JP4860862B2 - 縦波およびたわみ波によって励振される圧電駆動装置 - Google Patents

縦波およびたわみ波によって励振される圧電駆動装置 Download PDF

Info

Publication number
JP4860862B2
JP4860862B2 JP2001517492A JP2001517492A JP4860862B2 JP 4860862 B2 JP4860862 B2 JP 4860862B2 JP 2001517492 A JP2001517492 A JP 2001517492A JP 2001517492 A JP2001517492 A JP 2001517492A JP 4860862 B2 JP4860862 B2 JP 4860862B2
Authority
JP
Japan
Prior art keywords
piezoelectric
driving device
transducer
friction
electrode group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001517492A
Other languages
English (en)
Other versions
JP2003507999A (ja
Inventor
ウィシュネフスキー ラディマール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PI Ceramic GmbH Keramische Technologien und Bauelemente
Original Assignee
PI Ceramic GmbH Keramische Technologien und Bauelemente
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PI Ceramic GmbH Keramische Technologien und Bauelemente filed Critical PI Ceramic GmbH Keramische Technologien und Bauelemente
Publication of JP2003507999A publication Critical patent/JP2003507999A/ja
Application granted granted Critical
Publication of JP4860862B2 publication Critical patent/JP4860862B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/202Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement
    • H10N30/2023Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement having polygonal or rectangular shape
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/003Driving devices, e.g. vibrators using longitudinal or radial modes combined with bending modes
    • H02N2/004Rectangular vibrators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/005Mechanical details, e.g. housings
    • H02N2/0065Friction interface
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • H02N2/065Large signal circuits, e.g. final stages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【0001】
[発明の分野]
本発明は、特に連続的または段階的に実行可能な回転および並進運動を引き起こす圧電駆動装置に関する。
【0002】
[発明の背景]
発明のモータは、高精度な並進運動が要求される他の数多くの装置と同様に、ロボット技術の自動化システムにおいて、顕微鏡的テーブル用の駆動装置として採用され、光学およびレーザシステムにおける各種の座標テーブルの位置微調整を行うことができる。
【0003】
定常的音響波を使用する圧電モータまたは駆動装置は、長年知られており、例えば、欧州特許第0475752号および米国特許第5,596,241に例示されている。
しかし、このモータは、その導波管の最小長は、6λから10λの倍数でなければならないため、それらを小型駆動装置として製造することができないという欠点を有する。さらに、その製造は、複雑であると共に高価である。
【0004】
また、米国特許第5,453,653号に示す定常音波を利用する線形圧電モータも知られている。このモータは、比較的小型であり、その製造方法は単純である。長短の辺を有し、その小さい表面の一方に摩擦要素を配置した一枚板状の圧電オシレータが、このモータの駆動要素として使用される。
【0005】
圧電オシレータの大きい面の一方には、第1と第2の電極群が設けてある。また、オシレータの他方の面には、連続式電極が配置してある。第1と第2の電極群は、それぞれ、金属化圧電セラミック面からなる、対角線上に配置した二つの等しい寸法の長方形領域を形成する。音響振動の電気励振源は、電圧を連続式電極および第1と第2の電極群に送る。
それぞれの電極群がオシレータの長手の軸に対し、非対称形状であるため、電源電圧により、オシレータの板に非対称な変形が発生する。これにより、摩擦要素が閉鎖された通路上で移動する。どちらの電極群に電圧がかけられているかにより、摩擦要素が前方向、あるいは、逆方向に移動する。摩擦要素が動くことにより、圧縮要素も動く。モータの操作周波数は、オシレータの長さに沿った、オシレータのたわみ振動の第2発振モードの共振周波数に近い。
【0006】
上記のモータは、音響振動を生成するためには、オシレータの板が非対称的に変形しなければならないという欠点がある。上記のモータは、オシレータの機能面上の点とは実質的に異なる軌道を有する。よって、これらの点の振動速度の接線成分が実質的に異なる。後者により、被駆動要素の表面が駆動要素の機能面と真に接触している位置に大きく依存する被駆動要素の移動速度が不安定になる。
さらに、振動速度の接線成分が大きく異なると、摩擦要素の機能面における磨耗の程度が異なる。これにより、モータの動作がより長い操作期間にわたり不安定となる。
【0007】
速度が0.1m/秒を超えると、周知のモータの被駆動要素の移動速度の不均一性が約50%に達する。移動速度がそれより低いと、すなわち0.01m/秒を下回ると、不正確性が80%以上に及ぶ。こうした非均一性は、モータの適用範囲を狭め、特に非常に低速な範囲においては、電気速度安定器の構造を複雑化する。
【0008】
さらに、このモータは、起振器の電圧が高くなければならない。
【0009】
米国特許第5,453,653号によるモータの構造においては、圧電オシレータの表面に備える摩擦要素は一つのみである。これにより、オシレータは機械的に不安定となり、被駆動要素の移動速度が速いと、位置決めの精度が下がり、複雑な構造になる。
【0010】
さらに、摩擦要素を一つしか設けていないと、一台の圧電オシレータのみでモータが生成可能な最大の力が制限される。周知のモータの場合、この力は約10 Nとなり、多くの適用範囲において不十分である。また、数台のオシレータを結合して使用すると、被駆動要素の位置決め精度が制限される。
【0011】
[発明の概要]
よって、本発明の目的は、圧電駆動装置またはモータのそれぞれの仕様を定めることにあり、高低速における被駆動要素の均一な移動速度を含み、より長い操作期間にわたりモータの操作安定性をより高い状態に保つとともに、低い励振電圧ですみ、大きい力を生成し、安定したオシレータ構造を有し、オシレータの共振周波数を追跡するための手段もしくは装置を含む。
【0012】
この目的は、少なくとも適した実施形態と開発形態を含む従属クレームを備えた有効な独立クレームに記載の主題によって達成される。
【0013】
本発明によると、第1及び第2の電極群一体型板状圧電トランスデューサまたは(圧電板の)オシレータを構成する圧電セラミックの二つの大きい相互に反対側の金属化面のそれぞれの上に同一構成の二つの領域を形成する。これら二つの電極群は、それぞれ、圧電オシレータまたはプレートの長手の辺に沿って伝搬する非連続音響定常波の少なくとも一つの独立した発生器を形成する。第1の電極群は、音響縦波発生器を形成し、第2の電極群は音響たわみ波発生器を形成する。音響振動の電気励振源は、2チャンネル電力増幅器の信号入力端子に電気的に接続されている基本発生器から取り入れる。2チャンネル電力増幅器の各出力端子は、それに対応する電極群と電気的に接続してある。
【0014】
提案したモータによると、第1の電極群が少なくとも一つの独立した定常音響縦波発生器を形成すると共に、第2の電極群が少なくとも一つの独立した定常音響たわみ波の発生器を形成していることと、これらは、相互間の接続は存在しないように、すなわち、これらの発生器で生成された波は互いに影響を及ぼさないように設計されていることから、圧電オシレータ内を伝搬する波は、純粋な縦波と純粋なたわみ波となる。これらの波はオシレータの本体の純粋な楕円形の軌道へと進み、事実上、定常たわみ波の所定の最大値を示す領域においては、振幅がほとんど変わらない同一形状となる。
【0015】
これにより、摩擦要素の機能面上のこれらの領域において、事実上同じ速度による点の移動が可能となる。よって、これらの要素は、すべて共に被駆動要素の低速および高速動作両方において安定性をかなり増すことができる。
【0016】
電極群の形状は、音響縦波およびたわみ波が圧電板の全体を充填するように形成する。これにより、起振器電圧が有利に低下する。
【0017】
