JP4864870B2 - 光送信装置 - Google Patents

光送信装置 Download PDF

Info

Publication number
JP4864870B2
JP4864870B2 JP2007500438A JP2007500438A JP4864870B2 JP 4864870 B2 JP4864870 B2 JP 4864870B2 JP 2007500438 A JP2007500438 A JP 2007500438A JP 2007500438 A JP2007500438 A JP 2007500438A JP 4864870 B2 JP4864870 B2 JP 4864870B2
Authority
JP
Japan
Prior art keywords
optical
signal
level
component
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007500438A
Other languages
English (en)
Other versions
JPWO2006080168A1 (ja
Inventor
智亮 大平
浩一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007500438A priority Critical patent/JP4864870B2/ja
Publication of JPWO2006080168A1 publication Critical patent/JPWO2006080168A1/ja
Application granted granted Critical
Publication of JP4864870B2 publication Critical patent/JP4864870B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5165Carrier suppressed; Single sideband; Double sideband or vestigial
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • H04B10/50575Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the modulator DC bias
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/21Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Description

本発明は、光送信装置に関し、より特定的には、複数のマッハツェンダ型干渉計を含む外部光変調器を備え、光搬送波成分が抑圧された単一側波帯光強度変調信号を出力する光送信装置に関する。
光通信システムでは、従来から光源を構成するレーザダイオードに注入する電流を、入力信号によって直接変調することによって、入力信号で変調された光信号を出力する直接変調方式が用いられている。レーザダイオードは、チャープ特性によってレーザダイオードの発振波長が変化する現象(チャーピング)が発生する。このため、レーザダイオードから出力される光信号を長距離伝送する場合、光ファイバ中における波長分散の影響によって、光信号の波形が劣化するとともに、信号の特性が劣化する。
また、無線通信システムにおいて、伝送レートを大幅に拡大するために、帯域の確保が容易なミリ波帯(30〜300GHz)を利用することが検討されている。ミリ波帯を用いる無線通信システムにおいて、基地局間等の通信用の伝送路として同軸ケーブルを用いる場合、ミリ波帯の信号は、伝送路での損失が非常に大きくなる。このため、ミリ波帯の信号を、同軸ケーブルを用いて伝送する場合、数10m間隔で増幅器を設ける必要があるため、コストが非常に大きくなるという問題がある。従って、ミリ波帯の信号伝送には、伝送損失が小さい光ファイバを利用することが必須である。しかしながら、現在市販されているレーザダイオードの周波数応答特性は、10GHz程度である。このため、レーザダイオードは、ミリ波帯のような非常に高い周波数の信号に応答することができない。従って、レーザダイオードを用いてミリ波帯の信号を直接変調することは不可能である。
そこで、光信号を長距離伝送する場合や、ミリ波帯の周波数の高い信号を光信号として伝送する場合、チャーピングが生じにくく、高い周波数の信号まで応答することが可能なリチウムナイオベート(ニオブ酸リチウム)を用いたマッハツェンダ型の外部光変調器(以下、MZ型変調器という)を備えた光送信装置を用いることが提案されている。
図23は、MZ型変調器の一般的構成を示す図である。図23に示すMZ型変調器900は、結晶基板901と、第1の光導波路902と、第2の光導波路903と、電極904と、電極905と、バイアス入力端子906と、RF(Radio Frequency)信号入力端子907とを備える。
MZ型変調器900には、光源から出力された光が入力される。入力された光は、第1の光導波路902及び第2の光導波路903の二つの導波路に向けて分岐される。バイアス入力端子906から入力されるバイアス電圧と、RF信号入力端子907から入力されるRF信号の電圧とによって、結晶基板上に設けられた電極904と電極905との間に電圧が加えられる。電極904と電極905との間に電界が生じると、第1の光導波路902の屈折率が変化する。第1の光導波路902を伝搬する光は、第1の光導波路902の屈折率の変化に伴い、位相が変化する。第1の光導波路902及び第2の光導波路903を伝搬する光が合波されることによって、MZ型変調器900から、RF信号によって変調された信号が出力される。
MZ型変調器は、経時変化や温度変化などの種々の条件により、バイアス電圧と光出力との関係が、初期状態から変動する現象(DCドリフト)が存在する。図24は、MZ型変調器で発生するDCドリフトを説明する図である。図24に示す実線は、MZ型変調器の初期の位相状態である。図24に示す一点鎖線は、DCドリフトによって変動したMZ型変調器の位相状態である。図24に示すように、MZ型変調器は、DCドリフトによって、バイアス電圧と出力される光信号のレベルとの関係が変化するため、信号特性の劣化が生じる。このため、MZ型変調器のDCドリフトによって発生する問題を解決するための技術が、特許文献1に開示されている。
図25は、特許文献1に記載された従来の光送信装置の構成を示す図である。図25に示す光送信装置は、光源911と、信号源912と、アンプ913と、RF入力端子914と、MZ型外部光変調器915と、光分岐部916と、光受信部917と、アンプ918と、差動アンプ919と、基準電圧入力端子920と、バイアス電圧入力端子921とを備える。
図25に示す光送信装置において、光源911から出力される光搬送波は、MZ型外部光変調器915に入力される。信号源912から出力される所定周波数f1 の信号は、アンプ913で増幅され、MZ型外部光変調器915に入力される。MZ型外部光変調器915は、光搬送波を周波数f1 の信号で変調した光信号を出力する。光分岐部916は、光信号を二つに分岐して、一方を光伝送路(図示せず)に出力し、他方をモニタ用光信号として光受信部917に入力する。光受信部917は、モニタ用光信号を電気信号に変換する。差動アンプ919は、アンプ918によって増幅された電気信号と、バイアス電圧入力端子920から入力されるリファレンス電圧との差分を増幅し、誤差信号として出力する。誤差信号は、MZ型外部光変調器915のバイアス電圧入力端子921に入力される。このように、図25に示す光送信装置は、モニタ用光信号と、予め定められたリファレンス電圧とを比較して、MZ型外部光変調器に加えるバイアス電圧を制御し、動作点の制御を行う。
近年、図23に示すMZ型変調器を少なくとも3つから構成された、搬送波抑圧単一側波帯MZ型外部光変調器(以下、SSB−SC光変調器という)が検討されている。図26は、SSB−SC光変調器の構成を示す模式図である。図26に示すように、SSB−SC光変調器930は、第1のマッハツェンダ型干渉計(以下、MZ型干渉計という)931と、第2のMZ型干渉計932と、第3のMZ型干渉計933とを備える。
図26に示すSSB−SC光変調器は、光源(図示せず)から入力された光搬送波を二つに分岐する。分岐された一方の光搬送波は、第1のMZ型干渉計931に入力され、他方の光搬送波は、第2のMZ型干渉計932に入力される。第1のMZ型干渉計931は、RF信号入力端子935から入力されるRF信号を用いて光搬送波を変調し、光変調信号を出力する。第2のMZ型干渉計932は、RF信号入力端子937から入力されるRF信号を用いて光搬送波を変調し、光変調信号を出力する。第3のMZ型干渉計933は、第1のMZ型干渉計931から入力された光変調信号を、バイアス入力端子939から入力されるバイアス電圧V3 によって位相を調整し、位相を調整した光信号と第2のMZ型干渉計932から入力された光変調信号とを合波する。この結果、SSB−SC光変調器から、搬送波抑圧単一側波帯の光変調信号が出力される。
SSB−SC光変調器の動作原理を、数式を用いて説明する。第1のMZ型干渉計931から出力される光変調信号の光電界E1 は、(式1)で表される。
Figure 0004864870
(式1)において、m・cos(ω1 t)は、RF信号入力端子935から入力されるRF信号である。φDC1 (V1 )は、バイアス入力端子934から入力されるバイアス電圧V1 によって生じる、第1のMZ型干渉計931の光導波路を透過する二つの光波の位相差である。mは位相変調度、ω0 は入力する光搬送波の角周波数、ω1 は、RF信号の角周波数である。Jn は、n次のベッセル関数である。なお、以下の説明では、ベッセル関数の2次以降の成分を無視する。
第2のMZ型干渉計932には、RF信号入力端子937から、第1のMZ型干渉計931に入力されるRF信号m・cos(ω1 t)をヒルベルト変換した、m・sin(ω1 t)が入力される。第2のMZ型干渉計932から出力される光信号の光電界E2 は、(式2)で表される。
Figure 0004864870
(式2)において、φDC2 (V2 )は、バイアス入力端子936から入力されるバイアス電圧V2 によって生じる、第2のMZ型干渉計932の光導波路を透過する二つの光波の位相差である。(式1)及び(式2)において、J0 (m)は、光搬送波成分を表し、J1 (m)成分は、側波帯成分を表す。(式1)及び(式2)より、光搬送波成分J0 (φ)を最も抑圧するためのバイアス電圧は、(式1)に示すφDC1 (V1 )と、(式2)に示すφDC2 (V2 )との値が、それぞれπとなる点である。
(式1)及び(式2)において、φDC1 (V1 )とφDC2 (V2 )との値がそれぞれπである時、第3のMZ型干渉計933から出力される光変調信号の光電界E3 は、(式3)で表される。
Figure 0004864870
(式3)において、φDC3 (V3 )は、バイアス入力端子938から入力されるバイアス電圧V3 によって生じる、第3のMZ型干渉計933に入力される二つの光変調信号の位相差である。(式3)に示すように、第3のMZ型干渉計933から出力される光変調信号が、光搬送波成分が抑圧されるとともに、単一側波帯となるバイアス電圧は、φDC3 (V3 )がπ/2となる点であることがわかる。このように、図26に示すSSB−SC光変調器は、各MZ型干渉計を予め定められた動作点において動作させることによって、搬送波成分を抑圧した単一側波帯の光変調信号を得ることができる。この時、SSB−SC光変調器から出力される光変調信号のスペクトラムの模式図を図27に示す。
