WO2012147324A1 - 光周波数変換方法および装置 - Google Patents

光周波数変換方法および装置 Download PDF

Info

Publication number
WO2012147324A1
WO2012147324A1 PCT/JP2012/002769 JP2012002769W WO2012147324A1 WO 2012147324 A1 WO2012147324 A1 WO 2012147324A1 JP 2012002769 W JP2012002769 W JP 2012002769W WO 2012147324 A1 WO2012147324 A1 WO 2012147324A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
frequency
light
output
modulation
Prior art date
Application number
PCT/JP2012/002769
Other languages
English (en)
French (fr)
Inventor
慎介 藤澤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/114,003 priority Critical patent/US9280032B2/en
Priority to JP2013511921A priority patent/JPWO2012147324A1/ja
Publication of WO2012147324A1 publication Critical patent/WO2012147324A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/02Frequency-changing of light, e.g. by quantum counters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/004Transferring the modulation of modulated light, i.e. transferring the information from one optical carrier of a first wavelength to a second optical carrier of a second wavelength, e.g. all-optical wavelength converter
    • G02F2/006All-optical wavelength conversion
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/50Phase-only modulation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/58Multi-wavelength, e.g. operation of the device at a plurality of wavelengths

Definitions

  • the present invention relates to an optical frequency conversion method and apparatus for generating an output lightwave having a desired frequency component from an input lightwave.
  • Non-Patent Document 1 a method of shifting the frequency of the input lightwave using an optical single sideband modulator is generally known (for example, Non-Patent Document 1).
  • the optical frequency shifter disclosed in Non-Patent Document 1 will be briefly described.
  • the optical single sideband modulator 10 comprises two resonant intensity modulators 30-1 and 30- provided respectively on each arm of the main Mach-Zehnder (MZ) waveguide. 2 and the optical phase shifter 32 connected in series to the resonant intensity modulator 30-2, which in turn comprises the Mach-Zehnder waveguide itself.
  • a control signal for phase adjustment is input to the input terminal Phase of the optical phase shifter 32.
  • the optical frequency shifter 38 includes the optical single sideband modulator 10, the modulation signal oscillator 11, the optical phase shift amount adjustment unit 13, and the phase control unit 14 described above.
  • Modulated signal oscillator 11 generates a modulated signal, the modulated signal is directly inputted to the terminal RF A of optical single sideband modulator 10 is input to the terminal RF B via the phase control unit 14.
  • the modulation signal is assumed to be a sine wave of a single frequency f.
  • Phase control unit 14 is controlled during the modulation signal to be inputted to the terminal RF A and the terminal RF B of optical single sideband modulator 10 to provide a phase difference - [pi] / 2.
  • the light phase shift amount adjustment unit 13 performs light so as to give a phase difference ⁇ / 2 between the output lightwave of the resonant light intensity modulator 30-1 and the output lightwave of the resonant light intensity modulator 30-2.
  • the phase shifter 32 is controlled.
  • the optical frequency shifter 38 having such a configuration, it is assumed that continuous wave laser light of a carrier frequency f 0 having a frequency spectrum shown in FIG. 2A is input.
  • the output lightwave of the resonant optical intensity modulator 30-1 of the optical single sideband modulator 10 has the carrier wave and even harmonic components suppressed, and f 0 It has a frequency spectrum including frequency components of + (2 n -1) f (n is an integer).
  • the output lightwave of the optical phase shifter 32 in which the output of the resonant optical intensity modulator 30-2 is phase shifted by ⁇ / 2 is f 0 + (2 n-1) f as shown in FIG. 2 (B).
  • the phase component of the frequency component of f 0 + (4 n -1) f among them is inverted by ⁇ .
  • the formula of the frequency component is indicated by being enclosed by [].
  • the frequency component of the output lightwave of the optical phase shifter 32 is the frequency component f 0 + (4n) with respect to the frequency component f 0 + (2n-1) f of the output lightwave of the resonant optical intensity modulator 30-1. -1) Since only the phase of f is inverted by ⁇ , it is written as [f 0 + (2 n -1) f].
  • Patent Document 1 proposes an optical frequency converter which does not require such an optical band pass filter.
  • the low noise optical frequency converter disclosed in Patent Document 1 includes a phase locked tripler that triples the frequency of the fundamental wave, an amplitude adjuster that adjusts the amplitudes of the fundamental wave and the third harmonic, and a 90-degree hybrid
  • this drive system applies a composite wave of the fundamental wave and its third harmonic wave to the terminal RF A of the optical single sideband modulator 10 shown in FIG. applying a - [pi] / 2 only synthesized wave with a phase difference to the terminal RF B.
  • the third harmonic is suppressed.
  • an optical band pass filter having sharp cutoff characteristics is required. It is very difficult not only to create such an optical band pass filter with high accuracy, but also to maintain the center frequency characteristic of the optical band pass filter, it is necessary to control the temperature with high accuracy.
  • the modulation frequency is several GHz, it is necessary to give rise characteristics of the pass band to the optical band pass filter within several GHz, which causes a problem that the control circuit becomes complicated.
  • the output lightwave of the optical frequency shifter 38 has a frequency shift as shown in FIG. 3B.
  • the first-order frequency component and the harmonic component overlap.
  • Such deterioration of the data signal can not be removed even by using an optical band pass filter.
  • the target optical frequency is dynamically changed by the modulation signal, it is necessary to dynamically adjust the characteristics of the optical band pass filter according to the change of the frequency of the modulation signal.
  • the low noise optical frequency converter disclosed in Patent Document 1 can suppress the third harmonic without using an optical band pass filter.
  • the frequency of the fundamental wave that is the modulation signal changes, it is difficult to adjust the amplitude according to the amount of change. That is, although it is necessary to simultaneously adjust the amplitude of the third harmonic in accordance with the amount of change, the amplitude of the third harmonic is not linear with respect to the frequency change, and waveform distortion occurs as the frequency increases. For this reason, it becomes difficult to realize the optical frequency converter by this method as the frequency of the modulation signal becomes higher.
  • the present invention has been made in view of the above problems, and its object is to remove components other than the desired harmonic component with high accuracy even if the frequency of the modulation signal is changed, and to obtain the desired frequency component.
  • An object of the present invention is to provide an optical frequency conversion method and apparatus capable of easily extracting an output light wave.
  • the optical frequency conversion device is an optical frequency conversion device that frequency-converts an input light wave according to a modulation signal using an optical single sideband modulation method to generate an output light wave, and a plurality of optical frequency conversion devices
  • a plurality of phase control means for respectively generating individual modulation signals, a plurality of optical single sideband modulation means for modulating the input light wave according to the plurality of individual modulation signals, and a plurality of optical single sideband modulation means
  • a plurality of optical phase control means for giving an optical phase difference to the plurality of light waves respectively output from the plurality of optical waves, and a plurality of optical waves output from the plurality of optical phase control means
  • a phase difference between the plurality of individual modulation signals and the optical phase difference is set so that a predetermined harmonic component other than a target frequency of the output light wave is removed.
  • the optical frequency conversion method is an optical frequency conversion method for converting the frequency of an input light wave according to a modulation signal to generate an output light wave using an optical single sideband modulation method, and a plurality of phase control means
  • a plurality of individual modulation signals having different phases are respectively generated from the signal, a plurality of optical single sideband modulation means respectively modulate the input lightwave in accordance with the plurality of individual modulation signals, and a plurality of optical phase control means
  • An optical phase difference is given to each of a plurality of light waves respectively output from the optical single sideband modulation means, and a combining means combines a plurality of light waves output from the plurality of optical phase control means to produce the output light wave.
  • the phase difference between the plurality of individual modulation signals and the light phase difference may be set such that a predetermined harmonic component other than a target frequency of the output light wave is removed.
  • the present invention even if the frequency of the modulation signal is changed, components other than the desired harmonic component can be removed with high accuracy, and the output lightwave of the desired frequency component can be easily extracted.
  • FIG. 1A is a block diagram showing the configuration of a general optical single sideband modulator
  • FIG. 1B is a block diagram showing a basic configuration example of an optical frequency shifter using it.
  • 2 (A) is a frequency spectrum diagram showing frequency components of an input light wave
  • FIG. 2 (B) is a frequency spectrum diagram showing frequency components of an output light wave of a resonant light intensity modulator
  • FIG. 2 (C) is a co-frequency shifter
  • 2D is a frequency spectrum diagram showing frequency components extracted by the filter from the output lightwave
  • FIG. 2E is a frequency spectrum of the output lightwave of the low noise light frequency converter. It is a frequency spectrum figure which shows a component.
  • FIG. 1A is a frequency spectrum diagram showing frequency components of an input light wave
  • FIG. 2 (B) is a frequency spectrum diagram showing frequency components of an output light wave of a resonant light intensity modulator
  • FIG. 2 (C) is a co-frequency shifter
  • 2D is a frequency spectrum
  • FIG. 3A is a frequency spectrum diagram when the input lightwave is a data signal
  • FIG. 3B is a frequency spectrum diagram showing frequency components of the output lightwave of the light frequency shifter.
  • FIG. 4 is a block diagram showing a generalized configuration of an optical frequency converter according to an embodiment of the present invention.
  • FIG. 5 is a block diagram showing a functional configuration of the optical frequency converter according to the first embodiment of the present invention.
  • FIG. 6 is a graph showing the relationship between the bias point of the resonant light intensity modulator used in this embodiment and the light intensity of the output light wave.
  • FIG. 7 (A) is a frequency spectrum diagram showing frequency components of the input light wave
  • FIG. 7 (A) is a frequency spectrum diagram showing frequency components of the input light wave
  • FIG. 7 (B) is a frequency spectrum diagram showing frequency components of the output light wave of the resonant light intensity modulator
  • FIG. FIG. 7 (D) is a frequency spectrum showing the frequency component of the output lightwave of the present embodiment when the input lightwave is a data signal.
  • FIG. FIG. 8 is a block diagram showing a functional configuration of an optical frequency converter according to a second embodiment of the present invention.
  • FIG. 9 is a block diagram showing a functional configuration of an optical frequency converter according to a third embodiment of the present invention.
  • FIG. 10 is a block diagram showing a functional configuration of the optical harmonics removing unit shown in FIG.
  • FIG. 11 is a block diagram showing a functional configuration of an optical frequency converter according to a fourth embodiment of the present invention.
  • FIG. 12A is a block diagram showing a functional configuration of the light suppression carrier modulator shown in FIG. 11, and FIG. 12B is a block diagram showing a functional configuration of the optical interferometer shown in FIG.
  • FIG. 13 is a block diagram showing a functional configuration of the optical frequency converter according to the fifth embodiment of the present invention.
  • FIG. 14 is a block diagram showing a functional configuration of an optical frequency converter according to a sixth embodiment of the present invention.
  • the optical frequency converter includes n (n pieces of) light modulation units MOD1 to MODn and n connected to the light modulation units MOD1 to MODn, respectively.
  • n optical phase control units 201-1 to 201-n and each optical modulation unit includes the optical single sideband modulator 10 shown in FIG. It comprises the phase control unit 14.
  • Terminals RF1 ⁇ RFn of optical modulating sections MOD1 ⁇ MODN is directly connected to the corresponding terminals RF A of optical single sideband modulator 10 is connected to the terminal RF B via the phase control unit 14.
  • the modulation signal of the frequency f is an electric signal
  • an individual modulation signal is generated by the phase control unit 101-1 which gives the phase difference ⁇ 1-1 to this modulation signal, and is input to the terminal RF1 of the light modulation unit MOD1.
  • an individual modulation signal is generated by the phase control unit 101-2 that gives a phase difference ⁇ 1-2 to the modulation signal, and is input to the terminal RF2 of the light modulation unit MOD2.
  • the individual modulation signals are respectively transmitted to the terminals RF3 to RFn of the light modulation units MOD3 to MODn through the phase control units 101-3 to 101-n which give the phase differences ⁇ 1-3 to ⁇ 1-n to the modulation signals, respectively. input.
  • the phase control unit 14 and the phase control units 101-1 to 101-n of each light modulation unit MOD change the phase control operation point according to the frequency f of the modulation signal from the modulation signal oscillator 11.
  • Input lightwave frequency component f 0 is input to an optical single sideband modulator 10 of each of the optical modulating sections MOD1 ⁇ MODN, respective optical output, each optical phase difference of optical single sideband modulator 10 phi 2-
  • By combining through the optical phase control units 201-1 to 201-n giving 1 to ⁇ 2-n an output light wave from which a desired harmonic component is removed as described later is generated.
  • the phase of the desired harmonic component is inverted by ⁇ by performing phase control on each of the phase control units 101-1 to 101-n and the optical phase control units 201-1 to 201-n.
  • Desired harmonic components can be removed by combining the lightwaves obtained by inverting these harmonic components and the lightwaves not inverted.
  • the harmonic component to be removed is f 0 + (2m + 1)
  • f f
  • n is a minimum integer not less than log 2 (m).
  • the optical phase control unit 201- (k + 1) is set to - ⁇ / 2 k + 1 .
  • n is less than 1, it is possible to remove desired harmonics only with the optical single sideband modulator 10.
  • the phase ⁇ 2-2 of the phase control unit 201-2 is set to ⁇ / 4.
  • desired harmonics can be removed, an output lightwave of a target frequency component can be obtained only by phase control.
  • two or more optical single sideband modulators 10 are arranged in parallel, and the phase control unit controls the phase between the modulation signals that drive these optical single sideband modulators 10.
  • the phase control unit controls the phase difference between the output lightwaves of the optical single sideband modulator 10 optically by the optical phase control unit, the output lightwave of the optical single sideband modulator 10 is It is possible to add a phase difference of ⁇ to the harmonic components to be removed out of the included frequency spectrum. Therefore, by combining these output light waves, it is possible to simultaneously remove frequency components whose phases are different by ⁇ due to interference, and it is possible to enhance the accuracy of frequency conversion to a desired accuracy.
  • an optical band pass filter is used. It is possible to remove the desired harmonic components easily and precisely without simple control. Further, since unnecessary harmonics can be removed, even if the input light wave is a data signal, it is possible to avoid the deterioration of the output data signal due to the overlapping of the target frequency component and the harmonic component.
  • the optical frequency converter according to the present embodiment is applicable not only to optical frequency conversion but also to an optical modulation circuit of an optical transmitter.
  • the input light wave is an optical carrier or an optical transmission signal
  • the modulation signal is an electrical signal carrying information to be transmitted.
  • An optical frequency converter according to a first embodiment of the present invention is configured using two optical single sideband modulators.
  • the input lightwave of the carrier frequency f 0 is converted into the output lightwave of the light frequency f 0 + f using the modulation signal of the frequency f, and the third and fifth orders included in the output lightwave
  • the harmonic component of the light frequency (f 0 -3f) and the frequency component of the light frequency (f 0 + 5f) will be described as an example.
  • the optical frequency converter 68 includes two optical single sideband modulators 10-1 and 10-2, a modulation signal oscillator 11, and an optical phase controller 12. , Two optical phase shift control units 13-1 and 13-2, phase control units 14-1 and 14-2 for giving a phase difference between the terminals RF A and RF B , optical single sideband modulation It comprises a phase control unit 14-3 for giving a modulation signal phase difference between devices, and a desired bias point control unit 16.
  • the optical single sideband modulator 10-1 modulates the input lightwave using the modulation signal generated by the modulation signal oscillator 11 as an individual modulation signal, and the optical single sideband modulator 10-2 is modulated by the phase control unit 14-3.
