−ブチルジ−n−プロポキシシラン、ジ−tert−ブチルジイソプロポキシシラン、ジ−tert−ブチルジ−n−ブトキシシラン、ジ−tert−ブチルジ−sec−ブトキシシラン、ジ−tert−ブチルジ−tert−ブトキシシラン、ジ−tert−ブチルジ−フェノキシシラン、ジフェニルジメトキシシラン、ジフェニルジ−エトキシシラン、ジフェニルジ−n−プロポキシシラン、ジフェニルジイソプロポキシシラン、ジフェニルジ−n−ブトキシシラン、ジフェニルジ−sec−ブトキシシラン、ジフェニルジ−tert−ブトキシシラン、ジフェニルジフェノキシシラン、ジビニルジメトキシシランが挙げられる。これらは、1種あるいは2種以上を同時に使用してもよい。
化合物1として特に好ましい化合物は、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリ−iso−プロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシランなどである。
1.1.2.化合物2
一般式(2)において、R〜Rの1価の有機基としては、前記一般式(1)においてR,Rとして例示した1価の有機基と同様の基を挙げることができる。
また、Rがフェニレン基または−(CH−で表される基であることにより、一般式(2)においてbまたはcが0である場合において、1つのケイ素原子が4つの酸素原子で置換された部位の生成を防止することができる。
一般式(2)において、d=0の化合物としては、ヘキサメトキシジシラン、ヘキサエトキシジシラン、ヘキサフェノキシジシラン、1,1,1,2,2−ペンタメトキシ−2−メチルジシラン、1,1,1,2,2−ペンタエトキシ−2−メチルジシラン、1,1,1,2,2−ペンタフェノキシ−2−メチルジシラン、1,1,1,2,2−ペンタメトキシ−2−エチルジシラン、1,1,1,2,2−ペンタエトキシ−2−エチルジシラン、1,1,1,2,2−ペンタフェノキシ−2−エチルジシラン、1,1,1,2,2−ペンタメトキシ−2−フェニルジシラン、1,1,1,2,2−ペンタエトキシ−2−フェニルジシラン、1,1,1,2,2−ペンタフェノキシ−2−フェニルジシラン、1,1,2,2−テトラメトキシ−1,2−ジメチルジシラン、1,1,2,2−テトラエトキシ−1,2−ジメチルジシラン、1,1,2,2−テトラフェノキシ−1,2−ジメチルジシラン、1,1,2,2−テトラメトキシ−1,2−ジエチルジシラン、1,1,2,2−テトラエトキシ−1,2−ジエチルジシラン、1,1,2,2−テトラフェノキシ−1,2−ジエチルジシラン、1,1,2,2−テトラメトキシ−1,2−ジフェニルジシラン、1,1,2,2−テトラエトキシ−1,2−ジフェニルジシラン、1,1,2,2−テトラフェノキシ−1,2−ジフェニルジシラン、1,1,2−トリメトキシ−1,2,2−トリメチルジシラン、1,1,2−トリエトキシ−1,2,2−トリメチルジシラン、1,1,2−トリフェノキシ−1,2,2−トリメチルジシラン、1,1,2−トリメトキシ−1,2,2−トリエチルジシラン、1,1,2−トリエトキシ−1,2,2−トリエチルジシラン、1,1,2−トリフェノキシ−1,2,2−トリエチルジシラン、1,1,2−トリメトキシ−1,2,2−トリフェニルジシラン、1,1,2−トリエトキシ−1,2,2−トリフェニルジシラン、1,1,2−トリフェノキシ−1,2,2−トリフェニルジシラン、1,2−ジメトキシ−1,1,2,2−テトラメチルジシラン、1,2−ジエトキシ−1,1,2,2−テトラメチルジシラン、1,2−ジフェノキシ−1,1,2,2−テトラメチルジシラン、1,2−ジメトキシ−1,1,2,2−テトラエチルジシラン、1,2−ジエトキシ−1,1,2,2−テトラエチルジシラン、1,2−ジフェノキシ−1,1,2,2−テトラエチルジシラン、1,2−ジメトキシ−1,1,2,2−テトラフェニルジシラン、1,2−ジエトキシ−1,1,2,2−テトラフェニルジシラン、1,2−ジフェノキシ−1,1,2,2−テトラフェニルジシランなどを挙げることができる。
これらのうち、ヘキサメトキシジシラン、ヘキサエトキシジシラン、1,1,2,2−テトラメトキシ−1,2−ジメチルジシラン、1,1,2,2−テトラエトキシ−1,2−ジメチルジシラン、1,1,2,2−テトラメトキシ−1,2−ジフェニルジシラン、1,2−ジメトキシ−1,1,2,2−テトラメチルジシラン、1,2−ジエトキシ−1,1,2,2−テトラメチルジシラン、1,2−ジメトキシ−1,1,2,2−テトラフェニルジシラン、1,2−ジエトキシ−1,1,2,2−テトラフェニルジシランなどを、好ましい例として挙げることができる。
さらに、化合物2として、一般式(2)において、Rが−(CH−で表される基の化合物としては、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリ−n−プロポキシシリル)メタン、ビス(トリ−iso−プロポキシシリル)メタン、ビス(トリ−n−ブトキシシリル)メタン、ビス(トリ−sec−ブトキシシリル)メタン、ビス(トリ−tert−ブトキシシリル)メタン、1,2−ビス(トリメトキシシリル)エタン、1,2−ビス(トリエトキシシリル)エタン、1,2−ビス(トリ−n−プロポキシシリル)エタン、1,2−ビス(トリ−iso−プロポキシシリル)エタン、1,2−ビス(トリ−n−ブトキシシリル)エタン、1,2−ビス(トリ−sec−ブトキシシリル)エタン、1,2−ビス(トリ−tert−ブトキシシリル)エタン、1−(ジメトキシメチルシリル)−1−(トリメトキシシリル)メタン、1−(ジエトキシメチルシリル)−1−(トリエトキシシリル)メタン、1−(ジ−n−プロポキシメチルシリル)−1−(トリ−n−プロポキシシリル)メタン、1−(ジ−iso−プロポキシメチルシリル)−1−(トリ−iso−プロポキシシリル)メタン、1−(ジ−n−ブトキシメチルシリル)−1−(トリ−n−ブトキシシリル)メタン、1−(ジ−sec−ブトキシメチルシリル)−1−(トリ−sec−ブトキシシリル)メタン、1−(ジ−tert−ブトキシメチルシリル)−1−(トリ−tert−ブトキシシリル)メタン、1−(ジメトキシメチルシリル)−2−(トリメトキシシリル)エタン、1−(ジエトキシメチルシリル)−2−(トリエトキシシリル)エタン、1−(ジ−n−プロポキシメチルシリル)−2−(トリ−n−プロポキシシリル)エタン、1−(ジ−iso−プロポキシメチルシリル)−2−(トリ−iso−プロポキシシリル)エタン、1−(ジ−n−ブトキシメチルシリル)−2−(トリ−n−ブトキシシリル)エタン、1−(ジ−sec−ブトキシメチルシリル)−2−(トリ−sec−ブトキシシリル)エタン、1−(ジ−tert−ブトキシメチルシリル)−2−(トリ−tert−ブトキシシリル)エタン、ビス(ジメトキシメチルシリル)メタン、ビス(ジエトキシメチルシリル)メタン、ビス(ジ−n−プロポキシメチルシリル)メタン、ビス(ジ−iso−プロポキシメチルシリル)メタン、ビス(ジ−n−ブトキシメチルシリル)メタン、ビス(ジ−sec−ブトキシメチルシリル)メタン、ビス(ジ−tert−ブトキシメチルシリル)メタン、1,2−ビス(ジメトキシメチルシリル)エタン、1,2−ビス(ジエトキシメチルシリル)エタン、1,2−ビス(ジ−n−プロポキシメチルシリル)エタン、1,2−ビス(ジ−iso−プロポキシメチルシリル)エタン、1,2−ビス(ジ−n−ブトキシメチルシリル)エタン、1,2−ビス(ジ−sec−ブトキシメチルシリル)エタン、1,2−ビス(ジ−tert−ブトキシメチルシリル)エタン、1,2−ビス(トリメトキシシリル)ベンゼン、1,2−ビス(トリエトキシシリル)ベンゼン、1,2−ビス(トリ−n−プロポキシシリル)ベンゼン、1,2−ビス(トリ−iso−プロポキシシリル)ベンゼン、1,2−ビス(トリ−n−ブトキシシリル)ベンゼン、1,2−ビス(トリ−sec−ブトキシシリル)ベンゼン、1,2−ビス(トリ−tert−ブトキシシリル)ベンゼン、1,3−ビス(トリメトキシシリル)ベンゼン、1,3−ビス(トリエトキシシリル)ベンゼン、1,3−ビス(トリ−n−プロポキシシリル)ベンゼン、1,3−ビス(トリ−iso−プロポキシシリル)ベンゼン、1,3−ビス(トリ−n−ブトキシシリル)ベンゼン、1,3−ビス(トリ−sec−ブトキシシリル)ベンゼン、1,3−ビス(トリ−tert−ブトキシシリル)ベンゼン、1,4−ビス(トリメトキシシリル)ベンゼン、1,4−ビス(トリエトキシシリル)ベンゼン、1,4−ビス(トリ−n−プロポキシシリル)ベンゼン、1,4−ビス(トリ−iso−プロポキシシリル)ベンゼン、1,4−ビス(トリ−n−ブトキシシリル)ベンゼン、1,4−ビス(トリ−sec−ブトキシシリル)ベンゼン、1,4−ビス(トリ−tert−ブトキシシリル)ベンゼンなど挙げることができる。
これらのうち、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、1,2−ビス(トリメトキシシリル)エタン、1,2−ビス(トリエトキシシリル)エタン、1−(ジメトキシメチルシリル)−1−(トリメトキシシリル)メタン、1−(ジエトキシメチルシリル)−1−(トリエトキシシリル)メタン、1−(ジメトキシメチルシリル)−2−(トリメトキシシリル)エタン、1−(ジエトキシメチルシリル)−2−(トリエトキシシリル)エタン、ビス(ジメトキシメチルシリル)メタン、ビス(ジエトキシメチルシリル)メタン、1,2−ビス(ジメトキシメチルシリル)エタン、1,2−ビス(ジエトキシメチルシリル)エタン、1,2−ビス(トリメトキシシリル)ベンゼン、1,2−ビス(トリエトキシシリル)ベンゼン、1,3−ビス(トリメトキシシリル)ベンゼン、1,3−ビス(トリエトキシシリル)ベンゼン、1,4−ビス(トリメトキシシリル)ベンゼン、1,4−ビス(トリエトキシシリル)ベンゼンなどを好ましい例として挙げることができる。前記化合物1〜3は、1種あるいは2種以上を同時に使用してもよい。
化合物1〜2で表される化合物を加水分解、部分縮合させる際に、一般式(1)〜(2)においてRO−、RO−およびRO−で表される基1モル当たり、0.1〜100モルの水を用いることが好ましい。なお、本発明において完全加水分解縮合物とは、縮合物成分中RO−、RO−およびRO−で表される基が100%加水分解してOH基となり、完全に縮合したものを示す。
1.2.(B)成分
次に(B)成分について説明する。(B)成分は、下記一般式(3)で表される構造を有するポリカルボシラン(以下、「化合物3」という)である。(B)成分は、前記(A)成分と縮合して、Si−O−Si結合を形成することができる。
Figure 0004877486
・・・・・(3)
(式中、Rは、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、アシロキシ基、スルホン基、メタンスルホン基、トリフルオロメタンスルホン基、アルキル基、アリール基、アリル基、およびグリシジル基からなる群より選ばれる基を示し、Rはハロゲン原子、ヒドロキシ基、アルコキシ基、アシロキシ基、スルホン基、メタンスルホン基、トリフルオロメタンスルホン基、アルキル基、アリール基、アリル基、およびグリシジル基からなる群より選ばれる基を示し、R10,R11は同一または異なり、ハロゲン原子、ヒドロキシ基、アルコキシ基、アシロキシ基、スルホン基、メタンスルホン基、トリフルオロメタンスルホン基、炭素数2〜6のアルキル基、アリール基、アリル基、およびグリシジル基からなる群より選ばれる基を示し、R12〜R14は同一または異なり、置換または非置換のメチレン基、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基を示し、e,f,gは、それぞれ0〜10,000の数を示し、10<e+f+g<10,000の条件を満たす。)
(A)成分と(B)成分の混合比としては、(A)成分の完全加水分解縮合物100重量部に対して、(B)成分が1〜1000重量部であることが好ましく、特に5〜200重量部であることがより好ましく、5〜100重量部であることがさらに好ましい。(B)成分が1重量部未満である場合には、膜形成後に十分な薬液耐性を発現することができない場合があり、また1000重量部を越えると膜の低誘電率化を達成できない場合がある。
(B)成分のポリスチレン換算重量平均分子量は、500〜10,000であることが好ましく、600〜5,000であることがより好ましく、600〜3,000であることがさらに好ましい。(B)成分のポリスチレン換算重量平均分子量が10,000を超えると、(A)成分と層分離を起こし、均一な膜を形成しないことがある。
前記膜形成用組成物に含まれる加水分解縮合物を製造する際に、(B)成分として化合物3を用いて、(C)触媒および(B)成分の存在下、(A)成分を加水分解縮合することにより、(A)成分同士の加水分解縮合とともに、(B)成分と(A)成分に由来するポリシロキサンとの加水分解縮合を進行させることができる。これにより、得られる加水分解縮合物は、(B)成分(ポリカルボシラン)を核とするポリマーが、(A)成分(加水分解基含有シランモノマー)に由来するポリシロキサンの三次構造内に取り込まれた構造を有する。本発明の絶縁膜形成用組成物が上記加水分解縮合物を含むことにより、比誘電率がより小さく、機械的強度、密着性および薬液耐性が非常に優れ、かつ膜中の相分離がない絶縁膜を得ることができる。
1.3.(C)触媒
ここで、前記加水分解縮合は、塩基性触媒、酸性触媒、または金属キレート触媒などの(C)触媒の存在下で行なわれることが好ましい。
1.3.1.塩基性触媒
前記膜形成用組成物に含まれる加水分解縮合物を製造する際、(C)触媒として塩基性触媒を使用することにより、得られる加水分解縮合物の分子構造に存在する分子鎖の分岐度を高くすることができ、かつ、その分子量をより大きくすることができる。これにより、上述した構造を有する加水分解縮合物を得ることができる。
塩基性触媒としては、例えば、メタノールアミン、エタノールアミン、プロパノールアミン、ブタノールアミン、N−メチルメタノールアミン、N−エチルメタノールアミン、N−プロピルメタノールアミン、N−ブチルメタノールアミン、N−メチルエタノールアミン、N−エチルエタノールアミン、N−プロピルエタノールアミン、N−ブチルエタノールアミン、N−メチルプロパノールアミン、N−エチルプロパノールアミン、N−プロピルプロパノールアミン、N−ブチルプロパノールアミン、N−メチルブタノールアミン、N−エチルブタノールアミン、N−プロピルブタノールアミン、N−ブチルブタノールアミン、N,N−ジメチルメタノールアミン、N,N−ジエチルメタノールアミン、N,N−ジプロピルメタノールアミン、N,N−ジブチルメタノールアミン、N,N−ジメチルエタノールアミン、N,N−ジエチルエタノールアミン、N,N−ジプロピルエタノールアミン、N,N−ジブチルエタノールアミン、N,N−ジメチルプロパノールアミン、N,N−ジエチルプロパノールアミン、N,N−ジプロピルプロパノールアミン、N,N−ジブチルプロパノールアミン、N,N−ジメチルブタノールアミン、N,N−ジエチルブタノールアミン、N,N−ジプロピルブタノールアミン、N,N−ジブチルブタノールアミン、N−メチルジメタノールアミン、N−エチルジメタノールアミン、N−プロピルジメタノールアミン、N−ブチルジメタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、N−プロピルジエタノールアミン、N−ブチルジエタノールアミン、N−メチルジプロパノールアミン、N−エチルジプロパノールアミン、N−プロピルジプロパノールアミン、N−ブチルジプロパノールアミン、N−メチルジブタノールアミン、N−エチルジブタノールアミン、N−プロピルジブタノールアミン、N−ブチルジブタノールアミン、N−(アミノメチル)メタノールアミン、N−(アミノメチル)エタノールアミン、N−(アミノメチル)プロパノールアミン、N−(アミノメチル)ブタノールアミン、N−(アミノエチル)メタノールアミン、N−(アミノエチル)エタノールアミン、N−(アミノエチル)プロパノールアミン、N−(アミノエチル)ブタノールアミン、N−(アミノプロピル)メタノールアミン、N−(アミノプロピル)エタノールアミン、N−(アミノプロピル)プロパノールアミン、N−(アミノプロピル)ブタノールアミン、N−(アミノブチル)メタノールアミン、N−(アミノブチル)エタノールアミン、N−(アミノブチル)プロパノールアミン、N−(アミノブチル)ブタノールアミン、メトキシメチルアミン、メトキシエチルアミン、メトキシプロピルアミン、メトキシブチルアミン、エトキシメチルアミン、エトキシエチルアミン、エトキシプロピルアミン、エトキシブチルアミン、プロポキシメチルアミン、プロポキシエチルアミン、プロポキシプロピルアミン、プロポキシブチルアミン、ブトキシメチルアミン、ブトキシエチルアミン、ブトキシプロピルアミン、ブトキシブチルアミン、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、N,N−ジメチルアミン、N,N−ジエチルアミン、N,N−ジプロピルアミン、N,N−ジブチルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、テトラメチルアンモニウムハイドロキサイド、テトラエチルアンモニウムハイドロキサイド、テトラプロピルアンモニウムハイドロキサイド、テトラブチルアンモニウムハイドロキサイド、テトラメチルエチレンジアミン、テトラエチルエチレンジアミン、テトラプロピルエチレンジアミン、テトラブチルエチレンジアミン、メチルアミノメチルアミン、メチルアミノエチルアミン、メチルアミノプロピルアミン、メチルアミノブチルアミン、エチルアミノメチルアミン、エチルアミノエチルアミン、エチルアミノプロピルアミン、エチルアミノブチルアミン、プロピルアミノメチルアミン、プロピルアミノエチルアミン、プロピルアミノプロピルアミン、プロピルアミノブチルアミン、ブチルアミノメチルアミン、ブチルアミノエチルアミン、ブチルアミノプロピルアミン、ブチルアミノブチルアミン、ピリジン、ピロール、ピペラジン、ピロリジン、ピペリジン、ピコリン、モルホリン、メチルモルホリン、ジアザビシクロオクラン、ジアザビシクロノナン、ジアザビシクロウンデセン、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化カルシウムなどを挙げることができる。
塩基性触媒としては、特に、下記一般式(4)で表される含窒素化合物(以下、化合物4ともいう)であることが好ましい。
(XN)Y・・・・・(4)
前記一般式(4)において、X,X,X,Xは同一または異なり、それぞれ水素原子、炭素数1〜20のアルキル基(好ましくはメチル基、エチル基、プロピル基、ブチル基、ヘキシル基など)、ヒドロキシアルキル基(好ましくはヒドロキシエチル基など)、アリール基(好ましくはフェニル基など)、アリールアルキル基(好ましくはフェニルメチル基など)を示し、Yはハロゲン原子(好ましくはフッ素原子、塩素原子、臭素原子、ヨウ素原子など)、1〜4価のアニオン性基(好ましくはヒドロキシ基など)を示し、eは1〜4の整数を示す。
化合物4の具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラ−n−プロピルアンモニウム、水酸化テトラ−iso−プロピルアンモニウム、水酸化テトラ−n−ブチルアンモニウム、水酸化テトラ−iso−ブチルアンモニウム、水酸化テトラ−tert−ブチルアンモニウム、水酸化テトラペンチルアンモニウム、水酸化テトラヘキシルアンモニウム、水酸化テトラヘプチルアンモニウム、水酸化テトラオクチルアンモニウム、水酸化テトラノニルアンモニウム、水酸化テトラデシルアンモニウム、水酸化テトラウンデシルアンモニウム、水酸化テトラドデシルアンモニウム、臭化テトラメチルアンモニウム、塩化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラ−n−プロピルアンモニウム、塩化テトラ−n−プロピルアンモニウム、臭化テトラ−n−ブチルアンモニウム、塩化テトラ−n−ブチルアンモニウム、水酸化ヘキサデシルトリメチルアンモニウム、臭化−n−ヘキサデシルトリメチルアンモニウム、水酸化−n−オクタデシルトリメチルアンモニウム、臭化−n−オクタデシルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム、塩化ステアリルトリメチルアンモニウム、塩化ベンジルトリメチルアンモニウム、塩化ジデシルジメチルアンモニウム、塩化ジステアリルジメチルアンモニウム、塩化トリデシルメチルアンモニウム、テトラブチルアンモニウムハイドロジェンサルフェート、臭化トリブチルメチルアンモニウム、塩化トリオクチルメチルアンモニウム、塩化トリラウリルメチルアンモニウム、水酸化ベンジルトリメチルアンモニウム、臭化ベンジルトリエチルアンモニウム、臭化ベンジルトリブチルアンモニウム、臭化フェニルトリメチルアンモニウム、コリン等を好ましい例として挙げることができる。これらのうち特に好ましくは、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラ−n−プロピルアンモニウム、水酸化テトラ−n−ブチルアンモニウム、臭化テトラメチルアンモニウム、塩化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラ−n−プロピルアンモニウム、塩化テトラ−n−プロピルアンモニウムである。前記の化合物4は、1種あるいは2種以上を同時に使用してもよい。
塩基性触媒の使用量は、(A)成分と(B)成分の合計ケイ素原子(化合物1〜3の総量)1モルに対して通常0.0001〜1モル、好ましくは0.001〜0.1モルである。
1.3.2.酸性触媒
(C)触媒として使用可能な酸性触媒としては、例えば、塩酸、硝酸、硫酸、フッ酸、リン酸、ホウ酸などの無機酸;
酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、マレイン酸、メチルマロン酸、アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、アラキドン酸、シキミ酸、2−エチルヘキサン酸、オレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安息香酸、p−アミノ安息香酸、p−トルエンスルホン酸、ベンゼンスルホン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ギ酸、マロン酸、スルホン酸、フタル酸、フマル酸、クエン酸、酒石酸、コハク酸、フマル酸、イタコン酸、メサコン酸、シトラコン酸、リンゴ酸、グルタル酸の加水分解物、無水マレイン酸の加水分解物、無水フタル酸の加水分解物などの有機酸を挙げることができ、有機カルボン酸をより好ましい例として挙げることができる。これらの酸性触媒は、1種あるいは2種以上を同時に使用してもよい。
酸性触媒の使用量は、(A)成分と(B)成分の合計ケイ素原子(化合物1〜3の総量)1モルに対して通常0.0001〜1モル、好ましくは0.001〜0.1モルである。
1.3.3.金属キレート触媒
(C)触媒として使用可能な金属キレート触媒としては、例えば、トリエトキシ・モノ(アセチルアセトナート)チタン、トリ−n−プロポキシ・モノ(アセチルアセトナート)チタン、トリ−i−プロポキシ・モノ(アセチルアセトナート)チタン、トリ−n−ブトキシ・モノ(アセチルアセトナート)チタン、トリ−sec−ブトキシ・モノ(アセチルアセトナート)チタン、トリ−t−ブトキシ・モノ(アセチルアセトナート)チタン、ジエトキシ・ビス(アセチルアセトナート)チタン、ジ−n−プロポキシ・ビス(アセチルアセトナート)チタン、ジ−i−プロポキシ・ビス(アセチルアセトナート)チタン、ジ−n−ブトキシ・ビス(アセチルアセトナート)チタン、ジ−sec−ブトキシ・ビス(アセチルアセトナート)チタン、ジ−t−ブトキシ・ビス(アセチルアセトナート)チタン、モノエトキシ・トリス(アセチルアセトナート)チタン、モノ−n−プロポキシ・トリス(アセチルアセトナート)チタン、モノ−i−プロポキシ・トリス(アセチルアセトナート)チタン、モノ−n−ブトキシ・トリス(アセチルアセトナート)チタン、モノ−sec−ブトキシ・トリス(アセチルアセトナート)チタン、モノ−t−ブトキシ・トリス(アセチルアセトナート)チタン、テトラキス(アセチルアセトナート)チタン、トリエトキシ・モノ(エチルアセトアセテート)チタン、トリ−n−プロポキシ・モノ(エチルアセトアセテート)チタン、トリ−i−プロポキシ・モノ(エチルアセトアセテート)チタン、トリ−n−ブトキシ・モノ(エチルアセトアセテート)チタン、トリ−sec−ブトキシ・モノ(エチルアセトアセテート)チタン、トリ−t−ブトキシ・モノ(エチルアセトアセテート)チタン、ジエトキシ・ビス(エチルアセトアセテート)チタン、ジ−n−プロポキシ・ビス(エチルアセトアセテート)チタン、ジ−i−プロポキシ・ビス(エチルアセトアセテート)チタン、ジ−n−ブトキシ・ビス(エチルアセトアセテート)チタン、ジ−sec−ブトキシ・ビス(エチルアセトアセテート)チタン、ジ−t−ブトキシ・ビス(エチルアセトアセテート)チタン、モノエトキシ・トリス(エチルアセトアセテート)チタン、モノ−n−プロポキシ・トリス(エチルアセトアセテート)チタン、モノ−i−プロポキシ・トリス(エチルアセトアセテート)チタン、モノ−n−ブトキシ・トリス(エチルアセトアセテート)チタン、モノ−sec−ブトキシ・トリス(エチルアセトアセテート)チタン、モノ−t−ブトキシ・トリス(エチルアセトアセテート)チタン、テトラキス(エチルアセトアセテート)チタン、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)チタン、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)チタン、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)チタンなどのチタンキレート化合物;
トリエトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−n−プロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−i−プロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−n−ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−sec−ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ−t−ブトキシ・モノ(アセチルアセトナート)ジルコニウム、ジエトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−n−プロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−i−プロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−n−ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−sec−ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ−t−ブトキシ・ビス(アセチルアセトナート)ジルコニウム、モノエトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−n−プロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−i−プロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−n−ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−sec−ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ−t−ブトキシ・トリス(アセチルアセトナート)ジルコニウム、テトラキス(アセチルアセトナート)ジルコニウム、トリエトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−n−プロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−i−プロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−n−ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−sec−ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ−t−ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、ジエトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−n−プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−i−プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−n−ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−sec−ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ−t−ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、モノエトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−n−プロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−i−プロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−n−ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−sec−ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ−t−ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)ジルコニウム、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)ジルコニウム、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)ジルコニウムなどのジルコニウムキレート化合物;
トリス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウムなどのアルミニウムキレート化合物;
などを挙げることができ、好ましくはチタンまたはアルミニウムのキレート化合物、特に好ましくはチタンのキレート化合物を挙げることができる。これらの金属キレート触媒は、1種あるいは2種以上を同時に使用しても良い。
金属キレート触媒の使用量は、(A)成分と(B)成分の合計ケイ素原子(化合物1〜3の総量)1モルに対して通常0.0001〜1モル、好ましくは0.001〜0.1モルである。
1.4.特定加水分解縮合物の製造方法
上述したように、特定加水分解縮合物は、上記(A)成分と上記(B)成分とを加水分解縮合することにより得られる。
ここで、(A)成分および(B)成分を有機溶媒に溶解させた状態で、(A)成分を加水分解することができる。この場合に使用可能な有機溶媒としては、例えば、メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、sec−ブタノール、t−ブタノール等のアルコール系溶媒;エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、2,4−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2,5−ヘキサンジオール、2,4−ヘプタンジオール、2−エチル−1,3−ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコールなどの多価アルコール系溶媒;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテルなどの多価アルコール部分エーテル系溶媒;エチルエーテル、i−プロピルエーテル、n−ブチルエーテル、n−ヘキシルエーテル、2−エチルヘキシルエーテル、ジオキソラン、4−メチルジオキソラン、ジオキサン、ジメチルジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテルなどのエーテル系溶媒;アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−ブチルケトン、ジエチルケトン、メチル−i−ブチルケトン、メチル−n−ペンチルケトン、エチル−n−ブチルケトン、メチル−n−ヘキシルケトン、ジ−i−ブチルケトン、トリメチルノナノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、2−ヘキサノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン、ジアセトンアルコール、などのケトン系溶媒が挙げられる。
有機溶媒中における(A)成分および(B)成分の合計量の濃度は1〜30重量%であることが好ましい。
加水分解縮合における反応温度は0〜100℃、好ましくは20〜80℃、反応時間は30〜1000分、好ましくは30〜180分である。
各成分の添加順としては、特に限定されないが、例えば有機溶媒に塩基性触媒を添加した液に、(A)成分および(B)成分をそれぞれ有機溶媒に添加したものを逐次添加していく方法が好ましい。
得られた特定加水分解縮合物のポリスチレン換算重量平均分子量は、通常、1,500〜500,000であるのが好ましく、2,000〜200,000であるのがより好ましく、2,000〜150,000であるのがさらに好ましい。特定加水分解縮合物のポリスチレン換算重量平均分子量が1,500未満であると、目的とする比誘電率が得られず、一方、500,000を超えると、異物が生じやすく、また塗膜の面内均一性が劣る場合がある。
1.5.有機溶媒
上記絶縁膜形成用組成物に含まれる有機溶媒としては、アルコール系溶媒、ケトン系溶媒、アミド系溶媒、エーテル系溶媒、エステル系溶媒、脂肪族炭化水素系溶媒、芳香族系溶媒および含ハロゲン溶媒の群から選ばれた少なくとも1種が挙げられる。
アルコール系溶媒としては、メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、sec−ブタノール、t−ブタノール、n−ペンタノール、i−ペンタノール、2−メチルブタノール、sec−ペンタノール、t−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、3−ヘプタノール、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、2,6−ジメチル−4−ヘプタノール、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、フルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5−トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコールなどのモノアルコール系溶媒;
エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、2,4−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2,5−ヘキサンジオール、2,4−ヘプタンジオール、2−エチル−1,3−ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコールなどの多価アルコール系溶媒;
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ−2−エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテルなどの多価アルコール部分エーテル系溶媒;などを挙げることができる。これらのアルコール系溶媒は、1種あるいは2種以上を同時に使用してもよい。
ケトン系溶媒としては、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−ブチルケトン、ジエチルケトン、メチル−i−ブチルケトン、メチル−n−ペンチルケトン、エチル−n−ブチルケトン、メチル−n−ヘキシルケトン、ジ−i−ブチルケトン、トリメチルノナノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、2−ヘキサノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン、ジアセトンアルコール、アセトフェノン、フェンチョンなどのケトン系溶媒を挙げることができる。これらのケトン系溶媒は、1種あるいは2種以上を同時に使用してもよい。
アミド系溶媒としては、N,N−ジメチルイミダゾリジノン、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド、N−メチルピロリドンなどの含窒素系溶媒を挙げることができる。これらのアミド系溶媒は、1種あるいは2種以上を同時に使用してもよい。
エーテル溶媒系としては、エチルエーテル、i−プロピルエーテル、n−ブチルエーテル、n−ヘキシルエーテル、2−エチルヘキシルエーテル、ジオキソラン、4−メチルジオキソラン、ジオキサン、ジメチルジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールモノ−n−ブチルエーテル、エチレングリコールモノ−n−ヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ−2−エチルブチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールジ−n−ブチルエーテル、ジエチレングリコールモノ−n−ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールジ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジフェニルエーテル、アニソールなどのエーテル系溶媒を挙げることができる。これらのエーテル系溶媒は、1種あるいは2種以上を同時に使用してもよい。
エステル系溶媒としては、ジエチルカーボネート、プロピレンカーボネート、酢酸メチル、酢酸エチル、γ−ブチロラクトン、γ−バレロラクトン、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n−ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ−n−ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸i−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチルなどのエステル系溶媒を挙げることができる。これらのエステル系溶媒は、1種あるいは2種以上を同時に使用してもよい。
脂肪族炭化水素系溶媒としては、n−ペンタン、i−ペンタン、n−ヘキサン、i−ヘキサン、n−ヘプタン、i−ヘプタン、2,2,4−トリメチルペンタン、n−オクタン、i−オクタン、シクロヘキサン、メチルシクロヘキサンなどの脂肪族炭化水素系溶媒を挙げることができる。これらの脂肪族炭化水素系溶媒は、1種あるいは2種以上を同時に使用してもよい。
芳香族炭化水素系溶媒としては、ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n−プロピルベンセン、i−プロピルベンセン、ジエチルベンゼン、i−ブチルベンゼン、トリエチルベンゼン、ジ−i−プロピルベンセン、n−アミルナフタレンなどの芳香族炭化水素系溶媒を挙げることができる。これらの芳香族炭化水素系溶媒は、1種あるいは2種以上を同時に使用してもよい。含ハロゲン溶媒としては、ジクロロメタン、クロロホルム、フロン、クロロベンゼン、ジクロロベンゼン、などの含ハロゲン溶媒を挙げることができる。
本発明においては、沸点が150℃未満の有機溶媒を使用することが望ましく、溶剤種としては、アルコール系溶剤、ケトン系溶剤、エステル系溶剤が特に望ましく、さらにそれらを1種あるいは2種以上を同時に使用することが望ましい。
これらの有機溶媒は、特定加水分解縮合物の合成に用いたものと同じものであってもよいし、特定加水分解縮合物の合成が終了した後に溶剤を所望の有機溶媒に置換することもできる。
前記膜形成用組成物の全固形分濃度は、好ましくは2〜30重量%であり、使用目的に応じて適宜調整される。前記膜形成用組成物の全固形分濃度が2〜30重量%であることにより、塗膜の膜厚が適当な範囲となり、より優れた保存安定性を有するものとなる。なお、この全固形分濃度の調整は、必要に応じて、濃縮および有機溶媒による希釈によって行われる。
1.6.その他の添加物
前記絶縁膜形成用組成物には、さらに有機ポリマーや界面活性剤などの成分を添加してもよい。また、これらの添加物は、(A)成分および(B)成分を混合する前の各成分が溶解もしくは分散された溶剤中に添加されていてもよい。
1.6.1.有機ポリマー
有機ポリマーとしては、例えば、糖鎖構造を有する重合体、ビニルアミド系重合体、(メタ)アクリル系重合体、芳香族ビニル化合物系重合体、デンドリマー、ポリイミド,ポリアミック酸、ポリアリーレン、ポリアミド、ポリキノキサリン、ポリオキサジアゾール、フッ素系重合体、ポリアルキレンオキサイド構造を有する重合体などを挙げることができる。
ポリアルキレンオキサイド構造を有する重合体としては、ポリメチレンオキサイド構造、ポリエチレンオキサイド構造、ポリプロピレンオキサイド構造、ポリテトラメチレンオキサイド構造、ポリブチレンオキシド構造などが挙げられる。
具体的には、ポリオキシメチレンアルキルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエテチレンアルキルフェニルエーテル、ポリオキシエチレンステロールエーテル、ポリオキシエチレンラノリン誘導体、アルキルフェノールホルマリン縮合物の酸化エチレン誘導体、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルなどのエーテル型化合物、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレン脂肪酸アルカノールアミド硫酸塩などのエーテルエステル型化合物、ポリエチレングリコール脂肪酸エステル、エチレングリコール脂肪酸エステル、脂肪酸モノグリセリド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステルなどのエーテルエステル型化合物などを挙げることができる。
ポリオキシチレンポリオキシプロピレンブロックコポリマーとしては、下記のようなブロック構造を有する化合物が挙げられる。
−(X′)−(Y′)
−(X′)−(Y′)−(X′)
(式中、X′は−CHCHO−で表される基を、Y′は−CHCH(CH)O−で表される基を示し、lは1〜90、mは10〜99、nは0〜90の数を示す。)
これらの中で、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、などのエーテル型化合物をより好ましい例として挙げることができる。前述の有機ポリマーは、1種あるいは2種以上を同時に使用しても良い。
1.6.2.界面活性剤
界面活性剤としては、たとえば、ノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などが挙げられ、さらには、フッ素系界面活性剤、シリコーン系界面活性剤、ポリアルキレンオキシド系界面活性剤、ポリ(メタ)アクリレート系界面活性剤などを挙げることができ、好ましくはフッ素系界面活性剤、シリコーン系界面活性剤を挙げることができる。
界面活性剤の使用量は、得られる重合体100重量部に対して、通常、0.00001〜1重量部である。これらは、1種あるいは2種以上を同時に使用しても良い。
2.膜の形成方法
本発明の一実施形態に係る膜(絶縁膜)の形成方法は、膜形成用組成物を基材に塗布し、塗膜を形成する工程と、前記塗膜について、加熱、電子線照射、紫外線照射、および酸素プラズマから選ばれる少なくとも1種の硬化処理を行なう工程と、を含む。
膜形成用組成物が塗布される基材としては、Si、SiO、SiN、SiC、SiCN等のSi含有層が挙げられる。膜形成用組成物を基材に塗布する方法としては、スピンコート、浸漬法、ロールコート法、スプレー法などの塗装手段が用いられる。基材に膜形成用組成物を塗布した後、溶剤を除去し塗膜を形成する。この際の膜厚は、乾燥膜厚として、1回塗りで厚さ0.05〜2.5μm、2回塗りでは厚さ0.1〜5.0μmの塗膜を形成することができる。その後、得られた塗膜に対して、硬化処理を施すことでシリカ系膜を形成することができる。
加熱により硬化を行なう場合は、この塗膜を不活性雰囲気下または減圧下で80℃〜450℃に加熱する。この際の加熱方法としては、ホットプレート、オーブン、ファーネスなどを使用することができ、加熱雰囲気としては、不活性雰囲気下または減圧下で行なうことができる。また、加熱条件下で紫外線を照射することにより塗膜の硬化処理を行なってもよい。
また、上記塗膜の硬化速度を制御するため、必要に応じて、段階的に加熱したり、あるいは窒素、空気、酸素、減圧などの雰囲気を選択したりすることができる。このような工程により、シリカ系膜の製造を行なうことができる。
3.シリカ系膜(シリカ系絶縁膜)
本発明の一実施形態に係るシリカ系膜は、低誘電率であり、かつ表面平坦性に優れるため、LSI、システムLSI、DRAM、SDRAM、RDRAM、D−RDRAMなどの半導体素子用層間絶縁膜として特に優れており、かつ、エッチングストッパー膜、半導体素子の表面コート膜などの保護膜、多層レジストを用いた半導体作製工程の中間層、多層配線基板の層間絶縁膜、液晶表示素子用の保護膜や絶縁膜などに好適に用いることができる。本発明の一実施形態に係るシリカ系膜の比誘電率は通常3.5以下であり、1.8〜3.0であるのが好ましい。
4.実施例
以下、本発明を、実施例を挙げてさらに具体的に説明する。本発明は以下の実施例に限定されるものではない。なお、実施例および比較例中の「部」および「%」は、特記しない限り、それぞれ重量部および重量%であることを示している。
4.1.評価方法
各種膜の評価は、次のようにして行った。
8インチシリコンウエハ上に、スピンコート法を用いて膜形成用組成物を塗布し、ホットプレート上にて90℃で3分間、次いで窒素雰囲気下200℃で3分間乾燥した。さらに、以下のいずれかの方法で硬化処理を実施した。
(i)加熱のみで硬化処理を行なう場合…50mTorrの減圧下(真空雰囲気)420℃の縦型ファーネスで1時間焼成した。
(ii)加熱条件下で紫外線照射により硬化処理を行なう場合…ホットプレート上で塗膜を400℃に加熱しながら、波長250nm以下の波長を含む白色紫外線を3分間照射した。この際、酸素分圧は0.01kPa以下となるようにした。
4.1.1.比誘電率測定
得られた膜に、蒸着法によりアルミニウム電極パターンを形成し、比誘電率測定用サンプルを作成した。該サンプルについて、周波数100kHzの周波数で、横河・ヒューレットパッカード(株)製、HP16451B電極およびHP4284AプレシジョンLCRメータを用いてCV法により当該膜の比誘電率を測定した。
4.1.2.絶縁膜の硬度および弾性率(ヤング率)評価
MTS社製超微少硬度計(Nanoindentator XP)にバーコビッチ型圧子を取り付け、得られた絶縁膜のユニバーサル硬度を求めた。また、弾性率は連続剛性測定法により測定した。
4.1.3.保存安定性
40℃で30日保存した膜形成用組成物を、スピンコート法を用いて基材に塗布し、ホットプレート上にて90℃で3分間、次いで窒素雰囲気下200℃で3分間基板を乾燥し、さらに50mTorrの減圧下にて420℃の縦型ファーネスで1時間焼成した。このようにして得られた塗膜の膜厚を、光学式膜厚計(Rudolph Technologies社製、Spectra Laser200)を用いて塗膜面内で50点測定した。得られた膜の膜厚を測定し、下式により求めた膜厚増加率により、保存安定性を評価した。
膜厚増加率(%)=((保存後の膜厚)−(保存前の膜厚))÷(保存前の膜厚)×100
A:膜厚増加率が4%以下である。
B:膜厚増加率が4%を超える。
4.1.4.薬液耐性
シリカ系膜が形成された8インチウエハを、室温で0.2%の希フッ酸水溶液中に3分間浸漬し、浸漬前後のシリカ系膜の膜厚変化を観察した。下記に定義する残膜率が99%以上であれば、薬液耐性が良好であると判断する。
残膜率(%)=(浸漬後の膜の膜厚)÷(浸漬前の膜の膜厚)×100
A:残膜率が99%以上である。
B:残膜率が99%未満である。
4.1.5.膜の相分離有無の確認
絶縁膜の断面を、集束イオンビーム法で観察用に加工し、TEMを用いて18000倍にて外観を調べた。判断結果を以下のようにして示す。
A:断面の形状観察では、均一な塗膜が得られている。
B:塗膜に海島状のドメイン相分離が確認される。
4.1.6.29Si NMRスペクトル測定
膜形成用組成物の29Si NMRスペクトル(100MHz)は、BRUKER AVANCE 500型を用いて測定された。
4.2.膜形成用組成物の製造
4.2.1.実施例1
コンデンサーを備えた石英製フラスコ中に、40%メチルアミン水溶液2.32g、超純水159.96g、およびエタノール464.97gを秤取り、60℃で攪拌した。次いで、メチルトリメトキシシラン56.83g、および下記一般式(5)で表される構造を有するポリカルボシラン(Mw=1,300)15.93gを加えた後、60℃で6時間攪拌し、ポリスチレン換算重量平均分子量39,000の加水分解縮合物を含む反応液を得た。反応液を室温に冷却後、プロピレングリコールモノプロピルエーテル613.24gおよび20%酢酸水溶液20.65gを加えた。この反応液を固形分濃度が10%となるまで減圧下で濃縮し、膜形成用組成物1を得た。この膜形成用組成物の29Si NMRスペクトル(100MHz)のスペクトルデータ(希釈溶媒:なし)は以下のとおりである。なお、本実施例および後述する実施例2〜4においては、29Si NMR測定において、50〜−80ppmに存在するピークの積分値の総和を1としたとき、−90〜−120ppmに存在するピークの積分値の総和が0.01未満であった。
-75 〜 -45 ppm (Broad), -30 〜 -10 ppm (Broad), 0 〜 20 ppm (Broad),
Figure 0004877486
・・・・・(5)
4.2.2.実施例2
コンデンサーを備えた石英製フラスコ中に、20%水酸化テトラプロピルアンモニウム水溶液38.21g、超純水59.7g、およびイソプロパノール542.54gを秤取り、60℃で攪拌した。次いで、メチルトリメトキシシラン49.72g、および下記一般式(6)で表される構造を有する市販のポリカルボシラン(「NIPUSI Type-L」、日本カーボン株式会社から入手可能のポリジメチルシランのカルボシラン化ポリマー)(Mw=910)9.80gを加えた後、60℃で4時間攪拌し、ポリスチレン換算重量平均分子量48,000の加水分解縮合物を含む反応液を得た。反応液を室温に冷却後、プロピレングリコールモノプロピルエーテル552.03gおよび20%酢酸水溶液25.95gを加えた。この反応液を固形分濃度が10%となるまで減圧下で濃縮し、膜形成用組成物2を得た。この膜形成用組成物の29Si NMRスペクトル(100MHz)のスペクトルデータ(希釈溶媒:なし)は以下のとおりである。
-75 〜 -45 ppm (Broad), -40 〜 -30ppm(broad),-20 〜10ppm(broad),10〜30ppm(broad)
Figure 0004877486
・・・・・(6)
4.2.3.実施例3
コンデンサーを備えた石英製フラスコ中に、25%水酸化テトラメチルアンモニウム水溶液4.92g、超純水93.5g、およびエタノール568.51gを秤取り、60℃で攪拌した。次いで、ジメチルジメトキシシラン8.21g、メチルトリメトキシシラン21.59g、および下記一般式(7)で表される構造を有するポリカルボシラン(Mw=1,050)3.14gを連続的に1時間かけて加えた後、さらに60℃で2時間攪拌し、ポリスチレン換算重量平均分子量34,000の加水分解縮合物を含む反応液を得た。反応液を室温に冷却後、プロピレングリコールモノプロピルエーテル658.76gおよび20%酢酸水溶液9.31gを加えた。この反応液を固形分濃度が10%となるまで減圧下で濃縮し、膜形成用組成物3を得た。この膜形成用組成物の29Si NMRスペクトル(100MHz)のスペクトルデータ(希釈溶媒:なし)は以下のとおりである。
-75 〜 -45 ppm (Broad), -30 〜 -10 ppm (Broad), 0 〜 20 ppm (Broad),
Figure 0004877486
・・・・・(7)
4.2.4.実施例4
コンデンサーを備えた石英製フラスコ中に、10%シュウ酸水溶液13.44g、超純水41.72g、およびプロピレングリコールモノプロピルエーテル571.53gを秤取り、次いで、メチルトリメトキシシラン56.83g、および実施例1で用いたポリカルボシラン(Mw=1,300)15.93gを加えた後、60℃で2時間攪拌し、ポリスチレン換算重量平均分子量3,500の加水分解縮合物を含む反応液を得た。反応液を室温に冷却後、プロピレングリコールモノプロピルエーテル700.31gを加えた。この反応液を固形分濃度が10%となるまで減圧下で濃縮し、膜形成用組成物4を得た。この膜形成用組成物の29Si NMRスペクトル(100MHz)のスペクトルデータ(希釈溶媒:なし)は以下のとおりである。
-70 〜 -60 ppm (Broad), -60 〜 -50 ppm (Broad), -50 〜 -40 ppm (Broad), -30 〜 -10 ppm (Broad), 5 〜 10 ppm (Broad),
4.2.5.比較例1
コンデンサーを備えた石英製フラスコ中に、40%メチルアミン水溶液2.58g、超純水178.16g、およびエタノール435.34gを秤取り、60℃で攪拌した。次いで、メチルトリメトキシシラン41.07g、テトラエトキシシラン26.92g、および下記一般式(8)で表される構造を有するポリカルボシラン(Mw=1,300)15.93gを加えた後、60℃で6時間攪拌し、ポリスチレン換算重量平均分子量45,000の加水分解縮合物を含む反応液を得た。反応液を室温に冷却後、プロピレングリコールモノプロピルエーテル613.50gおよび20%酢酸水溶液22.96gを加えた。この反応液を固形分濃度が10%となるまで減圧下で濃縮し、膜形成用組成物5を得た。この膜形成用組成物の29Si NMRスペクトル(100MHz)のスペクトルデータ(希釈溶媒:なし)は以下のとおりである。なお、本比較例および後述する比較例2〜4においては、29Si NMR測定において、50〜−80ppmに存在するピークの積分値の総和を1としたとき、−90〜−120ppmに存在するピークの積分値の総和が0.01より大きかった。
-115 〜 -90 ppm (Broad), -75 〜 -45 ppm (Broad), -30 〜 -10 ppm (Broad), 0 〜 20 ppm (Broad),
Figure 0004877486
・・・・・(8)
4.2.6.比較例2
コンデンサーを備えた石英製フラスコ中に、20%水酸化テトラプロピルアンモニウム水溶液45.93g、超純水71.8g、およびイソプロパノール495.31gを秤取り、60℃で攪拌した。次いで、メチルトリメトキシシラン26.24g、テトラプロポキシシラン50.93g、および下記一般式(9)で表される構造を有する市販のポリカルボシラン(「NIPUSI Type-L」、日本カーボン株式会社から入手可能であるポリジメチルシランのカルボシラン化ポリマー)(Mw=910)9.80gを加えた後、60℃で4時間攪拌し、ポリスチレン換算重量平均分子量55,000の加水分解縮合物を含む反応液を得た。反応液を室温に冷却後、プロピレングリコールモノプロピルエーテル551.86gおよび20%酢酸水溶液31.20gを加えた。この反応液を固形分濃度が10%となるまで減圧下で濃縮し、膜形成用組成物6を得た。この膜形成用組成物の29Si NMRスペクトル(100MHz)のスペクトルデータ(希釈溶媒:なし)は以下のとおりである。
-115 〜 -90 ppm(Broad), -75 〜 -45 ppm (Broad), -40 〜 -30ppm(broad),-20 〜10ppm(br oad),10〜30ppm(broad)
Figure 0004877486
・・・・・(9)
4.2.7.比較例3
コンデンサーを備えた石英製フラスコ中に、25%水酸化テトラメチルアンモニウム水溶液5.80g、超純水110.30g、およびエタノール548.08gを秤取り、60℃で攪拌した。次いで、ジメチルジメトキシシラン5.70g、メチルトリメトキシシラン16.15g、テトラメトキシシラン10.83g、および下記一般式(10)で表される構造を有するポリカルボシラン(Mw=1,050)3.14gを連続的に1時間かけて加えた後、さらに60℃で2時間攪拌し、ポリスチレン換算重量平均分子量40,000の加水分解縮合物を含む反応液を得た。反応液を室温に冷却後、プロピレングリコールモノプロピルエーテル658.38gおよび20%酢酸水溶液10.98gを加えた。この反応液を固形分濃度が10%となるまで減圧下で濃縮し、膜形成用組成物7を得た。この膜形成用組成物の29Si NMRスペクトル(100MHz)のスペクトルデータ(希釈溶媒:なし)は以下のとおりである。
-115 〜 -90 ppm (Broad), -75 〜 -45 ppm (Broad), -30 〜 -10 ppm (Broad), 0 〜 20 ppm (Broad),
Figure 0004877486
・・・・・(10)
4.2.8.比較例4
コンデンサーを備えた石英製フラスコ中に、10%シュウ酸水溶液14.97g、超純水46.44g、およびプロピレングリコールモノプロピルエーテル554.25gを秤取り、次いでメチルトリメトキシシラン41.07g、テトラエトキシシラン26.92g、および実施例1で用いたものと同じポリカルボシラン(Mw=1,300)15.93gを加えた後、60℃で2時間攪拌し、ポリスチレン換算重量平均分子量3,700の加水分解縮合物を含む反応液を得た。反応液を室温に冷却後、プロピレングリコールモノプロピルエーテル700.16gを加えた。この反応液を固形分濃度が10%となるまで減圧下で濃縮し、膜形成用組成物8を得た。この膜形成用組成物の29Si NMRスペクトル(100MHz)のスペクトルデータ(希釈溶媒:なし)は以下のとおりである。
-110 〜 -95 ppm (Broad), -95 〜 -90 ppm (Broad), -90 〜 -80 ppm (Broad), -70 〜 -60 ppm (Broad), -60 〜 -50 ppm (Broad), -50 〜 -40 ppm (Broad), -30 〜 -10 ppm (Broad), 5 〜 10 ppm (Broad),
4.3.評価結果
実施例1〜4および比較例1〜4で得られた膜形成用組成物1〜8を用いて、比誘電率、弾性率、硬度、薬液耐性、保存安定性および断面観察結果について評価を行った。なおその際に適用した硬化処理方法は表中に示したとおりである。評価結果を表1に示す。
Figure 0004877486
表1により明らかなように、実施例1〜4によれば、比較例1〜4に比較して、薬液耐性が向上した同等の比誘電率、弾性率および硬度を有する膜の形成が可能であることが確認された。また保存安定性、膜の均一性に関しても問題ないことが明らかとなった。
以上により、本発明により得られるシリカ系膜は、機械的強度に優れ、比誘電率が低く、さらには薬液耐性および保存安定性においても優れているため、半導体素子などの層間絶縁膜として好適に用いることができる。

Claims (13)

  1. (A)成分;下記一般式(1)で表される化合物および下記一般式(2)で表される化合物の群から選ばれた少なくとも1種のシラン化合物と、(B)成分;下記一般式(3)で表される構造を有するカルボシランとを加水分解縮合して得られた加水分解縮合物と、
    有機溶媒と、
    を含む、絶縁膜形成用組成物。
    Si(OR4−a ・・・・・(1)
    (式中、Rアルキル基、アルケニル基又はアリール基を示し、Rアルキル基、アルケニル基又はアリール基を示し、aは1〜2の整数を示す。)
    (RO)3−bSi−(R−Si(OR3−c ・・・(2)
    (式中、R〜Rは同一または異なり、それぞれアルキル基、アルケニル基又はアリール基を示し、bおよびcは同一または異なり、0〜2の数を示し、Rはフェニレン基または−(CH−で表される基(ここで、mは1〜6の整数である)を示し、dは0または1を示す。)
    Figure 0004877486
    ・・・・・(3)
    (式中、Rは、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、アシロキシ基、スルホン基、メタンスルホン基、トリフルオロメタンスルホン基、アルキル基、アリール基、アリル基、およびグリシジル基からなる群より選ばれる基を示し、Rはハロゲン原子、ヒドロキシ基、アルコキシ基、アシロキシ基、スルホン基、メタンスルホン基、トリフルオロメタンスルホン基、アルキル基、アリール基、アリル基、およびグリシジル基からなる群より選ばれる基を示し、R10,R11は同一または異なり、ハロゲン原子、ヒドロキシ基、アルコキシ基、アシロキシ基、スルホン基、メタンスルホン基、トリフルオロメタンスルホン基、炭素数2〜6のアルキル基、アリール基、アリル基、およびグリシジル基からなる群より選ばれる基を示し、R12〜R14は同一または異なり、置換または非置換のメチレン基、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基を示し、e,f,gは、それぞれ0〜10,000の数を示し、10<e+f+g<10,000の条件を満たす。)
  2. 請求項1において、
    前記(A)成分は、前記一般式(1)で表される化合物からなる、絶縁膜形成用組成物。
  3. 請求項2において、
    前記一般式(1)で表される化合物を少なくとも1種含み、
    前記一般式(1)で表される化合物のうち、前記一般式(1)においてaが1である化合物の割合が50質量%以上である、絶縁膜形成用組成物。
  4. 請求項1ないし請求項3のいずれか一項において、
    前記(A)成分を(A)成分の完全加水分解縮合物に換算した100重量部に対して、前記(B)成分が1〜1000重量部である、絶縁膜形成用組成物。
  5. 請求項1ないし請求項4のいずれか一項において、
    前記(B)成分のポリスチレン換算重量平均分子量が500〜10,000である、絶
    縁膜形成用組成物。
  6. 請求項1ないし請求項5のいずれか一項において、
    前記加水分解縮合は、塩基性触媒、酸性触媒、または金属キレート触媒の存在下で行なわれる、絶縁膜形成用組成物。
  7. 請求項6において、
    前記加水分解縮合は、塩基性触媒の存在下で行なわれる、絶縁膜形成用組成物。
  8. 請求項7において、
    前記塩基性触媒は、下記一般式(4)で表される含窒素化合物である、絶縁膜形成用組成物。
    (XN)Y ・・・・・(4)
    (式中、X,X,X,Xは同一または異なり、それぞれ水素原子、炭素数1〜20のアルキル基、ヒドロキシアルキル基、アリール基、およびアリールアルキル基からなる群より選ばれる基を示し、Yはハロゲン原子または1〜4価のアニオン性基を示し、hは1〜4の整数を示す。)
  9. 請求項1ないし請求項8のいずれか一項において、
    1つのケイ素原子が4つの酸素原子で置換された部位が存在しない、絶縁膜形成用組成物。
  10. (A)成分;下記一般式(1)で表される化合物および下記一般式(2)で表される化合物の群から選ばれた少なくとも1種のシラン化合物と、(B)成分;下記一般式(3)で表される構造を有するカルボシランとを加水分解縮合する工程を含む、絶縁膜形成用組成物の製造方法。
    Si(OR4−a ・・・・・(1)
    (式中、Rアルキル基、アルケニル基又はアリール基を示し、Rアルキル基、アルケニル基又はアリール基を示し、aは1〜2の整数を示す。)
    (RO)3−bSi−(R−Si(OR3−c ・・・(2)
    (式中、R〜Rは同一または異なり、それぞれアルキル基、アルケニル基又はアリール基を示し、bおよびcは同一または異なり、0〜2の数を示し、Rはフェニレン基または−(CH−で表される基(ここで、mは1〜6の整数である)を示し、dは0または1を示す。)
    Figure 0004877486
    ・・・・・(3)
    (式中、Rは、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、アシロキシ基、スルホン基、メタンスルホン基、トリフルオロメタンスルホン基、アルキル基、アリール基、アリル基、およびグリシジル基からなる群より選ばれる基を示し、Rはハロゲン原子、ヒドロキシ基、アルコキシ基、アシロキシ基、スルホン基、メタンスルホン基、トリフルオロメタンスルホン基、アルキル基、アリール基、アリル基、およびグリシジル基からなる群より選ばれる基を示し、R10,R11は同一または異なり、ハロゲン原子、ヒドロキシ基、アルコキシ基、アシロキシ基、スルホン基、メタンスルホン基、トリフルオロメタンスルホン基、炭素数2〜6のアルキル基、アリール基、アリル基、およびグリシジル基からなる群より選ばれる基を示し、R12〜R14は同一または異なり、置換または非置換のメチレン基、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基を示し、e,f,gは、それぞれ0〜10,000の数を示し、10<e+f+g<10,000の条件を満たす。)
  11. 請求項10に記載の製造方法によって得られる加水分解縮合ポリマー。
  12. 請求項1ないし請求項9のいずれか一項に記載の絶縁膜形成用組成物を基板に塗布し、塗膜を形成する工程と、
    前記塗膜について、加熱、電子線照射、紫外線照射、および酸素プラズマから選ばれる少なくとも1種の硬化処理を行なう工程と、を含む、シリカ系絶縁膜の形成方法。
  13. 請求項12に記載のシリカ系絶縁膜の形成方法により得られる、シリカ系絶縁膜。
JP2006151339A 2006-05-31 2006-05-31 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法 Active JP4877486B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006151339A JP4877486B2 (ja) 2006-05-31 2006-05-31 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法
PCT/JP2007/060681 WO2007139004A1 (ja) 2006-05-31 2007-05-25 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法
TW096119467A TW200808907A (en) 2006-05-31 2007-05-31 Composition for forming insulating films, process for production thereof, silica-base insulating films, and process for the formation of the films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006151339A JP4877486B2 (ja) 2006-05-31 2006-05-31 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法

Publications (2)

Publication Number Publication Date
JP2007324283A JP2007324283A (ja) 2007-12-13
JP4877486B2 true JP4877486B2 (ja) 2012-02-15

Family

ID=38778524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006151339A Active JP4877486B2 (ja) 2006-05-31 2006-05-31 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法

Country Status (3)

Country Link
JP (1) JP4877486B2 (ja)
TW (1) TW200808907A (ja)
WO (1) WO2007139004A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008066060A1 (fr) * 2006-11-30 2008-06-05 Jsr Corporation Procédé de fabrication d'un polymère, composition de formation d'un film isolant et film isolant de silice et son procédé de fabrication
JPWO2008096656A1 (ja) * 2007-02-07 2010-05-20 Jsr株式会社 ケイ素含有ポリマーおよびその合成方法、膜形成用組成物、ならびにシリカ系膜およびその形成方法
JP5267460B2 (ja) * 2007-07-06 2013-08-21 富士通株式会社 絶縁膜材料、多層配線基板及びその製造方法、並びに、半導体装置及びその製造方法
WO2009008041A1 (ja) * 2007-07-06 2009-01-15 Fujitsu Limited 絶縁膜材料、多層配線基板及びその製造方法、並びに、半導体装置及びその製造方法
JP4947316B2 (ja) 2008-08-15 2012-06-06 信越化学工業株式会社 基板の接合方法並びに3次元半導体装置
JP4911143B2 (ja) 2008-08-15 2012-04-04 信越化学工業株式会社 高温耐性接着剤組成物、基板の接着方法、及び3次元半導体装置
JP5376118B2 (ja) * 2008-10-29 2013-12-25 Jsr株式会社 絶縁膜形成用組成物の製造方法、ならびに絶縁膜の形成方法
JP5176976B2 (ja) * 2009-01-21 2013-04-03 Jsr株式会社 硬化性組成物
US9273215B2 (en) * 2012-10-30 2016-03-01 Rohm And Haas Electronic Materials Llc Adhesion promoter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068538A1 (ja) * 2004-01-16 2005-07-28 Jsr Corporation ポリマーの製造方法、ポリマー、絶縁膜形成用組成物、絶縁膜の製造方法、および絶縁膜
JP4530130B2 (ja) * 2004-01-16 2010-08-25 Jsr株式会社 ポリマー膜の形成方法
JP5110239B2 (ja) * 2004-05-11 2012-12-26 Jsr株式会社 有機シリカ系膜の形成方法、膜形成用組成物

Also Published As

Publication number Publication date
WO2007139004A1 (ja) 2007-12-06
JP2007324283A (ja) 2007-12-13
TW200808907A (en) 2008-02-16

Similar Documents

Publication Publication Date Title
JP5105041B2 (ja) 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法
JP5110238B2 (ja) 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法
US8404786B2 (en) Polymer and process for producing the same, composition for forming insulating film, and insulating film and method of forming the same
JP4877486B2 (ja) 絶縁膜形成用組成物およびその製造方法、ならびにシリカ系絶縁膜およびその形成方法
KR20010078164A (ko) 실리카계 막의 제조 방법, 실리카계 막, 절연막 및 반도체장치
JP3906916B2 (ja) 膜形成用組成物、膜形成方法および膜
JP2005175060A (ja) 絶縁膜およびその形成方法、ならびに膜形成用組成物
JP2005272816A (ja) ポリマーおよびその製造方法、絶縁膜形成用組成物、ならびに絶縁膜およびその形成方法
JP5099302B2 (ja) 絶縁膜形成用組成物、ポリマーおよびその製造方法、絶縁膜の製造方法、ならびにシリカ系絶縁膜
JP5218765B2 (ja) ポリマーの製造方法、ポリマー、ポリマー膜形成用組成物、ポリマー膜の形成方法およびポリマー膜
JP2010106100A (ja) 絶縁膜形成用組成物、ならびに絶縁膜およびその形成方法
JP5423937B2 (ja) 絶縁膜形成用組成物の製造方法、ポリマーの製造方法
JP4143845B2 (ja) 絶縁膜およびその形成方法、ならびに絶縁膜を有する積層体およびその形成方法
JP2007262256A (ja) ポリマーおよびその製造方法、絶縁膜形成用組成物、絶縁膜の製造方法、ならびにシリカ系絶縁膜
JP4798330B2 (ja) 絶縁膜形成用組成物、絶縁膜、およびその形成方法
JP5152464B2 (ja) 絶縁膜形成用組成物、ならびにシリカ系膜およびその形成方法
JP2004059738A (ja) 膜形成用組成物、膜の形成方法およびシリカ系膜
JP2007262255A (ja) ポリマーおよびその製造方法、絶縁膜形成用組成物、絶縁膜の製造方法、ならびにシリカ系絶縁膜
JPWO2008096656A1 (ja) ケイ素含有ポリマーおよびその合成方法、膜形成用組成物、ならびにシリカ系膜およびその形成方法
JPWO2008066060A1 (ja) ポリマーの製造方法、絶縁膜形成用組成物、ならびにシリカ系絶縁膜およびその製造方法
JP2008195862A (ja) 絶縁膜形成用組成物、ならびにシリカ系膜およびその形成方法
JP2009227910A (ja) 絶縁膜形成用組成物、ならびにシリカ系膜およびその形成方法
JP5376118B2 (ja) 絶縁膜形成用組成物の製造方法、ならびに絶縁膜の形成方法
JP4716035B2 (ja) シリカ系膜およびその形成方法
JP2008222857A (ja) 絶縁膜形成用組成物、ならびにシリカ系膜およびその形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

R150 Certificate of patent or registration of utility model

Ref document number: 4877486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250