また、特許文献2には、各MZ型干渉計において発生するDCドリフトを抑圧するために、光変調信号に重畳させたモニタ用の低周波信号に基づいて、各MZ型干渉計に供給するバイアス電圧を制御するSSB−SC光変調器のバイアス制御方法及び装置が開示されている。図28は、特許文献2に記載されている従来のSSB−SC光変調器のバイアス制御装置の構成を示す図である。図28において、従来のSSB−SC光変調器のバイアス制御装置は、第1のMZ型干渉計931と、第2のMZ型干渉計932と、第3のMZ型干渉計933と、第1のバイアス制御部Aと、第2のバイアス制御部Bと、第3のバイアス制御部Cと、光検出器959とを備える。第1のバイアス制御部Aは、第1のMZ型干渉計931に供給するバイアス電圧を制御すると共に、モニタ用の低周波信号faを発生し、第1のMZ型干渉計931が出力する光変調信号に低周波信号faを重畳させる。第2のバイアス制御部Bは、第2のMZ型干渉計932に供給するバイアス電圧を制御すると共に、モニタ用の低周波信号fbを発生し、第2のMZ型干渉計932が出力する光変調信号に低周波信号fbを重畳させる。第3のバイアス制御部Cは、第3のMZ型干渉計933に供給するバイアス電圧を制御すると共に、モニタ用の低周波信号fcを発生し、第3のMZ型干渉計933が出力する光変調信号に低周波信号fcを重畳させる。光検出器959は、SSB−SC光変調器から出力される光変調信号を検出する。
第1のバイアス制御部Aは、光検出器959の出力信号に含まれる低周波信号faに基づいて、第1のMZ型干渉計931に供給するバイアス電圧を制御する。第2のバイアス制御部Bは、光検出器959の出力信号に含まれる低周波信号fbに基づいて、第2のMZ型干渉計932に供給するバイアス電圧を制御する。第3のバイアス制御部Cは、光検出器959の出力信号に含まれる低周波信号fcに基づいて、第3のMZ型干渉計933に供給するバイアス電圧を制御する。すなわち、第1〜3のバイアス制御部は、光変調信号に重畳させたモニタ用の低周波信号に基づいて、各MZ型干渉計に供給するバイアス電圧を制御することで、各MZ型干渉計において発生するDCドリフトを抑圧していた。
特開平6−67128号公報(第5頁、図1) 特開2004−318052号公報 特開2001−133824号公報
図26に示すSSB−SC光変調器は、各MZ型干渉計においてDCドリフトが発生する。このため、各MZ型干渉計の動作点を制御することが必要となる。図26に示す構成に、図25に示す動作点を制御するための構成を単純に適用する場合を考える。この場合、SSB−SC光変調器の出力光信号のレベルと基準電圧とを比較することで、各MZ型干渉計を制御を行う。しかしながら、図26に示すSSB−SC光変調器が出力する光信号のレベル情報だけでは、どのMZ型干渉計の動作点が移動したのかを判断することは極めて困難である。
そこで、図26に示すSSB−SC光変調器を構成する各MZ型干渉計に対して、特許文献1に示される構成を適用することが考えられる。図29は、SSB−SC光変調器を構成する各MZ型干渉計に対して、特許文献1が示す構成を適用した図である。図29において、第1のMZ型干渉計931から出力される光信号は、方向性結合器944によって二つに分岐される。分岐された一方の光信号は、第3のMZ型干渉計933に入力される。分岐された他方の光信号は、光受信部945において電気信号に変換される。差動アンプ946は、変換された電気信号とバイアス電圧入力端子947との差分を増幅して誤差信号を生成する。動アンプ946は、誤差信号を第1のMZ型干渉計931に入力する。第2のMZ型干渉計932から出力される光信号は、第1のMZ型干渉計931から出力される光信号と同様に、出力した光信号が二つに分岐され、一方が電気信号に変換される。差動アンプ950は、変換された電気信号とバイアス電圧入力端子951との差分を増幅して、誤差信号を生成する。差動アンプ950は、誤差信号を第2のMZ型干渉計932に入力する。第3のMZ型干渉計933から出力された光信号は、光分岐部952によって二つに分岐される。分岐された一方の光信号は、光受信部953において電気信号に変換される。差動アンプ954は、変換された電気信号とバイアス電圧入力端子951との差分を増幅して、誤差信号を生成する。差動アンプ954は、誤差信号を第3のMZ型干渉計933に入力する。このように、図29に示すSSB−SC光変調器は、各MZ型干渉計が出力する光信号の一部をモニタすることによって、各MZ型干渉計の動作点の制御を行う。
しかしながら、図29に示す構成では、各MZ型干渉計に対して新たに方向性結合器を導入する場合、各MZ型干渉計からモニタ信号を出力するための光導波路が必要となる。このため、図29に示す構成では、SSB−SC光変調器における光導波路の再設計が不可欠である。また、MZ型干渉計の数だけ光受信部が必要となるため、SSB−SC型光変調器が大型化するという問題がある。
また、図28に示すSSB−SC光変調器のバイアス制御方法及び装置は、各MZ型干渉計に供給するバイアス電圧を制御するために、第1のMZ型干渉計931、第2のMZ型干渉計932、及び第3のMZ型干渉計933が出力する光変調信号にモニタ用の低周波信号を重畳させる必要があった。しかしながら、図28に示すようなSSB−SC光変調器のバイアス制御方法及び装置を、例えば、特許文献3に開示されている光信号処理を用いた広帯域の角度変調装置(具体的には、光信号を広帯域に光強度変調する光強度変調部)に適用すると、モニタ用の低周波信号が、光変調信号に含まれる低周波信号に悪影響を及ぼす可能性があり、低周波信号の送信に不向きであるという問題点があった。
本発明は、上記の課題を解決するものであり、低周波信号の送信を可能とし、SSB−SC光変調器の光導波路の再設計を必要とせず、動作点を制御するためのモニタ用の光受信部の数を削減するとともに、各MZ型干渉計の動作点を制御が可能なSSB−SC光変調器を提供することを目的とする。
本発明は、光源が出力する周波数f0 の光搬送波を分岐した二つの光信号を、入力された周波数f1 の電気信号によって位相変調した位相変調信号をそれぞれ出力する第1及び第2のマッハツェンダ型干渉計と、当該第1及び第2のマッハツェンダ型干渉計がそれぞれ出力する二つの当該位相変調信号を、さらに位相変調して結合する第3のマッハツェンダ型干渉計とを備える、光搬送波成分が抑圧された単一側波帯の光強度変調信号を出力する光送信装置に向けられている。そして、上記目的を達成させるために、光強度変調信号を、光伝送路を伝送する光信号とモニタ光信号とに分岐して出力する光分岐部と、モニタ光信号を電気信号に変換して、モニタ信号として出力する光検波部と、モニタ信号を二つに分岐して出力する分岐部と、分岐された一方のモニタ信号のうち、周波数f1 近傍の信号成分のみを透過させて出力する光搬送波成分抽出部と、光搬送波成分レベル抽出部が出力する信号のレベルを検出し、そのレベルに応じた光搬送波成分モニタ信号を出力する光搬送波成分レベル検出部と、分岐された他方のモニタ信号のうち、周波数2×f1 近傍の信号成分のみを透過させて出力する残留側波帯成分抽出部と、残留側波帯成分レベル抽出部が出力する信号のレベルを検出し、そのレベルに応じた残留側波帯成分モニタ信号を出力する残留側波帯成分レベル検出部と、光強度変調信号の光搬送波成分を抑圧するために、光搬送波成分モニタ信号に基づいて、第1及び第2のマッハツェンダ干渉計に印加するバイアス電圧を制御するとともに、光強度変調信号の不要な片側波帯成分を抑圧するために、残留側波帯成分モニタ信号に基づいて、第3のマッハツェンダ型干渉計に印加するバイアス電圧を制御する抑圧部とを備えさせる。
本発明によれば、三つのマッハツェンダ型干渉計を備え、光搬送波成分が抑圧された単一側波帯の光強度変調信号を出力する光送信装置において、当該光送信装置は、光搬送波成分が抑圧された単一側波帯の光強度変調信号に含まれる光搬送波成分及び残留側波帯成分を抽出して、光搬送波成分及び残留側波帯成分のレベルを検出する。そして、光搬送波成分及び残留側波帯成分のレベルに基づいて、各マッハツェンダ型干渉計に印加するバイアス電圧の値を制御する。これにより、各マッハツェンダ干渉計のDCドリフトによって発生する光搬送波成分及び残留側波帯成分を抑圧することができ、常に安定した単一側波帯成分の光信号を得ることができる。
好ましくは、抑圧部は、入力される光搬送波成分モニタ信号に応じて、第1及び第2のマッハツェンダ型干渉計にそれぞれ印加するバイアス電圧を制御するための光搬送波成分抑圧部と、入力される残留側波帯成分モニタ信号に応じて、第3のマッハツェンダ型干渉計に印加するバイアス電圧を制御するための残留側波帯成分抑圧部とを含み、光搬送波成分抑圧部は、第1のマッハツェンダ型干渉計に印加するバイアス電圧を供給する第1のバイアス電圧供給部と、第2のマッハツェンダ型干渉計に印加するバイアス電圧を供給する第2のバイアス電圧供給部と、光搬送波成分モニタ信号のレベルの基準値を記憶する光搬送波成分基準値記憶部と、入力された光搬送波成分モニタ信号のレベルを記憶する光搬送波成分レベル記憶部と第1及び第2の電圧供給部が供給するバイアス電圧を記憶する第1のバイアス電圧記憶部と、新たに入力された光搬送波成分モニタ信号のレベルと、光搬送波成分基準値記憶部が記憶する基準値とを比較するとともに、当該新たに入力された光搬送波成分モニタ信号のレベルと、光搬送波成分レベル記憶部が記憶する光搬送波成分モニタ信号のレベルとを比較する光搬送波成分レベル比較部と、光搬送波成分レベル比較部の比較結果に基づいて、第1及び第2のマッハツェンダ型干渉計に印加するバイアス電圧を制御する第1の電圧制御部とを有し、残留側波帯成分検出部は、第3のマッハツェンダ型干渉計に印加するバイアス電圧を供給する第3のバイアス電圧供給部と、残留側波帯成分モニタ信号のレベルの基準値を記憶する残留側波帯成分基準値記憶部と、入力された残留側波帯成分モニタ信号のレベルを記憶する残留側波帯成分レベル記憶部と、第3の電圧供給部が供給するバイアス電圧を記憶する第3のバイアス電圧記憶部と、新たに入力された残留側波帯成分モニタ信号のレベルと、残留側波帯成分基準値記憶部が記憶する基準値とを比較するとともに、当該新たに入力された残留側波帯成分モニタ信号のレベルと、残留側波帯成分レベル記憶部が記憶する残留側波帯成分モニタ信号のレベルとを比較する残留側波帯成分レベル比較部と、残留側波帯成分レベル比較部の比較結果に基づいて、第3のマッハツェンダ型干渉計に印加するバイアス電圧を制御する第2の電圧制御部とを有することが望ましい。
好ましくは、抑圧部は、第1のマッハツェンダ型干渉計に印加するバイアス電圧を供給する第1のバイアス電圧供給部と、第2のマッハツェンダ型干渉計に印加するバイアス電圧を供給する第2のバイアス電圧供給部と、第3のマッハツェンダ型干渉計に印加するバイアス電圧を供給する第3のバイアス電圧供給部と、入力された光搬送波成分モニタ信号のレベルの基準値を記憶する光搬送波成分基準値記憶部と、入力された残留側波帯成分モニタ信号のレベルの基準値を記憶する残留側波帯成分基準値記憶部と、光搬送波成分モニタ信号及び残留側波帯成分モニタ信号のレベルを記憶するモニタ信号レベル記憶部と、第1及び第2の電圧供給部が供給するバイアス電圧を記憶するバイアス電圧記憶部と、新たに入力された光搬送波成分モニタ信号のレベルと、光搬送波成分基準値記憶部が記憶する基準値及び光搬送波成分レベル記憶部が記憶する光搬送波成分のレベルとを比較するとともに、新たに入力された残留側波帯成分モニタ信号のレベルと、残留側波帯成分基準値記憶部が記憶する基準値及び残留側波帯成分レベル記憶部が記憶する光搬送波成分モニタ信号のレベルとを比較するモニタ信号レベル比較部と、モニタ信号レベル比較部の結果に基づいて、第1、第2及び第3のマッハツェンダ型干渉計に印加するバイアス電圧を制御する電圧制御部とを有することが望ましい。