  • the input lightwave is modulated based on the individually modulated signal whose signal is phase controlled.
  • the optical single sideband modulators 10-1 and 10-2 respectively include resonant optical intensity modulators 30-1 and 30-2 shown in FIG. 1 (A).
  • the modulation signal oscillator 11 electrically generates a modulation signal which is the source of the individual modulation signal for driving the optical single sideband modulators 10-1 and 10-2.
  • the modulation signal is a single frequency sine wave, and its frequency is f.
  • the phase control unit 14-1 controls the phase difference between the modulation signal input to the terminal RF A and the terminal RF B of the optical single sideband modulator 10-1 to be - ⁇ / 2, and performs phase control.
  • the unit 14-2 is controlled so that the phase difference between the modulation signal input to the terminal RF A and the terminal RF B of the optical single sideband modulator 10-2 is ⁇ / 2.
  • the phase control unit 14-3 based on the individual modulation signal input to the terminal RF A of optical single sideband modulator 10-1, are input to the terminal RF A of optical single sideband modulator 10-2
  • the individual modulation signal is controlled to have a phase difference of ⁇ / 4.
  • the phase control units 14-1, 14-2 and 14-3 change the phase control operation point according to the frequency f of the modulation signal generated by the modulation signal oscillator 11.
  • the optical phase control unit 12 controls the phase difference between the output lightwaves of the two optical single sideband modulators 10-1 and 10-2 to be ⁇ / 4.
  • the two optical phase shift amount control units 13-1 and 13-2 are provided in the resonant optical intensity modulators 30-1 and 30-2 respectively provided in the two optical single sideband modulators 10-1 and 10-2.
  • the Phase terminals of the optical single sideband modulators 10-1 and 10-2 are controlled so that the phase difference between the output lightwaves is ⁇ / 2.
  • the desired bias point control unit 16 is, as shown in FIG. 6, a resonant type light so that the light intensity of the output lightwave of the optical single sideband modulator 10 when the modulation signal is not input becomes minimum (point A). Control the bias points of the intensity modulators 30-1 and 30-2.
  • the optical frequency conversion unit 68 having a 2.2 was operated above configuration, a continuous wave laser beam of the carrier frequency f 0 having the frequency spectrum shown in FIG. 7 (A) is assumed to be input.
  • the frequency spectrum of the output lightwave of the optical single sideband modulator 10-1 includes frequency components of f 0 + (4n + 1) f (n is an integer) as shown in FIG. 7 (B).
  • the frequency spectrum of the output lightwave of the optical single sideband modulator 10-2 that has passed through the optical phase shift control unit 12 has a frequency of f 0 + (4n + 1) f, similarly to the frequency spectrum of FIG. Although the component is included, the phase of the frequency component of f 0 + (8 n -3) f is inverted by ⁇ .
  • the light wave that has passed through the light phase shift control unit 12 is [f 0 + (4 n + 1) f].
  • the optical frequency converter 68 uses two optical single sideband modulators 10-1 and 10-2 to input without using an optical bandpass filter. It becomes possible to shift the frequency f 0 of the light wave by an arbitrary shift amount. Furthermore, as shown in FIG. 7D, even when the input light wave is a data signal, the output data signal is not deteriorated due to overlapping with other harmonic components.
  • the input lightwave of carrier frequency f 0 is converted to the output lightwave of light frequency f 0 -f, and the frequency components of light frequencies (f 0 + 3f) and (f 0 -5f) contained in the output lightwave are simultaneously removed.
  • the phase control unit 14-1 adds a phase difference of ⁇ / 2 with the individual modulation signal input to the terminal RF A of the optical single sideband modulator 10-1 as a reference. This can be realized by adding a phase difference of ⁇ / 2 at 14-2 and controlling the phase difference of ⁇ / 4 at the phase control unit 14-3.
  • the phase of the optical signal is controlled by using the optical phase control unit 12 and the optical phase shift amount control units 13-1 and 13-2, or the phase control units 14-1, 14-2 and 14- It is also possible to remove other frequency components by controlling the phase of the modulation signal using 3.
  • the optical frequency conversion device 68 in this embodiment is realized It is possible.
  • An optical frequency converter according to a second embodiment of the present invention is configured using four resonant light intensity modulators.
  • the input lightwave of the carrier frequency f 0 is converted into the output lightwave of the light frequency f 0 + f using the modulation signal of the frequency f, and the third and fifth orders included in the output lightwave
  • the harmonic component of the light frequency (f 0 -3f) and the frequency component of the light frequency (f 0 + 5f) will be described as an example.
  • the optical frequency converter 78 in the optical frequency converter 78 according to the present embodiment, the optical single sideband modulators 10-1 and 10-2 in FIG. Configure using 30-2 and 30-3 and 30-4.
  • the optical frequency converter 78 includes the modulation signal oscillator 11, the optical phase control units 12-2, 12-3 and 12-4, and the phase control unit in addition to the resonant optical intensity modulators 30-1 to 30-4. It is comprised from 14-2, 14-3 and 14-4 and the desired bias point control part 16.
  • the resonant light intensity modulators 30-1 to 30-4 modulate the input light wave based on the modulation signal generated by the modulation signal oscillator 11. Specifically, although the resonant optical intensity modulator 30-1 modulates the modulation signal from the modulation signal oscillator 11 as an individual modulation signal, the resonant optical intensity modulators 30-2 to 30-4 perform phase control. Modulation is performed by the individual modulation signals to which the phase difference is given by the units 14-2 to 14-4. That is, the phase control unit 14-2 sets the phase difference of the individual modulation signal for driving the resonant light intensity modulator 30-2 to ⁇ with reference to the individual modulation signal for driving the resonance light intensity modulator 30-1.
  • the phase control unit 14-3 performs control such that the phase difference of the individual modulation signals for driving the resonant optical intensity modulator 30-3 is ⁇ / 4, and ⁇ 4 is controlled so that the phase difference of the individual modulation signal for driving the resonant light intensity modulator 30-4 is ⁇ / 4. Further, the phase control units 14-1, 14-2 and 14-3 change the phase control operation point according to the modulation signal frequency information from the modulation signal oscillator 11.
  • the optical phase control unit 12-2 controls the output lightwave of the resonant light intensity modulator 30-2 to have a phase difference of ⁇ / 2 with reference to the output lightwave of the resonant light intensity modulator 30-1.
  • the optical phase control unit 12-3 controls the output lightwave of the resonant optical intensity modulator 30-3 to have a phase difference of - ⁇ / 4, and the optical phase control unit 12-4 performs resonant optical intensity modulation
  • the output lightwave of the unit 30-4 is controlled to have a phase difference of ⁇ / 4.
  • the desired bias point control unit 16 controls the resonant light intensity modulator 30 so that the light intensities of the output lightwaves of the four resonant light intensity modulators 30-1 to 30-4 when the modulation signal is not input are minimized. Control the bias point from -1 to 30-4. Specifically, point A in FIG. 6 showing the relationship between the bias voltage and the light intensity of the output lightwave of the light intensity modulator is a desired bias point.
  • a continuous wave laser beam of the carrier frequency f 0 having the frequency spectrum shown in FIG. 7 (A) is assumed to be input.
  • the frequency spectrum thereof is As shown in FIG. 7B, it includes frequency components of f 0 + (4n + 1) f (n is an integer).
  • the frequency spectrum includes frequency components of f 0 + (4n + 1) f as in the frequency spectrum of FIG. 7B, but the phase of frequency components of f 0 + (8n-3) f Reverses by ⁇ .
  • the output lightwave of the resonant light intensity modulator 30-1 and the output lightwave that has passed through the light phase shift control units 12-2 to 12-4 of the resonant light intensity modulators 30-2 to 30-4 are combined.
  • the frequency components whose phases are inverted each other by ⁇ are canceled out, and the frequency spectrum including the frequency component of f 0 + (8n + 1) f as an output light wave of the optical frequency conversion device 78 as shown in FIG. Is obtained. That is, it is possible to obtain an output lightwave in which the carrier frequency f 0 is shifted to the frequency component (f 0 + f).
  • the optical frequency converter 78 uses the four resonance type optical intensity modulators 30-1 to 30-4. It is possible to shift the frequency f 0 of the input lightwave by an arbitrary shift amount without using an optical band pass filter. Furthermore, as shown in FIG. 7D, even when the input light wave is a data signal, the output data signal is not deteriorated due to overlapping with other harmonic components.
  • the optical frequency converter according to the third embodiment of the present invention is configured using four optical harmonic removal units.
  • the input lightwave of carrier frequency f 0 is converted to an output lightwave of light frequency f 0 + f using a modulation signal of frequency f, and the third and fifth orders included in the output lightwave
  • the case of simultaneously removing the 7th and 9th harmonic components will be described as an example.
  • the optical frequency conversion device 88 includes four optical harmonics removal units 80-1 to 80-4, a modulation signal oscillator 11, and three optical phase optical phase control units 12-1 to 12-3, three phase control units 14-1 to 14-3, and a desired bias point control unit 16.
  • the optical harmonic removal unit 80 includes an optical single sideband modulator 10, a desired light phase shift amount control unit 13, and a phase control unit 14.
  • the optical harmonics removal units 80-1 to 80-4 modulate the input lightwave by using the modulation signal generated by the modulation signal oscillator 11 as an individual modulation signal.
  • the optical harmonics removal unit 80-1 performs modulation using the modulation signal from the modulation signal oscillator 11 as an individual modulation signal, but the optical harmonics removal units 80-2 to 80-4 perform the phase control unit 14
  • the modulation is performed by the individual modulation signal to which the phase difference is given by -2 to 14-4. That is, the phase control unit 14-2 sets the phase difference of -.pi./4 for the individual modulation signal input to the light harmonic removal unit 80-2 based on the individual modulation signal input to the light harmonic removal unit 80-1.
  • the phase control unit 14-3 controls the individual modulation signal input to the optical harmonic removal unit 80-3 to have a phase difference of ⁇ / 8
  • the phase control unit 14-4 controls the light modulation
  • the individual modulation signal input to the harmonic removal unit 80-4 is controlled to have a phase difference of - ⁇ / 8.
  • the phase control units 14-1 to 14-3 and the phase control unit 14 of the optical harmonics removal units 80-1 to 80-4 have phase control operation points according to the modulation signal frequency information from the modulation signal oscillator 11. Change.
  • the optical phase control unit 12-2 controls the output lightwave of the light harmonic removal unit 80-2 to have a phase difference of ⁇ / 4 with the lightwave output of the light harmonic removal unit 80-1 as a reference.
  • the phase control unit 12-3 controls the lightwave output from the light harmonics removal unit 80-3 to have a phase difference of - ⁇ / 8
  • the light phase control unit 12-4 controls the light harmonics removal unit 80-4. Control is performed so that the output light wave has a phase difference of ⁇ / 8.
  • the desired bias point control unit 16 controls the bias points of the output lightwaves of the four optical harmonic removal units 80-1 to 80-4 when the modulation signal is not input so as to minimize the light intensities of the lightwaves. .
  • point A in FIG. 6 showing the relationship between the bias voltage and the light intensity of the output lightwave of the light intensity modulator is a desired bias point.
  • the optical frequency converter 88 includes two optical harmonics removal units 80-3 and 80-4, two optical phase control units 12-3 and 12-4, and two phase control.
  • a second optical circuit consisting of units 14-3 and 14-4 is provided in parallel with the first optical circuit.
  • This second optical circuit is the light according to the second embodiment shown in FIG. 8 except that the phases of the output lightwaves of the two optical harmonic removal units 80-3 and 80-4 and the phase of the modulation signal are different. This is equivalent to the configuration of the frequency converter 78.
  • the optical phase control unit 12-3 is - ⁇ / 8
  • the optical phase control unit 12-4 is ⁇ / 8
  • the phase control unit 14-3 is ⁇ / 8
  • the phase control unit 14-4 by setting each to provide a phase difference of - [pi] / 8, including the frequency components of f 0 + (8n + 1) f, f 0 + (16n-7) of the frequency component of f the phase is inverted by ⁇ .
  • an optical phase control unit which adjusts the phase of the input light wave of each optical harmonic removal unit by increasing the number of the optical harmonic removal units 80 arranged in parallel;
  • a phase control unit that changes the phase of the modulation signal that drives the optical harmonics removal unit, and the bias of the optical harmonics removal unit is controlled by the desired bias point control unit, thereby generating an output lightwave of the optical harmonics removal unit
  • Arbitrary harmonics can be removed by interference by inverting the phase of the harmonic component intended to be removed by ⁇ among the frequency components included.
  • the effect of the present embodiment is the same as the effect of the third embodiment described above, and the optical frequency conversion device 88 uses the four optical harmonics removing units 80-1 to 80-4 to achieve the third and fifth orders. , can be removed 7th and 9th harmonic components, without using an optical bandpass filter, the frequency f 0 of the input lightwave becomes possible to shift by an arbitrary shift amount. Furthermore, as shown in FIG. 7D, even when the input light wave is a data signal, the output data signal is not deteriorated due to overlapping with other harmonic components.
  • the optical frequency converter is configured using a plurality of optical single sideband modulators 10, but the present invention is not limited to this.
  • the same function can be realized using an optical interferometer or a delay control means.
  • the input lightwave of carrier frequency f 0 is converted into the output lightwave of light frequency f 0 + f using the modulation signal of frequency f, and the third and fifth orders included in the output lightwave
  • the harmonics that is, the frequency component of the light frequency (f 0 -3f) and the frequency component of the light frequency (f 0 + 5f
  • the optical frequency converter 98 comprises an optical suppression carrier modulator 90, a modulation signal oscillator 11, and an optical phase controller 12-. 2, an optical delay control unit 93-2, and two optical interferometers 95-1 and 95-2.
  • the optical suppression carrier modulator 90 modulates the input lightwave according to the modulation signal from the modulation signal oscillator 11, and the output lightwave is branched into two, one through the optical interferometer 95-1, the other through the optical phase control unit 12-2, light The light is multiplexed through the delay control unit 93-2 and the optical interference system 95-2, and output as an output lightwave.
  • the light suppression carrier modulator 90 is composed of a resonant light intensity modulator 30 and a desired bias point control unit 16.
  • the resonant light intensity modulator 30 modulates the input light wave based on the modulation signal from the modulation signal oscillator 11.
  • the desired bias point control unit 16 controls the bias point of the resonant light intensity modulator 30 such that the light intensity of the output lightwave of the resonant light intensity modulator 30 when the modulation signal is not input is minimized.
  • point A in FIG. 6 showing the relationship between the bias voltage and the light intensity of the output lightwave of the light intensity modulator is a desired bias point.
  • the optical interferometer 95 (95-1 and 95-2) is provided with the optical phase control unit 12 and the optical delay control means 93 in one arm of the Mach-Zehnder waveguide.
  • the lightwave of one arm is multiplexed with the lightwave of the other arm and output.
  • the optical phase control unit 12 of the optical interferometer 95 controls the output lightwave of the optical phase control unit 12 to have a phase difference of ⁇ / 2 with reference to the input lightwave of the optical interferometer, and the optical phase control unit 12 of the optical interferometer 95
  • the optical delay control unit 93 controls the input lightwave so as to be delayed by T / 2 and output.
  • the optical delay control unit 93 changes the phase control operation point in accordance with the frequency of the modulation signal from the modulation signal oscillator 11.
  • the optical phase control unit 12-2 performs control such that a phase difference of ⁇ / 4 is provided between the input light waves of the two optical interferometers 95-1 and 95-2. Also, the optical delay control unit 93-2 performs control such that a delay of T / 4 is provided between the input light waves of the two optical interferometers 95-1 and 95-2. Further, the optical delay control unit 93-2 changes the phase control operation point according to the frequency of the modulation signal from the modulation signal oscillator 11.
  • the optical interferometer 95-1 branches the input light wave into two, and the phase of the frequency component of f 0 + (4 n -1) f included in one input light wave is inverted by ⁇ Therefore, when combining, frequency components whose phases are different from each other by ⁇ are canceled out, and as shown in FIG. 7B, the output lightwave of the optical interferometer 95-1 has f 0 + (4n + 1) f It contains frequency components.