提案のモータによると、第1の電極群は、一体型板状圧電オシレータを構成する圧電セラミックの金属化表面上に長方形領域を形成する。ここでは、高さは幅と同じである。圧電セラミックの二つの大きい相互に反対側の金属化面の一方及び他方の上の第1の電極群の間に位置する圧電セラミックは、第1の電極群に対して法線(垂直)方向に配向する一方向に分極化している。第1の電極群は、オシレータ内を伝搬する定常音響縦波の振動波節の箇所に位置している。このような音響縦波の発生器を形成する電極構造により、オシレータ板内で純粋な縦波を生成することができるようになる。
【0018】
第2の電極群は、一体型板状圧電オシレータを構成する圧電セラミックの金属化表面上に長方形領域を形成する。ここでも、高さは幅と同じである。圧電セラミックの二つの大きい相互に反対側の金属化面の一方及び他方の上の第2の電極群の間に位置する圧電セラミックは、第2の電極群に対して法線方向(すなわち電極に垂直な方向)に配向する一方向に分極化している。ここで、第2の電極群は、オシレータ内を伝搬する定常音響たわみ波が最大振動速度となる箇所に位置しており、その長手の軸に沿って、絶縁領域または間隔を有する。
【0019】
このような電極構造により、純粋なたわみ波を生成することができる。
【0020】
提案の駆動装置のもう一つの実施形態では、第2の電極は、一体型板状圧電オシレータを構成する圧電セラミックの金属化表面上に長方形領域を形成し、高さは幅と等しい。圧電セラミックの二つの大きい相互に反対側の金属化面の一方及び他方の上の第2の電極群の間に位置する圧電セラミックは、第2の電極群に垂直に配向し且つオシレータの長手方向の軸に対して異方向に対称に分極化している。ここでも、第2の電極群は、オシレータ内を伝搬する定常音響たわみ波が最大振動速度となる箇所に配置されている。
【0021】
このような電極構造により、音響たわみ波の発生器の電極を、その間に絶縁間隔を設けない設計とし、その効率を上げることができる。
【0022】
本発明の駆動装置の解決手段により、摩擦要素は、例えば酸化物セラミック、金属セラミックなどのような硬質の耐磨耗物質、または他の材料との組み合わせの薄い片に形成する。摩擦要素は、板状圧電オシレータまたはオシレータ板それぞれを伝搬する音響たわみ波の最大振動速度の領域に位置する。
【0023】
上記の実施形態によると、機能面における振動速度の接線方向の成分が同質となる。
【0024】
また、別のタイプのモータでは、摩擦要素が、一体型板状圧電オシレータを構成する圧電セラミックの上記金属化面よりも小さい下面に配置してある。このモータの設計例では、モータが生成する力または力の伝達をそれぞれ改善できる、いくつかの摩擦要素を適用することができる。付加的構造を有するタイプのモータにおいては、摩擦要素を一体型板状圧電オシレータを構成する圧電セラミックの上記金属化面よりも小さい側面に配置している。これにより、被駆動要素が最大許容速度に達する。
【0025】
モータの摩擦要素は、二層構造とすることもできる。
この構造の第1の層は、被駆動要素の摩擦層と比較して摩擦係数が高い硬質の耐摩耗性材料から形成する。第2の層は、硬質の多孔質材料から形成する。
これら両方の層は、焼結工程において接着によって結合される。第1と第2の層の境界領域に、いわゆる遷移層を形成することもできる。
【0026】
このような設計のモータでは、温度係数の異なる圧電セラミックと摩擦要素の材料の組み合わせが可能であり、摩擦要素と圧電セラミック面の接着結合の強度を上げることができる。
【0027】
摩擦要素は、可融鉛含有ガラスを用いて圧電セラミック及び摩擦要素の材料の両方と化学反応を起こす特殊な接着剤によって圧電セラミックの表面と結合させることもできる。
【0028】
提案する駆動装置によると、摩擦要素を圧電セラミックの表面上に溶融したガラス板によって形成することもできる。ガラスは、硬質の耐磨耗材料、例えば、酸化アルミニウム、酸化ジルコニウム、炭化珪素、炭化チタン、またはそれに類似した材料またはその混合などのような粉体と混合する。ガラス板は、音響たわみ波の振動速度が所定の最大値となる箇所に位置させる。この種の設計では、摩擦要素と被駆動要素の摩擦層が最大許容摩擦係数となる。
【0029】
上記の駆動装置では、一体型板状圧電トランスデューサ結合した少なくとも一つの固定要素を備え、当該固定要素は、外部からの押圧により一体型板状圧電トランスデューサを位置決め、即ち、機械的に固定する。
【0030】
種々様々な設計において、これらの固定要素は、四角柱、三角柱、半円柱、円錐、ピラミッド型(角錐)若しくは半球要素として設計することができ、また、輪郭溝(非貫通溝)を有する角柱要素の形状や、輪郭孔(陥凹部若しくは貫通孔)を有する円柱要素の形状としてもよい。要素は、オシレータ内を伝搬する定常音響縦波の振動波節の箇所に位置し、圧電セラミックの表面と堅固に接続してある。これにより、高い位置決め精度が達成される。固定要素は、弾性係数が、板状圧電オシレータの圧電セラミックの弾性係数とほぼ同じもしくはわずかに高い材料から形成することができる。よって、全体的な強度が上がる。
【0031】
固定要素は、また、弾性係数が圧電セラミックの弾性係数より大幅に小さい材料から形成することもできる。これにより、音響オシレータの固定要素と圧電オシレータとの間の振動の結果得られる力が低減する。
【0032】
ある種のモータにおいては、固定要素と板状圧電トランスデューサを同じタイプの圧電セラミックから製造することができる。
【0033】
また、固定要素またはその一部を多孔質酸化物セラミックまたは別の多孔質材料から製造することによって、固定要素と圧電板の表面との間を良好に接着結合させることもできる。
【0034】
ここで請求する駆動装置によると、固定要素は、屈曲共振板としても設計可能である。この設計においては、固定要素によって圧電板の共振システムに導入された減衰が最小となり、圧電オシレータのエネルギー喪失が減る。
【0035】
固定要素は、有機接着剤によって圧電セラミックの表結合することもできる。これにより、異なる温度係数の材料を使用することができる。また、固定要素は、圧電セラミック及び固定要素の材料と化学反応を起こす材料によって圧電セラミックの表面に結合することもできる。
【0036】
駆動装置のもう一つの実施形態によると、被駆動要素の摩擦層を、オシレータ内で伝搬する音響定常縦波の波長の半分の少なくとも5分の1の厚みを有する酸化物セラミック層の形状に形成されている。これにより、好ましくない振動を抑制することができる。
【0037】
さらにもう一つの種類では、被駆動要素の、摩擦層より下に位置する部分である本体の厚みは、オシレータ内を伝搬する定常音響たわみ波の波長の2分の1より大きい。この場合、被駆動要素本体内で音響たわみ波が発生することをほぼ完全に阻止することができる。
【0038】
このように、被駆動要素の本体とその摩擦層との間に、有機材料若しくは硬質の多孔質材料又はそれらの組み合わせのいずれかから形成した減衰層を配置することが可能である。これにより、音響結合を減らし、摩擦層と被駆動要素の膨張係数が異なることによる熱の不整合性を排除することができる。
【0039】
本発明によると、被駆動要素は、長方形、多角形又は円形断面を有する棒状の形状に設計することができる。しかし、管状の形状に形成することもできる。
【0040】
被駆動要素は、断面長方形の棒状の硬質材料から形成し、その本体の中に等間隔の減衰溝を形成してもよい。
【0041】
被駆動要素が硬質の多孔質材料から形成されている場合、この要素の本体内で発達する縦波は、有利に減衰される。同様に、被駆動要素を形成する多孔質材料の孔を吸音充填材料で充填して縦波およびたわみ波の両方を減衰できるようにすることもできる。
【0042】
さらに別の構造のモータでは、圧電駆動装置が、一つの平面状の被駆動要素と、被駆動要素の一方及び他方の表面上に形成された二層の摩擦層と、被駆動要素を介して相互に対向して配置された二つの一体型板状圧電トランスデューサと、を備えている。ここでは、支持軸受けを省略できる。
【0043】
さらに別の構造では、圧電駆動装置が、一つの円筒状又は円柱状の被駆動要素と、被駆動要素の表面上に形成された少なくとも一つの摩擦層と、被駆動要素の中心軸に平行に摩擦層に対向して配置された少なくとも三つの一体型板状圧電トランスデューサと、を備えている構成とすることも考えられる。この場合、被駆動要素は、その長手の軸に垂直な面において非常に安定する。
【0044】
モータのある実施形態では、被駆動装置は、回転体として設計されているものとするとよい。その場合、被駆動装置は、回転ガーダ内に配置されているものとするとよい。また、一体型圧電トランスデューサの固定要素は、固定ガーダ内に配置してもよい。
【0045】
もう一つの構成では、板状圧電オシレータまたはトランスデューサの固定要素を平坦なバネ式ガーダに配置し、被駆動要素の横方向の変位を補正し、動きの均一性を高めることもできる。
【0046】
制御側については、基本発生器の出力端子を移相器を介して2チャンネル電力増幅器の信号入力端子の一つに接続してある。これにより、摩擦要素の作業面における点の軌道の形状を最適に調整することができる。
【0047】
さらにもう一つの種類の回路技術において、2チャンネル電力増幅器の各チャンネルを、二つのハーフブリッジ増幅器と移相制御装置を含む二つの起振器チャンネルを有するブリッジ電力増幅器として形成している。これにより、被駆動要素の移動速度を電子制御することができる。
【0048】
さらに、信号レベルトランスデューサと制御信号に対するゼロ信号検出器を設け、モータを単極電圧で駆動することができる。
【0049】
圧電トランスデューサ、すなわち板状オシレータに機械的応力の縦成分を検出するセンサを設けることができる。このセンサは、板状圧電オシレータを伝搬する縦波の速度波節の一つに配設する。これにより、縦方向の応力を判断してオシレータ内を伝搬する縦波の振動速度を求める。
【0050】
さらに、板状圧電トランスデューサに機械的応力の曲げ成分を検出するセンサを設けることができる。このセンサは、トランスデューサ内を伝搬するたわみ波の振動速度が最大値となる位置の一つに位置させる。
【0051】
発生器、すなわち、音響振動の電気励振源に機械的応力の成分のセンサから発せられる信号を判定するための位相検出器を備えることができる。この位相検出器は、支持体と位相測定入力端子および出力端子と、電気周波数制御用入力端子を有する基本発生器を含む。位相検出器の支持入力端子は、電極群のうちの一つと電気接続してある。位相検出器の測定入力端子は、機械的応力を検出するためのセンサと電気接続してある。位相検出器の出力端子は、基本発生器の励振周波数の電気制御用入力端子と電気接続してある。このような回路構成により、一つの発振型圧電トランスデューサの機械的共振周波数を正確に追跡して、モータの操作を安定させることができる。