これにより、光搬送波成分及び残留側波帯成分のそれぞれのレベルの増減に応じて、各マッハツェンダ型干渉計に印加するバイアス電圧を制御することが可能となる。また、各マッハツェンダ型干渉計に印加するバイアス電圧の値を一つの記憶部に記憶させるとともに、光搬送波成分モニタ信号及び残留側波帯成分モニタ信号のレベルを一つの記憶部に記憶させるため、光送信装置を小型化することができる。
また、バイアス電圧制御部は、光搬送波成分モニタ信号のレベルが基準値以下となるように、第1及び第2のマッハツェンダ型干渉計に印加するバイアス電圧を制御した後で、残留側波帯成分モニタ信号のレベルが基準値以下となるように、第3のマッハツェンダ型干渉計に印加するバイアス電圧を制御してもよいし、バイアス電圧制御部は、残留側波帯成分モニタ信号のレベルが基準値以下となるように、第3のマッハツェンダ型干渉計に印加するバイアス電圧を制御した後で、光搬送波成分モニタ信号のレベルが基準値以下となるように、第1及び第2のマッハツェンダ型干渉計に印加するバイアス電圧を制御してもよい。
これにより、光搬送波成分と残留側波帯成分とを抑圧する順序が決定されるため、効率良く各マッハツェンダ型干渉計に印加するバイアス電圧を制御することが可能となる。
また、光分岐部は、第3のマッハツェンダ型干渉計に設置され、さらに位相変調された二つの位相変調信号を相互に干渉させて結合し、二つの光強度変調信号を出力する方向性結合器であって、方向性結合器が出力する一方の光強度変調信号を光伝送路に出力するための第1のポートと、方向性結合器が出力する他方の光強度変調信号を光検波部に出力する第2のポートとをさらに備えてもよい。
これにより、第3のマッハツェンダ型干渉計が、二つの位相変調信号を結合させる際に、方向性結合器を用いることによって、光分岐部を省略することが可能となる。
また、光分岐部は、光伝送路を伝送する光信号の強度が、モニタ光信号の強度よりも大きくなるように光強度変調信号を分岐することを特徴とする、請求項1〜3のいずれかに記載の光送信装置。
これにより、光伝送路を伝送する光信号の強度を著しく減少させることなく、光送信機器が出力する光信号に含まれる光搬送波成分及び残留側波帯成分を抑圧することが可能となる。
本発明によれば、三つのマッハツェンダ型干渉計を備え、光搬送波成分が抑圧された単一側波帯の光強度変調信号を出力する光送信装置において、当該光送信装置は、光搬送波成分が抑圧された単一側波帯の光強度変調信号に含まれる光搬送波成分及び残留側波帯成分を抽出して、光搬送波成分及び残留側波帯成分のレベルを検出する。そして、光搬送波成分及び残留側波帯成分のレベルに基づいて、各マッハツェンダ型干渉計に印加するバイアス電圧の値を制御する。これにより、各マッハツェンダ干渉計のDCドリフトによって発生する光搬送波成分及び残留側波帯成分を抑圧することができ、常に安定した単一側波帯成分の光信号を得ることができる。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る光送信装置の構成を示すブロック図である。図1において、第1の実施形態に係る光送信装置は、光源1と、信号源2と、第1の入力信号分岐部3と、外部光変調器4と、変調器動作制御部5と、第1のRF入力端子6と、第2の入力端子7と、第1のバイアス電圧入力端子8と、第2のバイアス電圧入力端子9と、第3のバイアス電圧入力端子10とを備える。
光源1は、周波数f0 の無変調の光搬送波を出力する。信号源2は、所定の周波数f1 の電気信号を出力する。第1の入力信号分岐部3は、信号源2から出力された電気信号を二つに分岐し、第1の入力信号及び第2の入力信号として出力する。第1の入力信号分岐部3は、第1の入力信号と第2の入力信号との間に位相差ψを設定して、第1及び第2の入力信号を出力する。なお、位相差ψは、π/2であることが望ましい。この場合、外部光変調器4が出力する光信号は、一方の片側波帯成分のレベルが最小となる。
外部光変調器4は、変調器動作制御部5から供給される第1〜第3のバイアス電圧に応じて、光源1から入力される光搬送波を、信号源2から電気信号分岐部3、第1のRF入力端子6及び第2のRF入力端子7を介して入力される二つの電気信号によって強度変調された光信号を出力する。変調器動作制御部5から供給される第1のバイアス電圧は、第1のバイアス電圧入力端子8に入力される。同様に、第2のバイアス電圧は、第2のバイアス電圧入力端子9に入力され、第3のバイアス電圧は、第3のバイアス電圧入力端子10を介して入力される。
変調器動作制御部5は、外部光変調器4から出力される光信号が、光搬送波成分が抑圧された単一側波帯成分となるように、第1のバイアス電圧入力端子8、第2のバイアス電圧入力端子9、及び第3のバイアス電圧入力端子10を介して外部光変調器4に印加する第1〜第3のバイアス電圧をそれぞれ独立に決定して出力する。変調器動作制御部5の詳細な動作については後述する。
図2及び図3を用いて、外部光変調器4の動作を説明する。図2は、外部光変調器4の構成の一例を示すブロック図である。図3は、外部光変調器4を構成する各MZ型干渉計の出力光信号のスペクトラムの一例を示す図である。図2において、外部光変調器4は、光分岐部41と、第1のMZ型干渉計42と、第2のMZ型干渉計43と、第3のMZ型干渉計44とを含む。第1のMZ型干渉計42、第2のMZ型干渉計43及び第3のMZ型干渉計44は、リチウムナイオベート(ニオブ酸リチウム)を用いたMZ型干渉計である。
第1の光分岐部41は、光源1から入力された光搬送波を二分岐して、一方を第1のMZ型干渉計42に出力し、他方を第2のMZ型干渉計43に出力する。第1のMZ型干渉計42及び第2のMZ型干渉計43は、光搬送波を第1の入力信号分岐部3から入力された電気信号によってそれぞれ強度変調して、第3のMZ型干渉計44に出力する。第3のMZ型干渉計44は、第1のMZ型干渉計42及び第2のMZ型干渉計43から出力される光信号の位相関係を調整して、合波し、外部光変調器4から光信号を出力する。
第1のMZ型干渉計42は、第2の光分岐部421と、第1の光導波路422と、第1の変調電極423と、第2の光導波路424と、第2の変調電極425と、第1の光結合部426と、第2の入力信号分岐部427とを有する。第1の変調電極423は、第1の光導波路422に対応して設置される。第2の変調電極425は、第2の光導波路424に対応して設置される。
第1のMZ型干渉計42において、第2の光分岐部421は、第1の光分岐部41から出力される光搬送波を二つに分岐し、一方を第1の光導波路422に出力し、他方を第2の光導波路424に出力する。第2の入力信号分岐部427は、第1のRF入力端子6を介して入力される入力信号を二つに分岐して、第1及び第2の分岐入力信号を出力する。第2の入力信号分岐部427は、第1の分岐入力信号を第1の変調電極423に入力し、第2の分岐入力信号を第2の変調電極425に入力する。第1の光導波路422及び第2の光導波路424は、第1の変調電極423と第2の変調電極425とに印加されるバイアス電圧(以下、第1の印加バイアス電圧という)の変化によって、屈折率が変化する。第1の光導波路422を導波する光搬送波は、光導波路の屈折率の変化によって位相変調され、光位相変調信号として第1の光結合部426に入力される。第2の光導波路424を導波する光搬送波は、同様に位相変調され、光位相変調信号として第1の光結合部426に入力される。第1の光結合部426は、入力された二つの光位相変調信号を合波する。二つの光位相変調信号は、相互に干渉しあうことによって、光強度変調された第1の光変調信号となる。第1の光変調信号は、第3のMZ型干渉計44に入力される。
第1の印加バイアス電圧は、第1及び第2の分岐入力信号と、第1のバイアス電圧(V11,V12)とによって生成される。第1及び第2の分岐入力信号の平均位相差は、πに設定される。第1のバイアス電圧(V11,V12)は、第1のバイアス電圧入力端子8を介して入力される。第1のバイアス電圧(V11,V12)の値は、第1の光変調信号の光搬送波成分を抑圧した両側波帯の光信号を出力するために、二つの光位相変調信号の平均位相差φがπになるように設定される。
二つの光位相変調信号は、このように位相変調されて第1の光結合部426に入力される。二つの光位相変調信号は、相互に干渉しあい、光搬送波が抑圧された両側波帯の第1の光変調信号に変換される。図3(a)は、第1のMZ型干渉計42から出力される第1の光変調信号の光スペクトラムの一例を示す図である。図3(a)に示すように、第1の光変調信号は、光周波数f0 の光搬送波成分が抑圧された両側波帯の光変調信号となる。
第2のMZ型干渉計43は、第3の光分岐部431と、第3の光導波路432と、第3の変調電極433と、第4の光導波路434と、第4の変調電極435と、第2の光結合部436と、第3の入力信号分岐部437とを有する。第3の変調電極433は、第3の光導波路432に対応して設置される。第4の変調電極435は、第4の光導波路434に対応して設置される。
第2のMZ型干渉計43において、第3の光分岐部431は、第1の光分岐部41から出力される光搬送波を二つに分岐し、一方を第3の光導波路432に出力し、他方を第4の光導波路434に出力する。第3の入力信号分岐部437は、第2のRF入力端子6を介して入力される入力信号を二つに分岐して、第3及び第4の分岐入力信号を出力する。第3の入力信号分岐部47は、第3の分岐入力信号を第3の変調電極433に入力し、第4の分岐入力信号を第4の変調電極435に入力する。第3の光導波路432及び第4の光導波路434は、第3の変調電極433と第4の変調電極435とに印加されるバイアス電圧(以下、第2の印加バイアス電圧という)の変化によって、屈折率が変化する。第3の光導波路432を導波する光搬送波は、光導波路の屈折率の変化によって位相変調され、光位相変調信号として第2の光結合部436に入力される。第4の光導波路434を導波する光搬送波は、同様に位相変調され、光位相変調信号として第2の光結合部436に入力される。第2の光結合部436は、入力された二つの光位相変調信号を合波する。二つの光位相変調信号は、相互に干渉しあうことによって、光強度変調された第2の光変調信号となる。第2の光変調信号は、第3のMZ型干渉計44に入力される。
第2の印加バイアス電圧は、第3及び第4の分岐入力信号と、第2のバイアス電圧(V21,V22)とによって生成される。第3及び第4の分岐入力信号の平均位相差は、πに設定される。第2のバイアス電圧(V21,V22)は、第2のバイアス電圧入力端子9を介して入力される。第2のバイアス電圧(V21,V22)の値は、第2の光変調信号の光搬送波成分を抑圧した両側波帯の光信号を出力するために、二つの光位相変調信号の平均位相差θがπになるように設定される。
二つの光位相変調信号は、このように位相変調されて第2の光結合部436に入力される。二つの光位相変調信号は、相互に干渉しあい、光搬送波が抑圧された両側波帯の第2の光変調信号に変換される。図3(b)は、第2のMZ型干渉計43から出力される第2の光変調信号の光スペクトラムの一例を示す図である。図3(b)に示すように、第2の光変調信号は、光周波数f0 の光搬送波成分が抑圧された両側波帯の光変調信号となる。
第3のMZ型干渉計44は、第5の光導波路441と、第5の変調電極442と、第6の光導波路443と、第6の変調電極444と、第3の光結合部445とを有する。第5の変調電極442は、第5の光導波路441に対応して設置される。第6の変調電極444は、第6の光導波路443に対応して設置される。