  • the output lightwave of the optical interferometer 95-2 also has the spectrum shown in FIG. 7B, but the phase of each frequency component is different. That is, the phase of the frequency component of f 0 + (8 n -3) f included in the output lightwave of the optical interferometer 95-2 is inverted by ⁇ . Therefore, by combining the output light waves of the optical interferometers 95-1 and 95-2, frequency components different in phase from each other by ⁇ are canceled out, and f 0 + (8 n + 1) f as shown in FIG. 7C. An output lightwave is obtained which includes frequency components of
  • the optical frequency conversion device 98 shifts the input light wave by an arbitrary frequency shift amount, as in the first and second embodiments described above. Further, it is possible to remove the frequency components of f 0 -3f and f 0 + 5f of the output lightwave of the optical frequency converter 98. Also, by dynamically changing the operating frequency f of the modulation signal oscillator 11, it is possible to dynamically shift the frequency of the input lightwave.
  • the input lightwave of carrier frequency f 0 is converted to the reverse lightwave, ie, the output lightwave of frequency f 0 -f, and the frequency component of the light frequency (f 0 + 3f) contained in the output lightwave and the light frequency (f 0-
  • a phase difference of ⁇ / 2 is given by the optical phase control unit 12 included in the two optical interferometers 95-1 and 95-2, and the optically suppressed carrier modulator
  • the phase difference may be controlled to be ⁇ / 4 by the optical phase control unit 12-2 based on the 90 output lightwaves.
  • the two optical interferometers 95-1 and 95-2 in the above-described optical frequency converter 98 have three optical phase control units and three optical beams according to the fifth embodiment of the present invention described next. It can be configured using a delay control unit.
  • the input lightwave of carrier frequency f 0 is converted into the output lightwave of light frequency f 0 + f using the modulation signal of frequency f, and the third and fifth orders included in the output lightwave
  • the harmonics that is, the frequency component of the light frequency (f 0 -3f) and the frequency component of the light frequency (f 0 + 5f
  • the optical frequency conversion device 108 includes an optical suppression carrier modulator 90, a modulation signal oscillator 11, and three optical phase control units 12-1 to 12-3. And three optical delay control units 93-2 to 93-4.
  • the optical suppression carrier modulator 90 modulates the input lightwave according to the modulation signal from the modulation signal oscillator 11, the output lightwave is branched into four, the first branched light is unchanged, and the second branched light is the optical phase control unit 12-2
  • the third branch light passes through the optical phase control unit 12-3 and the optical delay control unit 93-3 through the optical delay control unit 93-2, and the fourth branch light through the optical phase control unit 12-4 through the optical delay control unit 93-3.
  • the light is multiplexed through the unit 93-4 and output as an output lightwave.
  • the optical phase control unit 12-2 controls the phase difference of - ⁇ / 2 with reference to the output lightwave of the optical suppression carrier modulator 90, and the optical phase control unit 12-3 controls the power of - ⁇ / 4.
  • the optical phase control unit 12-4 performs control such that the phase difference is ⁇ 3 ⁇ / 4.
  • the optical delay control unit 93-2 gives a delay of T / 2 with reference to the output lightwave of the light suppression carrier modulator 90, and the optical delay control unit 93-3 gives a delay of T / 4, 93-4 is controlled to give a delay of 3T / 4.
  • the three optical delay control units 93-1, 93-2, and 93-3 change the phase control operation point according to the frequency of the modulation signal from the modulation signal oscillator 11.
  • the output lightwave of the optical delay control unit 93-2 has the spectrum shown in FIG. 2B, but the phase of the frequency component of f 0 + (4n-1) f (n is an integer) is inverted by ⁇ . Therefore, when the output lightwave of the light suppression carrier modulator 90 and the output lightwave of the optical delay control unit 93-2 are multiplexed, the frequency components whose phases are different from each other by ⁇ are canceled out, as shown in FIG. 7B.
  • the frequency component of f 0 + (4n + 1) f is included.
  • the multiplexed light waves output lightwave of the two optical delay controller 93-3 and 93-4 has a frequency component f 0 + (4n + 1) f shown in FIG. 7B), of which f 0 + ( 8n-3) The phase of the frequency component of f is inverted by ⁇ .
  • the optical frequency conversion device 108 can shift the input light wave by an arbitrary frequency shift amount as in the fourth embodiment described above, and further, the light It becomes possible to remove the frequency components of f 0 -3f and f 0 + 5f of the output lightwave of the frequency conversion device 108. Also, by dynamically changing the operating frequency f of the modulation signal oscillator 11, it is possible to dynamically shift the frequency of the input lightwave.
  • the optical frequency converter according to the sixth embodiment of the present invention realizes more accurate optical frequency conversion by using three or more optical interferometers.
  • the input lightwave of carrier frequency f 0 is converted to an output lightwave of light frequency f 0 + f using a modulation signal of frequency f, and the third and fifth orders included in the output lightwave
  • the case of simultaneously removing the 7th and 9th harmonic components will be described as an example.
  • the optical frequency conversion device 118 includes the optical suppression carrier modulator 90, the modulation signal oscillator 11, four optical interferometers 95-1 to 95-4, and three.
  • the optical suppression carrier modulator 90 modulates the input lightwave according to the modulation signal from the modulation signal oscillator 11, the output lightwave is branched into four, the first branched light passes through the optical interferometer 95-1, and the second branched light is optical
  • the third branched light passes through the phase control unit 12-2, the optical delay control unit 93-2, and the optical interferometer 95-2 as the optical phase control unit 12-3, the optical delay control unit 93-3, and the optical interferometer 95-
  • the fourth branched light is multiplexed through the optical phase control unit 12-4, the optical delay control unit 93-4, and the optical interferometer 95-4 through 3 and output as an output lightwave.
  • the optical phase control unit 12-2 sets the phase difference of - ⁇ / 8 so that the phase difference of the light suppression carrier modulator 90 is - ⁇ / 4 with respect to the output lightwave of the light suppression carrier modulator 90 as a reference.
  • the optical phase control unit 12-4 performs control so as to have a phase difference of -3 ⁇ / 8 so that
  • the optical delay control section 93-2 has a delay of T / 8 so that the optical delay control section 93-2 has a delay of T / 4 on the basis of the output lightwave of the light suppression carrier modulator 90.
  • the optical delay control unit 93-4 controls each to have a delay of 3T / 8.
  • a first optical circuit composed of an optical interferometer 95-1, an optical phase controller 12-2, an optical delay controller 93-2, and an optical interferometer 95-2, and
  • the output lightwave includes frequency components of f 0 + (8n + 1) f (n is an integer) as shown in FIG. 7D because it is equivalent to the optical frequency converter 108 in the fifth embodiment.
  • the output lightwave of the second optical circuit to be included includes the frequency component of f 0 + (8n + 1) f as shown in FIG. 7D, among which the frequency component of f 0 + (16n-7) f Phase is inverted by ⁇ .
  • the optical frequency conversion device 118 has the same effects as the fourth and fifth embodiments described above, and is arranged in parallel according to the desired accuracy.
  • An optical phase control unit that increases the number of optical interferometers to be adjusted and adjusts the phase of the input lightwave of each optical interferometer, and an optical delay control unit that controls the delay amount of the input lightwave of the optical interferometer;
  • Arbitrary harmonics can be removed by interference by inverting the phase of the harmonic component to be removed by ⁇ among the frequency components included in the output lightwave of the removal unit.
  • An optical frequency conversion device that frequency-converts an input lightwave according to a modulation signal using an optical single sideband modulation method to generate an output lightwave, A plurality of phase control means for respectively generating a plurality of individual modulation signals different in phase from the modulation signal; A plurality of optical single sideband modulation means for respectively modulating the input lightwave in accordance with the plurality of individual modulation signals; A plurality of optical phase control means for giving an optical phase difference to a plurality of light waves respectively outputted from the plurality of optical single sideband modulation means; Combining means for combining the plurality of light waves output from the plurality of light phase control means to generate the output light wave; An optical frequency converter characterized in that the phase difference between the plurality of individual modulation signals and the optical phase difference are set so that a predetermined harmonic component other than the target frequency of the output lightwave is removed. .
  • the plurality of light waves respectively output from the plurality of optical phase control means have the same frequency spectrum, and the phase difference of the plurality of individual modulation signals such that the phase difference is ⁇ with respect to the predetermined harmonic component.
  • the input lightwave is an optical signal of frequency f 0
  • the modulation signal is an electrical signal of which frequency f changes
  • the output lightwave is an optical signal of which the target frequency is f 0 + f or f 0 ⁇ f
  • the optical frequency converter according to any one of supplementary notes 1 to 3 characterized by the above.
  • each of the plurality of optical single sideband modulation means the light intensity of the output lightwave of the optical single sideband modulation means is minimized while the individual modulation signal to the optical single sideband modulation means is not input.
  • the optical frequency converter according to any one of appendices 1-5, wherein the bias is set as follows.
  • An optical frequency conversion method for frequency converting an input lightwave according to a modulation signal using sideband modulation and generating an output lightwave A plurality of phase control means respectively generate a plurality of individual modulation signals different in phase from the modulation signal, A plurality of optical single sideband modulation means respectively modulate the input lightwave according to the plurality of individual modulation signals; A plurality of optical phase control means give optical phase differences to the plurality of light waves respectively output from the plurality of optical single sideband modulation means; Combining means combines the plurality of light waves output from the plurality of light phase control means to generate the output light wave; A phase difference between the plurality of individual modulation signals and the light phase difference is set so as to remove predetermined harmonic components other than a target frequency of the output light wave.
  • the plurality of light waves respectively output from the plurality of optical phase control means have the same frequency spectrum, and the phase difference of the plurality of individual modulation signals such that the phase difference is ⁇ with respect to the predetermined harmonic component.
  • the input lightwave is an optical signal of frequency f 0
  • the modulation signal is an electrical signal of which frequency f changes
  • the output lightwave is an optical signal of which the target frequency is f 0 + f or f 0 ⁇ f
  • each of the plurality of optical single sideband modulation means the light intensity of the output lightwave of the optical single sideband modulation means is minimized while the individual modulation signal to the optical single sideband modulation means is not input.
  • the optical frequency conversion method according to any one of appendices 7-11, wherein the bias is set as follows.
  • An optical transmitter that frequency-converts an input light wave according to a modulation signal and transmits it using a sideband modulation method, A plurality of phase control means for respectively generating a plurality of individual modulation signals different in phase from the modulation signal; A plurality of optical single sideband modulation means for respectively modulating the input optical signal according to the plurality of individual modulation signals; A plurality of optical phase control means for giving an optical phase difference to a plurality of optical signals respectively outputted from the plurality of optical single sideband modulation means; Combining means for combining a plurality of optical signals output from the plurality of optical phase control means to generate a transmission light signal; An optical transmitter characterized in that the phase difference between the plurality of individual modulation signals and the optical phase difference are set so that a predetermined harmonic component other than the target frequency of the transmission optical signal is removed. .
  • the plurality of optical signals respectively output from the plurality of optical phase control means have the same frequency spectrum, and the phase difference of the plurality of individual modulation signals such that the phase difference is ⁇ with respect to the predetermined harmonic component
  • the input optical signal is an optical signal of frequency f 0
  • the modulation signal is an electrical signal of which frequency f changes
  • the transmission optical signal is an optical signal of which the target frequency is f 0 + f or f 0 -f
  • the optical transmitter according to any one of appendices 13-15, characterized in that.
  • optical frequency converter that frequency-converts an input lightwave according to a modulation signal using sideband modulation and generates an output lightwave, Optically suppressed carrier wave modulation means for modulating the input light wave according to the modulation signal;
  • the optical suppression carrier modulation means has a plurality of waveguides for receiving the light wave output from the light suppression carrier modulation means and propagating the plurality of branched lights of the light wave, and combines the plurality of branched lights propagated through the plurality of waveguides.
  • First interference means for generating the output lightwave The plurality of waveguides of the first light interference means are provided with a first light phase control means, a first light delay control means, and a second light interference means, and the second light interference means includes two waveguides.
  • a second optical phase control means and a second optical delay control means are provided in one of the waveguides, The optical phase difference between the first optical phase control means and the first optical delay control means provided in each of the plurality of waveguides such that predetermined harmonic components other than the target frequency of the output lightwave are removed
  • the first optical phase control means and the first optical delay control means such that the light waves respectively output from the plurality of waveguides have the same frequency spectrum and the phase difference is ⁇ with respect to the predetermined harmonic component.
  • the input lightwave is an optical signal of frequency f 0
  • the modulation signal is an electrical signal of which frequency f changes
  • the output lightwave is an optical signal of which the target frequency is f 0 + f or f 0 ⁇ f
  • the optical frequency converter as set forth in Supplementary Note 19 or 20, characterized in that
  • An optical frequency conversion method for frequency converting an input lightwave according to a modulation signal using sideband modulation and generating an output lightwave A light suppression carrier modulation means modulates the input lightwave according to the modulation signal;
  • the first light interference means receives the lightwave output from the light suppression carrier modulation means, propagates the plurality of branched lights of the lightwave through the plurality of waveguides, and propagates the plurality of branched lights.
  • the plurality of waveguides of the first light interference means are provided with a first light phase control means, a first light delay control means, and a second light interference means, and the second light interference means includes two waveguides.
  • a second optical phase control means and a second optical delay control means are provided in one of the waveguides,
  • the optical phase difference and the optical delay amount of the first optical phase control means and the first optical delay control means provided in each of the plurality of waveguides are removed by predetermined harmonic components other than the target frequency of the output light wave.
  • the first optical phase control means and the first optical delay control means such that the light waves respectively output from the plurality of waveguides have the same frequency spectrum and the phase difference is ⁇ with respect to the predetermined harmonic component.
  • 24. The optical frequency conversion method according to appendix 23, wherein the optical phase difference and the optical delay amount are set respectively.
  • the input lightwave is an optical signal of frequency f 0
  • the modulation signal is an electrical signal of which frequency f changes
  • the output lightwave is an optical signal of which the target frequency is f 0 + f or f 0 ⁇ f
  • the optical frequency conversion method according to Additional remark 23 or 24, characterized by the above.
  • the present invention is applicable to an optical frequency converter used in an optical transmitter or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】変調信号の周波数を変化させても所望の高調波成分以外の成分を高精度に除去して所望の周波数成分の出力光波を容易に取り出すことができる光周波数変換方法および装置を提供する。 【解決手段】変調信号から位相が異なる複数の個別変調信号をそれぞれ生成する複数の位相制御部(101-1~101-n)と、入力光波を複数の個別変調信号に従ってそれぞれ変調する複数の光単側波帯変調部(MOD1からMODn)と、複数の光単側波帯変調部からそれぞれ出力された複数の光波にそれぞれ光位相差を与える複数の光位相制御部(201-1~201-n)と、複数の光位相制御部から出力される複数の光波を合波して出力光波を生成し、出力光波の目的周波数以外の所定高調波成分が除去されるように複数の個別変調信号の位相差と光位相差とが設定される。

Description

光周波数変換方法および装置
 本発明は入力光波から所望の周波数成分を有する出力光波を生成する光周波数変換方法および装置に関する。
 従来、光通信分野や光計測分野において、光周波数を任意のシフト量で高精度・高速に変換する装置が検討されてきた。特に光通信分野における波長多重クロスコネクトでは、所望の光周波数成分が安定して得られ、光周波数の偏移量の微調整が可能で、かつ光強度損失の少ない光周波数変換装置が望まれている。入力光波の周波数を変換する方法としては、光単側波帯変調器を用いて入力光波の周波数を偏移させる方法が一般に知られている(たとえば非特許文献1)。以下、非特許文献1に開示された光周波数シフタについて簡単に説明する。
 図1(A)に示すように、光単側波帯変調器10は、メインのマッハツェンダ(MZ)導波路の各アームにそれぞれ設けられた2個の共振型強度変調器30-1および30-2と、共振型強度変調器30-2に直列接続された光移相器32とから構成され、共振型強度変調器はそれ自身マッハツェンダ導波路から構成される。共振型強度変調器30-1の入力端子RFと共振型強度変調器30-2の入力端子RFにはそれぞれ変調信号が入力し、入力端子BiasおよびBiasにはそれぞれ制御用のバイアス電圧が入力する。光移相器32の入力端子Phaseには位相調整用の制御信号が入力する。
 図1(B)に示すように、光周波数シフタ38は、上述した光単側波帯変調器10、変調信号発振器11、光移相量調整部13および位相制御部14から構成される。変調信号発振器11は変調信号を生成し、その変調信号が光単側波帯変調器10の端子RFに直接入力し、位相制御部14を介して端子RFに入力する。変調信号は単一周波数fの正弦波であるものとする。位相制御部14は、光単側波帯変調器10の端子RFと端子RFにそれぞれ入力する変調信号の間に位相差-π/2を与えるように制御される。また、光移相量調整部13は、共振型光強度変調器30-1の出力光波と共振型光強度変調器30-2の出力光波との間に位相差π/2を与えるように光移相器32を制御する。
 このような構成を有する光周波数シフタ38において、図2(A)に示す周波数スペクトルを有する搬送波周波数fの連続波レーザ光が入力したとする。このとき、光単側波帯変調器10の共振型光強度変調器30-1の出力光波は、図2(B)に示すように、搬送波と偶数次の高調波成分が抑制され、f+(2n-1)f(nは整数)の周波数成分を含む周波数スペクトルを有する。
 他方、共振型光強度変調器30-2の出力をπ/2だけ移相した光移相器32の出力光波は、図2(B)に示すように同じくf+(2n-1)fの周波数成分を含むが、そのなかのf+(4n-1)fの周波数成分の位相がπだけ反転している。以下、このように同じ周波数スペクトルであっても一定の成分の位相が規則的に反転している場合には周波数成分の式を[]で囲んで表記するものとする。ここでは、光移相器32の出力光波の周波数成分は、共振型光強度変調器30-1の出力光波の周波数成分f+(2n-1)fに対して周波数成分f+(4n-1)fの位相だけがπだけ反転したものであるから、[f+(2n-1)f]と表記される。
 このような共振型光強度変調器30-1の出力光波と光移相器32の出力光波とを合波すると、位相が互いにπだけ反転する周波数成分が相殺され、光周波数シフタ38の出力光波として、図2(C)に示すように、f+(4n+1)fの周波数成分を含む周波数スペクトルが得られる。したがって、図2(D)に示すように、破線で示す特性をもった光バンドパスフィルタを用いることで、搬送波周波数fが周波数成分(f+f)へシフトした出力光波を得ることができる。
 上述した光周波数シフタ38では、図2(C)から分かるように、-3次の周波数成分の光強度が高くなっており、これを除去するために光バンドパスフィルタが必要であったが、このような光バンドパスフィルタを必要としない光周波数変換装置が特許文献1に提案されている。
 特許文献1に開示された低雑音光周波数変換装置は、基本波の周波数を3倍する位相同期3逓倍器、基本波と3倍波の振幅を調整する振幅調整器および90度ハイブリッドからなる駆動系を設けることで、図2(C)に示す高調波のうち3次の高調波成分を抑制する。より詳しくは、この駆動系は、図1(A)に示す光単側波帯変調器10の端子RFに対して基本波とその3倍波との合成波を印加し、その合成波に-π/2だけ位相差を付けた合成波を端子RFに印加する。そして、それら2つの合成波の振幅と位相を適切に選定することにより、図2(E)に示すように、3次高調波を抑制する。
特開2004-85602号公報
社団法人電子情報通信学会、信学技報OPE2001-159、「XカットLiNbO3を用いた光周波数シフタ/SSB-SC変調器の開発」日隈薫、橋本義浩、及川哲、川西哲也、井筒雅之
 しかしながら、図2(D)に示すように光バンドパスフィルタを利用して所望の周波数成分を選択的に取り出す方法では、急峻な遮断特性を有する光バンドパスフィルタが必要となる。このような光バンドパスフィルタを高精度に作成することは非常に困難であるだけでなく、その光バンドパスフィルタの中心周波数特性を維持するためには高精度な温度制御も必要となる。また、変調周波数が数GHzの場合、光バンドパスフィルタに数GHz以内で通過帯域の立ち上がり特性を持たせる必要があり、制御回路が複雑となるという難点もある。
 さらに、光周波数シフタ38に対して、図3(A)に示すデータ変調された光信号が入力する場合、光周波シフタ38の出力光波は、図3(B)に示すように、周波数偏移した1次の周波数成分と高調波成分とが重なり合う。このようなデータ信号の劣化は、光バンドパスフィルタを用いても取り除くことができない。特に、光周波数変換では、変調信号により目的の光周波数が動的に変化するため、変調信号の周波数の変化に応じて光バンドパスフィルタの特性を動的に調整する必要がある。しかしながら、光バンドパスフィルタの特性を動的に制御し、かつ急峻な遮断特性を維持するのは困難である。
 これに対して、特許文献1に開示された低雑音光周波数変換装置は、光バンドパスフィルタを用いないで3次高調波を抑制することができる。しかしながら、変調信号である基本波の周波数が変化する場合には、変化量に合わせて振幅調整することが困難となる。すなわち、変化量に合わせて3倍波の振幅を同時に調整する必要があるが、3倍波の振幅は周波数変化に対して線形ではないために高周波化に伴って波形歪みが生じる。このために、変調信号の周波数が高くなる程、この方法により光周波数変換装置を実現することは困難となる。
 そこで、本発明は上記の課題を鑑みてなされたものであり、その目的は、変調信号の周波数を変化させても所望の高調波成分以外の成分を高精度に除去して所望の周波数成分の出力光波を容易に取り出すことができる光周波数変換方法および装置を提供することにある。
 本発明による光周波数変換装置は、光単側波帯変調方式を利用して入力光波を変調信号に従って周波数変換し出力光波を生成する光周波数変換装置であって、前記変調信号から位相が異なる複数の個別変調信号をそれぞれ生成する複数の位相制御手段と、前記入力光波を前記複数の個別変調信号に従ってそれぞれ変調する複数の光単側波帯変調手段と、前記複数の光単側波帯変調手段からそれぞれ出力された複数の光波にそれぞれ光位相差を与える複数の光位相制御手段と、前記複数の光位相制御手段から出力される複数の光波を合波して前記出力光波を生成する合波手段と、を有し、前記出力光波の目的周波数以外の所定高調波成分が除去されるように前記複数の個別変調信号の位相差と前記光位相差とが設定されることを特徴とする。
 本発明による光周波数変換方法は、光単側波帯変調方式を利用して入力光波を変調信号に従って周波数変換し出力光波を生成する光周波数変換方法であって、複数の位相制御手段が前記変調信号から位相が異なる複数の個別変調信号をそれぞれ生成し、複数の光単側波帯変調手段が前記複数の個別変調信号に従って前記入力光波をそれぞれ変調し、複数の光位相制御手段が前記複数の光単側波帯変調手段からそれぞれ出力された複数の光波にそれぞれ光位相差を与え、合波手段が前記複数の光位相制御手段から出力される複数の光波を合波して前記出力光波を生成し、前記複数の個別変調信号の位相差および前記光位相差は前記出力光波の目的周波数以外の所定高調波成分が除去されるように設定されることを特徴とする。
 本発明によれば、変調信号の周波数を変化させても所望の高調波成分以外の成分を高精度に除去して所望の周波数成分の出力光波を容易に取り出すことができる。
図1(A)は一般的な光単側波帯変調器の構成を示すブロック図、図1(B)はそれを用いた光周波数シフタの基本的な構成例を示すブロック図である。 図2(A)は入力光波の周波数成分を示す周波数スペクトル図、図2(B)は共振型光強度変調器の出力光波の周波数成分を示す周波数スペクトル図、図2(C)は共周波数シフタの出力光波の周波数成分を示す周波数スペクトル図、図2(D)は出力光波からフィルタにより取り出される周波数成分を示す周波数スペクトル図、図2(E)は低雑音光周波数変換装置の出力光波の周波数成分を示す周波数スペクトル図である。 図3(A)は入力光波がデータ信号である場合の周波数スペクトル図、図3(B)は光周波数シフタの出力光波の周波数成分を示す周波数スペクトル図である。 図4は本発明の一実施形態による光周波数変換装置の一般化された構成を示すブロック図である。 図5は本発明の第1実施例による光周波数変換装置の機能的構成を示すブロック図である。 図6は本実施例で使用される共振型光強度変調器のバイアス点と出力光波の光強度との関係を示すグラフである。 図7(A)は入力光波の周波数成分を示す周波数スペクトル図、図7(B)は共振型光強度変調器の出力光波の周波数成分を示す周波数スペクトル図、図7(C)は本実施例による光周波数変換装置の出力光波の周波数成分を示す周波数スペクトル図、図7(D)は入力光波がデータ信号である場合の本実施例による光周波数変換装置の出力光波の周波数成分を示す周波数スペクトル図である。 図8は本発明の第2実施例による光周波数変換装置の機能的構成を示すブロック図である。 図9は本発明の第3実施例による光周波数変換装置の機能的構成を示すブロック図である。 図10は、図9に示す光高調波除去部の機能的構成を示すブロック図である。 図11は本発明の第4実施例による光周波数変換装置の機能的構成を示すブロック図である。 図12(A)は図11に示す光抑圧搬送波変調器の機能的構成を示すブロック図、図12(B)は図11に示す光干渉計の機能的構成を示すブロック図である。 図13は本発明の第5実施例による光周波数変換装置の機能的構成を示すブロック図である。 図14は本発明の第6実施例による光周波数変換装置の機能的構成を示すブロック図である。
 1.一実施形態
 図4に示すように、本発明の一実施形態による光周波数変換装置は、複数個(n個)の光変調部MOD1~MODnと、光変調部MOD1~MODnにそれぞれ接続されたn個の位相制御部101-1~101-nおよびn個の光位相制御部201-1~201-nとを有し、各光変調部は図1に示す光単側波帯変調器10と位相制御部14とからなる。光変調部MOD1~MODnの端子RF1~RFnは、それぞれ対応する光単側波帯変調器10の端子RFに直接接続されると共に、位相制御部14を介して端子RFに接続される。位相制御部14は、端子RFおよび端子RFにそれぞれ入力する個別変調信号の間に位相差φ(ここではφ=π/2)を与えるように制御される。
 周波数fの変調信号は電気信号であり、この変調信号に位相差φ1-1を与える位相制御部101-1により個別変調信号が生成され、光変調部MOD1の端子RF1に入力する。同様に、変調信号に位相差φ1-2を与える位相制御部101-2により個別変調信号が生成され、光変調部MOD2の端子RF2に入力する。以下同様にして、変調信号にそれぞれ位相差φ1-3~φ1-nを与える位相制御部101-3~101-nを通して光変調部MOD3~MODnの端子RF3~RFnに個別変調信号がそれぞれ入力する。
 各光変調部MODの位相制御部14および位相制御部101-1~101-nは、変調信号発振器11からの変調信号の周波数fに応じて位相制御動作点を変化させる。周波数成分fの入力光波は光変調部MOD1~MODnの各々の光単側波帯変調器10に入力し、それぞれの光単側波帯変調器10の光出力がそれぞれ光位相差φ2-1~φ2-nを与える光位相制御部201-1~201-nを通して合成されることにより、後述するように所望の高調波成分を除去した出力光波が生成される。
 本実施形態によれば、位相制御部101-1~101-nと光位相制御部201-1~201-nとをそれぞれ位相制御することで所望の高調波成分の位相をπだけ反転させることができ、これら高調波成分を反転させた光波と反転させていない光波とを合波することで、所望の高調波成分を除去することができる。除去を目的とする高調波成分をf+(2m+1)fとすると、nはlog(m)以上の最小の整数である。このとき、位相制御部101-1を基準として、位相制御部101-(k+1)をπ/2k+1(k=1,…,n-1)に設定し、光位相制御部201-1を基準として、光位相制御部201-(k+1)を-π/2k+1に設定する。ただし、nが1未満の場合には、光単側波帯変調装置10のみで所望の高調波を除去することが可能である。
 たとえば除去すべき高調波が5次であれば、2m+1=5であるからn=log(2)=1となり、光変調部MOD1に接続された位相制御部101-1の位相φ1-1=0、光位相制御部201-1の位相φ2-1=0にそれぞれ設定したとき、光変調部MOD2に接続された位相制御部101-2の位相φ1-2=π/4、光位相制御部201-2の位相φ2-2=-π/4にそれぞれ設定される。同様にして所望の高調波を除去することができるので、位相制御だけで目的の周波数成分の出力光波を得ることができる。
 上述したように、本実施形態によれば、光単側波帯変調器10を並列に2個以上配置し、これら光単側波帯変調器10を駆動する変調信号間の位相を位相制御部により電気的に制御し、かつ、光単側波帯変調器10の出力光波間の位相差を光位相制御部により光学的に制御することにより、光単側波帯変調器10の出力光波に含まれる周波数スペクトルのうち除去すべき高調波成分にπの位相差を付けることが可能となる。したがって、これら出力光波を合波することで干渉により位相がπだけ異なる周波数成分を同時に除去することができ、所望の精度まで周波数変換の精度を高めることができる。
 さらに、本実施形態によれば、位相制御部101-1~101-nと光位相制御部201-1~201-nにおけるそれぞれの位相差を設定するだけであるから、光バンドパスフィルタを用いることなく、しかも簡単な制御により所望の高調波成分を容易かつ高精度に除去することができる。また、不要な高調波を除去できるので、入力光波がデータ信号であっても、目的の周波数成分と高調波成分とが重なり合うことによる出力データ信号の劣化を回避できる。
 なお、本実施形態による光周波数変換装置は、光周波数変換だけでなく、光送信機の光変調回路にも適用可能である。その場合、入力光波は光キャリアあるいは光送信信号であり、変調信号が送信すべき情報を載せた電気信号である。以下、本発明の実施例について詳細に説明する。
 2.第1実施例
 本発明の第1実施例による光周波数変換装置は2つの光単側波帯変調器を用いて構成される。ここでは、説明を煩雑にしないために、搬送波周波数fの入力光波を周波数fの変調信号を用いて光周波数f+fの出力光波に変換し、さらに出力光波に含まれる3次と5次の高調波、すなわち光周波数(f-3f)の周波数成分と光周波数(f+5f)の周波数成分とを同時に除去する場合を一例として説明する。
 2.1)構成
 図5に示すように、本実施例による光周波数変換装置68は、2つの光単側波帯変調器10-1および10-2、変調信号発振器11、光位相制御部12、2つの光移相量制御部13-1および13-2、端子RFとRFとの間の位相差を与えるための位相制御部14-1および14-2、光単側波帯変調器間の変調信号位相差を与えるための位相制御部14-3、および、所望バイアス点制御部16から構成される。
 光単側波帯変調器10-1は変調信号発振器11が生成する変調信号を個別変調信号として入力光波を変調し、光単側波帯変調器10-2は位相制御部14-3により変調信号が位相制御された個別変調信号に基づいて入力光波を変調する。光単側波帯変調器10-1および10-2は、図1(A)に示す共振型光強度変調器30-1および30-2をそれぞれ有する。変調信号発振器11は、光単側波帯変調器10-1および10-2を駆動するための個別変調信号の元となる変調信号を電気的に生成する。変調信号は単一周波数の正弦波であり、その周波数をfとする。
 位相制御部14-1は、光単側波帯変調器10-1の端子RFと端子RFに入力する変調信号の間の位相差が-π/2となるように制御し、位相制御部14-2も同様に光単側波帯変調器10-2の端子RFと端子RFに入力する変調信号の間の位相差が-π/2となるように制御する。さらに、位相制御部14-3は光単側波帯変調器10-1の端子RFに入力する個別変調信号を基準として、光単側波帯変調器10-2の端子RFに入力する個別変調信号がπ/4の位相差となるように制御する。また、位相制御部14-1、14-2および14-3は、変調信号発振器11が生成する変調信号の周波数fに応じて位相制御動作点を変化させる。
 光位相制御部12は、2つの光単側波帯変調器10-1および10-2の出力光波間の位相差がπ/4となるように制御する。2つの光移相量制御部13-1および13-2は、2つの光単側波帯変調器10-1および10-2がそれぞれ備える共振型光強度変調器30-1および30-2の出力光波の間の位相差がπ/2となるように光単側波帯変調器10-1および10-2のPhase端子を制御する。
 所望バイアス点制御部16は、図6に示すように、変調信号が未入力の場合の光単側波帯変調器10の出力光波の光強度が最小(点A)となるように共振型光強度変調器30-1および30-2のバイアス点を制御する。
 2.2)動作
 上述した構成を有する光周波数変換装置68において、図7(A)に示す周波数スペクトルを有する搬送波周波数fの連続波レーザ光が入力するものとする。このとき、光単側波帯変調器10-1の出力光波の周波数スペクトルは、図7(B)に示すように、f+(4n+1)f(nは整数)の周波数成分を含む。
 一方、光単側波帯変調器10-2の出力光波の光移相制御部12を通過した周波数スペクトルは、図7(B)の周波数スペクトルと同様に、f+(4n+1)fの周波数成分が含まれるが、f+(8n-3)fの周波数成分の位相がπだけ反転する。既に述べた表記方法では、光移相制御部12を通過した光波は[f+(4n+1)f]である。
 このような光単側波帯変調器10-1の出力光波と光移相制御部12を通過した光単側波帯変調器10-2の出力光波とを合波すると、位相が互いにπだけ反転する周波数成分が相殺され、光周波数変換装置68の出力光波として、図7(C)に示すように、f+(8n+1)fの周波数成分を含む周波数スペクトルが得られる。すなわち、搬送波周波数fが周波数成分(f+f)へシフトした出力光波を得ることができる。
 2.3)効果
 以上に説明したように、光周波数変換装置68は2つの光単側波帯変調器10-1および10-2を利用することにより、光バンドパスフィルタを用いることなく、入力光波の周波数fを任意の偏移量だけ偏移させることが可能となる。しかも、図7(D)に示すように、入力光波がデータ信号である場合も、他の高調波成分との重なり合いによる出力データ信号の劣化を生じない。
 なお、搬送波周波数fの入力光波を光周波数f-fの出力光波に変換し、さらに出力光波に含まれる光周波数(f+3f)と(f-5f)の周波数成分を同時に除去する場合には、例えば、光単側波帯変調器10-1の端子RFに入力する個別変調信号を基準として、位相制御部14-1にてπ/2の位相差を付け、位相制御部14-2にてπ/2の位相差を付け、位相制御部14-3にてπ/4の位相差が付くように制御することにより実現できる。上述した様に、光位相制御部12、光移相量制御部13-1および13-2を用いて光信号の位相を制御し、または、位相制御部14-1、14-2および14-3を用いて変調信号の位相を制御することにより、他の周波数成分を除去することも可能である。
 なお、位相の自由度として、光位相制御部と位相制御部にて制御する位相差に2πの整数倍の位相を加えた値に制御する場合でも、本実施例における光周波数変換装置68を実現可能である。
 3.第2実施例
 本発明の第2実施例による光周波数変換装置は4つの共振型光強度変調器を用いて構成される。ここでは、説明を煩雑にしないために、搬送波周波数fの入力光波を周波数fの変調信号を用いて光周波数f+fの出力光波に変換し、さらに出力光波に含まれる3次と5次の高調波、すなわち光周波数(f-3f)の周波数成分と光周波数(f+5f)の周波数成分とを同時に除去する場合を一例として説明する。
 3.1)構成
 図8において、本実施例による光周波数変換装置78では、図5における光単側波帯変調器10-1および10-2を2対の共振型強度変調器30-1および30-2と30-3および30-4とを利用して構成する。光周波数変換装置78は、共振型光強度変調器30-1~30-4の他に、変調信号発振器11と、光位相制御部12-2、12-3および12-4と、位相制御部14-2、14-3および14-4と、所望バイアス点制御部16と、から構成される。
 共振型光強度変調器30-1~30-4は、入力光波を変調信号発振器11にて発生する変調信号に基づいて変調する。具体的には、共振型光強度変調器30-1は変調信号発振器11からの変調信号を個別変調信号として変調を行うが、共振型光強度変調器30-2~30-4は、位相制御部14-2~14-4によりそれぞれ位相差が与えられた個別変調信号によって変調を行う。すなわち、位相制御部14-2は、共振型光強度変調器30-1を駆動する個別変調信号を基準として、共振型光強度変調器30-2を駆動する個別変調信号の位相差が-π/2となるように制御し、位相制御部14-3は、共振型光強度変調器30-3を駆動する個別変調信号の位相差がπ/4となるように制御し、位相制御部14-4は共振型光強度変調器30-4を駆動する個別変調信号の位相差が-π/4となるように制御する。また、位相制御部14-1、14-2および14-3は、変調信号発振器11からの変調信号周波数情報に応じて位相制御動作点を変化させる。
 光位相制御部12-2は、共振型光強度変調器30-1の出力光波を基準として、共振型光強度変調器30-2の出力光波がπ/2の位相差となるように制御し、光位相制御部12-3は、共振型光強度変調器30-3の出力光波が-π/4の位相差となるように制御し、光位相制御部12-4は共振型光強度変調器30-4の出力光波がπ/4の位相差となるように制御する。
 所望バイアス点制御部16は、変調信号が未入力の場合の4つの共振型光強度変調器30-1~30-4の出力光波の光強度が最小となるように共振型光強度変調器30-1~30-4のバイアス点を制御する。具体的には、バイアス電圧と光強度変調器の出力光波の光強度の関係を示した図6中のA点が所望のバイアス点である。
 3.2)動作
 本実施例による光周波数変換装置78の基本的な動作は第1実施例と同様であるから、図7及び図8を参照しながら説明する。
 上述した構成を有する光周波数変換装置78において、図7(A)に示す周波数スペクトルを有する搬送波周波数fの連続波レーザ光が入力するものとする。このとき、共振型光強度変調器30-1の出力光波と共振型光強度変調器30-2の光移相制御部12-2を通過した出力光波とを合波すると、その周波数スペクトルは、図7(B)に示すように、f+(4n+1)f(nは整数)の周波数成分を含む。
 一方、共振型光強度変調器30-3の光移相制御部12-3を通過した出力光波と共振型光強度変調器30-4の光移相制御部12-4を通過した出力光波とを合波すると、その周波数スペクトルは、図7(B)の周波数スペクトルと同様に、f+(4n+1)fの周波数成分を含むが、f+(8n-3)fの周波数成分の位相がπだけ反転する。
 したがって、共振型光強度変調器30-1の出力光波と共振型光強度変調器30-2~30-4の光移相制御部12-2~12-4をそれぞれ通過した出力光波とを合波すると、位相が互いにπだけ反転する周波数成分が相殺され、光周波数変換装置78の出力光波として、図7(C)に示すように、f+(8n+1)fの周波数成分を含む周波数スペクトルが得られる。すなわち、搬送波周波数fが周波数成分(f+f)へシフトした出力光波を得ることができる。
 3.3)効果
 本実施例の効果は上述した第1実施例の効果と同様であり、光周波数変換装置78は4つの共振型光強度変調器30-1~30-4を利用することにより、光バンドパスフィルタを用いることなく、入力光波の周波数fを任意の偏移量だけ偏移させることが可能となる。しかも、図7(D)に示すように、入力光波がデータ信号である場合も、他の高調波成分との重なり合いによる出力データ信号の劣化を生じない。
 4.第3実施例
 本発明の第3実施例による光周波数変換装置は4つの光高調波除去部を用いて構成される。ここでは、説明を煩雑にしないために、搬送波周波数fの入力光波を周波数fの変調信号を用いて光周波数f+fの出力光波に変換し、さらに出力光波に含まれる3次、5次、7次および9次の高調波成分を同時に除去する場合を一例として説明する。
 4.1)構成
 図9において、本実施例による光周波数変換装置88は、4つの光高調波除去部80-1~80-4と、変調信号発振器11と、3つの光位相光位相制御部12-1~12-3と、3つの位相制御部14-1~14-3と、所望バイアス点制御部16と、から構成される。図10に示すように、光高調波除去部80は、光単側波帯変調器10と、所望光移相量制御部13と、位相制御部14とを備える。
 光高調波除去部80-1~80-4は、変調信号発振器11にて発生する変調信号を個別変調信号として入力光波を変調する。具体的には、光高調波除去部80-1は変調信号発振器11からの変調信号を個別変調信号として変調を行うが、光高調波除去部80-2~80-4は、位相制御部14-2~14-4によりそれぞれ位相差が与えられた個別変調信号によって変調を行う。すなわち、位相制御部14-2は、光高調波除去部80-1に入力する個別変調信号を基準として、光高調波除去部80-2に入力する個別変調信号が-π/4の位相差となるように制御し、位相制御部14-3は光高調波除去部80-3に入力する個別変調信号がπ/8の位相差となるように制御し、位相制御部14-4は光高調波除去部80-4に入力する個別変調信号が-π/8の位相差となるように制御する。また、位相制御部14-1~14-3および光高調波除去部80-1~80-4の位相制御部14は、変調信号発振器11からの変調信号周波数情報に応じて位相制御動作点を変化させる。
 光位相制御部12-2は、光高調波除去部80-1の出力光波を基準として、光高調波除去部80-2の出力光波がπ/4の位相差となるように制御し、光位相制御部12-3は光高調波除去部80-3の出力光波が-π/8の位相差となるように制御し、光位相制御部12-4は光高調波除去部80-4の出力光波がπ/8の位相差となるように制御する。
 所望バイアス点制御部16は、変調信号が未入力の場合の4つの光高調波除去部80-1~80-4の出力光波の光強度が最小となるように、それらのバイアス点を制御する。具体的には、バイアス電圧と光強度変調器の出力光波の光強度の関係を示した図6中のA点が所望のバイアス点である。
 4.2)動作
 図9に示す本実施例による光周波数変換装置88において、2つの光高調波除去部80-1および80-2と、光位相制御部12-2と、位相制御部14-2とから構成される第1の光回路は、図8に示す第2実施例による光周波数変換装置78の構成と等価である。したがって、光高調波除去部80-1の出力光波と光位相制御部12-2の出力光波とを合波すると、図7(C)に示すように、f+(8n+1)f(nは整数)の周波数成分を含む出力光波が得られる。ただし、図7(C)の周波数スペクトルには6次以上の高調波が図示されていない。
 図9に示す本実施例による光周波数変換装置88は、2つの光高調波除去部80-3および80-4と、2つの光位相制御部12-3および12-4と、2つの位相制御部14-3および14-4とからなる第2の光回路を上記第1の光回路と並列に設ける。この第2の光回路は、2つの光高調波除去部80-3および80-4の出力光波の位相と、変調信号の位相が異なる点を除けば、図8に示す第2実施例による光周波数変換装置78の構成と等価である。したがって、上述したように、光位相制御部12-3を-π/8、光位相制御部12-4をπ/8、位相制御部14-3をπ/8、位相制御部14-4を-π/8の位相差を与えるようにそれぞれ設定することにより、f+(8n+1)fの周波数成分を含むが、f+(16n-7)fの周波数成分の位相がπだけ反転する。
 したがって、第1の光回路の出力光波と第2の光回路の出力光波とを合波することで、位相が互いにπだけ反転する周波数成分が相殺され、光周波数変換装置88の出力光波として、f+(16n+1)fの周波数成分を含む周波数スペクトルが得られる。すなわち、出力光波に含まれる3次、5次、7次および9次の周波数成分(f-3f、f+5f、f-7f、f+9f)を同時に除去することが可能となる。
 4.3)効果
 このように所望の精度に応じて、並列に配置する光高調波除去部80の個数を増やし、各光高調波除去部の入力光波の位相を調整する光位相制御部と、光高調波除去部を駆動する変調信号の位相を変化する位相制御部を備え、所望バイアス点制御部にて光高調波除去部のバイアスを制御することにより、光高調波除去部の出力光波に含まれる周波数成分のうち、除去を目的とする高調波成分の位相をπだけ反転することにより、干渉により任意の高調波を除去することが可能である。
 本実施例の効果は上述した第3実施例の効果と同様であり、光周波数変換装置88は4つの光高調波除去部80-1~80-4を利用することにより、3次、5次、7次および9次の高調波成分を除去することができ、光バンドパスフィルタを用いることなく、入力光波の周波数fを任意の偏移量だけ偏移させることが可能となる。しかも、図7(D)に示すように、入力光波がデータ信号である場合も、他の高調波成分との重なり合いによる出力データ信号の劣化を生じない。
 5.第4実施例
 上述した第1実施例~第3実施例では、光単側波帯変調器10を複数個用いて光周波数変換装置を構成したが、本発明はこれに限定されるものではなく、以下に述べる第4~第6実施例のように、光干渉計や遅延制御手段を用いて同等の機能を実現することもできる。以下、説明を煩雑にしないために、搬送波周波数fの入力光波を周波数fの変調信号を用いて光周波数f+fの出力光波に変換し、さらに出力光波に含まれる3次と5次の高調波、すなわち光周波数(f-3f)の周波数成分と光周波数(f+5f)の周波数成分とを同時に除去する場合を一例として説明する。
 5.1)構成
 図11および図12に示すように、本発明の第4実施例による光周波数変換装置98は、光抑圧搬送波変調器90と、変調信号発振器11と、光位相制御部12-2と、光遅延制御部93-2と、2つの光干渉計95-1および95-2とから構成される。光抑圧搬送波変調器90は入力光波を変調信号発振器11から変調信号に従って変調し、その出力光波は2分岐され、一方は光干渉計95-1を通して、他方は光位相制御部12-2、光遅延制御部93-2および光干渉系95-2を通して合波され、出力光波として出力される。
 光抑圧搬送波変調器90は、図12(A)に示すように、共振型光強度変調器30および所望バイアス点制御部16から構成される。共振型光強度変調器30は変調信号発振器11からの変調信号に基づいて入力光波を変調する。所望バイアス点制御部16は変調信号が未入力の場合の共振型光強度変調器30の出力光波の光強度が最小となるように、共振型光強度変調器30のバイアス点を制御する。具体的には、バイアス電圧と光強度変調器の出力光波の光強度の関係を示した図6中のA点が所望のバイアス点である。
 光干渉計95(95-1および95-2)は、図12(B)に示すように、マッハツェンダ導波路の一方のアームに光位相制御部12と光遅延制御手段93とが設けられ、この一方のアームの光波が他方のアームの光波と合波され出力される。光干渉計95の光位相制御部12は、光干渉計の入力光波を基準として、光位相制御部12の出力光波が-π/2の位相差となるように制御し、光干渉計95の光遅延制御部93は、その入力光波をT/2だけ遅延させて出力するように制御する。また、光遅延制御部93は、変調信号発振器11からの変調信号の周波数に応じて位相制御動作点を変化させる。なお、変調信号発振器11が生成する変調信号は、単一の周波数の正弦波であり、その周波数をfとし、その逆数をT(=1/f)と呼ぶ。
 光位相制御部12-2は、2つの光干渉計95-1および95-2の入力光波の間に-π/4の位相差が付くように制御する。また、光遅延制御部93-2は、2つの光干渉計95-1および95-2の入力光波の間にT/4の遅延が付くように制御する。また、光遅延制御部93-2は、変調信号発振器11からの変調信号の周波数に応じて位相制御動作点を変化させる。
 5.2)動作
 まず、光抑圧搬送波変調器90は、図7(A)に示す光周波数スペクトルを有する搬送波周波数fの連続波レーザ光を入力したときに、図2(B)に示すようにf+(2n-1)f(nは整数)の周波数成分を有する光波を生成する。
 光干渉計95-1は、図12(B)に示すように、入力光波を2分岐し、一方の入力光波に含まれるf+(4n-1)fの周波数成分の位相がπだけ反転するため、合波した際に、互いに位相がπだけ異なる周波数成分は相殺され、図7(B)に示すように、光干渉計95-1の出力光波にはf+(4n+1)fの周波数成分が含まれる。
 一方、光干渉計95-2の出力光波も同じく図7(B)に示すスペクトルを有するが、各周波数成分の位相が異なる。すなわち、光干渉計95-2の出力光波に含まれるf+(8n-3)fの周波数成分の位相がπだけ反転する。したがって、光干渉計95-1および95-2の出力光波が合波することで、互いに位相がπだけ異なる周波数成分が相殺され、図7(C)に示すようにf+(8n+1)fの周波数成分を含む出力光波が得られる。
 5.3)効果
 上述したように、本実施例による光周波数変換装置98は、上述した第1実施例および第2実施例と同様に、入力光波を任意の周波数偏移量だけ偏移させることができ、さらに光周波数変換装置98の出力光波のf-3fとf+5fの周波数成分を除去することが可能となる。また、変調信号発振器11の動作周波数fを動的に変化させることにより、入力光波の周波数を動的に偏移させることが可能である。
 なお、搬送波周波数fの入力光波を逆方向、すなわち周波数f-fの出力光波へ変換し、さらに出力光波に含まれる光周波数(f+3f)の周波数成分と、光周波数(f-5f)の周波数成分を同時に除去する場合には、例えば、2つの光干渉計95-1および95-2の備える光位相制御部12にてπ/2の位相差を与え、光抑圧搬送波変調器90の出力光波を基準として光位相制御部12-2にてπ/4の位相差を付くように制御すればよい。
 6.第5実施例
 上述した光周波数変換装置98における2つの光干渉計95-1および95-2は、次に述べる本発明の第5実施例によれば、3つの光位相制御部と3つの光遅延制御部とを利用して構成することができる。以下、説明を煩雑にしないために、搬送波周波数fの入力光波を周波数fの変調信号を用いて光周波数f+fの出力光波に変換し、さらに出力光波に含まれる3次と5次の高調波、すなわち光周波数(f-3f)の周波数成分と光周波数(f+5f)の周波数成分とを同時に除去する場合を一例として説明する。
 6.1)構成
 図13に示すように、本実施例による光周波数変換装置108は、光抑圧搬送波変調器90と、変調信号発振器11と、3つの光位相制御部12-1~12-3と、3つの光遅延制御部93-2~93-4とからなる。光抑圧搬送波変調器90は入力光波を変調信号発振器11から変調信号に従って変調し、その出力光波は4分岐され、第1の分岐光はそのまま、第2の分岐光は光位相制御部12-2および光遅延制御部93-2を通して、第3の分岐光は光位相制御部12-3および光遅延制御部93-3を通して、第4の分岐光は光位相制御部12-4および光遅延制御部93-4を通して合波され出力光波として出力される。
 光位相制御部12-2は、光抑圧搬送波変調器90の出力光波を基準として、-π/2の位相差となるように制御し、光位相制御部12-3は-π/4の位相差となるように制御し、光位相制御部12-4は-3π/4の位相差となるように制御する。
 光遅延制御部93-2は、光抑圧搬送波変調器90の出力光波を基準として、T/2の遅延を与え、光遅延制御部93-3はT/4の遅延を与え、光遅延制御部93-4は3T/4の遅延を与えるように制御する。また、3つの光遅延制御部93-1、93-2および93-3は、変調信号発振器11からの変調信号の周波数に応じて位相制御動作点を変化させる。
 6.2)動作
 まず、光抑圧搬送波変調器90は、図7(A)に示す光周波数スペクトルを有する搬送波周波数fの連続波レーザ光を入力したときに、図2(B)に示すようにf+(2n-1)f(nは整数)の周波数成分を有する光波を生成する。
 光遅延制御部93-2の出力光波は、図2(B)に示すスペクトルを有するが、f+(4n-1)f(nは整数)の周波数成分の位相がπだけ反転する。したがって、光抑圧搬送波変調器90の出力光波と光遅延制御部93-2の出力光波を合波すると、互いに位相がπだけ異なる周波数成分は相殺されるため、図7(B)に示すようにf+(4n+1)fの周波数成分が含まれる。
 同様に、2つの光遅延制御部93-3および93-4の出力光波を合波した光波は、図7B)に示される周波数成分f+(4n+1)fを有するが、そのうちf+(8n-3)fの周波数成分の位相がπだけ反転する。
 したがって、光抑圧搬送波変調器90の出力光波と光遅延制御部93-2の出力光波とを合波した光波と、光波光遅延制御部93-3および93-4の出力光波を合波した光波とを合波すると、互いに位相がπだけ異なる周波数成分が相殺されるため、光周波数変換装置108の出力光波には、図7(D)に示すように、f+(8n+1)fの周波数成分が含まれる。
 6.3)効果
 上述したように、本実施例による光周波数変換装置108は、上述した第4実施例と同様に、入力光波を任意の周波数偏移量だけ偏移させることができ、さらに光周波数変換装置108の出力光波のf-3fとf+5fの周波数成分を除去することが可能となる。また、変調信号発振器11の動作周波数fを動的に変化させることにより、入力光波の周波数を動的に偏移させることが可能である。
 7.第6実施例
 本発明の第6実施例による光周波数変換装置は3つ以上の光干渉計を用いることにより更に高精度な光周波数変換を実現する。ここでは、説明を煩雑にしないために、搬送波周波数fの入力光波を周波数fの変調信号を用いて光周波数f+fの出力光波に変換し、さらに出力光波に含まれる3次、5次、7次および9次の高調波成分を同時に除去する場合を一例として説明する。
 7.1)構成
 図14において、本実施例による光周波数変換装置118は、光抑圧搬送波変調器90と、変調信号発振器11と、4つの光干渉計95-1~95-4と、3つの光位相制御部12-2~12-4と、3つの光遅延制御部93-2~93-4と、から構成される。
 光抑圧搬送波変調器90は入力光波を変調信号発振器11から変調信号に従って変調し、その出力光波は4分岐され、第1の分岐光は光干渉計95-1を通して、第2の分岐光は光位相制御部12-2、光遅延制御部93-2および光干渉計95-2を通して、第3の分岐光は光位相制御部12-3、光遅延制御部93-3および光干渉計95-3を通して、第4の分岐光は光位相制御部12-4、光遅延制御部93-4および光干渉計95-4を通して合波され出力光波として出力される。
 光位相制御部12-2は、光抑圧搬送波変調器90の出力光波を基準として、-π/4の位相差となるように、光位相制御部12-3は-π/8の位相差となるように、光位相制御部12-4は-3π/8の位相差となるように、それぞれ制御する。
 光遅延制御部93-2は、光抑圧搬送波変調器90の出力光波を基準として、T/4の遅延が付くように、光遅延制御手段93-3はT/8の遅延が付くように、光遅延制御部93-4は3T/8の遅延が付くように、それぞれ制御する。
 7.2)動作
 光干渉計95-1と、光位相制御部12-2、光遅延制御手段93-2および光干渉計95-2とから構成される第1の光回路と、上述の第5実施例における光周波数変換装置108とは等価であるため、出力光波は図7(D)に示すようにf+(8n+1)f(nは整数)の周波数成分を含む。
 一方、光位相制御部12-3、光遅延制御部93-3および光干渉計95-3と光位相制御部12-4、光遅延制御部93-4および光干渉計95-4とから構成される第2の光回路の出力光波には、図7(D)に示すようなf+(8n+1)fの周波数成分が含まれるが、そのうちf+(16n-7)fの周波数成分の位相がπ反転する。
 したがって、第1の光回路の出力光波と第2の光回路の出力光波とを合波すると、互いに位相がπだけ異なる周波数成分は相殺され、光周波数変換装置118の出力光波にはf+(16n+1)fの周波数成分が含まれる。
 7.3)効果
 上述したように、本実施例による光周波数変換装置118は、上述した第4実施例および第5実施例と同様の効果を有すると共に、所望の精度に応じて、並列に配置する光干渉計の個数を増やし、各光干渉計の入力光波の位相を調整する光位相制御部と、光干渉計の入力光波の遅延量を制御する光遅延制御部とを備え、光高調波除去部の出力光波に含まれる周波数成分のうち、除去すべき高調波成分の位相をπだけ反転することにより、干渉によって任意の高調波を除去することが可能である。
 すなわち、4つの光干渉計95-1~95-4を利用することにより、3次、5次、7次および9次の高調波成分を除去することができ、光バンドパスフィルタを用いることなく、入力光波の周波数fを任意の偏移量だけ偏移させることが可能となる。しかも、図7(D)に示すように、入力光波がデータ信号である場合も、他の高調波成分との重なり合いによる出力データ信号の劣化を生じない。
 8.付記
 上述した実施例の一部あるいは全部は、以下の付記のようにも記載されうるが、これらに限定されるものではない。
 (付記1)
 光単側波帯変調方式を利用して入力光波を変調信号に従って周波数変換し出力光波を生成する光周波数変換装置であって、
 前記変調信号から位相が異なる複数の個別変調信号をそれぞれ生成する複数の位相制御手段と、
 前記入力光波を前記複数の個別変調信号に従ってそれぞれ変調を行う複数の光単側波帯変調手段と、
 前記複数の光単側波帯変調手段からそれぞれ出力された複数の光波にそれぞれ光位相差を与える複数の光位相制御手段と、
 前記複数の光位相制御手段から出力される複数の光波を合波して前記出力光波を生成する合波手段と、
 を有し、前記出力光波の目的周波数以外の所定高調波成分が除去されるように前記複数の個別変調信号の位相差と前記光位相差とが設定されることを特徴とする光周波数変換装置。
(付記2)
 前記複数の光位相制御手段からそれぞれ出力される前記複数の光波は同一の周波数スペクトルを有し、かつ前記所定高調波成分について位相差がπとなるように前記複数の個別変調信号の位相差と前記光位相差とが設定されることを特徴とする付記1に記載の光周波数変換装置。
(付記3)
 前記複数の位相制御手段の個数をn、前記入力光波の周波数をf、前記変調信号の周波数をf、前記所定高調波成分の周波数をf+(2m+1)fとした時、nはlog(m)以上の最小の整数であり、前記複数の個別変調信号の位相差および前記光位相差はそれぞれπ/2k+1および-π/2k+1(k=1,…,n-1)であることを特徴とする付記1または2に記載の光周波数変換装置。
(付記4)
 前記入力光波は周波数fの光信号であり、前記変調信号は周波数fが変化する電気信号であり、前記出力光波は前記目的周波数がf+fあるいはf-fの光信号であることを特徴とする付記1-3の1項に記載の光周波数変換装置。
(付記5)
 前記複数の位相制御手段は前記変調信号の周波数fに依存して位相制御動作点を変化させることを特徴とする付記4に記載の光周波数変換装置。
S (付記6)
 前記複数の光単側波帯変調手段の各々は、当該光単側波帯変調手段に対する個別変調信号が未入力である状態で当該光単側波帯変調手段の出力光波の光強度が最小になるようにバイアス設定されることを特徴とする付記1-5のいずれか1項に記載の光周波数変換装置。
(付記7)
 側波帯変調方式を利用して入力光波を変調信号に従って周波数変換し出力光波を生成する光周波数変換方法であって、
 複数の位相制御手段が前記変調信号から位相が異なる複数の個別変調信号をそれぞれ生成し、
 複数の光単側波帯変調手段が前記複数の個別変調信号に従って前記入力光波をそれぞれ変調し、
 複数の光位相制御手段が前記複数の光単側波帯変調手段からそれぞれ出力された複数の光波にそれぞれ光位相差を与え、
 合波手段が前記複数の光位相制御手段から出力される複数の光波を合波して前記出力光波を生成し、
 前記複数の個別変調信号の位相差および前記光位相差は前記出力光波の目的周波数以外の所定高調波成分が除去されるように設定されることを特徴とする光周波数変換方法。
(付記8)
 前記複数の光位相制御手段からそれぞれ出力される前記複数の光波は同一の周波数スペクトルを有し、かつ前記所定高調波成分について位相差がπとなるように前記複数の個別変調信号の位相差と前記光位相差とが設定されることを特徴とする付記7に記載の光周波数変換方法。
(付記9)
 前記複数の位相制御手段の個数をn、前記入力光波の周波数をf、前記変調信号の周波数をf、前記所定高調波成分の周波数をf+(2m+1)fとした時、nはlog(m)以上の最小の整数であり、前記複数の個別変調信号の位相差および前記光位相差はそれぞれπ/2k+1および-π/2k+1(k=1,…,n-1)であることを特徴とする付記7または8に記載の光周波数変換装置。
(付記10)
 前記入力光波は周波数fの光信号であり、前記変調信号は周波数fが変化する電気信号であり、前記出力光波は前記目的周波数がf+fあるいはf-fの光信号であることを特徴とする付記7-9のいずれか1項に記載の光周波数変換方法。
(付記11)
 前記複数の位相制御手段は前記変調信号の周波数fに依存して位相制御動作点を変化させることを特徴とする付記10に記載の光周波数変換方法。
(付記12)
 前記複数の光単側波帯変調手段の各々は、当該光単側波帯変調手段に対する個別変調信号が未入力である状態で当該光単側波帯変調手段の出力光波の光強度が最小になるようにバイアス設定されることを特徴とする付記7-11のいずれか1項に記載の光周波数変換方法。
(付記13)
 側波帯変調方式を利用して入力光波を変調信号に従って周波数変換して送信する光送信機であって、
 前記変調信号から位相が異なる複数の個別変調信号をそれぞれ生成する複数の位相制御手段と、
 前記入力光信号を前記複数の個別変調信号に従ってそれぞれ変調する複数の光単側波帯変調手段と、
 前記複数の光単側波帯変調手段からそれぞれ出力された複数の光信号にそれぞれ光位相差を与える複数の光位相制御手段と、
 前記複数の光位相制御手段から出力される複数の光信号を合波して送信光信号を生成する合波手段と、
 を有し、前記送信光信号の目的周波数以外の所定高調波成分が除去されるように前記複数の個別変調信号の位相差と前記光位相差とが設定されることを特徴とする光送信機。
(付記14)
 前記複数の光位相制御手段からそれぞれ出力される前記複数の光信号は同一の周波数スペクトルを有し、かつ前記所定高調波成分について位相差がπとなるように前記複数の個別変調信号の位相差と前記光位相差とが設定されることを特徴とする付記13に記載の光送信機。
(付記15)
 前記複数の位相制御手段の個数をn、前記入力光波の周波数をf、前記変調信号の周波数をf、前記所定高調波成分の周波数をf+(2m+1)fとした時、nはlog(m)以上の最小の整数であり、前記複数の個別変調信号の位相差および前記光位相差はそれぞれπ/2k+1および-π/2k+1(k=1,…,n-1)であることを特徴とする付記13または14に記載の光周波数変換装置。
(付記16)
 前記入力光信号は周波数fの光信号であり、前記変調信号は周波数fが変化する電気信号であり、前記送信光信号は前記目的周波数がf+fあるいはf-fの光信号であることを特徴とする付記13-15のいずれか1項に記載の光送信機。
(付記17)
 前記複数の位相制御手段は前記変調信号の周波数fに依存して位相制御動作点を変化させることを特徴とする付記16に記載の光送信機。
(付記18)
 前記複数の光単側波帯変調手段の各々は、当該光単側波帯変調手段に対する個別変調信号が未入力である状態で当該光単側波帯変調手段の出力光波の光強度が最小になるようにバイアス設定されることを特徴とする付記13-17のいずれか1項に記載の光送信機。
(付記19)
 側波帯変調方式を利用して入力光波を変調信号に従って周波数変換し出力光波を生成する光周波数変換装置であって、
 前記入力光波を前記変調信号に従って変調する光抑圧搬送波変調手段と、
 前記光抑圧搬送波変調手段から出力された光波を入力し、その光波の複数の分岐光をそれぞれ伝播させる複数の導波路を有し、前記複数の導波路を伝播した複数の分岐光を合波して前記出力光波を生成する第1光干渉手段と、
 前記第1光干渉手段の前記複数の導波路には、第1光位相制御手段、第1光遅延制御手段および第2光干渉手段が設けられ、前記第2光干渉手段は2つの導波路を有し、一方の導波路には第2光位相制御手段および第2光遅延制御手段が設けられ、
 前記出力光波の目的周波数以外の所定高調波成分が除去されるように、前記複数の導波路の各々に設けられた前記第1光位相制御手段および前記第1光遅延制御手段の光位相差および光遅延量がそれぞれ設定されることを特徴とする光周波数変換装置。
(付記20)
 前記複数の導波路からそれぞれ出力される光波は同一の周波数スペクトルを有し、かつ前記所定高調波成分について位相差がπとなるように前記第1光位相制御手段および前記第1光遅延制御手段の光位相差および光遅延量がそれぞれ設定されることを特徴とする付記19に記載の光周波数変換装置。
(付記21)
 前記入力光波は周波数fの光信号であり、前記変調信号は周波数fが変化する電気信号であり、前記出力光波は前記目的周波数がf+fあるいはf-fの光信号であることを特徴とする付記19または20に記載の光周波数変換装置。
(付記22)
 前記第1光遅延制御手段および前記第2光遅延制御手段は前記変調信号の周波数fに依存して位相制御動作点を変化させることを特徴とする付記21に記載の光周波数変換装置。
(付記23)
 側波帯変調方式を利用して入力光波を変調信号に従って周波数変換し出力光波を生成する光周波数変換方法であって、
 光抑圧搬送波変調手段が前記入力光波を前記変調信号に従って変調し、
 第1光干渉手段が前記光抑圧搬送波変調手段から出力された光波を入力し、その光波の複数の分岐光を複数の導波路を通してそれぞれ伝播させ、前記複数の導波路を伝播した複数の分岐光を合波して前記出力光波を生成し、
 前記第1光干渉手段の前記複数の導波路には、第1光位相制御手段、第1光遅延制御手段および第2光干渉手段が設けられ、前記第2光干渉手段は2つの導波路を有し、一方の導波路には第2光位相制御手段および第2光遅延制御手段が設けられ、
 前記複数の導波路の各々に設けられた前記第1光位相制御手段および前記第1光遅延制御手段の光位相差および光遅延量が、前記出力光波の目的周波数以外の所定高調波成分が除去されるように、それぞれ設定される、
 ことを特徴とする光周波数変換方法。
(付記24)
 前記複数の導波路からそれぞれ出力される光波は同一の周波数スペクトルを有し、かつ前記所定高調波成分について位相差がπとなるように前記第1光位相制御手段および前記第1光遅延制御手段の光位相差および光遅延量がそれぞれ設定されることを特徴とする付記23に記載の光周波数変換方法。
(付記25)
 前記入力光波は周波数fの光信号であり、前記変調信号は周波数fが変化する電気信号であり、前記出力光波は前記目的周波数がf+fあるいはf-fの光信号であることを特徴とする付記23または24に記載の光周波数変換方法。
(付記26)
 前記第1光遅延制御手段および前記第2光遅延制御手段は前記変調信号の周波数fに依存して位相制御動作点を変化させることを特徴とする付記25に記載の光周波数変換方法。
 本発明は光送信器などに用いられる光周波数変換器に利用可能である。
10 光単側波帯変調器
11 変調信号発振器
12、201 光位相制御部
13 光移相量制御部
14、101 位相制御部
16 所望バイアス点制御部
30 共振型光強度変調器
32 光移相器
68、78、88、98、108、118 光周波数変換装置
80 高調波除去部
90 光抑圧搬送波変調器
93 光遅延制御部
95 光干渉計

Claims (9)

  1.  側波帯変調方式を利用して入力光波を変調信号に従って周波数変換し出力光波を生成する光周波数変換装置であって、
     前記変調信号から位相が異なる複数の個別変調信号をそれぞれ生成する複数の位相制御手段と、
     前記入力光波を前記複数の個別変調信号に従ってそれぞれ変調する複数の光単側波帯変調手段と、
     前記複数の光単側波帯変調手段からそれぞれ出力された複数の光波にそれぞれ光位相差を与える複数の光位相制御手段と、
     前記複数の光位相制御手段から出力される複数の光波を合波して前記出力光波を生成する合波手段と、
     を有し、前記出力光波の目的周波数以外の所定高調波成分が除去されるように前記複数の個別変調信号の位相差と前記光位相差とが設定されることを特徴とする光周波数変換装置。
  2.  前記複数の光位相制御手段からそれぞれ出力される前記複数の光波は同一の周波数スペクトルを有し、かつ前記所定高調波成分について位相差がπとなるように前記複数の個別変調信号の位相差と前記光位相差とが設定されることを特徴とする請求項1に記載の光周波数変換装置。
  3.  前記複数の位相制御手段の個数をn、前記入力光波の周波数をf、前記変調信号の周波数をf、前記所定高調波成分の周波数をf+(2m+1)fとした時、nはlog(m)以上の最小の整数であり、前記複数の個別変調信号の位相差および前記光位相差はそれぞれπ/2k+1および-π/2k+1(k=1,…,n-1)であることを特徴とする付記1または2に記載の光周波数変換装置。
  4.  前記入力光波は周波数fの光信号であり、前記変調信号は周波数fが変化する電気信号であり、前記出力光波は前記目的周波数がf+fあるいはf-fの光信号であることを特徴とする請求項1-3のいずれか1項に記載の光周波数変換装置。
  5.  前記複数の位相制御手段は前記変調信号の周波数fに依存して位相制御動作点を変化させることを特徴とする請求項4に記載の光周波数変換装置。
  6.  前記複数の光単側波帯変調手段の各々は、当該光単側波帯変調手段に対する個別変調信号が未入力である状態で当該光単側波帯変調手段の出力光波の光強度が最小になるようにバイアス設定されることを特徴とする請求項1-5のいずれか1項に記載の光周波数変換装置。
  7.  側波帯変調方式を利用して入力光波を変調信号に従って周波数変換し出力光波を生成する光周波数変換方法であって、
     複数の位相制御手段が変調信号から位相が異なる複数の個別変調信号をそれぞれ生成し、
     複数の光単側波帯変調手段が前記複数の個別変調信号に従って前記入力光波をそれぞれ変調し、
     複数の光位相制御手段が前記複数の光単側波帯変調手段からそれぞれ出力された複数の光波にそれぞれ光位相差を与え、
     合波手段が前記複数の光位相制御手段から出力される複数の光波を合波して前記出力光波を生成し、
     前記複数の個別変調信号の位相差および前記光位相差は前記出力光波の目的周波数以外の所定高調波成分が除去されるように設定されることを特徴とする光周波数変換方法。
  8.  変調信号に従って入力光信号を周波数変換して送信する光送信機であって、
     前記変調信号から位相が異なる複数の個別変調信号をそれぞれ生成する複数の位相制御手段と、
     前記入力光信号を前記複数の個別変調信号に従ってそれぞれ変調する複数の光単側波帯変調手段と、
     前記複数の光単側波帯変調手段からそれぞれ出力された複数の光信号にそれぞれ光位相差を与える複数の光位相制御手段と、
     前記複数の光位相制御手段から出力される複数の光信号を合波して送信光信号を生成する合波手段と、
     を有し、前記送信光信号の目的周波数以外の所定高調波成分が除去されるように前記複数の個別変調信号の位相差と前記光位相差とが設定されることを特徴とする光送信機。
  9.  側波帯変調方式を利用して入力光波を変調信号に従って周波数変換し出力光波を生成する光周波数変換装置であって、
     前記入力光波を前記変調信号に従って変調する光抑圧搬送波変調手段と、
     前記光抑圧搬送波変調手段から出力された光波を入力し、その光波の複数の分岐光をそれぞれ伝播させる複数の導波路を有し、前記複数の導波路を伝播した複数の分岐光を合波して前記出力光波を生成する第1光干渉手段と、
     前記第1光干渉手段の前記複数の導波路には、第1光位相制御手段、第1光遅延制御手段および第2光干渉手段が設けられ、前記第2光干渉手段は2つの導波路を有し、一方の導波路には第2光位相制御手段および第2光遅延制御手段が設けられ、
     前記出力光波の目的周波数以外の所定高調波成分が除去されるように、前記複数の導波路の各々に設けられた前記第1光位相制御手段および前記第1光遅延制御手段の光位相差および光遅延量がそれぞれ設定されることを特徴とする光周波数変換装置。
PCT/JP2012/002769 2011-04-28 2012-04-23 光周波数変換方法および装置 WO2012147324A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/114,003 US9280032B2 (en) 2011-04-28 2012-04-23 Method and device for converting optical frequency
JP2013511921A JPWO2012147324A1 (ja) 2011-04-28 2012-04-23 光周波数変換方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011100427 2011-04-28
JP2011-100427 2011-04-28

Publications (1)

Publication Number Publication Date
WO2012147324A1 true WO2012147324A1 (ja) 2012-11-01

Family

ID=47071855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002769 WO2012147324A1 (ja) 2011-04-28 2012-04-23 光周波数変換方法および装置

Country Status (3)

Country Link
US (1) US9280032B2 (ja)
JP (1) JPWO2012147324A1 (ja)
WO (1) WO2012147324A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105486331A (zh) * 2015-12-01 2016-04-13 哈尔滨工程大学 一种具有高精度的光学信号相位解调系统及解调方法
WO2021084729A1 (ja) * 2019-11-01 2021-05-06 三菱電機株式会社 逓倍波発生器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096663A (ja) * 2012-11-08 2014-05-22 Fujitsu Ltd 光伝送システム、光送信器、光受信器及び光伝送方法
EP2933935A1 (en) * 2014-04-14 2015-10-21 Alcatel Lucent A method of modulating light in a telecommunication network
CN107959222B (zh) * 2016-10-16 2024-03-19 华中科技大学 一种基于边带抑制的原子干涉仪光源
JP7323042B2 (ja) * 2020-02-20 2023-08-08 日本電信電話株式会社 光iq変調器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265959A (ja) * 2004-03-16 2005-09-29 National Institute Of Information & Communication Technology 光ssb変調器又は光fsk変調器のバイアス調整方法
WO2006080168A1 (ja) * 2005-01-25 2006-08-03 Matsushita Electric Industrial Co., Ltd. 光送信装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6211996B1 (en) * 1999-05-19 2001-04-03 Matsushita Electric Industrial Co., Ltd. Angle modulator
JP4041882B2 (ja) 2002-08-22 2008-02-06 独立行政法人情報通信研究機構 低雑音光周波数変換装置
JP4922594B2 (ja) * 2005-05-23 2012-04-25 富士通株式会社 光送信装置、光受信装置、およびそれらを含む光通信システム
JP4465458B2 (ja) * 2005-09-20 2010-05-19 独立行政法人情報通信研究機構 位相制御光fsk変調器
TWI311855B (en) * 2006-04-17 2009-07-01 Via Tech Inc Harmonic-rejection modulating devices and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265959A (ja) * 2004-03-16 2005-09-29 National Institute Of Information & Communication Technology 光ssb変調器又は光fsk変調器のバイアス調整方法
WO2006080168A1 (ja) * 2005-01-25 2006-08-03 Matsushita Electric Industrial Co., Ltd. 光送信装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105486331A (zh) * 2015-12-01 2016-04-13 哈尔滨工程大学 一种具有高精度的光学信号相位解调系统及解调方法
WO2021084729A1 (ja) * 2019-11-01 2021-05-06 三菱電機株式会社 逓倍波発生器

Also Published As

Publication number Publication date
US20140043673A1 (en) 2014-02-13
US9280032B2 (en) 2016-03-08
JPWO2012147324A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
WO2012147324A1 (ja) 光周波数変換方法および装置
JP4646048B2 (ja) 単一側波帯信号光の生成方法および単一側波帯信号光の生成回路
JP6001105B2 (ja) 超広帯域の帯域幅を有する波形を合成する方法及び装置
EP2148457A2 (en) Optical transmitter
CN110350981B (zh) 一种基于光子学的宽带调频微波信号生成方法及装置
WO2009008370A1 (ja) 光変調回路および光伝送システム
Sagues et al. Multitap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering
US8705980B2 (en) Optical modulation device and optical modulation method
JP4889661B2 (ja) 光マルチキャリア発生装置およびそれを用いた光マルチキャリア送信装置
JP4494347B2 (ja) 光変調装置
CN111010172B (zh) 一种频率可调谐倍频三角波、方波的产生装置及方法
CN111193548A (zh) 一种基于循环移频的微波光子波形产生装置及方法
Al-Shareefi et al. A study in OCS millimeter-wave generation using two parallel DD-MZMs
JP2002244090A (ja) 片側側波帯抑圧光被変調波生成装置
WO2017077612A1 (ja) レーザレーダ装置
JP3851949B2 (ja) 低雑音光周波数変換装置
JP5303323B2 (ja) 可変光マルチキャリア発生装置及び可変光マルチキャリア送信装置及び可変マルチキャリア発生方法
CN105933071A (zh) 一种产生多种倍频毫米波的方法和装置
Zhang et al. Optical frequency comb generation based on dual-parallel Mach–Zehnder modulator and intensity modulator with RF frequency multiplication circuit
JP2004085602A (ja) 低雑音光周波数変換装置
JP5193708B2 (ja) 光周波数変調装置
CN113485035B (zh) 一种基于电光调制器的高平坦度光频梳产生装置
JP2007011125A (ja) 光周波数シフト方法及び光周波数シフタ
WO2022244115A1 (ja) 光変調回路およびデジタル信号処理方法
Ma et al. Optical sinc-shaped Nyquist pulse generation by using of an intensity modulator in a Sagnac Loop

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776945

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14114003

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013511921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776945

Country of ref document: EP

Kind code of ref document: A1