【0052】
図面と同様に実施形態を参照しながら本発明をさらに詳しく説明する。
【0053】
[実施形態]
図1は、2/5モードのオシレータを有する駆動装置の略図である。
【0054】
駆動装置は、上に摩擦層2を有する被駆動要素1と駆動要素5を有する。被駆動要素1は、ハウジング3および軸受け4の上に配置されている。
【0055】
駆動要素5は、厚みD、長さLの一枚板状の圧電オシレータまたはトランスデューサ6を備えている。DとLは、厚みHとは等しくない。
【0056】
駆動要素5は、二つの大きい面7と、小さい下面9と小さい上面10と二つの小さい側面11からなる4つの小さい面8を有している。
【0057】
第1および第2の電極群12,13が大きい面7の上に配設してある。図示の例では、二つの摩擦要素14が下面9に配置してある。二つの固定要素15が上面10に位置している。
【0058】
摩擦要素14は、被駆動要素1の摩擦層2と弾性摩擦接触している。
【0059】
要素15は圧力装置16によってハウジング3に対するその定位置に位置している。
【0060】
第1の電極群12は、圧電オシレータ6の長さLに沿って伝搬する定常音響縦波の2つの共位相発生器17を形成する。
第2の電極群13は、圧電オシレータの長さLに沿って伝搬する定常音響たわみ波の発生器18を形成する。
【0061】
図1以下の図において、発生器17および18は、破線に沿って互いの境界を定めている。電極群12および13それぞれは、電気接続端子19,20または21,22をそれぞれ有する。
【0062】
回路面においては、振動生成源23および基本発生器24が設けられている。基本発生器24の出力端25は、2チャンネルの電力増幅器28の信号入力端子26および27に電気接続してある。電力増幅器28の第1のチャンネル29は、非反転出力端子30と反転出力端子31を有する。電力増幅器28の第2のチャンネルは、非反転出力端子33と反転出力端子34を有する。
第1のチャンネル29は、その出力端子30および31において電圧Uf1を発生する。第2のチャンネルは、その出力端子33および34で電圧Uf2を発生する。
【0063】
図2は、周波数の目盛りfにおける板状トランスデューサ6の共振曲線の位置を表している。ここで、
Aは、発信機の変形振幅である。
Almaxは、縦方向の変形の最大振幅である。
Agmaxは、曲げ変形の最大振幅である。
f01とf0gは、縦およびたわみ振動の共振周波数である。
Δfは、オシレータ6の共振周波数の許容さに相当する周波数帯域
曲線35は、オシレータ6の縦振動の共振特性である。
曲線36は、オシレータ6のたわみ振動の共振特性である。
【0064】
図3は、2/5モードのオシレータに従った圧電性トランスデューサを示しており、オシレータの上面9および下面10の長さLに沿った振動速度V1(位置37)とVg(位置38)の分布図を示す。振動速度37,38の分布図には、振動速度波節39と振動速度の波腹または最大値40も含まれる。
【0065】
図3の41には、線a、b、c、dに位置する点の軌道を示している。これらは、オシレータ6から発せられるたわみ波の振動速度最大値に相当する。
42,43,44,45,46の位置では、下面9上に位置する摩擦要素14の可能な位置を示している。摩擦要素は、オシレータ6内を伝搬する定常音響たわみ波の振動速度の最大値47領域に配設される。
そこでは、点の楕円軌道は、同じ回転である。上のオシレータの表面10上では、二つの固定要素15が、定常音響縦波の波節39の領域に取り付けてある。
【0066】
図4から8図は、考えられる第1と第2の電極群12,13の形状を示す。図4において8は、2/5モードのオシレータ6における電極の間の圧電セラミックの分極方向および各電極群内における電極の電気接続の概略図を示す。
【0067】
図4に示す電極群12の形状は、電極48および49によって形成され、第2の電極群13は、電極50および51を含む。
電極48,49および50,51の高さheは、板状圧電トランスデューサ6の幅Hとほぼ同じである。
【0068】
第2の電極群13の電極50および51は、絶縁中間領域52を含む。これらは、オシレータ6の長手の軸に沿って配置されており、電極を二つの等しい領域53、54に分割している。
【0069】
この種の電極形状では、オシレータ6の圧電セラミックは、均一に電極に垂直に分極してある(法線方向)。図4では、分極を矢印で示している。電極48,49および50,51は、その一部53,54と同様にコンダクタ55、56および57、58によって接続してある。
【0070】
図4に示す電極群の形状を有するオシレータ6とその接続概略図には、二つの縦波発生器17と、一つのたわみ波発生器18が含まれている。縦波発生器17は、第1の電極群12の電極48および49によって形成され、たわみ波発生器18は第2の電極群13の電極50,51によって形成される。
【0071】
電極48,49およびそれらで形成した発生器は、オシレータ6内を伝搬する発達中の定常音響縦波の振動速度節点39の領域に位置するように配置する(図3参照)。
電極50,51と発生器18は、オシレータ6内を伝搬する定常音響たわみ波の振動最大速度の領域40に位置するように配置する(図3参照)。
【0072】
図5に示す形状を有するオシレータ6は、二つの縦波発生器17と三つのたわみ波発生器18を含む。
【0073】
発生器17は、対向する電極48,49によって形成され、発生器18は、対向する電極50,51によって形成される。
オシレータ6は、矢印で図6に示す電極の間に配設した圧電セラミックを所定の一方向に分極化させなければならない。
【0074】
図6に示す図5による解決策とは異なる電極群の形状において、電極53および54を接続する線を、薄い電流伝導片59,60としてオシレータ6の表面上に形成する。
【0075】
図7に示すような電極群の形状では、第2の電極群13の電極50,51の間に位置する圧電セラミックが様々な方向に分極化されているのがわかる。ここで、図7に詳細に示すように、圧電セラミックは、電極面50,51に対する法線方向であって、オシレータの長手の軸に対して逆方向に分極化されている。
【0076】
図8に示す電極群形状では、音響縦波を生成するよう、様々な方向に分極化されている圧電セラミックを二つの基本発生器17それぞれに付設して、第1の電極群12の電極48,49の間に配設する。これにより、電流伝導片61によってオシレータの大きい面それぞれの上の電極48,49を接続することができるようになる。
【0077】
図9は、縦型の1/2様式のオシレータ6を示す。これは、一つの縦波発生器17と二つのたわみ波発生器18を備えている。これら二つの発生器は、図に示すように、破線に沿って互いの境界を定めている。
【0078】
位置62,63は、オシレータの長さLおよびオシレータの表面の下側9および上側10に沿った、振動速度Vl、Vgの分布を示す図である。また位置64では、aおよびbの線に沿った点の軌道を示している。これらの線は、オシレータ6内で伝搬するたわみ波の振動速度の最大値47に相当する。また、位置65,66は、オシレータ6の下側表面上における摩擦要素14の可能な設置位置を示す。この種の設計においては、固定要素15はオシレータ6の上側表面10の中心に位置する。また、縦波およびたわみ波の波節39もそこで発達する。この種の設計では、固定要素15をたわみ波の二つの外側の波節の位置、すなわち、線mに沿って配置することも可能である。しかし、この場合は、固定要素は、縦方向には自由に移動できるようにしておかなければならない。
【0079】
図10は、横型の板状1/2様式のオシレータ6を示す。これは、一つの縦波発生器17と一つのたわみ波発生器18を備えている。位置67,68は、オシレータの長さLに沿った振動速度VlおよびVgの分布図である。また、位置67,68は、オシレータ6の側面11の中心線k上の点の軌道を示す。図10に示す横型のオシレータは、縦型1/2モードのオシレータとは、摩擦要素14がその側面11の一方に固定されている点が異なる。このような設計のオシレータ6の固定要素15は、オシレータの表面の下側9および上側10の中心か、もしくは、定常音響たわみ波の二つの外側の波節の領域における線Mに沿った平面上のいずれかに配置する。
【0080】
図11から15には、1/2モードのオシレータにおける、様々な形状の電極群と分極化の方向を示す。このような設計は、縦型のオシレータおよび横型のオシレータの両方に採用することができる。
【0081】
図11によるオシレータは、二つのたわみ波発生器18と一つの縦波発生器17を有している(図9も参照のこと)。これらの発生器は、二つの電極群12,13によって形成されている。また、これらは、電極50,51および48,49を備えている。電極50,51は、中間領域52を絶縁することによって二つの領域53,54に分割されている。電極50,51の同等の領域53,54は、互いに導体71,72によって接続してある。図11に示す電極群の形状を有するオシレータ6においては、圧電セラミックの一方向分極化は、電極に対して矢印で示すような法線方向となっている。
【0082】
図12に示す電極群の形状を有するオシレータは、図9および11に示すように、二つのたわみ波発生器18と一つの縦波発生器17を有する。発生器18,17は、電極50,51と48,49によって形成される。オシレータ6の片側に配置された電極50,51は、薄い電流伝導片73によって接続する。上記の種類とは逆に、オシレータ6では、矢印で示すように、電極50と51の間に配設された圧電セラミックの電極を法線方向に二方向分極化しなければならない。
【0083】
図13によるオシレータは、一つの縦波発生器17と一つのたわみ波発生器18を有する(図10も参照のこと)。図14に示すオシレータは、前のものと同様の構成であるが、第2の電極群13の電極間に配設された圧電セラミックの電極50および51を法線の方向に二方向分極している。これらは、定常音響たわみ波の発生器18を形成する。
【0084】
図15によるオシレータでは、二つのたわみ波発生器18と一つの縦波発生器17を図9に示すトランスデューサと同様に設けている。発生器17は、電極48、49を含む第1の電極群12によって形成される。二つの発生器18は、電極50,51と電極領域53,54を含む二つの電極群13と、絶縁中間領域とによって形成される。
【0085】
図16は、ここで提案する、非駆動要素を並進移動させる縦型の1/2モードのオシレータを駆動要素5として採用しているモータの一つの設計例を示す。このモータの設計では、図11から15に示す電極グループ形状を有するオシレータ6を使用することができる。図17および18に示す圧電モータでは、オシレータ6を固定要素15により横方向に固定していると同時にオシレータ6の摩擦要素14が摩擦層を押圧している。特に二つの屈曲共振板76が設けられている。共振板76は、オシレータ6の小さい面8上に、線mに沿ってモータのハウジングの位置でしっかりと固定されている。各共振板76は、外側77および内側78フレームを有しており、分離する中間間隙79と二つの接続ブリッジ80を備えている。
【0086】
図19から21は、3/6様式のオシレータ6の電極形状を示す。o,p,q,rで示す電極はすべて、同じ符号で示す接続線21,22,19,20で接続してある。図19に示す電極形状を有するオシレータ6は、定常縦波用の発生器を三つと定常たわみ波用の発生器を四つ有している。また、図20に示す電極形状を有するオシレータ6は、定常縦波用の発生器を二つと、定常たわみ波用の発生器を一つ有している。
【0087】
図21に示す電極形状を有するオシレータ6は、定常縦波用の発生器を一つと定常たわみ波用の発生器を二つ有している。
【0088】
図19の位置81,82は、3/6様式のオシレータ6の線Lに沿った振動速度VlおよびVgの分布を示す線図である。83は、オシレータ6の上面の固定要素15の位置を示す。位置85は、オシレータ6の下面9において、定常たわみ波が振動最大速度を示す箇所47に位置する点の軌道を示す。また、位置85は、オシレータ6の表面9上における可能な摩擦要素14の位置を示す。
【0089】
図22は、3/6モードのオシレータを有する圧電モータの一つの設計例を示す。電極群の形状は、図19,20,21に示すような形状でよい。このモータのオシレータ6は、4つの摩擦要素14と三つの固定要素15を有する。固定要素15は、定常縦波の3つの波節39に配設される。これらは、圧力装置16によってハウジングに対するその定位置に位置決めされる。圧力装置16には、薄板バネ66と二つの固定キャリア86を設けてもよい。
【0090】
また、位置87、88、89、90、91、92は、可能な摩擦要素14とその実施形態を示す。摩擦要素14は、例えば、酸化物セラミック、金属セラミック、またはその他の材料との組み合わせなどの、硬質の耐磨耗材料からなる薄片の形状に製造されている。さらに、酸化アルミニウム、酸化ジルコニウム、炭化珪素系の材料またはそれに類似した材料も採用可能である。
【0091】
摩擦要素14は様々な実施形態が可能である。例えば、長方形、正方形、台形、半球形などの断面を有する形状の要素とすることができる(図23参照)。
【0092】
摩擦要素の幅trは、オシレータ6内を伝搬する音響たわみ波の波長の半分であるλt/2の約5分の1でなければならない。
【0093】
摩擦要素14の高さhrは、ほとんどの場合オシレータの厚みDと等しい。摩擦要素14は、オシレータ6の下側面上の、例えば図3,9,および19に示す音響定常たわみ波の振動速度47が所定の最大値となる点にしっかりと固定する。
【0094】
また、摩擦要素は、図10に示すように、オシレータ6の側面8上に固定することもできる。
【0095】
摩擦要素14は、単層構造(図23の87,88、89,90)でも、2または3層構造(図23の位置91)でもよい。
【0096】
摩擦要素14の2層構造では、第1の層87は、被駆動要素1の摩擦層2に比較して摩擦係数が高い耐磨耗材料から形成する。第2の層88は、硬質多孔質材料の部品から構成する。第1の層87と第2の層88の境界領域において、第3の中間遷移層89が調整されて形成することができるように、両層87,88は、焼結工程で接着して結合する。
【0097】
摩擦要素14は、有機エポキシ樹脂の接着剤によってオシレータ6の小さい面10および11上に固定することができる。結合は、例えば可融鉛有ガラスによる化学反応によって行ってもよい。
【0098】
上記の場合、摩擦要素14の第2の層88の孔を結合物質で充填して最適な接触状態を作ることもできる。
【0099】
さらに、摩擦要素14を板状圧電オシレータの表面10および11上で溶融したガラス片として形成することもできる。ガラスは、酸化アルミニウム、酸化ジルコニウム、炭化珪素、炭化チタン、あるいはそれに類似した材料またはその混合など、硬質耐磨耗材料の粉体と混合する。
【0100】
図24の89,98には、可能な固定要素の実施形態を示す。これらは、角柱89、三角柱90、半円柱91、または円錐要素92、ピラミッド形状(角錐)の要素93、半球要素94、輪郭溝(非貫通溝)を有する長方形要素95,96、輪郭孔(陥凹部又は貫通孔)を有する円柱要素97,98、あるいは、それらに類似した要素として設計可能である。
【0101】
図24に示す固定要素15は、弾性係数が、トランスデューサ6の圧電セラミックの弾性係数と等しいか、もしくはわずかに高い材料から形成することができる。また、弾性係数がトランスデューサの圧電セラミックの弾性係数よりかなり低い材料から形成することもできる。しかし、これらの要素は、トランスデューサの圧電セラミックと同じタイプのものから形成することも可能である。固定要素15または、オシレータ6の表面と接触するその一部を、多孔酸化セラミックまたは他の多孔質の材料から構成することができる。
【0102】
図25の位置90,92は、屈曲可能な共振板76の形式の固定要素15を示している。90は共振板76を横型に、そして91は縦型に固定したところを示す。92では、屈曲共振板76を、二つのフレームがオシレータ6を囲むように設計してあるところを示している。
【0103】
提案する駆動装置では、固定要素15は、オシレータまたはトランスデューサ6の表面9に堅固に結合してある。この結合は、エポキシ樹脂系などの有機接着剤によって行うことができる。さらに、オシレータの表面10との結合は、圧電セラミックと固定要素15の材料との間で化学接触が起きるような物質を利用して行うこともできる。
【0104】
図26は、摩擦層2が、板状オシレータ内で伝搬する定常縦波の波長λlの半分の少なくとも5分の1である厚みtfの酸化物セラミック層として形成されている提案のモータの一つの設計例を示す。このような圧電モータでは、被駆動要素2の本体の厚みtlは、トランスデューサ6内で発達する音響たわみ波長の2分の1λtより大きくてもよい。被駆動要素1とその摩擦層2との間には、吸音材料からなる減衰層74を配置してもよい。
【0105】
図27は、長方形、多角形若しくは円形断面、又は、管形状の断面を有する棒状の形状の被駆動要素の設計例をそれぞれ、93から96に示す。
【0106】
図28の97,98では、本体に減衰溝99またはそれに対応する凹部99が定間隔に設けられている被駆動要素の設計例を示す。
図27または28に示す被駆動要素は、硬質の多孔質材料からなる。孔は、シリコーンまたはゴムなどのような吸音材料で充填することができる。
【0107】
図29/30に示すモータには、二つの対向するトランスデューサ6と2層の摩擦層2が設けられている。これらは、一つの平面上に、且つ、被駆動要素1の反対側に互いに平行に配置されている。
【0108】
このような設計のモータでは、オシレータの半球形要素15を半球形ガーダ100の中に配設する。ガーダ100は、ハウジング3を凹ませて形成する。第2のオシレータ6は、被駆動要素1の摩擦層2に対して摩擦要素14を押し付ける2枚の薄板バネ75の力を受ける円錐形に形成した固定要素15を有している。
【0109】
図31に示す設計では、駆動装置には3つのトランスデューサ6と3層の摩擦層を形成している。これらは、3つの面S1,S2,S3に配置する。
【0110】
図32は、励振源23の単純な実施形態を示す。基本発生器24の出力25は、移相器101を介して2チャンネル電力増幅器28の信号入力端子27または26の一方に接続してある。基本発生器24は、励振周波数102用の制御入力端子を有する。
【0111】
図33は、電気励振用の高度な設計を示す。ここで、電力増幅器28の第1および第2のチャンネル29,32は、直流電圧源Eを有するブリッジ電力増幅器103,104として設計してある。増幅器103,104のそれぞれは、信号位相制御装置114、制御入力端子116、支持電圧入力端子117を設けた励振チャンネル109,110および111,112と位相可変電圧118の出力端子を有する二つの半ブリッジ増幅器105,106、および107,108を備えている。電力増幅器のチャンネル29または32の一方に、励振チャンネルの出力切換えを可能とする制御入力端子120を有する電子切換えスイッチ119を設けることができる。
【0112】
この設計例では、トランスデューサ6の第1の電極群の接続端子19,20は、フィルタ121を介して電力増幅器28の第1のチャンネル29の出力端子30,31と接続する。
また、第2の電極群13の接続端子21,22は、フィルタ122を介して電力増幅気29の第2のチャンネル32の出力端子33,34と接続する。
【0113】
図34は、位相制御装置114の設計例を示す。これには、鋸歯電圧整形部材123、パルス長変調装置124、支持電圧整形器125、および位相可変電圧126用の整形器を備えている。
【0114】
図35は、位相制御装置114の出力端子117,118の電圧間における移相φBと、出力端子116における制御電圧Uφとの依存関係を説明している。破線は、移相の依存関係のもう一つの例を示している。
【0115】
図36は、接続端子19および20または21および22の間の電圧Ueとともに出力端子30または33と地面との間の電圧UB1を示す線図である。127から129は、異なる電圧値Ue1,Ue2,Ue3を割り振られた、異なる値の移相φB1,φB2,φB3を示す。
【0116】
図37は、位相制御装置114の移相φBの電圧Ueに対する依存関係を示し、図38は、被駆動要素1の移動速度Vfの、制御電圧Uφに対する依存関係を示している。
【0117】
図39に示す励振源23は、さらに、制御信号130用の信号レベルトランスデューサを備えている。この例では、制御入力端子131、出力端子132、および制御入力端子134および制御出力端子135を有する制御信号のゼロ信号検出器133を有する。
【0118】
図40は、図39に示す励振源の設計例の電圧のグラフである。このグラフにおいて、位置13のグラフは、制御電圧130の信号レベルトランスデューサの出力端子132における電圧Uφと出力端子131における電圧Urとの間の依存関係を示している。また、位置137のグラフでは、移相角φBと位相制御装置114の制御電圧Urとの間の依存関係を示している。さらに位置138のグラフは、制御信号のゼロ信号検出器133の出力端子における電圧と出力端子134における電圧との間の依存関係を示している。また、139のグラフは、被駆動要素1の移動速度Vfと制御電圧Urとの間の依存関係を示している。
【0119】
図41の位置140は、機械的縦応力の成分を判定するためのセンサ141の設計例を示すものである。センサ141は、0.1から0.3mmの範囲の厚さを有する圧電板142の形状を有する。
板142は、その大きい面上に電極143を有し、その電極143に対して法線方向に分極化している。
【0120】
板の幅tsは、トランスデューサ6からの縦波の波長の半分の約10分の1である。高さhsは、オシレータの幅hと同等もしくはそれより高くてもよい。
【0121】
図41の位置144は、圧電トランスデューサ6上の、位置140の図によるセンサの固定方法を示すものである。センサ141は、トランスデューサ6の大きい面7のうちの一方の、トランスデューサ6内を伝搬するたわみ波の振動速度波節38の1つが位置する箇所に、長手の軸に対して対称に配置する。
板状センサ142は、例えばトランスデューサ6の表面に接着され、定位置に溶接される。
センサの出力端子145は、上側電極143と接続し、出力端子146は、トランスデューサ6と接続する。
【0122】
図42に示す147は、機械的曲げ応力の成分を判定するためのセンサ148を示す。このセンサは、図10に示す縦型のオシレータとともにのみ採用する。センサ自体は、厚みが0.1から0.3mmの間の圧電板149の形状に設計してある。板の高さhsは、オシレータの幅Hと等しい。この板は、連続式電極150をその大きい面上に備えている。板143は、寸法hsに対し、二つの等しい領域151,152に分割してある。
【0123】
これらの領域は、電極の表面に対して法線方向に分割されるが、圧電セラミックは、147において矢印で示すように異なる方向に分極化されている。センサ148は、オシレータ6の大きい面7上における、定常音響たわみ波の振動速度が最大値となる箇所47の1つに、トランスデューサ6の長手の軸に対して対称に配置する(図41、153参照)。センサ148は、センサ141に関して説明したような方法で定位置に位置決めする。
【0124】
図43の位置154は、周波数のセンサ141、148の電極143,150における電圧Usl,Usgに対する依存関係を示す。その最大値UslmaxとUsgmaxは、トランスデューサ6の縦およびたわみ振動の共振周波数(folおよびfog)に相当する。
【0125】
図43の位置155は、センサ141または148の電極143または150における励振電圧Ueと電圧UslまたはUsgの間の移相角φsとの依存関係を示す。この依存関係は、分極化の方向に対するセンサの向きによって異なる。
【0126】
図44は、音響振動23の電気励振源に位相検出器156を設けた回路を示す。また、支持入力端子157と、測定入力端子158および出力端子159も備えている。位相検出器156の支持入力端子157は、第1の電極群12の第1の接続端子20と、あるいは、第2の電極群13の接続端子21と、支持信号整形部材を介して接続してある。測定入力端子158は、センサ141またはセンサ148の接続端子145と信号整形部材161を介して接続してある。位相検出器149の出力端子は、基本発生器24の励振周波数102の制御入力端子と接続してある。この例では、フィルタ121および122は、LC部材162の形状に、そして加算変圧器163を使用するように設計されている。駆動装置は、共通の制御入力端子164を備えている。
【0127】
以上実施形態で述べたモータまたは駆動装置は、定常縦および定常純粋たわみ波に対する圧電トランスデューサの同時独立電気励振に基づいている。第1、第2、第3および第4の様式の縦波を第2、第3、第4、第5、第6、第7の様式のたわみ波と組み合わせることができる例も数多く存在する。
【0128】
様式の組み合わせは、一定であると共に選択した様式の組み合わせに対する圧電セラミックのタイプとは関係なく、トランスデューサ6の長さLと幅Hの比によって決定する。これは、2/5様式のオシレータでは比L/Hを約10に、また1/2様式のオシレータでは約4、そして、3/6様式のオシレータでは約8に指定することができる。最適な比L/Hを選択することによって、縦の振動とたわみ振動の共振周波数は、図2に示すように同一となる。周波数folとfogの間の差が大きすぎると、比L/Hの選択が不十分もしくは不適当であり、モータの操作によくない影響を及ぼす。規則として、上記の周波数の間の差Δfは、1%を超えてはならない。
【0129】
上記のモータでは、音響縦波の励振は、第1の電極群によって形成される少なくとも1つの発生器によって行われる。音響たわみ波の励振は、第2の電極群によって形成される少なくとももう一つの別の発生器によって行われる。電極群は、発生器が電気的にも、機械的にも接続されておらず、よって純粋な縦またはたわみ波を生成することができるような形状とする。純粋なたわみ波という語は、縦成分を含まないということを意味する。また、純粋な縦波は、たわみ成分を含んでいてはならない。両波の摩擦要素に対する作用により楕円動作が生まれる。摩擦要素の機能面の点の軌道は、互いにあまり変わらない。
【0130】
図1に関して述べた駆動装置の例では、波と波の間の必要な時間移相は、トランスデューサの構成によって決まる。図1によるモータは、図4に示す電極群の形状を有する2/5様式のオシレータを備えている。このオシレータでは、第1の電極群12が同位相の縦波発生器17を形成する。これらは、オシレータまたはトランスデューサにおいて第2の様式の音響縦波を生成する。図3の位置37には、オシレータの長さLに沿ったこの波の振動速度の分布図を示している。第2の電極群13は、オシレータまたはトランスデューサ6で第5の様式の定常音響たわみ波を生成すたわみ波発生器18を形成する。
【0131】
図3の位置38には、それに対応する分布図を示す。トランスデューサの縦およびたわみ振動はその寸法よりかなり小さいため、波が相互に干渉作用を及ぼすことはない、すなわち、それらの波は、オシレータまたはトランスデューサ6で互いに独立して伝搬する。この同時伝搬により、オシレータ面8のすべての点が楕円経路上を動く。これらの点の軌道の形状および移動の方向は、オシレータの長さに沿って変わり、また、それぞれの波によって引き起こされる個々の点の振動の振幅および位相によって変わる。
【0132】
図3の42には、その大きい面7に垂直に延在する線に沿った定常音響たわみ波の振動最大速度47の箇所における、下面9上に位置する点a,b,c,dの軌道の形状と移動の方向を示す。オシレータの長さLに沿った楕円軌道は、これらの点に配設される。最大値47の領域が摩擦要素12の取り付けに最適であるということがわかっている。これらの領域においては、摩擦要素12のすべての点が事実上、同じ経路に沿って移動する。図3の42および46は、可能な摩擦要素14の取り付け位置を示しており、これらは、所定の最大値47に相当する。
【0133】
下面9上の点の楕円移動により、そこに位置する摩擦要素14が楕円移動を行う。摩擦要素が被駆動要素の摩擦層2と対応する弾性接触するため、被駆動要素1が対応する一方向動作を行う。トランスデューサ6が被駆動要素の方向と反対方向に変位しないよう、少なくとも一つの固定要素15を備える。これらの固定要素15は、定常音響縦波の振動速度波節39の領域に配設される。領域39において、トランスデューサ6の振動振幅が小さいため、最低限の損失ですむ。
図5および6に示す2/5様式のオシレータの電極群12および13の形状の例は、発生器17および18の数とたわみ波の生成において異なる。
【0134】
図9は、縦型の1/2様式のオシレータまたはトランスデューサ6を示す。この型では、図16にも示すように、トランスデューサ6は、摩擦層2に沿って配置されている。図10に示す横型の1/2様式のオシレータでは、摩擦要素14がオシレータの小さい横面の中央に配設されている。オシレータまたはトランスデューサ6は、図17および18に示すように摩擦層2を横切るようにまたは垂直に配置される。
【0135】
上記両モータにおいて、縦波の第1の様式とたわみ波の第2の様式は、発生器17および18によってトランスデューサ6内で生成される。これらの波の伝搬により、摩擦要素14が希望の楕円運動を行い、それにより被駆動要素が一方向動作を行う。
【0136】
1/2様式のオシレータの電極群12および13の形状の例を図11から15に示す。また、図19から21は、3/6様式のオシレータの電極群の形状の例を示しており、図22は、これらのトランスデューサまたはオシレータを備えたモータの例を示している。これらモータは、下面9に、図19の85に示すような4つの摩擦要素14を備えている。図示したモータの例では、トランスデューサ6は、三つの固定要素15を備えており、よってその機械的安定性が改善されている。
【0137】
この駆動装置またはモータでは、発振トランスデューサ6から被駆動要素1へのエネルギー伝達は、摩擦要素14と摩擦層2との間の摩擦接触によって行われる。図23を参照するとわかるように、2層または3層の摩擦要素14を多孔層18とともに使用することによって摩擦要素の幅hrに対する楕円軌道の差を補正することができるようになる。これは、多孔層が摩擦要素14の横方向の変形成分をかなり低減させるという事実によるものである。幅trの軌道の高い同質性および均一性を得るためには、図23の位置87,89,90に示すような細長い摩擦要素を有利に使用する。
【0138】
幅広い摩擦要素を使用することによって高い引っ張り力を伝達することができる。広い摩擦要素14を使用すると、幅trは、オシレータまたはトランスデューサ6内で伝搬する音響たわみ波の波長の半分λt/2の5分の1でなければならない。
【0139】
被駆動要素1の本体で、好ましくない音響たわみ波が生成されないようにするため、非駆動要素1の本体の厚み1は、板状トランスデューサ内を伝搬する音響たわみ波の波長の半分λ/2より大きくなければならない。摩擦層2に対する被駆動要素1の音響絶縁を改善するには、被駆動要素1の本体とその摩擦層2との間に吸音材からなる減衰中間層74を配置することもできる。この層により、温度膨張率の差による摩擦層2と被駆動要素1の熱の不和合性を排除することもできる。減衰層74は、軟質の有機材料、例えばポリマーフィルムからなるもの、または多孔アルミニウムのような多孔材から形成されたものなどから製造することができる。硬質材料を軟質の有機材料と組み合わせることも考えられる。
【0140】
駆動装置の適用可能範囲を広げるため、非駆動要素は長方形、多角形、または円形断面を有する棒または管の形状に設計することができる。
【0141】
少なくとも3つの圧電トランスデューサと、互いに平行であって図30に示すようにS1,S2、およびS3のうちの少なくとも1つに配置された少なくとも3層の摩擦層を有する設計のモータでは、被駆動要素1は、長手の軸に垂直な面においては、機械的に非常に安定している。回転動作を起こさせるには、被駆動要素は、回転体として製造し、図17および18からわかるように回転キャリア内に載置する。位置決め精度を増すためには、トランスデューサ6の固定要素を図30に示すように剛性のガーダ100に載置することもできる。ここで、トランスデューサ6は、モータのハウジング3に対して長手方向に絶対的に堅固に定位置に位置させる。
【0142】
図32以降を参照しながら、駆動装置またはモータを操作するための回路構成の実施形態の機能の態様に関し以下に説明する。
【0143】
図32には、音響振動の生成の単純な例を示しており、ここでは移相器101を備えている。この移相器は、電圧Uf1とUf2の間の移相の微調整に使用している。このような修正は、摩擦要素14の軌道を最適化するためのある場合において必要となる。さらに、基本発生器24は、励振器の周波数を制御するための入力端子を備えている。制御入力端子により、非駆動要素の移動速度を変化させることができる。
【0144】
図33の回路構成では、基本発生器24がトランスデューサの縦振動の共振周波数f10の2倍に等しい周波数の方形波電圧Ugを出す。この電圧は、位相制御装置114の入力端子115にかかり、そこで部材123によって鋸歯電圧に整形される。この鋸歯電圧は、パルス幅変調器124に達する。位相制御装置の制御入力端子を兼ねるパルス幅変調器124の入力端子116にはさらに制御電圧Uφがかかる。パルス変調器124は、部材123からの鋸歯電圧を整形してパルス幅が入力端子116にかかる制御電圧Uφに比例する方形波電圧に整形する。この電圧は、フリップフロップとして設計した、パルス幅変調電圧の前縁および後縁に反応する整形部材125および126に到達する。
【0145】
よって、位相制御装置114の出力端子117,118では対称な方形波パルスとなる。その周波数は、トランスデューサの縦振動の周波数f10と等しく、その移相φbは、電圧Uφに比例する。制御電圧と移相φbの依存関係を図35に示す。
【0146】
出力端子117,118の方形波電圧は、さらに、駆動装置113に進み、ハーフブリッジ増幅器105,106および107,108に進む。ハーフブリッジ増幅器105,106および107,108の出力端子30,33および31,34では方形波電圧Ub1およびUb2が生成される。それらの移相φbは、制御電圧Uφに比例する。電圧Ub1とUb2との間の移相φbにより、これらの電圧がフリッジ増幅器103,104の付加にかかり、従って、トランスデューサの第1と第2の電極群にかかる時間が決定する。
【0147】
電圧Ub1およびUb2は、フィルタ121,122を介してトランスデューサ6の第1と第2の電極群12,13の接続端子19,20,および21,22に到達する。フィルタ121,122は、これらの電圧によって生まれた振動の第1の調波のみを通過させる。接続端子19,20と21,22の間では、トランスデューサの縦振動の共振周波数f10と等しい周波数および移相φbに比例する振幅の正弦波電圧Ueが発生する。図36は、電圧振幅Ueと移相φbの依存関係のタイムチャートを示す。被駆動要素1の移動速度Vfが電圧Ueに比例するので、制御電圧Uφと反比例して、位相相制御装置114の入力端子116にかかる。
【0148】
電子スイッチ119の切換えにより、トランスデューサ6の第1と第2の電極群12および13の接続端子19,20および21,22の電圧間で180°の移相が起こる。これにより、被駆動要素の移動方向が変わる。
【0149】
図39に示す回路構成では、制御電圧Urは、信号レベルトランスデューサ130の入力端子131とゼロ信号検出器133の入力端子134にかかる。トランスデューサ130は、その出力端子132における電圧Uφとその入力端子131の制御電圧Urとの間に二重の依存関係を有している。この依存関係を図40の136に示す。位置137を見ると、電圧Urが通過すると、図40の138で説明しているようにゼロ信号検出器133が半値側に切り替わる。ゼロ信号検出器の切り替えにより、被駆動要素の動きが反対方向に変わる。その結果表れる被駆動要素1の移動速度Vfと制御電圧Urとの依存関係を図40の139に示す。非駆動要素1のゼロ速度は、制御電圧Urの約半分に相当する。
【0150】
図44に示すモータ操作用の回路の例では、一定の移相を使ってモータの作動点の周波数を安定させる。この目的のため、機械応力成分センサ141または148が接続端子146,145に供給される正弦波電圧を出し、さらに整形器161へ出す。この電圧は、方形波分布曲線を描くように、整形器161によって増幅されると共に制限される。こうして整形された電圧は、位相検出器156の測定入力端子158に到達する。整形器160によって信号変換された、トランスデューサ6を励振する電圧が位相検出器156の支持入力端子157にかかる。位相検出器156は、入力端子157と158における電圧間の移相の偏差に比例する誤電圧を出す。この、位相検出器156の出力端子159からの誤電圧が入力端子102に到達して基本発生器24の搬送周波数を電気制御する。
【0151】
この装置は、不安定化値が足りないので、誤電圧は、ゼロとなり、基本発生器は、トランスデューサの縦振動の共振周波数f10の2倍の周波数を生成する。移相は、+90°または−90°である。
【0152】
不安定化要素の影響により、初期値からのオシレータ共振周波数の偏差につながり、それによって移相が変わる。後者により、位相検出器156の出力端子159における誤電圧が生成される。この誤電圧は、移相が再び+90°または−90°となるように基本発生器の周波数を変更する。基本発生器の励振器の周波数は、トランスデューサ6の縦波の共振周波数の2倍という新しい値となる。
【0153】
よって、装置は、常に基本生成期の励振器の周波数をトランスデューサ6の縦振動の共振周波数と等しく保つことができる。よって、この回路構成は、機械的負荷や温度の変動があってもオシレータの共振周波数を一定に保つことができる。制御入力端子164には、被駆動要素の移動速度を一定に保つための電気安定化装置を接続することができる。
【0154】
発明のモータをテストした結果、オシレータの共振周波数を一定に保つための電子装置を備えた寸法が60x6x3mmの2/5モードのオシレータでは、非駆動要素の速度の不均一性が、移動速度0.01m/秒で5から最高で10%の範囲内であった。また、0.1m/秒より高速では、速度の不変性の不均一性が2%以内である。電子安定化装置を採用すると、1μm/秒の移動速度における均一性は、2から3%の偏差に保持される。こうした安定性は、10,000時間を越えるモータの全操作期間にわたって維持できた。目的の駆動装置の実施形態は、20〜150Vの範囲の励振器電圧ですでに操作状態となる。寸法が70x18.5x6mmの縦型1/2様式のオシレータと二つの摩擦要素を有するモータでのテストでは、約52Nの力が生成された。
【符号の説明】
1 被駆動要素
2 摩擦層
3 ハウジング
4 軸受け
5 駆動要素
6 オシレータまたはトランスデューサ
7 大きい面
8 小さい面
9 下面
10 上面
11 小さい側面
12 第1の電極群
13 第2の電極群
14 摩擦要素
15 固定要素
16 圧力装置
17 縦波;縦波発生器
18 たわみ波;たわみ波発生器
19,29,21,22 電気接続端子
23 振動;励振源
24 基本発生器
25 出力端子
26,27 信号入力端子
28 電力増幅器
29 第1のチャンネル
30 非反転出力端子
31 反転出力端子
32 第2のチャンネル
33 非反転出力端子
34 反転出力端子
35,36 曲線
37,38 振動速度
39 振動速度波節
40 振動速度波腹または最大値
41,42,43,44,45,46 位置
47 所定の最大値
48,49 電極
50,51 電極
52 絶縁中間領域
53,54 領域
55,56;57,58 コンダクタ
59,60 電流導伝片
61 電流導伝片
62,63 位置
64 位置
65,66 位置
71,72 コンダクタ
73 電流導伝片
74 減衰層
75 薄板バネ
76 共振板
77 外側フレーム
78 内側フレーム
79 中間間隙
80 ブリッジ
81,82 位置
83 位置
85 位置
86 ガーダ
87,88,89,90,91,92 位置
87 第1の層
88 第2の層
89 遷移層
89 角柱
90 三角柱
89−98 位置
91 半円柱
92 円錐要素
93 角柱要素
94 半球要素
95,96 輪郭溝付き長方形要素
97,98 輪郭孔付き円形要素
90−92 位置
93−96 位置
97,98 位置
99 減衰溝または凹部
100 ガーダ
101 移相器
102 励振周波数
103,104 増幅器
105,106;107,108 ハーフブリッジ増幅器
109,110;111,122 励振チャンネル
114 信号位相制御装置
116 制御入力端子
117 支持電圧入力端子
118 出力端子
119 電子切換えスイッチ
120 制御入力装置
121 フィルタ
122 フィルタ
123 鋸歯電圧整形部材
124 パルス長変調器
125 支持電圧整形器
126 位相可変電圧用整形器
129−129 位置
130 信号レベルトランスデューサ
131 制御入力端子
132 出力端子
133 ゼロ信号検出器
134 制御入力装置
135 制御出力装置
136 位置
137 位置
138 位置
139 位置
140 位置
141 センサ
142 圧電板
143 電極
144 位置
145 センサ出力
146 出力端子
147 位置
148 センサ
149 圧電板
150 電極
151,152 領域
153 位置
154 位置
155 位置
156 位相検出器
157 支持入力端子
158 測定入力端子
159 出力端子
161 信号整形部材
162 LC部材
163 加算変圧器
164 制御入力端子

Claims (32)

  1. 摩擦層を設けた被駆動要素と、長さが幅と同一でない圧電セラミック並びに前記圧電セラミックの二つの大きい相互に反対側の金属化面上に形成された第1及び第2の電極群を有する駆動要素としての少なくとも一つの一体型板状圧電トランスデューサとを備え、前記圧電セラミックの前記金属化面よりも小さい面のうちの長い方の側面上に前記被駆動要素の前記摩擦層と弾性摩擦接触する少なくとも一つの摩擦要素を備え、さらに、前記第1及び第2の電極群と電気接続が可能な電気生成器を備え、前記第1及び第2の電極群が前記圧電セラミックの前記二つの大きい相互に反対側の金属化面のそれぞれの上に同一構成の二つの領域を形成し、前記第1の電極群が音響縦波生成器であり、前記第2の電極群が音響たわみ波生成器である、圧電駆動装置であって、
    前記第1及び第2の電極群のそれぞれが、前記一体型板状圧電トランスデューサの長手方向に沿って伝搬する定常音響波を発生させる互いに連結されていない少なくとも一つの独立トランスデューサを形成し、
    前記圧電セラミックの前記二つの大きい相互に反対側の金属化面の一方及び他方の上の前記第1の電極群の間に位置し、前記第1の電極群に垂直に配向する一方向に分極化した前記圧電セラミックが、前記一体型板状圧電トランスデューサ内を伝搬する定常音響縦波の振動波節の箇所に位置し、
    前記圧電セラミックの前記二つの大きい相互に反対側の金属化面の一方及び他方の上の前記第2の電極群の間に位置し、前記第2の電極群に垂直に配向する一方向に分極化し又は前記第2の電極群に垂直に配向し且つ前記一体型板状圧電トランスデューサの長手方向の軸に対して異方向に対称に分極化した前記圧電セラミックが、前記一体型板状圧電トランスデューサ内を伝搬する定常音響たわみ波の振動最大速度の箇所に位置し、
    前記第1及び第2の電極群は、前記圧電セラミックの前記二つの大きい相互に反対側の金属化面のそれぞれの上において、前記一体型板状圧電トランスデューサの長手方向に沿った前記金属化面の中心線に関して電気的に線対称の配置構成をそれぞれ有する
    ことを特徴とする圧電駆動装置。
  2. 前記第1の電極群は、高さと幅が等しい前記一体型板状圧電トランスデューサの前記金属化面上の長方形領域を形成することを特徴とする、請求項1に記載の圧電駆動装置。
  3. 前記第2の電極群は、高さと幅が等しい前記一体型板状圧電トランスデューサの前記金属化面上の長方形領域を形成し、
    前記圧電セラミックの前記二つの大きい相互に反対側の金属化面の一方及び他方の上の前記第2の電極群の間に位置し、前記第2の電極群に垂直に配向する一方向に分極化した前記圧電セラミックが、前記一体型板状圧電トランスデューサ内を伝搬する定常音響たわみ波の振動最大速度の箇所に位置し、
    前記第2の電極群は、前記一体型板状圧電トランスデューサの長手方向の軸に沿って絶縁間隔領域を有することを特徴とする、請求項1又は2に記載の圧電駆動装置。
  4. 前記第2の電極群は、高さと幅が等しい前記一体型板状圧電トランスデューサの前記金属化面上の長方形領域を形成し、
    前記圧電セラミックの前記二つの大きい相互に反対側の金属化面の一方及び他方の上の前記第2の電極群の間に位置し、前記第2の電極群に垂直に配向し且つ前記一体型板状圧電トランスデューサの長手方向の軸に対して異方向に対称に分極化した前記圧電セラミックが、前記一体型板状圧電トランスデューサ内を伝搬する定常音響たわみ波の振動最大速度の箇所に位置することを特徴とする、請求項1又は2に記載の圧電駆動装置。
  5. 前記摩擦要素が、硬質の耐摩耗性材料の薄片として設計されていると共に、前記一体型板状圧電トランスデューサ内を伝搬する定常音響たわみ波の振動最大速度となる領域に配置されていることを特徴とする、請求項1乃至4のいずれか一項に記載の圧電駆動装置。
  6. 前記摩擦要素が、前記圧電セラミックの前記金属化面よりも小さい下面に配設されていることを特徴とする、請求項5に記載の圧電駆動装置。
  7. 一つの前記摩擦要素が、前記圧電セラミックの前記金属化面よりも小さい側面のうちの一方に配置されていることを特徴とする、請求項1乃至5のいずれか一項に記載の圧電駆動装置。
  8. 前記摩擦要素が2層又は3層構造であり、当該構造の第1の層は、前記被駆動要素の前記摩擦層と比較すると摩擦係数が高い硬質の耐磨耗物質から形成されており、第2の層は、硬質の多孔材から形成されており、前記第1及び第2の層は焼結によって互いに接合してあり、前記摩擦要素が3層構造である場合、前記第1及び第2の層の間の境界領域に第3の遷移層が前記焼結により形成されていることを特徴とする、請求項1乃至7のいずれか一項に記載の圧電駆動装置。
  9. 前記圧電セラミック及び前記摩擦要素の材料の両方と化学反応を起こす接着剤によって、前記摩擦要素が前記圧電セラミックの表面に接着されていることを特徴とする、請求項1乃至8のいずれか一項に記載の圧電駆動装置。
  10. 前記摩擦要素が前記圧電セラミックの表面に溶融したガラス片として形成されており、当該ガラスは、硬質の耐摩耗性材料の粉体添加物を含むことを特徴とする、請求項1乃至9のいずれか一項に記載の圧電駆動装置。
  11. 前記一体型板状圧電トランスデューサに結合し、外部からの押圧により前記一体型板状圧電トランスデューサを位置決めするための少なくとも一つの固定要素を、前記一体型板状圧電トランスデューサが備えていることを特徴とする、請求項1から10のいずれか一項に記載の圧電駆動装置。
  12. 前記固定要素は、四角柱、三角柱、半円柱、円錐、角錐若しくは半球形要素、又は、非貫通溝を有する角柱要素、又は、陥凹部若しくは貫通孔を有する円柱要素として設計され、前記一体型板状圧電トランスデューサ内を伝搬する定常音響縦波の振動波節の箇所に配置され、前記圧電セラミックの表面と堅固に結合されていることを特徴とする、請求項11に記載の圧電駆動装置。
  13. 前記固定要素は、弾性係数が前記圧電セラミックの弾性係数と同等以上の材料から形成されていることを特徴とする、請求項12に記載の圧電駆動装置。
  14. 前記固定要素は、弾性係数が前記圧電セラミックの弾性係数より小さい材料から形成されていることを特徴とする、請求項12に記載の圧電駆動装置。
  15. 前記固定要素と前記一体型板状圧電トランスデューサとは、同じタイプの前記圧電セラミックから形成されていることを特徴とする、請求項12に記載の圧電駆動装置。
  16. 前記各固定要素又はその一部は、多孔酸化物セラミック又は別の多孔質材料から形成されていることを特徴とする、請求項11乃至15のいずれか一項に記載の圧電駆動装置。
  17. 前記固定要素は、屈曲共振板として設計されていることを特徴とする、請求項11に記載の圧電駆動装置。
  18. 前記固定要素は、有機接着剤によって前記圧電セラミックの表面に結合されていることを特徴とする、請求項11乃至17のいずれか一項に記載の圧電駆動装置。
  19. 前記固定要素は、前記圧電セラミック及び前記固定要素の材料と化学反応を起こす材料によって前記圧電セラミックの表面に結合されていることを特徴とする、請求項11乃至17のいずれか一項に記載の圧電駆動装置。
  20. 前記被駆動要素の前記摩擦層が、少なくとも、前記一体型板状圧電トランスデューサ内を伝搬する定常音響縦波の波長の半分(λ/2)の5分の1の厚みを有する酸化物セラミック層であることを特徴とする、請求項1に記載の圧電駆動装置。
  21. 前記被駆動要素の、前記摩擦層より下に位置する本体の厚みが、前記一体型板状圧電トランスデューサ内を伝搬する定常音響たわみ波の波長の2分の1(λ/2)より大きいことを特徴とする、請求項1又は20に記載の圧電駆動装置。
  22. 減衰層が、前記被駆動要素の本体と前記摩擦層との間に配置されていることを特徴とする、請求項1,20又は21に記載の圧電駆動装置。
  23. 前記被駆動要素は、長方形、多角形又は円形の断面を有する棒状の形状であることを特徴とする、請求項1に記載の圧電駆動装置。
  24. 前記被駆動要素は、管状の形状であることを特徴とする、請求項1に記載の圧電駆動装置。
  25. 前記被駆動要素は、長方形の断面を有する棒状の硬質材料から形成されており、棒状本体に定間隔の減衰溝を備えていることを特徴とする、請求項1に記載の圧電駆動装置。
  26. 前記被駆動要素は、硬質の多孔質材料から形成されていることを特徴とする、請求項1に記載の圧電駆動装置。
  27. 前記被駆動要素を形成する前記多孔質材料の孔に吸音物質が充填されていることを特徴とする、請求項26に記載の圧電駆動装置。
  28. 一つの平面状の前記被駆動要素と、
    前記被駆動要素の一方及び他方の表面上に形成された二層の摩擦層と、
    前記被駆動要素を介して相互に対向して配置された二つの前記一体型板状圧電トランスデューサと、
    を備えていることを特徴とする、請求項1乃至27のいずれか一項に記載の圧電駆動装置。
  29. 一つの円筒状又は円柱状の前記被駆動要素と、
    前記被駆動要素の表面上に形成された少なくとも一つの摩擦層と、
    前記被駆動要素の中心軸に平行に前記摩擦層に対向して配置された少なくとも三つの前記一体型板状圧電トランスデューサと、
    を備えていることを特徴とする、請求項1乃至27のいずれか一項に記載の圧電駆動装置。
  30. 前記被駆動要素は、回転体として設計されており、回転ガーダ内に配置されていることを特徴とする、請求項1に記載の圧電駆動装置。
  31. 前記一体型板状圧電トランスデューサの前記固定要素は、固定ガーダ内に位置することを特徴とする、請求項11乃至19のいずれか一項に記載の圧電駆動装置。
  32. 前記一体型板状圧電トランスデューサの前記固定要素は、薄板バネ型のキャリア内に固定されていることを特徴とする、請求項11乃至19のいずれか一項に記載の圧電駆動装置。
JP2001517492A 1999-08-17 2000-07-31 縦波およびたわみ波によって励振される圧電駆動装置 Expired - Fee Related JP4860862B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19938954.3 1999-08-17
DE19938954A DE19938954A1 (de) 1999-08-17 1999-08-17 Piezoelektrischer Antrieb, insbesondere zur Erzeugung von Rotations- oder Translationsbewegungen, die stetig oder schrittweise erfolgen können
PCT/EP2000/007385 WO2001013505A1 (de) 1999-08-17 2000-07-31 Piezoelektrischer antrieb mit anregung durch longitudinal- und biegewellen

Publications (2)

Publication Number Publication Date
JP2003507999A JP2003507999A (ja) 2003-02-25
JP4860862B2 true JP4860862B2 (ja) 2012-01-25

Family

ID=7918655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001517492A Expired - Fee Related JP4860862B2 (ja) 1999-08-17 2000-07-31 縦波およびたわみ波によって励振される圧電駆動装置

Country Status (5)

Country Link
US (1) US6806620B1 (ja)
EP (1) EP1210759B1 (ja)
JP (1) JP4860862B2 (ja)
DE (2) DE19938954A1 (ja)
WO (1) WO2001013505A1 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074153A1 (en) * 1999-05-31 2000-12-07 Nanomotion Ltd. Multilayer piezoelectric motor
DE10154526B4 (de) * 2001-06-12 2007-02-08 Physik Instrumente (Pi) Gmbh & Co Piezoelektrisches Stellelement
JP2004166479A (ja) * 2002-06-14 2004-06-10 Seiko Epson Corp 回転型駆動装置およびこれを備えた装置
JP4576154B2 (ja) * 2004-05-13 2010-11-04 オリンパス株式会社 超音波モータ
JP2006094591A (ja) * 2004-09-22 2006-04-06 Olympus Corp 超音波モータとその運転方法
US20060082158A1 (en) * 2004-10-15 2006-04-20 Schrader Jeffrey L Method and device for supplying power from acoustic energy
JP4794897B2 (ja) * 2005-04-26 2011-10-19 オリンパス株式会社 超音波モータ
JP4794901B2 (ja) * 2005-05-09 2011-10-19 キヤノン株式会社 振動型アクチュエータの駆動システムおよびその駆動方法
WO2007069682A1 (ja) * 2005-12-15 2007-06-21 Matsushita Electric Industrial Co., Ltd. 超音波アクチュエータ
DE102006041017B4 (de) * 2005-12-28 2010-04-08 Physik Instrumente (Pi) Gmbh & Co. Kg Schaltungsanordnung zur Steuerung eines in der Richtung umkehrbaren Einphasen-Ultraschallmotors
JP4035158B2 (ja) * 2006-01-12 2008-01-16 松下電器産業株式会社 超音波アクチュエータ
US7471030B2 (en) * 2006-03-08 2008-12-30 Dynamic Structures And Materials, Llc Spring biasing locking mechanism for step and repeat motors
JP4892661B2 (ja) * 2006-08-24 2012-03-07 ニッコー株式会社 超音波モータ用振動子
DE102007008252A1 (de) * 2006-11-27 2008-05-29 Physik Instrumente (Pi) Gmbh & Co. Kg Ultaschallantrieb
JP2008136318A (ja) * 2006-11-29 2008-06-12 Olympus Corp 超音波モータ及び顕微鏡ステージ
US7893598B2 (en) * 2006-12-15 2011-02-22 Olympus Imaging Corp. Driving apparatus and image pickup apparatus
JP4977202B2 (ja) * 2007-07-12 2012-07-18 パナソニック株式会社 振動型アクチュエータ及びそれを備えた駆動装置
DE102008012992A1 (de) * 2008-03-07 2009-09-10 Physik Instrumente (Pi) Gmbh & Co. Kg Ultraschallmotor
DE102008016684B4 (de) * 2008-04-01 2015-10-08 Minebea Co., Ltd. Elektromechanischer Motor
CN102292907A (zh) * 2008-12-18 2011-12-21 发现技术国际股份有限公司 基于有组合谐振器的声学驻波的压电准谐振电机
JP5429141B2 (ja) * 2010-01-19 2014-02-26 Tdk株式会社 圧電アクチュエータ及び圧電アクチュエータの製造方法
DE102010055848B4 (de) * 2010-12-22 2018-01-18 Physik Instrumente (Pi) Gmbh & Co. Kg Ultraschallaktor
US8624739B2 (en) 2011-03-16 2014-01-07 Avery Dennison Corporation Electronic article surveillance system including low-cost EAS tag
US9028051B2 (en) 2011-04-05 2015-05-12 Hewlett-Packard Development Company, L.P. Shear mode physical deformation of piezoelectric mechanism
DE102011087542B3 (de) * 2011-12-01 2013-04-25 Physik Instrumente (Pi) Gmbh & Co. Kg Zweiphasen-Ultraschallmotor
JP5929139B2 (ja) * 2011-12-06 2016-06-01 セイコーエプソン株式会社 アクチュエーター、ロボットハンド、ロボット、電子部品搬送装置、電子部品検査装置およびプリンター
DE102012201863B3 (de) * 2012-02-08 2013-05-02 Physik Instrumente (Pi) Gmbh & Co. Kg Ultraschallaktor
US9705425B2 (en) 2012-07-03 2017-07-11 Discovery Technology International, Inc. Piezoelectric linear motor
WO2014084184A1 (ja) * 2012-11-29 2014-06-05 株式会社ダイセル アクチュエータ用弾性体及び圧電アクチュエータ
DE102013221414B4 (de) 2013-10-22 2020-09-10 Physik Instrumente (Pi) Gmbh & Co. Kg Ultraschallmotor
DE102014205577B4 (de) * 2014-03-26 2021-05-12 Physik Instrumente (Pi) Gmbh & Co. Kg Ultraschallmotor
US10432112B2 (en) 2014-07-23 2019-10-01 Physik Instrumente (Pi) Gmbh &. Co. Kg Ultrasonic motor
DE102014225154B3 (de) * 2014-12-08 2016-03-03 Physik Instrumente (Pi) Gmbh & Co. Kg Verfahren und Vorrichtung zur Ansteuerung eines piezoelektrischen Motors
US11482658B1 (en) 2018-06-06 2022-10-25 Government Of The United States As Represented By The Secretary Of The Air Force Piezoelectric rotary optical mount
JP7358085B2 (ja) * 2019-06-20 2023-10-10 キヤノン株式会社 振動波モータおよび駆動装置
DE102021121352B3 (de) * 2021-08-17 2022-12-08 Physik Instrumente (PI) GmbH & Co KG Aktuator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241673A (ja) * 1988-07-30 1990-02-09 Honda Electron Co Ltd 超音波駆動装置
JPH08111991A (ja) * 1994-08-19 1996-04-30 Mitsui Petrochem Ind Ltd 超音波モータ用圧電振動子および圧電振動子の取付け方法
JPH09148644A (ja) * 1995-11-24 1997-06-06 Sony Corp 振動体の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE436675B (sv) * 1975-08-12 1985-01-14 Ki Politekhnichsky I Im 50 Let Elektrisk motor driven genom piezoelektriska krafter
JPH0255585A (ja) 1988-08-18 1990-02-23 Rion Co Ltd 超音波モータ
JPH0591766A (ja) * 1991-09-27 1993-04-09 Toko Inc 圧電アクチユエータ
EP0564724B1 (en) * 1992-04-06 1997-01-02 Council of Scientific and Industrial Research A process for the production of linear alkylbenzenes
US5616980A (en) * 1993-07-09 1997-04-01 Nanomotion Ltd. Ceramic motor
US5672930A (en) * 1993-12-21 1997-09-30 Nikon Corporation Vibration motor
JP3744111B2 (ja) * 1996-04-12 2006-02-08 株式会社ニコン 振動アクチュエータ
US6327120B1 (en) * 1997-04-17 2001-12-04 Fujitsu Limited Actuator using piezoelectric element and head-positioning mechanism using the actuator
JPH1132491A (ja) * 1997-05-16 1999-02-02 Seiko Instr Inc 超音波モータ及び超音波モータ付電子機器
JP4510179B2 (ja) * 1998-08-07 2010-07-21 セイコーインスツル株式会社 超音波モータおよび超音波モータ付電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241673A (ja) * 1988-07-30 1990-02-09 Honda Electron Co Ltd 超音波駆動装置
JPH08111991A (ja) * 1994-08-19 1996-04-30 Mitsui Petrochem Ind Ltd 超音波モータ用圧電振動子および圧電振動子の取付け方法
JPH09148644A (ja) * 1995-11-24 1997-06-06 Sony Corp 振動体の製造方法

Also Published As

Publication number Publication date
DE50015679D1 (de) 2009-08-13
EP1210759A1 (de) 2002-06-05
DE19938954A1 (de) 2001-03-08
WO2001013505A1 (de) 2001-02-22
JP2003507999A (ja) 2003-02-25
EP1210759B1 (de) 2009-07-01
US6806620B1 (en) 2004-10-19

Similar Documents

Publication Publication Date Title
JP4860862B2 (ja) 縦波およびたわみ波によって励振される圧電駆動装置
US6765335B2 (en) Piezoelectric adjusting element
JP4617359B2 (ja) リニア超音波圧電モータ
US6979934B1 (en) Piezoelectric drive, especially a holding frame, a friction element and a circuit configuration
US5039899A (en) Piezoelectric transducer
US20110025169A1 (en) Piezoelectric drive unit
JP4435695B2 (ja) 圧電モータの動作方法および固定子を有する中空円筒形の発振器の形状をなす圧電モータ
JPH0458273B2 (ja)
KR101193656B1 (ko) 전기 기계식 구동 장치
JPS62259485A (ja) 圧電駆動装置
JPH07170768A (ja) 超音波モータ
JPH01264582A (ja) 超音波リニアモータ
JPH08237970A (ja) 超音波アクチュエータ及びその駆動方法
JPS61221584A (ja) 振動波モ−タの駆動回路
JP4655324B2 (ja) 振動モータ、位置決め装置および振動モータの制御方法
JPH08242592A (ja) 超音波アクチュエータ
JPH066989A (ja) 超音波リニアモータ
JP2538033B2 (ja) 平面型超音波アクチュエ―タ
JPH03256579A (ja) 超音波モータ
JPH03293979A (ja) 超音波モータ
JPH09117166A (ja) 超音波モータ
JPH04138080A (ja) 超音波モータ
JPH01174281A (ja) 振動波モータ
JPH03138512A (ja) 測量機
CN117294169A (zh) 一种对称/反对称弯振激发的树脂超声作动器及其应用装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091023

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100121

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100223

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100302

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100323

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101227

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110310

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20110707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees