JP4868589B2 - 構造物基礎の支持構造及び施工方法 - Google Patents

構造物基礎の支持構造及び施工方法 Download PDF

Info

Publication number
JP4868589B2
JP4868589B2 JP2006284126A JP2006284126A JP4868589B2 JP 4868589 B2 JP4868589 B2 JP 4868589B2 JP 2006284126 A JP2006284126 A JP 2006284126A JP 2006284126 A JP2006284126 A JP 2006284126A JP 4868589 B2 JP4868589 B2 JP 4868589B2
Authority
JP
Japan
Prior art keywords
foundation
sheet pile
ground
lightweight material
groundwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006284126A
Other languages
English (en)
Other versions
JP2008101379A (ja
Inventor
政幸 神田
英俊 西岡
修 村田
勝 舘山
淳一 平尾
奈津子 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Railway Technical Research Institute
Original Assignee
Obayashi Corp
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Railway Technical Research Institute filed Critical Obayashi Corp
Priority to JP2006284126A priority Critical patent/JP4868589B2/ja
Publication of JP2008101379A publication Critical patent/JP2008101379A/ja
Application granted granted Critical
Publication of JP4868589B2 publication Critical patent/JP4868589B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)

Description

本発明は橋脚や建物等の構造物を支持する基礎の下の地盤に液状化が生じた場合に、基礎の沈下を抑制する構造物基礎の支持構造及び施工方法に関するものである。
図6−(a)に示すように構造物の基礎が砂質地盤等の液状化地盤に載る場合、砂質地盤等は圧密沈下が生じにくいために静的には高い支持力を有するが、地震時には間隙水圧の上昇により(b)に示すように地下水位が上昇し、地盤が急速に支持力を失う。地下水位の上昇により地盤への水圧が上昇することに伴い、砂(土)粒子に浮力が働くため、砂の強度が低下して地盤支持力が低下する結果、基礎が沈下を起こすに至る。
このような砂質地盤等における液状化に対する対策としては、地盤を締め固めることにより間隙比を減少させる方法(サンドコンパクションパイル工法等)、地盤中に安定材を添加・混合することにより地盤の抵抗力を上げる方法(深層混合処理工法等)、地下水位を低下させることにより飽和領域を不飽和領域に変更し、有効応力を増大させる方法(ディープウェル工法等)等がある。
この他、地盤を壁体によって区画することにより周囲から拘束し、液状化を起こしたときの地盤のせん断変形を抑制する方法(連続地中壁工法等)があるが、砂質地盤等が液状化を起こしてしまった場合に備えた有効な対策は見当たらない。
液状化を起こした砂質地盤中では砂粒子が沈降し、地下水が浮上することから、浮上した地下水による水圧が基礎の底面を押し上げるか、または基礎に浮力を発生させるため、この水圧や浮力に起因して基礎が不同沈下を起こす可能性もある。
この問題に対し、基礎の底面下に樹脂発泡体ブロックを設置することにより浮力を利用して基礎(構造物)の不同沈下を抑制しようとする方法がある(特許文献1参照)。
特開平6−287965号公報(請求項1、段落0008、0019〜0023、図1)
特許文献1の方法では鋼矢板と基礎との一体性を確保するために、基礎を鋼矢板の上端に係合させた状態で接合しているが(請求項1)、基礎は鋼矢板の上端上に載っているだけであり、鋼矢板は基礎全体を包囲していないため、基礎が傾斜し、不同沈下を起こそうとするときに、基礎と鋼矢板との一体性を維持することが難しいと考えられる。鋼矢板は樹脂発泡体ブロックとその下の地盤を包囲しているため、これらと一体となって挙動することはできるものの(段落0018)、基礎が傾斜しようとするときに、鋼矢板が対向する面で基礎の変位を拘束することができないからである。
鋼矢板によって基礎の傾斜を拘束することができない以上、基礎の不同沈下は樹脂発泡体ブロックによる浮力(水圧)と、鋼矢板の沈下に対する抵抗力である摩擦力によって防止されなければならない。ところが、樹脂発泡体ブロックから基礎に作用する力は樹脂発泡体ブロック底面における上向きの水圧のみであるから、基礎の傾斜に対する安定性を確保する上での確実さに欠ける。
基礎、または鋼矢板に一旦、傾斜が生じた後にも基礎は傾斜を拘束するような規制を鋼矢板から受ける余地がないため、傾斜を修正することもできない。
本発明は上記背景より、浮力(水圧)を利用して基礎の沈下を抑制する場合に、不同沈下が発生しにくく、沈下が生じようとしたときにも傾斜を阻止しながら、基礎の沈下を抑制することが可能な基礎の支持構造及び施工方法を提案するものである。
請求項1に記載の発明の構造物基礎の支持構造は、液状化地盤中に構造物の基礎の側面に面で接触して前記基礎を包囲するように隣接しながら挿入され、前記基礎の周方向に連続する矢板と、前記基礎の底面以深の、前記矢板に包囲された領域に設置、もしくは充填される軽量材とを備え、前記軽量材が地下水から受ける浮力、または水圧を前記基礎の底面に作用させていることを構成要件とする。液状化地盤は主として砂質土地盤、もしくは砂質土を含む地盤を指す。
矢板が構造物の基礎を包囲するように隣接し、基礎の周方向に連続する矢板からなる矢板壁が基礎の側面に面で接触(外接)することで、基礎と矢板壁との一体性が強まり、両者が常に一体となって挙動するため、基礎をその傾斜に対して周囲から拘束する効果を有する。この効果は矢板が基礎を包囲することで水平2方向に発揮される。矢板壁が鉛直状態(施工時の状態)を維持している限り、例えば基礎が傾斜しようとしても矢板壁はその傾斜を阻止し、基礎底面を水平に維持するように働くため、基礎は不同沈下に対して高い安定性を保有する。
矢板壁には図1−(b)に示すように矢板壁が包囲する領域の外周から内周へ向かって土圧と水圧が作用する。矢板壁の内周にも地下水が存在する場合には、内周から外周へ向かって水圧が作用するが、外周から作用する圧力は土圧がある分、大きい。この矢板壁の外周からの水圧と土圧は基礎を包囲する矢板壁の全面に作用するため、周回する矢板壁全体で傾斜と水平移動に対して安定する。矢板壁は基礎を包囲し、基礎の側面に面で接触することで、矢板壁が受ける圧力が基礎の側面にも作用するため、基礎の傾斜と水平移動に対する安定性も確保される。
例えば地下水位が基礎の底面より上にある場合、平常時には(a)に示すように基礎の底面に上向きの水圧が作用し、軽量材には浮力が作用しており、この上向きの水圧と浮力が矢板壁下の地盤と共に基礎を支持している。軽量材に働く浮力は地下水位のレベルによって変動し、(a)に示すように地下水位が軽量材の上端のレベル以上にあれば、軽量材には常に一定の浮力が作用する。地下水位が軽量材の上端のレベルより下にあるときには、軽量材の、地下水中に浸かる体積分の浮力が作用し、変動し得る。
図1−(a)に示すように地下水位から基礎底面までの距離をL、地下水位から軽量材底面までの距離をH、基礎底面と軽量材底面の面積をAとすれば、基礎底面に作用する水圧P1wの合計はρgLA、軽量材に作用する浮力PFはρg(H−L)Aになり、基礎底面にはρgLA+ρg(H−L)A=ρgHAの力が作用している。
地震が発生し、軽量材の下、及び矢板壁の周囲に存在する液状化地盤が液状化し、(b)に示すように地下水位が上昇したとき、基礎の下に軽量材がなければ、基礎を支持する地盤が支持能力を失い、基礎が沈下しようとする。これに対し、請求項1では基礎の下に軽量材が存在することで、軽量材の浮力と基礎底面における水圧が基礎を支持した状態を維持しているため、基礎の沈下が拘束されている。加えて地下水位の上昇に伴い、Lが大きくなることで、基礎底面に作用する水圧P1Wが大きくなるため(P1W>P1w)、基礎は地下水位の上昇前より上昇後に地下水から高い支持力を受けることになる。
基礎が地下水位の上昇前より上昇後に高い支持力を受けることで、地下水による基礎の安定性は支持地盤の液状化の発生前より発生後に高まり、それだけ基礎は液状化に伴う沈下を生じにくくなるため、地盤が支持力を失っても基礎の沈下が抑制、または防止される。仮に一時的に基礎が沈下しようとすることがあっても、基礎の回りを周回し、基礎と一体となって挙動する矢板壁が基礎の傾斜を拘束し、基礎底面を水平に保とうとするため、基礎の不同沈下は阻止される。
地下水位の上昇により基礎の底面が受ける水圧、または軽量材の底面が受ける水圧が上昇することから、基礎や軽量材が受ける水圧を稼ぐ目的で、請求項2に記載のように矢板に上端から下端へかけて、矢板に包囲された領域の内周側から外周側へ向かう傾斜が付けられることもある。矢板壁に上端から下端へかけて内周側から外周側へ向かう傾斜が付けられることで、基礎を包囲する矢板壁で区画される領域は角錐台形状に形成される。
請求項2では図4に示すように矢板壁が上方から下方へかけて基礎の中心から外向きに傾斜することで、矢板壁の外周面に垂直に作用する水圧と土圧が外周側から内周側へ向かって下向きの成分を有するため、矢板壁と基礎を下方へ押さえ込み、平常時及び地震時の基礎の浮き上がりを拘束する効果が生ずる。この効果は地下水位の上昇時にも維持される。水圧による矢板壁の押さえ込み効果は矢板の鉛直面に対する傾斜角度が10度前後程度まで確保されれば、得られる。
一方、請求項2の場合、前記の軽量材底面の面積Aが距離Hの増加に伴って2次関数的に増加することから、軽量材に作用する浮力も地下水位の上昇によって増大するため、浮力が構造物の荷重を上回り、基礎が浮き上がることが想定される。このような事態が想定される場合には、請求項3に記載のように基礎の底面以深の矢板の内周側に、矢板に対向する内矢板が挿入され、この内矢板に包囲された領域に軽量材が配置されることで、基礎の浮き上がりを回避することが可能になる。この場合、矢板壁で囲まれた、基礎底面下の領域は矢板壁と内矢板壁の二重壁になる。内矢板は鉛直に挿入される。
請求項3では図4に示すように矢板壁が基礎を包囲し、基礎底面下で内矢板壁が軽量材を包囲することで、外側の矢板壁に傾斜を付けたまま、地下水位の上昇に関係なく軽量材底面の面積Aを一定にすることができるため、軽量材に作用する浮力の増大を抑制することが可能になる。軽量材底面の面積Aが一定になることで、軽量材に作用する浮力は(H−L)に比例するが、地下水位の上昇時にはLが増加するため、地下水位の上昇による浮力の増大がなくなる。
前記のように矢板が基礎の回りを周回し、矢板壁と基礎との一体性が確保されることで、基礎は傾斜に対する安定性を保有するが、矢板壁による基礎の傾斜に対する安定性をより高めるために、請求項4に記載のように矢板に包囲された、基礎の底面下の領域が仕切り壁で複数の領域に区分されることもある。この場合、区分された領域毎に軽量材が配置される。仕切り壁には矢板が使用される。
基礎底面下の領域が複数の領域に区分されることで、区分された領域毎に仕切り壁で拘束されるため、区分された領域毎の軽量材の安定性が得られ、基礎底面下の軽量材全体での安定性も向上する。請求項3では基礎底面下の領域が内矢板壁に囲まれた領域と、その外側の領域に区分されるが、請求項4では基礎底面下の領域が複数に区分され、区分数によっては請求項3と同様に内側の領域と外側の領域に区分されることもある。
請求項5に記載の発明は請求項1乃至請求項3のいずれかにおいて、互いに隣接する矢板間の止水性が確保され、矢板に包囲された領域から地下水が排除されていることを構成要件とする。この場合、軽量材は基礎の底面と矢板の内周面に密着し、矢板に包囲された領域を隙間なく埋める形になる。図1のように矢板壁と軽量材間に空隙が形成されることは軽量材が発泡体の成型品である場合に生じ得るが、請求項5における止水性は主に軽量材に発泡ビーズやそれに固化材を添加した混合材等、粒子の状態にある材料が使用されることにより得られる。
図1の場合には、矢板壁に包囲された領域に地下水が浸入していることで、地下水による水圧は基礎の底面に上向きに作用するが、請求項5では図2−(a)に示すように隣接する矢板間の止水性が確保され、軽量材が基礎の底面と矢板の内周面に密着することで、矢板壁に包囲された領域に地下水が浸入しないため、軽量材自体に浮力は作用せず、上向きの水圧が軽量材の底面に作用する。
図2−(a)に示すように地下水位から基礎底面までの距離をL、地下水位から軽量材底面までの距離をH、基礎底面の面積と軽量材底面をAとすれば、軽量材底面にはρgHの水圧P2wが作用し、その合計はρgHAになる。この力は図1の場合の基礎底面に作用する力と等しい。地震が発生し、(b)に示すように地下水位が上昇したときには、Hが大きくなることで、基礎底面に作用する水圧P2Wが大きくなるため(P2W>P2w)、基礎は地下水位の上昇前より上昇後に地下水から高い支持力を受ける。
この場合も、基礎が地下水位の上昇前より上昇後に高い支持力を受けることで、基礎の安定性は支持地盤に液状化が生じた後に高まるため、地盤が支持力を失っても基礎の沈下が抑制、または防止される。一時的に基礎が沈下しようとしても、矢板壁が基礎底面を水平に保とうとするため、基礎の不同沈下は阻止される。
図1(請求項1)、図2(請求項5)のいずれの場合も、主として地震時に液状化により地盤の支持力が失われ、基礎が沈下しようとするときに、地盤支持力に代わって軽量材からの浮力と上向きの水圧が基礎の沈下を抑制、もしくは阻止するように働き、浮力と水圧は地盤支持力の低下分を補うため、基礎が浮力と水圧を受けて上昇することはない。
軽量材には発泡ポリスチレンその他の発泡性材料の他、軽量モルタル等、比重が水より小さい材料が使用され、これらの材料が単体で使用される場合と、セメント系材料である固化材を含んだ状態で使用される場合がある。固化材は例えば軽量材が粒子で存在し、粒子が集合した固体の状態を維持しにくい場合に添加される。軽量材が固化材を含む場合には、基礎の底面下に軽量材を隙間なく充填することができるため、主として図2の場合に使用される。固化材を含む軽量材は成型品からなる軽量材と併用されることもある。固化材を含む場合はまた、軽量材の固化作用により軽量材の強度が高まる利点がある。
請求項5における隣接する矢板間の止水性は具体的には請求項6に記載のように、少なくとも矢板が挿入される箇所の地盤が予め地盤改良されていることにより確保される。矢板が挿入される箇所の原地盤に対し、固化材等の地盤改良材が投入され、攪拌・混合された状態で矢板が挿入されることで、地盤が固化に伴って隣接する矢板間の空隙を塞ぐため、隣接する矢板間の止水性が確保され易く、またその状態が継続して維持され易くなる。
請求項6では原地盤に対して地盤改良が施されることで、地質に関係なく地盤を一旦、緩めた後、固化させることができるため、地表から矢板先端までの間に礫層等の硬質地盤が存在する場合にも、矢板の挿入作業と矢板間の止水性の確保が確実になる利点がある。
基礎の底面以深の矢板の内周側に内矢板が挿入される請求項3の場合には、内矢板の挿入箇所に対して地盤改良が施されることもあり、基礎の底面下の領域が仕切り壁で区分される請求項4の場合には、仕切り壁の挿入箇所に対して地盤改良が施されることもある。
図1、図2ではまた、軽量材の底面の深度が矢板の先端の深度に揃えられている状況を示している。実際には矢板の地盤中への根入れ深さを確保する必要から、矢板先端の深度が軽量材底面の深度より大きくなるが、実質的には両者の深度がほぼ等しくなっている。
前記の通り、基礎の周方向に連続する矢板壁には外周から内周へ向かって土圧と水圧が作用し、内周からは外周へ向かって水圧が作用するが、外周から作用する圧力は土圧がある分、大きいため、矢板壁の基礎底面以深の区間は内周側へ撓もうとする。この結果、図1に示すように軽量材の周囲と矢板壁の内周面との間に空隙がある場合にも、矢板壁はその空隙を埋め、軽量材に密着しようとする。土圧は下方程、大きいことから、軽量材に密着しようとする矢板に作用する土圧は鉛直上向きの成分を有し得るため、軽量材は上向きの力を受け、基礎の底面に密着しようとする。
特許文献1のように矢板の長さが本発明の軽量材に相当する樹脂発泡体ブロックの厚さの数倍程度あり、矢板の上方の区間に樹脂発泡体ブロックが位置している場合、矢板の変形が樹脂発泡体ブロックに与える影響は小さいと考えられるため、土圧によって生ずる矢板の変形が樹脂発泡体ブロックを上向きに押す効果を期待することはできない。これに対し、軽量材底面の深度が矢板先端の深度に揃えられている場合には、矢板に生ずる変形によって内周側への力を受け易いため、軽量材が基礎底面に密着する効果が得られる。
矢板壁が軽量材に密着し、軽量材が基礎の底面に密着しようとすることで、矢板壁が受ける土圧を前記した上向きの水圧と浮力と同じく、基礎を支持するための力として利用することが可能になるため、地盤の液状化に伴う基礎の沈下を抑制する効果が向上する。
請求項1〜請求項6に記載の構造物基礎の支持構造は新規に構築される他、既設の構造物基礎を改修することによっても構築される。新規の場合には請求項7に記載のように、液状化地盤中に、構築すべき構造物の基礎の側面に面で接触して前記基礎を包囲するように隣接させながら、前記基礎の周方向に連続させて矢板を挿入する工程と、前記矢板に包囲された領域の、前記基礎の底面までの土砂を排出する工程と、前記基礎の底面以深の、前記矢板に包囲された領域に、地下水から受ける浮力、または水圧を前記基礎の底面に作用させる軽量材を設置、もしくは充填する工程と、前記軽量材の上に前記基礎を構築する工程とを含む構造物基礎の施工方法により完成する。
構造物の基礎を包囲するように矢板を隣接させて地盤中に挿入し、基礎底面以深に軽量材を設置、もしくは充填するため、地盤が液状化し、支持力を喪失した場合にも基礎底面に上向きに作用する水圧と軽量材の浮力によって基礎の沈下を抑制することができる。特に矢板からなる矢板壁が基礎の側面に面で接触し、基礎をその傾斜に対して周囲から拘束し、傾斜を阻止する効果を発揮するため、基礎の不同沈下に対する安定性が高い。
以下、図面を用いて本発明を実施するための最良の形態を説明する。
図1は液状化地盤1中に構造物2の基礎3を包囲するように隣接しながら挿入され、基礎3の周方向に連続する矢板4と、基礎3の底面以深の、矢板4に包囲された領域に設置、もしくは充填される軽量材6とを備え、軽量材6が地下水から受ける浮力を基礎3の底面に作用させている構造物基礎の支持構造の例を示す。図1−(a)は前記のように平常時の様子を、(b)は地震時及び地震後の様子を示す。矢板4は基礎3の周方向に連続することで、矢板壁5を構成する。
図1では軽量材6の底面の深度が矢板4の先端の深度に実質的に揃えられているが、矢板4先端の深度が軽量材6底面の深度より大きいこともある。図面ではまた、構造物2が橋脚の場合を示しているが、構造物2の対象は限定されず、構造物2は土木・建築構造物全般を含む。橋脚は上部構造としての橋桁を支持する。
軽量材6には発泡ポリスチレン、発泡ポリプロピレンその他の発泡体やその原料である発泡ビーズ、あるいは軽量モルタル等が使用される。原則として発泡体や軽量モルタルの成型品は単体で使用され、発泡ビーズは固化材、または固化材と原地盤土等が添加・混合された状態で使用されるが、成型品と発泡ビーズが併用されることもある。
発泡体の比重はほぼ0.01〜0.1の範囲にあり、軽量モルタルの比重はほぼ0.5〜0.8の範囲にある。発泡スチロールビーズと固化材からなる混合土の比重は発泡体の比重より大きいが、固化材の配合によって変動し、小さくすることもできる。混合土は空隙への充填性がよい上、軽量材6の強度を高める利点があり、図2のように矢板壁5に包囲された領域から地下水が排除される場合の使用に適する。
図1は地下水位が基礎3底面より上に位置し、固体状態の軽量材6の上面と基礎3底面との間、及び軽量材6の側面と矢板壁5との間に空隙が存在し、矢板壁5で囲まれた領域に地下水が入り込んでいる場合を示す。図1−(a)は地震発生前の状態を示すが、この状態のとき、基礎3の底面には水圧が直接上向きに作用し、軽量材6に作用する浮力も作用しており、この水圧と浮力が支持地盤と共に基礎3の平常時の沈下を阻止している。
地震の発生時、及び発生後には図1−(b)に示すように地下水位が上昇し、基礎3底面に作用する水圧が増大するため、地盤に液状化が生じ、地盤が支持力を喪失したことによる基礎3の沈下は抑制され、基礎3の安定性が確保される。(b)の状態のときには、水圧の増大分が喪失した地盤支持力を補い、前記水圧と浮力が基礎3を支持し続ける。
図2は地下水位が基礎3底面より上に位置し、互いに隣接する矢板4、4間の止水性が確保され、矢板壁5に包囲された領域から地下水が排除され、軽量材6が基礎3の底面と矢板4の内周面に密着し、矢板壁5に包囲された領域を隙間なく埋めている場合を示している。
図2−(a)は地震発生前の状態を示すが、この状態のとき、水圧は基礎3の底面に直接作用せず、軽量材6の底面に作用することにより間接的に作用する。基礎3の底面には軽量材6に作用する浮力も作用し、この水圧と浮力が地盤と共に基礎3の平常時の沈下を阻止している。矢板4、4間の止水性を確保する手段は問われず、例えば隣接する矢板4、4の内の少なくともいずれか一方にシーリング材を接続しておき、これを後から挿入される他方の矢板4に密着させることにより確保される。
この他、図5に示すように少なくとも矢板4が挿入される箇所の地盤を予め地盤改良しておくことによっても矢板4、4間の止水性が確保される。地盤改良は例えば矢板4が挿入される箇所の原地盤に対し、固化材等の地盤改良材9を注入する等により供給し、原地盤と攪拌・混合することにより行われる。改良された地盤は固化に伴って隣接する矢板4、4間の空隙を塞ぎ、隣接する矢板4、4間の止水性を確保する。
地震の発生時、及び発生後には図2−(b)に示すように地下水位が上昇し、基礎3底面に作用する水圧が増大するため、図1の場合と同じく地盤に液状化が生じ、地盤が支持力を喪失したことによる基礎3の沈下は発生せず、基礎3の安定性が確保される。(b)の状態のときには、水圧の増大分が喪失した地盤支持力を補い、水圧が基礎3を支持し続ける。
図3−(a)〜(d)は基礎3の支持構造を新規に構築する場合の施工手順例を示す。新設の場合、(a)に示すように地中に矢板4を、地震時に液状化する可能性のある砂質地盤等、液状化地盤1中の目標深度まで挿入(圧入)し、矢板4からなる矢板壁5で包囲された領域の地盤を掘削し、排出することが行われる。隣接する矢板4、4間の止水性を確保する場合には、例えば図5に示すように矢板4の挿入前に、矢板4が挿入される箇所の地盤に対して地盤改良が施される。
矢板4には主に鋼矢板(シートパイル)が使用されるが、矢板4の種類は問われない。軽量材6に平常時から地下水による浮力が作用するようにする上では、地盤は軽量材6の上面が地下水位より下になる深度まで掘削されることが適切である。
土砂の排出後、(b)に示すように構築すべき基礎3の底面以深の領域に軽量材6を設置、もしくは充填し、その後、(c)に示すように軽量材6の上端上に割栗石を敷き、基礎3を受ける捨てコンクリート7を構築することが行われる。その後、(d)に示すように捨てコンクリート7上に基礎3を構築し、基礎3上に構造物2を構築することが行われる。基礎3の構築後、必要により基礎3の上に土砂が埋め戻される。
その後、基礎3上に構造物2としての橋脚を構築し、その後、橋桁を橋脚上に架設することが行われる。
図4は矢板4に上端から下端へかけて、矢板壁5に包囲された領域の内周側から外周側へ向かう傾斜を付けて矢板4を挿入した場合、及び矢板4の内周側に、矢板4に対向する内矢板8を鉛直に挿入し、この内矢板8に包囲された領域に軽量材6を配置した場合の施工例を示す。
図4では矢板壁5に外周側から作用する水圧と土圧の内、鉛直下向きの成分が矢板壁5を下向きに押さえ込む働きをするため、地下水位の上昇により基礎3底面に作用する水圧と軽量材6に作用する浮力が増大することがあっても、基礎3の浮き上がりを拘束する効果が得られる。
図4において、基礎3の底面下に内矢板8が存在しない場合には軽量材6全体が角錐台形になり、矢板壁5が傾斜しない場合より軽量材6の体積が増加することから、軽量材6に作用する浮力が増大することになる。そこで、図示するように基礎3の底面下に鉛直に挿入された内矢板8に軽量材6が包囲されることで、軽量材6に作用する浮力の増大がなくなるため、地下水位の上昇に伴う浮力の増大による基礎3の浮き上がりが防止される。
(a)は矢板壁で囲まれた領域内に地下水が入り込んでいる場合の、支持構造の平常時の様子を示した縦断面図、(b)は地震時の様子を示した縦断面図である。 (a)は矢板壁で囲まれた領域内に地下水が入り込まない場合の、支持構造の平常時の様子を示した縦断面図、(b)は地震時の様子を示した縦断面図である。 (a)〜(d)は本発明の支持構造を新規に構築する場合の施工手順例を示した縦断面図である。 矢板に傾斜を付けると共に、矢板の内周側に、内矢板を鉛直に挿入し、内矢板に包囲された領域に軽量材を配置した場合の施工例を示した縦断面図である。 矢板が挿入される箇所の地盤を予め地盤改良した場合の施工例を示した縦断面図である。 (a)は基礎が液状化地盤上に直接支持されている従来構造の平常時の様子を示した縦断面図、(b)は地震時の様子を示した縦断面図である。
符号の説明
1………地盤
2………構造物
3………基礎
4………矢板
5………矢板壁
6………軽量材
7………捨てコンクリート
8………内矢板
9………地盤改良材

Claims (7)

  1. 液状化地盤中に構造物の基礎の側面に面で接触して前記基礎を包囲するように隣接しながら挿入され、前記基礎の周方向に連続する矢板と、前記基礎の底面以深の、前記矢板に包囲された領域に設置、もしくは充填される軽量材とを備え、前記軽量材が地下水から受ける浮力、または水圧を前記基礎の底面に作用させていることを特徴とする構造物基礎の支持構造。
  2. 前記矢板に上端から下端へかけて、前記矢板に包囲された領域の内周側から外周側へ向かう角度10度以上の傾斜が付けられていることを特徴とする請求項1に記載の構造物基礎の支持構造。
  3. 前記基礎の底面以深の前記矢板の内周側に、前記矢板に対向する内矢板が挿入され、この内矢板に包囲された領域に軽量材が配置されていることを特徴とする請求項2に記載の構造物基礎の支持構造。
  4. 前記矢板に包囲された、前記基礎の底面下の領域が仕切り壁で複数の領域に区分されていることを特徴とする請求項1、もしくは請求項2に記載の構造物基礎の支持構造。
  5. 互いに隣接する前記矢板間の止水性が確保され、前記矢板に包囲された領域から地下水が排除されていることを特徴とする請求項1乃至請求項3のいずれかに記載の構造物基礎の支持構造。
  6. 少なくとも前記矢板が挿入される箇所の地盤が予め地盤改良されていることを特徴とする請求項5に記載の構造物基礎の支持構造。
  7. 液状化地盤中に、構築すべき構造物の基礎の側面に面で接触して前記基礎を包囲するように隣接させながら、前記基礎の周方向に連続させて矢板を挿入する工程と、前記矢板に包囲された領域の、前記基礎の底面までの土砂を排出する工程と、前記基礎の底面以深の、前記矢板に包囲された領域に、地下水から受ける浮力、または水圧を前記基礎の底面に作用させる軽量材を設置、もしくは充填する工程と、前記軽量材の上に前記基礎を構築する工程とを含むことを特徴とする構造物基礎の施工方法。
JP2006284126A 2006-10-18 2006-10-18 構造物基礎の支持構造及び施工方法 Active JP4868589B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284126A JP4868589B2 (ja) 2006-10-18 2006-10-18 構造物基礎の支持構造及び施工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006284126A JP4868589B2 (ja) 2006-10-18 2006-10-18 構造物基礎の支持構造及び施工方法

Publications (2)

Publication Number Publication Date
JP2008101379A JP2008101379A (ja) 2008-05-01
JP4868589B2 true JP4868589B2 (ja) 2012-02-01

Family

ID=39435913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284126A Active JP4868589B2 (ja) 2006-10-18 2006-10-18 構造物基礎の支持構造及び施工方法

Country Status (1)

Country Link
JP (1) JP4868589B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124511A (ja) * 2011-12-15 2013-06-24 Ohbayashi Corp 建物の基礎構造及び建物の基礎の構築方法
CN112064585A (zh) * 2020-08-14 2020-12-11 中铁大桥局集团有限公司 一种排水渠软弱地基上的支撑结构及其安装方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645941B2 (ja) * 1986-03-17 1994-06-15 不動建設株式会社 構造物基礎工法
JP2775214B2 (ja) * 1992-11-20 1998-07-16 鹿島建設株式会社 地盤液状化対策構造
JPH06240694A (ja) * 1993-02-10 1994-08-30 Taisei Corp 基礎構造体
JPH06287965A (ja) * 1993-04-05 1994-10-11 Kanegafuchi Chem Ind Co Ltd 軟弱地盤用基礎および軟弱地盤における基礎の構築方法
JP3089226B2 (ja) * 1997-11-05 2000-09-18 利根地下技術株式会社 地中止水壁およびその構築方法並びに鋼製止水版
JP2001262555A (ja) * 2000-03-21 2001-09-26 Sumitomo Metal Ind Ltd 地盤の液状化対策工法
JP2003041608A (ja) * 2001-07-27 2003-02-13 Taisei Corp 地下タンクの構造

Also Published As

Publication number Publication date
JP2008101379A (ja) 2008-05-01

Similar Documents

Publication Publication Date Title
CN104988948B (zh) 一种肋板式挡土墙的构筑方法
JP5471797B2 (ja) 護岸構造及び既設護岸構造の耐震補強構造
JP2019510909A (ja) 傾斜面または拘束されていない地表などを安定させるための連動安定化システム
JP5124697B1 (ja) 液状化防止構造および液状化防止工法
CN211200426U (zh) 一种微型钢管桩挡墙抗滑支挡结构
JP4868589B2 (ja) 構造物基礎の支持構造及び施工方法
JP2009133099A (ja) 自立式土留擁壁
JP7149919B2 (ja) 既存岸壁の改良構造及び改良方法
JP6238088B2 (ja) 改良地盤及び地盤改良工法
JP6132144B2 (ja) 構造物の液状化被害低減構造、および液状化被害低減方法
JP7115817B2 (ja) 大型土嚢を用いた補強土壁及び大型土嚢を用いた土留め方法
JP5896351B2 (ja) 基礎構造及び基礎の構築方法
JP5071852B2 (ja) 構造物の沈下抑制構造
JP2006342666A (ja) 構造物の耐震補強方法
CN211665773U (zh) 卸荷板式支护结构
JP2004339894A (ja) 杭基礎構造物の耐震補強構造
JP7309147B2 (ja) ケーソン、ニューマチックケーソン工法及び構造物
JP2003119750A (ja) 構造物の抗力構造体
JP6590767B2 (ja) 液状化対策工法
CN111041919B (zh) 一种桥头路面防沉降结构及施工方法
CN206346220U (zh) 一种含eps缓冲层的桩基挡墙抗震支挡结构
JP6774774B2 (ja) 杭基礎構造
JP2020159006A (ja) 擁壁及びその施工方法
RU2633626C1 (ru) Армогрунтовый щелевой фундамент мелкого заложения
JP6298255B2 (ja) 地中埋設構造物の浮き上がりを防止する方法及び治具

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Ref document number: 4868589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250