第5の光導波路441及び第6の光導波路443は、第5の変調電極442と第6の変調電極444に印加されるバイアス電圧(以下、第3の印加バイアス電圧という)の変化によって、屈折率が変化する。第5の光導波路441には、第1のMZ型干渉計42から第1の光変調信号が入力される。第1の光変調信号は、光導波路の屈折率の変化によって位相変調され、光位相変調信号として第3の光結合部445に入力される。第6の光導波路443には、第2のMZ型干渉計43から第2の光変調信号が入力される。第2の光変調信号は、光導波路の屈折率の変化によって位相変調され、光位相変調信号として第3の光結合部445に入力される。第3の光結合部445は、入力された二つの光位相変調信号を合波する。合波される二つの光位相変調信号は、相互に干渉しあうことによって、光強度変調された第3の光変調信号となる。第3の光変調信号は、外部光変調器4が出力する光信号となる。
第3の印加バイアス電圧は、第3のバイアス電圧入力端子10を介して入力される第3のバイアス電圧(V31,V32)である。第3の光変調信号が、光搬送波成分が抑圧された単一側波帯の変調信号となるために、第3のバイアス電圧(V31,V32)の値は、第3の光結合部に入力される二つの光位相変調信号の平均位相差がπ/2になるように設定される。図3(c)は、第3の光変調信号のスペクトラムの一例を示す図である。図3(c)に示すように、第3の光変調信号は、光搬送波成分が抑圧された単一側波帯の光変調信号である。なお、第3の光変調信号が光搬送波成分が抑圧された単一側波帯の光変調信号となる場合、第3のMZ型干渉計44に入力される第1及び第2の光変調信号は、それぞれ光搬送波成分が抑圧された両側波帯の光変調信号であることが好ましい。
図1を用いて、変調器動作制御部5の詳細な構成を説明する。変調器動作制御部5は、光分岐部51と、光検波部52と、モニタ信号分岐部53と、光搬送波成分抽出部54と、光搬送波成分レベル検出部55と、光搬送波成分抑圧部56と、残留側波帯成分抽出部57と、残留側波帯成分レベル検出部58と、残留側波帯成分抑圧部59とを含む。
光分岐部51は、外部光変調器4から出力される光信号を二つに分岐する。一方の光信号は、光伝送路(図示せず)を通じ、伝送される。他方の光信号は、モニタ光信号として光検波部52に入力される。なお、光分岐部51は、光伝送路を伝送される光信号の強度が、光検波部52に入力される光信号の強度より大きくなるように、外部光変調器4から出力される光信号を分岐することが望ましい。
光検波部52は、モニタ光信号を電気信号に変換し、モニタ信号として出力する。光検波部52には、自乗検波特性を有するフォトダイオードなどが用いられる。光検波部52は、光信号を自乗検波し、電気信号に変換する。モニタ信号分岐部53は、モニタ信号を二つに分岐して、一方を光搬送波成分抽出部54に入力し、他方を残留側波帯成分抽出部57に入力する。
光搬送波成分抽出部54は、フィルタ等が用いられる。光搬送波成分抽出部54は、モニタ信号分岐部53が出力した電気信号から、周波数f1 近傍の信号成分を抽出して出力する。図4(a)に、光搬送波成分抽出部54の透過帯域を示す。光搬送波成分レベル検出部55は、光搬送波成分抽出部54が抽出した周波数f1 近傍の信号成分のレベルを検出し、検出信号を光搬送波成分モニタ信号として光搬送波成分抑圧部へと出力する。
光搬送波成分抑圧部56は、光搬送波成分モニタ信号のレベルに応じて、外部光変調器4の動作条件を調整する。光搬送波成分抑圧部56は、光搬送波成分レベル検出部55から入力される検出信号のレベルが予め定められた基準値以下となるように、第1のバイアス電圧入力端子8を介して印加する第1バイアス電圧と、第2のバイアス電圧入力端子9を介して印加する第2のバイアス電圧をそれぞれ決定して出力する。
残留側波帯成分抽出部57は、フィルタ等が用いられる。残留側波帯成分抽出部57は、モニタ信号分岐部53が出力した電気信号から、周波数2×f1 近傍の信号成分を抽出して出力する。図4(b)に、残留側波帯成分抽出部57の透過帯域を示す。残留側波帯成分レベル検出部58は、残留側波帯成分抽出部57が抽出した周波数2×f1 近傍の信号成分のレベルを検出し、検出信号を残留側波帯成分モニタ信号として残留側波帯成分抑圧部59へと出力する。
残留側波帯成分抑圧部59は、残留側波帯成分モニタ信号のレベルに応じて、外部光変調器4の動作条件を調整する。残留側波帯成分抑圧部59は、残留側波帯成分レベル検出部58から入力される検出信号のレベルが予め定められた基準値以下となるように、第3のバイアス電圧入力端子10を介して印加する第3のバイアス電圧を決定して出力する。
変調器動作制御部5の動作について詳しく説明する。前述のように、外部光変調器4は、三つのMZ型干渉計を備える。外部光変調器4において、各MZ型干渉計は、入力されるバイアス電圧に依存して、当該出力信号の光スペクトルが変化する。外部光変調器4から出力される光信号が、光搬送波成分が抑圧された単一側波帯の光変調信号となるためには、各MZ型干渉計に入力されるバイアス電圧を最適な状態に設定する必要がある。しかし、MZ型干渉計は、DCドリフトによってMZ型干渉計の最適な状態が変動する。図5は、外部光変調器4が出力する光信号のスペクトラムの模式図である。図5(a)は、光搬送波成分が残留する場合の外部光変調器4が出力する光信号のスペクトラムの模式図である。図5(b)は、不要な片側波帯成分(以下、残留側波帯成分という)が残留する場合の外部光変調器4が出力する光信号のスペクトラムの模式図である。変調器動作制御部5は、図5に示すような不要な成分の抑圧を行うために、外部光変調器の各MZ型干渉計に印加するバイアス電圧の制御を行う。
まず、光搬送波成分抑圧部56の動作を説明する。光搬送波成分抑圧部56は、外部光変調器4が出力する光信号に残留する光搬送波成分を抑圧するために、外部光変調器4の第1のMZ型干渉計42に印加する第1のバイアス電圧と、第2のMZ型干渉計43に印加する第2のバイアス電圧とを制御する回路である。
外部光変調器4が出力する光信号に光搬送波成分が残留する場合、光検波部52は、片側波帯成分と残留する光搬送波成分との差ビート信号を生成して、光搬送波成分モニタ信号として出力する。光搬送波成分モニタ信号には、周波数f1 の成分が含まれる。図4(a)に、光搬送波成分モニタ信号のスペクトラムの一例を示す。光搬送波成分モニタ信号は、第1のMZ型干渉計42または第2のMZ型干渉計43の最適動作点が、DCドリフトによって変動したことを示している。この結果、外部光変調器4が出力する光信号の品質が劣化する。
そこで、光搬送波成分抑圧部56は、周波数f1 の成分を持つ光搬送波成分モニタ信号のレベルが予め定められた基準値以上の場合、光搬送波成分モニタ信号のレベルが最小となるように、外部光変調器4に印加する第1バイアス電圧及び第2のバイアス電圧を調整する。
図6は、光搬送波成分抑圧部56の構成を示すブロック図である。光搬送波成分抑圧部56は、第1の電圧制御部561と、第1の電圧供給部562と、第2の電圧供給部563と、光搬送波成分基準値記憶部564と、光搬送波成分レベル比較部565と、光搬送波成分レベル記憶部566と、第1のバイアス電圧記憶部567とを有する。なお、図6は、光搬送波成分抑圧部56以外の構成の表示を省略している。
第1の電圧制御部561は、光搬送波成分抑圧部56の制御を行う。第1の電圧供給部562は、第1のバイアス電圧入力端子8に入力する第1のバイアス電圧を供給する。第2の電圧供給部563は、第2のバイアス電圧入力端子9に入力する第2のバイアス電圧を供給する。光搬送波成分基準値記憶部564は、光搬送波成分モニタ信号のレベルの基準値を記憶する。光搬送波成分レベル比較部565は、光搬送波成分モニタ信号のレベルと、基準値とを比較する。光搬送波成分レベル記憶部566は、光搬送波成分モニタ信号のレベルを記憶する。第1のバイアス電圧記憶部567は、第1のバイアス電圧値を記憶する。
図7〜図10を用いて、光搬送波成分抑圧部56が行う処理を説明する。図7(a)は、光搬送波成分抑圧部56が行う処理を記述したフローチャートである。図7(a)において、周波数f1 の光搬送波成分モニタ信号が光搬送波成分抑圧部56に入力されると、光搬送波成分レベル比較部565は、光搬送波成分モニタ信号のレベルと、光搬送波成分基準値記憶部564が保持する基準値とを比較する(ステップS701)。
光搬送波成分モニタ信号のレベルが基準値よりも大きい場合(ステップS701、Yes)、光搬送波成分抑圧部56は、第1のバイアス電圧入力端子8に入力する第1のバイアス電圧の制御を行う(ステップS702)。次に光搬送波成分抑圧部56は、第2のバイアス電圧入力端子9に入力する第2のバイアス電圧の制御を行う(ステップS703)。ステップS703の処理が終了すると、光搬送波成分抑圧部56は、ステップS701に戻る。光搬送波成分モニタ信号のレベルが基準値よりも小さい場合(ステップS701、No)、光搬送波成分抑圧部56は、光搬送波成分モニタ信号のレベルの判定を継続するかどうか判断し、判定を継続する場合にはステップS701に戻る。光搬送波成分抑圧部56は、判定を継続しない場合、処理を終了する。なお、光搬送波成分抑圧部56は、ステップS703の処理を行った後で、ステップS704に進んでもよい。また、ステップS702及びステップS703で行う処理の順番を逆にしてもよい。この場合、図7(a)に示す光搬送波成分抑圧部56が行う処理の最終結果には影響を与えない。図7(b)に、ステップS702とステップS703との順番を入れかえた場合のフローチャートを示す。
図8は、図7に示すステップS702における光搬送波成分抑圧部56の詳細な処理を示すフローチャートである。光搬送波成分抑圧部56において、第1の電圧制御部561は、入力された光搬送波成分モニタ信号のレベルを光搬送波成分レベル記憶部566に記憶し、第1の電圧供給部562が第1のバイアス電圧入力端子8に供給する第1のバイアス電圧値を第1のバイアス電圧記憶部567に記憶する(ステップS711)。第1の電圧制御部561は、第1のバイアス電圧を、予め決められた電圧だけ増加させる(ステップS712)。
ステップS712の処理を行った後、光搬送波成分抑圧部56には、第1のバイアス電圧増加後の光搬送波成分モニタ信号が入力される。光搬送波成分レベル比較部565は、バイアス電圧増加前の光搬送波成分モニタ信号のレベルと、第1のバイアス電圧増加後の光搬送波成分モニタ信号のレベルとを比較する(ステップS713)。第1の電圧制御部561は、光搬送波成分レベル比較部565の比較結果から、第1のバイアス電圧増加後の光搬送波成分モニタ信号のレベルが減少しているか否かを判定する(ステップS714)。
図9は、ステップS714において、第1の電圧制御部561が第1のバイアス電圧増加後の光搬送波成分モニタ信号のレベルが減少したと判定した場合(ステップS714、Yes)の、光搬送波成分抑圧部56の動作を示すフローチャートである。第1の電圧制御部561は、第1のバイアス電圧増加後の光搬送波成分モニタ信号のレベルと第1のバイアス電圧値とを、光搬送波成分レベル記憶部566と第1のバイアス電圧記憶部567とにそれぞれ記憶する(ステップS721)。第1の電圧制御部561は、第1のバイアス電圧を、予め決められた電圧値だけ更に増加させる(ステップS722)。
第1の電圧供給部562がさらに第1のバイアス電圧を増加させた後に、新たに光搬送波成分モニタ信号が光搬送波成分抑圧部56に入力されると、光搬送波成分レベル比較部565は、新たに入力された光搬送波成分モニタ信号のレベルと、光搬送波成分レベル記憶部566が保持する光搬送波成分モニタ信号のレベルとを比較する(ステップS723)。第1の電圧制御部561は、光搬送波成分レベル比較部565の比較結果から、新たに入力された光搬送波成分モニタ信号のレベルが減少しているか否かを判定する(ステップS724)。
ステップS724において、光搬送波成分モニタ信号のレベルが減少している場合、第1の電圧制御部561は、新たに入力された光搬送波成分モニタ信号のレベルと、第1のバイアス電圧値とを、光搬送波成分レベル記憶部566及び第1のバイアス電圧記憶部567にそれぞれ記憶し(ステップS725)、ステップS722に戻る。
ステップS724において、光搬送波成分モニタ信号のレベルが増加している場合、第1の電圧制御部561は、第1のバイアス電圧を第1のバイアス電圧記憶部567が記憶するバイアス電圧値に設定する(ステップS726)。第1の電圧制御部561は、第1のバイアス電圧値を現在の値のまま保持し(ステップS727)、処理を終了する。
図10は、ステップS714において、第1の電圧制御部561が第1のバイアス電圧増加後の光搬送波成分モニタ信号のレベルが増加したと判定した場合(ステップS714、No)の、光搬送波成分抑圧部56の動作を示すフローチャートである。第1の電圧制御部561は、第1のバイアス電圧値を、第1のバイアス電圧記憶部567が記憶するバイアス電圧値の値に設定する(ステップS731)。第1の電圧制御部561は、第1のバイアス電圧を、予め決められた電圧だけ減少させる(ステップS732)。
第1の電圧供給部562が第1のバイアス電圧を減少させた後に、新たに光搬送波成分モニタ信号が光搬送波成分抑圧部56に入力されると、光搬送波成分レベル比較部565は、新たに入力された光搬送波成分モニタ信号のレベルと、光搬送波成分レベル記憶部566が記憶する光搬送波モニタ信号のレベルとを比較する(ステップS733)。第1の電圧制御部561は、光搬送波成分レベル比較部565の比較結果から、新たに入力された光搬送波成分モニタ信号のレベルが減少しているか否かを判定する(ステップS734)。
ステップS734において、光搬送波成分モニタ信号のレベルが減少している場合、第1の電圧制御部561は、新たに入力された光搬送波成分モニタ信号のレベルと、第1のバイアス電圧値とを、光搬送波成分レベル記憶部566及び第1のバイアス電圧記憶部567にそれぞれ記憶し(ステップS735)、ステップS732に戻る。
ステップS734において、光搬送波成分モニタ信号のレベルが増加している場合、第1の電圧制御部561は、第1のバイアス電圧記憶部567に記憶されているバイアス電圧値を、第1のバイアス電圧値として設定する(ステップS736)。第1の電圧制御部561は、第1のバイアス電圧値を現在の値のまま保持し(ステップS737)、処理を終了する。
図7〜図10に示す処理を行うことによって、光搬送波成分抑圧部56は、第1のバイアス電圧入力端子8が第1のMZ型干渉計42に印加する第1のバイアス電圧を、DCドリフトによって発生する光搬送波成分が最も抑圧されるバイアス電圧に制御する。このため、光搬送波成分抑圧部56は、外部光変調器4が出力する光信号に含まれる光搬送波成分を抑圧することが可能になる。
光搬送波成分抑圧部56において、第1の電圧制御部561は、第2のバイアス電圧入力端子9に対しても、第2の電圧供給部563を通じて、上記と同様の処理を行う。これにより、光搬送波成分抑圧部56は、第2のMZ型干渉計43に印加する第2のバイアス電圧を、DCドリフトによって発生する光搬送波成分が最も抑圧されるバイアス電圧に制御する。この場合、第2のバイアス電圧値は、第1のバイアス電圧値とともに、第1のバイアス電圧記憶部567に記憶される。なお、第2のMZ型干渉計43に印加するバイアス電圧の制御は、第1のMZ型干渉計42に印加するバイアス電圧の制御と同様であるため、その説明を省略する。
残留側波帯成分抑圧部59の動作を説明する。残留側波帯成分抑圧部59は、外部光変調器4が出力する光信号に残留する残留側波帯成分を抑圧するために、外部光変調器4の第3のMZ型干渉計44に印加する第3のバイアス電圧を制御する回路である。
外部光変調器4が出力する光信号に残留側波帯成分が含まれる場合、光検波部52は、所望の片側波帯成分と残留する光搬送波成分との差ビート信号を生成して、残留側波帯成分モニタ信号として出力する。残留側波帯成分モニタ信号には、周波数2×f1 の成分が含まれる。図4(b)は、残留側波帯成分モニタ信号のスペクトラムの一例を示す。残留側波帯成分モニタ信号は、第1のMZ型干渉計42及び第2のMZ型干渉計43の動作点が、光搬送波成分を抑圧する点に設定されている場合、第3のMZ型干渉計44の最適動作点がDCドリフトによって変動したことを示している。この場合、外部光変調器4が出力する光信号の品質が劣化する。
そこで、残留側波帯成分抑圧部59は、周波数2×f1 の成分を持つ残留側波帯成分モニタ信号のレベルが、予め定められた基準値以上の場合、残留側波帯成分モニタ信号のレベルが最小となるように、外部光変調器4に印加する第3のバイアス電圧を調整する。
図11は、残留側波帯成分抑圧部59の構成を示すブロック図である。残留側波帯成分抑圧部59は、第2の電圧制御部591と、第3の電圧供給部592と、残留側波帯成分基準値記憶部593と、残留側波帯成分レベル比較部594と、残留側波帯成分レベル記憶部595と、第2のバイアス電圧記憶部596とを有する。
第2の電圧制御部591は、残留側波帯成分抑圧部59の制御を行う。第3の電圧供給部592は、第3のバイアス電圧入力端子10に入力する第3のバイアス電圧を供給する。残留側波帯成分レベル比較部594は、残留側波帯成分モニタ信号のレベルと、残留側波帯成分基準値記憶部593が記憶する基準値とを比較する。残留側波帯成分基準値記憶部593は、残留側波帯成分モニタ信号の基準値を記憶する。残留側波帯成分レベル記憶部595は、残留側波帯成分モニタ信号のレベルを記憶する。第2のバイアス電圧記憶部596は、第3のバイアス電圧値を記憶する。
図12〜図15を用いて、残留側波帯成分抑圧部59が行う処理を説明する。図12は、残留側波帯成分抑圧部59が行う処理を記述したフローチャートである。図12において、周波数2×f1 の残留側波帯成分モニタ信号が残留側波帯成分抑圧部59に入力されると、残留側波帯成分レベル比較部594は、残留側波帯成分モニタ信号のレベルと、残留側波帯成分基準値記憶部593が記憶する基準値とを比較する(ステップS801)。
残留側波帯成分モニタ信号のレベルが基準値よりも大きい場合(ステップS801、Yes)、残留側波帯成分抑圧部59は、第3のバイアス電圧の制御を行う(ステップS802)。残留側波帯成分抑圧部59は、ステップS801に戻る。残留側波帯成分モニタ信号のレベルが基準値よりも小さい場合(ステップS801、No)、残留側波帯成分抑圧部59は、残留側波帯成分モニタ信号のレベルの判定を継続するかどうか判断し、判定を継続する場合にはステップS801に戻る。光搬送波成分抑圧部56は、判定を継続しない場合、処理を終了する。なお、残留側波帯成分抑圧部59は、ステップS802の処理の後に、ステップS803に進んでもよい。
図13は、図12に示すステップS802における残留側波帯成分抑圧部59の詳細な処理を示すフローチャートである。残留側波帯成分抑圧部59において、第2の電圧制御部591は、入力された残留側波帯成分モニタ信号のレベルを残留側波帯成分レベル記憶部595に記憶し、第3の電圧供給部592が供給する第3のバイアス電圧値を第2のバイアス電圧記憶部596記憶する(ステップS811)。第2の電圧制御部591は、第3のバイアス電圧を、予め決められた電圧だけ増加させる(ステップS812)。
ステップS812の処理を行った後、残留側波帯成分抑圧部59には、第3のバイアス電圧増加後の残留側波帯成分モニタ信号が入力される。残留側波帯成分レベル比較部594は、バイアス電圧増加後の残留側波帯成分モニタ信号のレベルと、第3のバイアス電圧増加前の残留側波帯成分モニタ信号のレベルとを比較する(ステップS813)。第2の電圧制御部591は、残留側波帯成分レベル比較部594の比較結果から、第3のバイアス電圧増加後の残留側波帯成分モニタ信号のレベルが減少しているか否かを判定する(ステップS814)。
図14は、ステップS814において、第2の電圧制御部591がバイアス電圧増加後の残留側波帯成分モニタ信号のレベルが減少したと判定した場合(ステップS814、Yes)の、残留側波帯成分抑圧部59の動作を示すフローチャートである。第2の電圧制御部591は、第3のバイアス電圧増加後の残留側波帯成分モニタ信号のレベルと第3のバイアス電圧値とを、残留側波帯成分レベル記憶部595と第2のバイアス電圧記憶部596とにそれぞれ保存する(ステップS821)。第2の電圧制御部591は、第3のバイアス電圧を、予め決められた電圧値だけ更に増加させる(ステップS822)。
第3の電圧供給部592がさらに第3のバイアス電圧を増加させた後に、新たに残留側波帯成分モニタ信号が残留側波帯成分抑圧部59に入力されると、残留側波帯成分レベル比較部594は、新たに入力された残留側波帯成分モニタ信号のレベルと、残留側波帯成分レベル記憶部595が記憶する残留側波帯成分モニタ信号のレベルとを比較する(ステップS823)。第2の電圧制御部591は、残留側波帯成分レベル比較部594の比較結果から、新たに入力された残留側波帯成分モニタ信号のレベルが減少しているか否かを判定する(ステップS824)。
ステップS824において、残留側波帯成分モニタ信号のレベルが減少している場合、第2の電圧制御部591は、新たに入力された残留側波帯成分モニタ信号のレベルと、第3のバイアス電圧値とを、残留側波帯成分レベル記憶部595及び第2のバイアス電圧記憶部596にそれぞれ記憶して(ステップS825)、ステップS822に戻る。
ステップS824において、残留側波帯成分モニタ信号のレベルが増加している場合、第2の電圧制御部591は、第3のバイアス電圧を第2のバイアス電圧記憶部596が記憶するバイアス電圧値に設定する(ステップS826)。第2の電圧制御部591は、第3のバイアス電圧値を現在の値のまま保持し(ステップS827)、処理を終了する。
図15は、ステップS814において、第2の電圧制御部591がバイアス電圧増加後の残留側波帯成分モニタ信号のレベルが増加したと判定した場合(ステップS814、No)の、残留側波帯成分抑圧部59の動作を示すフローチャートである。第2の電圧制御部591は、第3のバイアス電圧値を、第2のバイアス電圧記憶部596が記憶するバイアス電圧値の値に設定する(ステップS831)。第2の電圧制御部591は、第3のバイアス電圧を、予め決められた電圧だけ減少させる(ステップS832)。
第3の電圧供給部592が第3のバイアス電圧を減少させた後に、新たに残留側波帯成分モニタ信号が残留側波帯成分抑圧部59に入力されると、残留側波帯成分レベル比較部594は、新たに入力された残留側波帯成分モニタ信号のレベルと、残留側波帯成分レベル記憶部595が記憶する残留側波帯成分モニタ信号のレベルとを比較する(ステップS833)。第2の電圧制御部591は、残留側波帯成分レベル比較部594の比較結果から、新たに入力された残留側波帯成分モニタ信号のレベルが減少しているか否かを判定する(ステップS834)。
ステップS834において、残留側波帯成分モニタ信号のレベルが減少している場合、第2の電圧制御部591は、新たに入力された残留側波帯成分モニタ信号のレベルと、第3のバイアス電圧値とを、残留側波帯成分レベル記憶部595及び第2のバイアス電圧記憶部596にそれぞれ記憶し(ステップS835)、ステップS832に戻る。
ステップS834において、残留側波帯成分モニタ信号のレベルが増加している場合、第2の電圧制御部591は、第2のバイアス電圧記憶部596に記憶されているバイアス電圧値を、第3のバイアス電圧値として設定する(ステップS836)。第2の電圧制御部591は、第3のバイアス電圧値を現在の値のまま保持し(ステップS837)、処理を終了する。
残留側波帯成分抑圧部59は、図12〜図15に示す処理を行うことによって、第3のMZ型干渉計44に印加する第3のバイアス電圧を、DCドリフトによって発生する残留側波帯成分が最も抑圧されるバイアス電圧に制御する。このため、残留側波帯成分抑圧部59は、外部光変調器4が出力する光信号に含まれる残留側波帯成分を抑圧することが可能になる。
このように、第1の実施形態に係る光送信装置によれば、少なくとも三つのMZ型干渉計で構成された搬送波抑圧単一側波帯MZ型外部光変調器において、各MZ型干渉計のDCドリフトによるバイアス電圧の変動によって、光搬送波成分及び残留側波帯成分を含む光信号が出力される。本実施形態に係る光送信装置は、搬送波抑圧単一側波帯MZ型外部光変調器から出力される光信号に含まれる光搬送波成分及び残留側波帯成分を抽出し、光搬送波成分及び残留側波帯成分レベルに基づいて、搬送波抑圧単一側波帯MZ型外部光変調器に印加するバイアス電圧を決定することによって、光信号に含まれる光搬送波成分及び残留側波帯成分を抑圧することが可能となる。
なお、第1のRF入力端子6及び第1のバイアス電圧入力端子8は、同一端子であってもよい。また、第2のRF入力端子7及び第2のバイアス電圧入力端子9は、同一端子であってもよい。
また、外部光変調器4は、図16に示すように、光信号を出力するための第1のポート11及び第2のポート12を備えてもよい。この場合、第1のポート11から出力される光信号は、光伝送路(図示せず)を通じ、伝送される。第2のポート12から出力される光信号は、光検波部52に直接入力される。図16に示すような外部光変調器4を用いることによって、変調器動作制御部5の光分岐部51の構成を省略することができる。
図16に示す外部光変調器4を用いる場合、第3のMZ型干渉計44は、図17に示すように、第3の光結合部445に代えて、方向性結合器446を有してもよい。第3のMZ型干渉計44において、第5の光導波路441と第6の光導波路443とを導波する二つの光位相変調信号は、方向性結合器446において合波され、相互に干渉しあうことによって、第3の光変調信号に変換される。第3の光変調信号は、分岐されて、第1のポート11及び第2のポート12からそれぞれ出力される。
(第2の実施形態)
図18は、本発明の第2の実施形態に係る光送信装置の構成を示すブロック図である。なお、第1の実施形態と同じ構成要素には、同じ参照符号を付与し、その説明を省略する。
図18において、第2の実施形態に係る光送信装置は、光源1と、信号源2と、第1の入力信号分岐部3と、外部光変調器4と、変調器動作制御部13と、第1のRF入力端子6と、第2の入力端子7と、第1のバイアス電圧入力端子8と、第2のバイアス電圧入力端子9と、第3のバイアス電圧入力端子10とを備える。
図18から分かるように、本発明の第2の実施形態に係る光送信装置は、第1の実施形態に係る光送信装置の変調器動作制御部5に代えて、変調器動作制御部13を新たに備える構成である。変調器動作制御部13を中心に、第2の実施形態に係る光送信装置を説明する。
図18に示すように、変調器動作制御部13は、光分岐部51と、光検波部52と、モニタ信号分岐部53と、光搬送波成分抽出部54と、光搬送波成分レベル検出部55と、残留側波帯成分抽出部57と、残留側波帯成分レベル検出部58と、不要成分抑圧部60とを含む。
変調器動作制御部13において、光分岐部51、光検波部52、モニタ信号分岐部53、光搬送波成分抽出部54、光搬送波成分レベル検出部55、残留側波帯成分抽出部57及び残留側波帯成分レベル検出部58は、第1の実施形態に係る光送信装置と同様の処理を行う。不要成分抑圧部60は、外部光変調器4が出力する光信号に含まれる光搬送波成分及び残留側波帯成分を抑圧するために、外部光変調器4に印加するバイアス電圧を制御する。
図19は、不要成分抑圧部60の詳細な構成を示すブロック図である。図19において、不要成分抑圧部60は、電圧制御部601と、第1の電圧供給部602と、第2の電圧供給部603と、第3の電圧供給部604と、光搬送波成分基準値記憶部605と、残留側波帯成分基準値記憶部606と、モニタ信号レベル比較部607と、モニタ信号レベル記憶部608と、バイアス電圧記憶部609とを有する。
電圧制御部601は、不要成分抑圧部60の制御を行う。第1の電圧供給部602は、第1のバイアス電圧入力端子8に入力する第1のバイアス電圧を供給する。第2の電圧供給部603は、第2のバイアス電圧入力端子9に入力する第2のバイアス電圧を供給する。第3の電圧供給部604は、第3のバイアス電圧入力端子10に入力する第3のバイアス電圧を供給する。
光搬送波成分基準値記憶部605は、光搬送波成分モニタ信号の基準値を記憶する。残留側波帯成分基準値記憶部606は、残留側波帯成分モニタ信号の基準値を記憶する。モニタ信号レベル比較部607は、入力される光搬送波成分モニタ信号のレベルと光搬送波成分基準値記憶部605が記憶する基準値とを比較するとともに、入力される残留側波帯成分モニタ信号のレベルと残留側波帯成分基準値記憶部606が記憶する基準値とを比較する。また、モニタ信号レベル比較部607は、モニタ信号レベル記憶部608が記憶する光搬送波成分モニタ信号のレベルと、新たに入力される光搬送波モニタ信号のレベルとを比較する。また、モニタ信号レベル比較部607は、モニタ信号レベル記憶部608が記憶する残留側波帯成分モニタ信号のレベルと、新たに入力される残留側波帯成分モニタ信号のレベルとを比較する。
モニタ信号レベル記憶部608は、光搬送波成分モニタ信号及び残留側波帯成分モニタ信号のレベルを記憶する。バイアス電圧記憶部609は、第1のバイアス電圧入力端子8に印加する第1のバイアス電圧値及び第2のバイアス電圧入力端子9に印加する第2のバイアス電圧値と、第3のバイアス電圧入力端子10に印加する第3のバイアス電圧値とを記憶する。
図20は、不要成分抑圧部60が行う処理を記述したフローチャートである。図20において、電圧制御部601は、周波数f1 の光搬送波成分モニタ信号が予め定められた基準値より大きいレベルで入力されたか否かを判断する(ステップS971)。具体的には、モニタ信号レベル比較部607は、光搬送波成分モニタ信号のレベルが光搬送波成分基準値記憶部605に記憶された基準値より大きいか否かを判断する。
光搬送波成分モニタ信号のレベルが基準値よりも大きい場合、電圧制御部601は、第1のバイアス電圧入力端子8に入力する第1のバイアス電圧の制御を行う(ステップS972)。次に、電圧制御部601は、第2のバイアス電圧入力端子9に入力する第2のバイアス電圧の制御を行う(ステップS973)。光搬送波成分モニタ信号のレベルが基準値よりも小さい場合、電圧制御部601は、ステップS974にそのまま進む。電圧制御部601は、外部光変調器4のバイアス電圧制御を継続するか否かを判断し(ステップS974)、継続する場合にはステップS971に戻り、継続しない場合には処理を終了する。
ステップS971において、光搬送波成分モニタ信号のレベルが基準値以下の場合、電圧制御部601は、周波数2×f1 の残留側波帯成分モニタ信号のレベルが予め定められた基準値より大きいか否かを判断する(ステップS981)。具体的には、モニタ信号レベル比較部607は、残留側波帯成分モニタ信号のレベルが残留側波帯成分基準値記憶部606に記憶された基準値より大きいか否かを判断する。ステップS981において、残留側波帯成分モニタ信号のレベルが基準値より大きい場合、電圧制御部601は、第3のバイアス電圧入力端子10に入力する第3のバイアス電圧の制御を行う(ステップS982)。残留側波帯成分モニタ信号のレベルが基準値よりも小さい場合、電圧制御部601は、ステップS983にそのまま進む。電圧制御部601は、外部光変調器4のバイアス電圧制御を継続するか否かを判断し(ステップS983)、継続する場合にはステップS971に戻り、継続しない場合には処理を終了する。なお、電圧制御部601は、ステップS982の処理が終了後、ステップS983の処理を行ってもよい。
各バイアス電圧入力端子に印加するバイアス電圧の制御は、第1の実施形態と同様であるため、その説明を省略する。
このように、第2の実施形態に係る光送信装置によれば、少なくとも三つのMZ型干渉計で構成された搬送波抑圧単一側波帯MZ型外部光変調器において、各MZ型干渉計のDCドリフトによるバイアス電圧の変動によって、光搬送波成分及び残留側波帯成分を含む光信号が出力される。本実施形態に係る光送信装置は、搬送波抑圧単一側波帯MZ型外部光変調器から出力される光信号から光搬送波成分及び残留側波帯成分を抽出し、光搬送波成分及び残留側波帯成分レベルに基づいて、搬送波抑圧単一側波帯MZ型外部光変調器に印加するバイアス電圧を決定することによって、光信号に含まれる光搬送波成分及び残留側波帯成分を抑圧することが可能となる。また、第2の実施形態に係る光送信装置は、搬送波抑圧単一側波帯MZ型光変調器に印加するバイアス電圧の制御順序を定めているため、より効率的なバイアス電圧の最適化が可能となる。このため、第2の実施形態に係る光送信装置は、第1の実施形態に係る光送信装置より早く光搬送波成分及び残留側波帯成分を抑圧することができる。
なお、光搬送波成分基準値記憶部605及び残留側波帯成分基準値記憶部606にそれぞれ記憶されている基準値は、同じ値でもよい。この場合、光搬送波成分基準値記憶部605及び残留側波帯成分基準値記憶部606を、一つの記憶部としてもよい。これにより、光送信装置の小型が可能となる。
また、不要成分抑圧部60は、図20に示すフローチャートに代えて、図21に示すようにステップS972とステップS973の処理を入れ代えてもよい。また、図22に示すように、残留側波帯成分を抑圧するための処理を先に行ってもよい。しかし、不要成分抑圧部60は、図20または図21に示すフローチャートを実行することが望ましい。これは、最初に光搬送波成分を抑圧するためのバイアス電圧の制御を行い、次に残留側波帯成分の抑圧するためのバイアス電圧の制御を行う方が、効率良く光搬送波成分及び残留側波帯成分を抑圧することが出来るためである。
また、第1及び第2の実施形態に係る光送信装置において、外部光変調器4は、三つのMZ型干渉計を含むものとして説明を行ったが、外部光変調器4は、4つ以上のMZ型干渉計を含んでもよい。第1及び第2の実施形態に係る光送信装置は、外部光変調器4から出力される光搬送波成分及び不要な片側波帯成分のレベルをそれぞれ検出し、各MZ型干渉計に印加するバイアス電圧を決定する。このように、MZ型干渉計のバイアス電圧を制御することによって、4つ以上のMZ型干渉計を含む外部光変調器が出力する光信号の光搬送波成分及び不要な片側波帯成分を抑圧することが可能となる。
本発明に係る光送信装置は、複数のマッハツェンダ型干渉計を含む外部光変調器が出力する光信号に含まれる光搬送波成分及び残留側波帯成分を抑圧することが可能であり、複数のマッハツェンダ型干渉計を含む外部光変調器を備え、光搬送波成分が抑圧された単一側波帯光強度変調信号を出力する光送信装置として有用である。
本発明の第1の実施形態に係る光送信装置の構成を示すブロック図 外部光変調器4の構成の一例を示すブロック図 外部光変調器を構成する各MZ型干渉計が出力する光変調信号の光スペクトラムの一例を示す図 光搬送波成分抽出部54及び残留側波帯成分抽出部の透過帯域を示す模式図 外部光変調器4が出力する光信号のスペクトラムの模式図 光搬送波成分抑圧部56の構成を示すブロック図 光搬送波成分抑圧部56が行う処理を記述したフローチャート ステップS702における光搬送波成分抑圧部56の詳細な処理を示すフローチャート 光搬送波成分モニタ信号のレベルが減少した場合の光搬送波成分抑圧部56の動作を示すフローチャート 光搬送波成分モニタ信号のレベルが増加した場合の光搬送波成分抑圧部56の動作を示すフローチャート 残留側波帯成分抑圧部59の構成を示すブロック図 残留側波帯成分抑圧部59が行う処理を記述したフローチャート ステップS802における残留側波帯成分抑圧部59の詳細な処理を示すフローチャート 残留側波帯成分モニタ信号のレベルが減少した場合の残留側波帯成分抑圧部59の動作を示すフローチャート 残留側波帯成分モニタ信号のレベルが減少した場合の残留側波帯成分抑圧部59の動作を示すフローチャート 外部光変調器4が第1のポート11及び第2のポート12を含む図 外部光変調器4が方向性結合器446を有する図 本発明の第2の実施形態に係る光送信装置の構成を示すブロック図 不要成分抑圧部60の詳細な構成を示すブロック図 不要成分抑圧部60が行う処理を記述したフローチャート 不要成分抑圧部60が行う処理を記述したフローチャート 不要成分抑圧部60が残留側波帯成分を抑圧する処理を先に行う場合のフローチャート MZ型光変調器の一般的構成を示す図 MZ型変調器で発生するDCドリフトを説明する図 特許文献1に記載された従来の光送信装置の構成を示す図 SSB−SC光変調器の構成を示す模式図 SSB−SC光変調器から出力される光信号943のスペクトラムの模式図 特許文献2に記載された従来の光送信装置の構成を示す図 SSB−SC光変調器を構成する各MZ型干渉計に対して、特許文献1が示す構成を適用した図
符号の説明
1 光源
2 信号源
3 入力信号分岐部
4 外部光変調器
5、13 変調器動作制御部
6、7 RF入力端子
8、9、10 バイアス電圧入力端子
11、12 出力ポート
41、51、421、431 光分岐部
42、43、44 MZ型干渉計
52 光検波部
53 モニタ信号分岐部
54 光搬送波成分抽出部
55 光搬送波成分レベル検出部
56 光搬送波成分抑圧部
57 残留側波帯成分抽出部
58 残留側波帯成分レベル検出部
59 残留側波帯成分抑圧部
60 不要成分抑圧部
422、424、432、434、441、443 光導波路
423、425、433、435、442、444 変調電極
426、436 光結合器
427、437 入力信号分岐部
561、591、601 電圧制御部
562、563、592 電圧供給部
564、605 光搬送波成分基準値記憶部
565 光搬送波成分レベル比較部
566 光搬送波成分レベル記憶部
567、596、609 バイアス電圧記憶部
593、606 残留側波帯成分基準値記憶部
594 残留側波帯成分レベル比較部
595 残留側波帯成分レベル記憶部
607 モニタ信号レベル比較部
608 モニタ信号レベル記憶部

Claims (4)

  1. 光源が出力する周波数f0の光搬送波を分岐した二つの光信号を、入力された周波数f1の電気信号によって位相変調した位相変調信号をそれぞれ出力する第1及び第2のマッハツェンダ型干渉計と、当該第1及び第2のマッハツェンダ型干渉計がそれぞれ出力する二つの当該位相変調信号を、さらに位相変調して結合する第3のマッハツェンダ型干渉計とを備える、光搬送波成分が抑圧された単一側波帯の光強度変調信号を出力する光送信装置であって、
    前記光強度変調信号を、光伝送路を伝送する光信号とモニタ光信号とに分岐して出力する光分岐部と、
    前記モニタ光信号を電気信号に変換して、モニタ信号として出力する光検波部と、
    前記モニタ信号を二つに分岐して出力する分岐部と、
    分岐された一方の前記モニタ信号のうち、周波数f1近傍の信号成分のみを透過させて出力する光搬送波成分抽出部と、
    前記光搬送波成分抽出部が出力する信号のレベルを検出し、そのレベルに応じた光搬送波成分モニタ信号を出力する光搬送波成分レベル検出部と、
    分岐された他方の前記モニタ信号のうち、周波数2×f1近傍の信号成分のみを透過させて出力する残留側波帯成分抽出部と、
    前記残留側波帯成分抽出部が出力する信号のレベルを検出し、そのレベルに応じた残留側波帯成分モニタ信号を出力する残留側波帯成分レベル検出部と、
    前記光強度変調信号の光搬送波成分を抑圧するために、前記光搬送波成分モニタ信号に基づいて、前記第1及び第2のマッハツェンダ干渉計に印加するバイアス電圧を制御するとともに、前記光強度変調信号の不要な片側波帯成分を抑圧するために、前記残留側波帯成分モニタ信号に基づいて、前記第3のマッハツェンダ型干渉計に印加するバイアス電圧を制御する抑圧部とを備え、
    前記抑圧部は、
    前記第1のマッハツェンダ型干渉計に印加するバイアス電圧を供給する第1のバイアス電圧供給部と、
    前記第2のマッハツェンダ型干渉計に印加するバイアス電圧を供給する第2のバイアス電圧供給部と、
    前記第3のマッハツェンダ型干渉計に印加するバイアス電圧を供給する第3のバイアス電圧供給部と、
    入力された前記光搬送波成分モニタ信号のレベルの基準値を記憶する光搬送波成分基準値記憶部と、
    入力された前記残留側波帯成分モニタ信号のレベルの基準値を記憶する残留側波帯成分基準値記憶部と、
    入力された前記光搬送波成分モニタ信号のレベルを記憶する光搬送波成分レベル記憶部と、
    入力された前記残留側波帯成分モニタ信号のレベルを記憶する残留側波帯成分レベル記憶部と、
    前記第1及び第2の電圧供給部が供給するバイアス電圧を記憶するバイアス電圧記憶部と、
    新たに入力された前記光搬送波成分モニタ信号のレベルと、前記光搬送波成分基準値記憶部が記憶する基準値及び前記光搬送波成分レベル記憶部が記憶する前記光搬送波成分モニタ信号のレベルとを比較するとともに、新たに入力された前記残留側波帯成分モニタ信号のレベルと、前記残留側波帯成分基準値記憶部が記憶する基準値及び前記残留側波帯成分レベル記憶部が記憶する前記残留側波帯モニタ信号のレベルとを比較するモニタ信号レベル比較部と、
    前記モニタ信号レベル比較部の結果に基づいて、前記第1、第2及び第3のマッハツェンダ型干渉計に印加するバイアス電圧を制御する電圧制御部とを有し、
    前記電圧制御部は、前記光搬送波成分モニタ信号のレベルが基準値以下となるように、前記第1及び第2のマッハツェンダ型干渉計に印加するバイアス電圧を制御した後で、前記残留側波帯成分モニタ信号のレベルが基準値以下となるように、前記第3のマッハツェンダ型干渉計に印加するバイアス電圧を制御する、光送信装置。
  2. 前記光分岐部は、前記第3のマッハツェンダ型干渉計に設置され、さらに位相変調された二つの前記位相変調信号を相互に干渉させて結合し、二つの前記光強度変調信号を出力する方向性結合器であって、
    前記方向性結合器が出力する一方の光強度変調信号を光伝送路に出力するための第1のポートと、前記方向性結合器が出力する他方の光強度変調信号を前記光検波部に出力する第2のポートとをさらに備える、請求項1に記載の光送信装置。
  3. 前記光分岐部は、光伝送路を伝送する前記光信号の強度が、前記モニタ光信号の強度よりも大きくなるように前記光強度変調信号を分岐することを特徴とする、請求項1または2のいずれかに記載の光送信装置。
  4. 光源が出力する周波数f0の光搬送波を分岐した二つの光信号を、入力された周波数f1の電気信号によって位相変調した位相変調信号をそれぞれ出力する第1及び第2のマッハツェンダ型干渉計と、当該第1及び第2のマッハツェンダ型干渉計がそれぞれ出力する二つの当該位相変調信号を、さらに位相変調して結合する第3のマッハツェンダ型干渉計とを備える光送信装置が出力する、光搬送波成分が抑圧された単一側波帯の光強度変調信号の光搬送波成分と、不要な片側波帯成分とを抑圧する方法であって、
    前記光送信装置は、光搬送波成分基準値記憶部と、残留側波帯成分基準値記憶部と、光搬送波成分レベル記憶部と、残留側波帯成分レベル記憶部と、バイアス電圧記憶部とを備え、
    前記光強度変調信号を、光伝送路を伝送する光信号とモニタ光信号とに分岐して出力するステップと、
    前記モニタ光信号を電気信号に変換して、モニタ信号として出力するステップと、
    前記モニタ信号を二つに分岐して出力するステップと、
    分岐された一方の前記モニタ信号のうち、周波数f1近傍の信号成分のみを透過させて出力するステップと、
    前記周波数f1近傍の信号成分のレベルを検出し、そのレベルに応じた光搬送波成分モニタ信号を出力するステップと、
    分岐された他方の前記モニタ信号のうち、周波数2×f1近傍の信号成分のみを透過させて出力するステップと、
    前記周波数2×f1近傍の信号成分のレベルを検出し、そのレベルに応じた残留側波帯成分モニタ信号を出力するステップと、
    前記光搬送波成分を抑圧するために、前記光搬送波成分モニタ信号に基づいて、前記第1及び第2のマッハツェンダ型干渉計に印加するバイアス電圧を制御するとともに、前記不要な片側波帯成分を抑圧するために、前記残留側波帯成分モニタ信号に基づいて、前記第3のマッハツェンダ型干渉計に印加するバイアス電圧を制御する抑圧ステップとを備え、
    前記抑圧ステップは、
    前記第1のマッハツェンダ型干渉計に印加するバイアス電圧を供給するステップと、
    前記第2のマッハツェンダ型干渉計に印加するバイアス電圧を供給するステップと、
    前記第3のマッハツェンダ型干渉計に印加するバイアス電圧を供給するステップと、
    入力された前記光搬送波成分モニタ信号のレベルの基準値を前記光搬送波成分基準値記憶部に記憶するステップと、
    入力された前記残留側波帯成分モニタ信号のレベルの基準値を前記残留側波帯成分基準値記憶部に記憶するステップと、
    前記光搬送波成分モニタ信号を前記光搬送波成分レベル記憶部に記憶するステップと、
    前記残留側波帯成分モニタ信号のレベルを前記残留側波帯成分レベル記憶部に記憶するステップと、
    前記第1及び第2のマッハツェンダ型干渉計に印加するバイアス電圧を前記バイアス電圧記憶部に記憶するステップと、
    新たに入力された前記光搬送波成分モニタ信号のレベルと、前記光搬送波成分基準値記憶部が記憶する基準値及び前記光搬送波成分レベル記憶部が記憶する前記光搬送波成分モニタ信号のレベルとを比較するとともに、新たに入力された前記残留側波帯成分モニタ信号のレベルと、前記残留側波帯成分基準値記憶部が記憶する基準値及び前記残留側波帯成分レベル記憶部が記憶する前記残留側波帯成分モニタ信号のレベルとを比較するステップと、
    前記比較結果に基づいて、前記第1、第2及び第3のマッハツェンダ型干渉計に印加するバイアス電圧を制御する電圧制御ステップとを有し、
    前記電圧制御ステップは、前記光搬送波成分モニタ信号のレベルが基準値以下となるように、前記第1及び第2のマッハツェンダ型干渉計に印加するバイアス電圧を制御した後で、前記残留側波帯成分モニタ信号のレベルが基準値以下となるように、前記第3のマッハツェンダ型干渉計に印加するバイアス電圧を制御する、方法。
JP2007500438A 2005-01-25 2005-12-26 光送信装置 Expired - Fee Related JP4864870B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007500438A JP4864870B2 (ja) 2005-01-25 2005-12-26 光送信装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005016594 2005-01-25
JP2005016594 2005-01-25
JP2007500438A JP4864870B2 (ja) 2005-01-25 2005-12-26 光送信装置
PCT/JP2005/023717 WO2006080168A1 (ja) 2005-01-25 2005-12-26 光送信装置

Publications (2)

Publication Number Publication Date
JPWO2006080168A1 JPWO2006080168A1 (ja) 2008-06-19
JP4864870B2 true JP4864870B2 (ja) 2012-02-01

Family

ID=36740201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007500438A Expired - Fee Related JP4864870B2 (ja) 2005-01-25 2005-12-26 光送信装置

Country Status (3)

Country Link
US (1) US8000612B2 (ja)
JP (1) JP4864870B2 (ja)
WO (1) WO2006080168A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547552B2 (ja) * 2005-08-31 2010-09-22 独立行政法人情報通信研究機構 キャリアや2次成分を消去可能なdsb−sc変調システム
US8532499B2 (en) * 2005-10-25 2013-09-10 Emcore Corporation Optical transmitter with adaptively controlled optically linearized modulator
ES2334080B1 (es) * 2007-03-20 2010-12-03 Universitat Politecnica De Catalunya Modulo desplazador de longitud de onda para comunicaciones de acceso por fibra optica y otras aplicaciones.
JP4878358B2 (ja) * 2008-06-02 2012-02-15 日本電信電話株式会社 光ssb変調器
JP5320042B2 (ja) * 2008-12-03 2013-10-23 アンリツ株式会社 光変調器
JP2012027161A (ja) * 2010-07-21 2012-02-09 National Institute Of Information & Communication Technology 光電変換デバイスにおける変換効率の周波数特性校正方法
JP5697192B2 (ja) * 2010-11-05 2015-04-08 独立行政法人情報通信研究機構 2トーン信号による光検出器の特性評価方法
WO2012147324A1 (ja) * 2011-04-28 2012-11-01 日本電気株式会社 光周波数変換方法および装置
US9042486B2 (en) 2013-10-31 2015-05-26 Zbw Llc Sideband suppression in angle modulated signals
CN106252885B (zh) * 2016-09-19 2018-07-20 深圳市华讯方舟太赫兹科技有限公司 应用于毫米波成像系统的电扫阵列天线装置
CN109644045B (zh) * 2016-10-20 2021-11-19 富士通株式会社 光调制器直流偏置的估计方法、装置以及接收机
CN110138456B (zh) * 2018-02-08 2021-07-09 华为技术有限公司 光器件及光信号处理方法
CN113922884B (zh) * 2021-08-30 2023-02-28 北京航天控制仪器研究所 一种用于电光调制器的载波抑制装置和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244896A (ja) * 1999-12-24 2001-09-07 Matsushita Electric Ind Co Ltd 光送信装置
JP2002221698A (ja) * 2001-01-29 2002-08-09 Matsushita Electric Ind Co Ltd 光送信装置
JP2004302238A (ja) * 2003-03-31 2004-10-28 Mitsubishi Electric Corp 光ssb変調装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE36088E (en) 1990-03-01 1999-02-09 Fujitsu Limited Optical transmitter
US5170274A (en) 1990-03-01 1992-12-08 Fujitsu Limited Optical transmitter
JP2642499B2 (ja) 1990-03-01 1997-08-20 富士通株式会社 光送信器、光変調器の制御回路および光変調方法
JPH0667128A (ja) 1992-08-17 1994-03-11 Nec Corp 光変調器バイアス制御回路
JP4184474B2 (ja) * 1997-08-22 2008-11-19 松下電器産業株式会社 光伝送システムならびにそれに用いられる光送信装置および光受信装置
JP4577945B2 (ja) 1999-05-19 2010-11-10 パナソニック株式会社 角度変調装置
US6510255B2 (en) 1999-12-24 2003-01-21 Matsushita Electric Industrial Co., Ltd. Optical transmission apparatus
US6687466B1 (en) * 2000-01-06 2004-02-03 Adc Telecommunications, Inc. Dynamic distortion control
US6760532B1 (en) * 2000-01-28 2004-07-06 Ciena Corporation Optical device having dynamic channel equalization
JP2001296506A (ja) * 2000-04-13 2001-10-26 Nec Corp Rz光送信器
JP4646048B2 (ja) * 2001-03-02 2011-03-09 日本電気株式会社 単一側波帯信号光の生成方法および単一側波帯信号光の生成回路
JP4146800B2 (ja) * 2002-01-09 2008-09-10 株式会社アドバンテスト 位相変調回路、試験装置、及び通信システム
US20050089027A1 (en) * 2002-06-18 2005-04-28 Colton John R. Intelligent optical data switching system
JP4149298B2 (ja) * 2003-03-27 2008-09-10 富士通株式会社 光変調器の制御装置
JP4083657B2 (ja) 2003-03-28 2008-04-30 住友大阪セメント株式会社 光変調器のバイアス制御方法及びその装置
US6885490B2 (en) * 2003-05-01 2005-04-26 Lucent Technologies Inc. Method and apparatus for characterizing optical pulses using reduced complexity chronocyclic tomography
US7539360B2 (en) * 2005-09-23 2009-05-26 Fujitsu Limited Monitoring modulator bias using photon absorption
US7853155B2 (en) * 2005-12-12 2010-12-14 Emcore Corporation Method for adjusting bias in optical transmitter with external modulator
JP4910476B2 (ja) * 2006-05-22 2012-04-04 富士通株式会社 光通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244896A (ja) * 1999-12-24 2001-09-07 Matsushita Electric Ind Co Ltd 光送信装置
JP2002221698A (ja) * 2001-01-29 2002-08-09 Matsushita Electric Ind Co Ltd 光送信装置
JP2004302238A (ja) * 2003-03-31 2004-10-28 Mitsubishi Electric Corp 光ssb変調装置

Also Published As

Publication number Publication date
JPWO2006080168A1 (ja) 2008-06-19
US8000612B2 (en) 2011-08-16
WO2006080168A1 (ja) 2006-08-03
US20080075470A1 (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP4864870B2 (ja) 光送信装置
US9240838B2 (en) Optical transmitter and method for controlling bias for optical modulator
US9244328B2 (en) Optical modulator and optical modulation control method
US9350455B2 (en) Optical transmitter and bias control method of optical modulator
US11245474B2 (en) Pluggable optical module and optical communication system
US7215894B2 (en) Optical transmitter device
US9450677B2 (en) Optical transmitter and control apparatus of optical modulator
US10234704B2 (en) Optical module that includes optical modulator and bias control method for optical modulator
US10498457B2 (en) Optical carrier-suppressed signal generator
US20160218799A1 (en) Optical modulation control apparatus, transmitter, and optical output waveform control method
JP2005215196A (ja) 光変調装置及び光変調方法
US20080002991A1 (en) Optical transmission device
US11381316B2 (en) Optical transmitter and optical transmission method
JP2001133824A (ja) 角度変調装置
JP2009246578A (ja) 光送信装置及び光試験装置
JP2004080305A (ja) 光送信装置
JP2013174761A (ja) 光送信器、光通信システムおよび光送信方法
JP2009246579A (ja) 光送信装置及び光試験装置
US20190326999A1 (en) Optical phase distortion compensating device and method of compensating optical phase distortion
JP2001244896A (ja) 光送信装置
JP4822161B2 (ja) 光伝送装置
JP2000122015A (ja) 光変調器
JP4716293B2 (ja) 光変調器の制御装置および制御方法
US20200033642A1 (en) Optical transmitter and optical transmission method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees