JP4851737B2 - 距離測定装置 - Google Patents

距離測定装置 Download PDF

Info

Publication number
JP4851737B2
JP4851737B2 JP2005183455A JP2005183455A JP4851737B2 JP 4851737 B2 JP4851737 B2 JP 4851737B2 JP 2005183455 A JP2005183455 A JP 2005183455A JP 2005183455 A JP2005183455 A JP 2005183455A JP 4851737 B2 JP4851737 B2 JP 4851737B2
Authority
JP
Japan
Prior art keywords
light
light receiving
distance measuring
laser beam
pulse laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005183455A
Other languages
English (en)
Other versions
JP2007003333A (ja
JP2007003333A5 (ja
Inventor
政裕 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2005183455A priority Critical patent/JP4851737B2/ja
Publication of JP2007003333A publication Critical patent/JP2007003333A/ja
Publication of JP2007003333A5 publication Critical patent/JP2007003333A5/ja
Application granted granted Critical
Publication of JP4851737B2 publication Critical patent/JP4851737B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、レーザ光線を測定対象物に照射し、測定対象物からの反射光を受光して距離測定を行う距離測定装置に関するものである。
距離測定装置として、レーザ光線を測定対象物に照射し、測定対象物からの反射光を用いて測定対象物迄の距離を測定する光波距離測定装置がある。
従来、光波距離測定装置では、レーザ光線を一定周波数で強度変調し、測距光として射出し、測定対象物で反射された反射測距光を受光し、受光された反射測距光の強度変調の位相と距離測定装置内部に形成した参照用光路で得られた内部参照光の強度変調の位相とを比較し、位相差から測定対象物迄の距離を測定している。
上記距離測定装置に於ける距離測定では、測距距離に応じて前記位相差が変化することを利用したものであり、内部参照光と反射測距光間の位相差をΔφ、測距距離をD、変調周波数をf、光速をCとすれば、位相差ΔφはΔφ=4πfD/C(式1)と表され、測距距離Dは位相差Δφを測定することで求めることができ、更に参照用光路長は既知であるので、求められた測定距離を内部参照光路で補正することで正確な測定距離が得られる。
又、距離測定に於いて、距離測定装置内部の検出回路等のドリフトが測定誤差として影響するが、内部参照光と反射測距光との位相を比較することで、検出回路等のドリフトの影響が相殺され、正確な距離の演算が可能となる。
次に、従来の距離測定装置の概略を図7に於いて説明する。
レーザダイオード等の発光素子51は発光素子駆動回路62によって所定周波数に光強度変調されたレーザ光線を射出する。該レーザ光線はハーフミラー52によって測距光53と内部参照光54とに分割され、前記ハーフミラー52を透過した前記測距光53は対物レンズ55を通して測定対象物56、例えばコーナキューブ等の反射鏡に照射され、該測定対象物56で反射された反射測距光53′は前記対物レンズ55、ハーフミラー58を通してフォトダイオード等の受光素子57により受光される。
前記ハーフミラー52で反射された前記内部参照光54は、前記反射測距光53′の光路上の前記ハーフミラー58で反射され、前記受光素子57に受光される。該受光素子57の受光信号は、受光回路63に入力され、該受光回路63は測距演算の為に前記受光素子57から入力される信号を処理する。
前記測距光53の光路と前記内部参照光54の光路に掛渡り光路切換え器59が設けられ、又前記反射測距光53′の光路には光量調整器61が設けられている。前記光路切換え器59は前記測距光53の光路と前記内部参照光54の光路とを択一的に遮断し、他方を透過するものであり、前記受光素子57には前記反射測距光53′と前記内部参照光54とが交互に前記受光素子57に受光される。
上記した様に、光強度変調された前記測距光53が使用され、該測距光53から得られる前記内部参照光54と前記反射測距光53′との位相差を求めて距離を演算しているので、該反射測距光53′と前記内部参照光54との受光光量の相違は距離測定の精度に影響する。従って、前記光量調整器61が設けられている。該光量調整器61は、連続的に濃度が変化する振幅フィルタを有し、該振幅フィルタを回転させることで前記反射測距光53′の受光光量を一定に調整するものである。前記光量調整器61により、前記測定対象物56の距離によって反射光量が変化しても前記受光素子57が受光する前記内部参照光54の受光光量と前記反射測距光53′の受光光量が等しくなる様にしている。
前記光路切換え器59による光路切換え、及び前記光量調整器61による光量調整は駆動回路64によって制御される。
制御演算部65は前記発光素子駆動回路62を、前記発光素子51から射出されるレーザ光線が所定周波数の光強度変調となる様に制御し、又前記駆動回路64による前記光路切換え器59の光路切換えのタイミングを制御している。更に、前記制御演算部65は前記受光素子57の受光信号から、前記反射測距光53′の光量を前記内部参照光54の光量と等しくする制御信号を前記駆動回路64に送出する。
前記受光回路63は、前記受光素子57からの信号を増幅、A/D変換する等の信号処理を行うと共に前記内部参照光54の変調周波数と、前記反射測距光53′の変調周波数の位相差を求める等の処理を行い、前記制御演算部65に送出する。該制御演算部65は前記受光回路63から送出された位相差を基に上記(式1)により前記測定対象物56迄の距離を演算する。
上記した従来の距離測定装置では、前記内部参照光54と前記反射測距光53′との切換えを前記光路切換え器59によって機械的に切換えている。
光路の切換え、光量調整のいずれも機械的に行っているので、高速な光路切換え、高速な光量調整が難しく、高速の距離測定が難しい。この為、測定対象物が建築物等について距離測定を行う場合は問題が無いが、1つの測定装置により複数の移動体、例えばブルドーザ等の建設機械について連続的に距離測定を行う場合等、高速の距離測定が要求される場合は測定が困難となる場合がある。又、トータルステーション等により建築物等について3次元測定をする場合は、自動測量により多数点について測量する必要があり、測定速度の高速化が要求される。又、移動体等についての測量を行う場合は、光路切換え速度、光量調整速度が、移動体の移動速度に追従できず、距離測定を行えない場合が生ずる等の問題があった。
尚、測距光を回転させ、多方向、多数点の距離測定を行う距離測定装置としては、特許文献1、特許文献2に示されるものがある。
特許公報第2694647号公報
特開平4−313013号公報
本発明は斯かる実情に鑑み、距離測定装置に於ける光路切換え、光量調整の高速化を図り、距離測定の高速化を実現するものである。
本発明は、測定対象物に向けてパルスレーザ光線を射出し、測定対象物からの反射光を受光して距離を測定する距離測定装置に於いて、測距用パルスレーザ光線を射出する第1発光部と、基準パルスレーザ光線を発する第2発光部と、前記測距用パルスレーザ光線を第1受光部に導く測距光路と、前記測距用パルスレーザ光線を分割して第2受光部に導く内部参照光路と、前記基準パルスレーザ光線を分割して前記第1受光部と前記第2受光部とに導く内部基準光路と、前記第1受光部と前記第2受光部から得られるパルス光の受光時間差を基に距離を演算する演算制御部とを具備した距離測定装置に係り、又前記内部基準光路は光量の異なる複数の基準光を生成する距離測定装置に係り、又前記内部基準光路は光ファイバを有し、該光ファイバにパルスレーザ光線を往復させることで光量の異なる複数の基準光を生成する距離測定装置に係り、又前記光ファイバは第2発光部から発せられたパルスレーザ光線の分割された一方のパルスレーザ光線から光量の異なる複数の基準光を生成し、第1受光部に導く様にした距離測定装置に係り、又前記光ファイバは第2発光部から発せられたパルスレーザ光線から光量の異なる複数の基準光を生成し、前記内部基準光路は前記光ファイバから射出された複数の基準光を分割して前記第1受光部と、前記第2受光部とに導く距離測定装置に係り、更に又前記光ファイバから射出されたパルスレーザ光線の光量を調整する光量調整手段を具備した距離測定装置に係るものである。
本発明によれば、測定対象物に向けてパルスレーザ光線を射出し、測定対象物からの反射光を受光して距離を測定する距離測定装置に於いて、測距用パルスレーザ光線を射出する第1発光部と、基準パルスレーザ光線を発する第2発光部と、前記測距用パルスレーザ光線を第1受光部に導く測距光路と、前記測距用パルスレーザ光線を分割して第2受光部に導く内部参照光路と、前記基準パルスレーザ光線を分割して前記第1受光部と前記第2受光部とに導く内部基準光路と、前記第1受光部と前記第2受光部から得られるパルス光の受光時間差を基に距離を演算する演算制御部とを具備したので、距離測定に於いて前記内部参照光路と前記測距光路との機械的切換え作動がなく、高速での距離測定が可能となる。
又、本発明によれば、前記内部基準光路は光量の異なる複数の基準光を生成するので、前記内部参照光の光量調整手段が必要なく、又該光量調整手段の機械的作動による光量調整がなくなり、高速での距離測定が可能となる。
又、本発明によれば、前記内部基準光路は光ファイバを有し、該光ファイバにパルスレーザ光線を往復させることで光量の異なる複数の基準光を生成するので、簡単な構成で光量の異なる複数の基準光が得られる等の優れた効果を発揮する。
以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。
図1は第1の実施の形態の測距部20の基本構成を示している。
第1光源1は測距光としてのパルスレーザ光線を任意のタイミングで射出するレーザダイオード等の発光素子であり、該第1光源1の第1光軸2上に第1コンデンサレンズ3、第1分割ミラー4、第2コンデンサレンズ5が配設され、該第2コンデンサレンズ5の集光位置に発光側光ファイバ6の入射端面が配置され、該発光側光ファイバ6の射出端は反射プリズム7の発光側反射面7aに対峙して配置される。
前記反射プリズム7は第2光軸8上に配設され、該第2光軸8には対物レンズ9が配設されている。
前記第1光源1で射出されたパルスレーザ光線は、前記第1コンデンサレンズ3、前記第1分割ミラー4、前記第2コンデンサレンズ5、前記発光側光ファイバ6を経て前記発光側反射面7aに入射され、該発光側反射面7aで反射されたパルスレーザ光線は前記対物レンズ9を経て前記第2光軸8上に照射され、更に照射光路11を経て測定対象物(図示せず)に照射される。該測定対象物で反射されたパルスレーザ光線は反射光路12、前記対物レンズ9を経て前記反射プリズム7の受光側反射面7bに入射し、該受光側反射面7bで反射され、受光側光ファイバ13に入射する。
該受光側光ファイバ13の射出端は第3光軸14上に配置され、該第3光軸14には第3コンデンサレンズ15、第2分割ミラー16、第4コンデンサレンズ17、第1受光素子18が配設されている。
第2光源19は基準光としてのパルスレーザ光線を任意のタイミングで射出するレーザダイオード等の発光素子であり、該第2光源19の第4光軸21上に第5コンデンサレンズ22、第3分割ミラー23、第4分割ミラー24、第6コンデンサレンズ25、第2受光素子26が配設されている。
前記第1光源1から射出されたパルスレーザ光線は前記第1分割ミラー4により一部が反射され、更に前記第4分割ミラー24により反射されて前記第2受光素子26に受光される様になっている。
前記第2光源19から射出されたパルスレーザ光線は、前記第3分割ミラー23、第4分割ミラー24を透過し、前記第6コンデンサレンズ25で集光されて前記第2受光素子26に受光され、又前記第2光源19から照射されたパルスレーザ光線の一部は前記第3分割ミラー23により反射され、光ファイバ27を介して前記第2分割ミラー16に入射され、該第2分割ミラー16で反射され、前記第4コンデンサレンズ17を経て前記第1受光素子18に受光される様になっている。
前記光ファイバ27は、光学長を有すると共に両端面には所要の反射率を有するハーフミラーとなっている。該光ファイバ27の両端面で光が反射され、該光ファイバ27内を光が往復した場合に波形が崩れない様、該光ファイバ27はシングルモード光ファイバとなっている。尚、波形が崩れない光ファイバとして、Giモードファイバが用いられてもよい。
前記第1光軸2、前記第2光軸8、前記第3光軸14等は測距光路29を形成し、前記第1光軸2の前記第1分割ミラー4で反射され、更に前記第4光軸21の前記第4分割ミラー24で反射され前記第2受光素子26に入射される光路は、内部参照光路30を形成する。又、前記第2光源19からのパルスレーザ光線を前記第3分割ミラー23で分割して前記第1受光素子18及び前記第2受光素子26に導く前記第4光軸21、前記第3分割ミラー23、前記第2分割ミラー16、前記第3光軸14等は内部基準光路35を形成する。
前記第1光源1、前記第2光源19は発光素子駆動回路31によって駆動されてパルスレーザ光線を射出し、該発光素子駆動回路31の駆動状態は演算制御部32により制御される。前記第2受光素子26、前記第1受光素子18からの受光信号は、受光回路33に入力され、該受光回路33により増幅、A/D変換等所要の信号処理をされ、前記演算制御部32に入力される。該演算制御部32は、受光信号を適宜、記憶部34に記憶される。該記憶部34には、前記受光信号が格納されると共に距離測定装置を作動させる為のシーケンスプログラム、距離演算の為の演算プログラム等が格納されている。前記演算制御部32は、シーケンスプログラム、演算プログラムを展開し、測定を実行すると共に受光信号を基に測定対象物迄の距離を演算する。
以下、作用について説明する。
先ず、概略を説明すると、前記第1光源1から発せられたパルスレーザ光線は前記第1光軸2、前記照射光路11を経て測定対象物(図示せず)に照射され、該測定対象物から反射されたレーザ光線は前記反射光路12、前記第3光軸14を経て測距光として前記第1受光素子18に受光される。又、前記第1光源1から発せられたパルスレーザ光線の一部は前記内部参照光路30を経て前記第2受光素子26に内部参照光として受光され、前記測距光と内部参照光とが比較され受光時間差等が求められ、受光時間差等により測定対象物迄の距離が測定される。前記測距光と前記内部参照光との比較により、受光回路等の回路に含まれる誤差が除去される。
測距光を受光する前記第1受光素子18と内部参照光を受光する前記第2受光素子26とは独立しているので、従来の様に測距光と内部参照光の切換えが必要ない。
以下、図2を参照して具体的に説明する。
測距の作動が開始されると、先ず前記第2光源19が駆動され、パルスレーザ光線Bが発光され、パルスレーザ光線Bの一部は前記第2受光素子26に受光され、パルスレーザ光線Bの残りは前記光ファイバ27を介して前記第1受光素子18に受光される。
前記第2受光素子26がパルスレーザ光線Bを受光して発する受光信号のパルスは、図2中、BD1として示されている。
又、前記光ファイバ27を介して前記第1受光素子18で受光された場合の受光信号のパルスは、図2中、受光パルス信号BC1,BC2,BC3,BC4,BC5として示されている。前記光ファイバ27の両端面がハーフミラーとなっていることから、両端面で反射され、前記光ファイバ27内を往復したパルス光が往復した回数毎の時間遅れで順次前記第1受光素子18により受光される。即ち、前記第2光源19、前記光ファイバ27は光量の異なる複数の基準光を発する第2光源部を構成する。
前記第2受光素子26から受光パルス信号BD1が発せられて、次に前記第1受光素子18が前記受光パルスBC1を発する迄の時間差Δtref1は前記第2受光素子26と前記第1受光素子18との応答差であり、前記受光パルス信号BC1,BC2,BC3,BC4,BC5の時間遅れは、前記光ファイバ27をパルス光が往復する時間が加わったものである。即ち、前記受光パルス信号BC1,BC2,BC3,BC4,BC5の間隔、例えば時間差Δf =(Δtref1−Δtref2)は、パルス光が前記光ファイバ27を往復した時間差であり、2L(Lは前記光ファイバ27の光学長)/C(光速)に等しい。
更に、前記光ファイバ27の両端面は所定の反射率を有することから、パルスレーザ光線Bが往復する毎に減衰し、前記受光パルス信号BC1から受光パルス信号BC5に向けて受光光量が段階的に減少していく。
而して、前記各受光パルス信号BC1,BC2,BC3,BC4,BC5の受光光量、及び該各受光パルス信号BC1,BC2,BC3,BC4,BC5の前記受光パルス信号BD1に対する遅延時間Δtref1,Δtref2,Δtref3,Δtref4,Δtref5が前記記憶部34に格納される。
次に、前記第1光源1が発光され、測距光Aが測定対象物(図示せず)に向って発せられ、前記反射光路12、前記受光側光ファイバ13、前記第3光軸14を経て前記第1受光素子18に受光される。又、測距光Aの一部は前記第1分割ミラー4で反射され、前記内部参照光路30を経て内部参照光として前記第2受光素子26で受光される。
内部参照光が前記第2受光素子26で受光された受光パルス信号は図2中、AD1として示され、測定対象物(図示せず)から反射された前記測距光Aが前記第1受光素子18で受光された場合の受光パルス信号は、図2中、AC1として示されている。前記受光パルス信号AD1と前記受光パルス信号AC1との時間差Δtext が測定される。
前記受光パルス信号AC1光強度と、前記受光パルス信号BC1,BC2,BC3,BC4,BC5との光強度とが比較され、最も近い受光パルス信号が選択される。例えば、図中では受光パルス信号BC2が選択される。尚、受光パルス信号BC1,BC2,BC3,BC4,BC5間の受光光量差でゾーンZ1,Z2,Z3,Z4,Z5を設定し、例えば受光パルス信号AC1の受光光量がゾーンZ2に属する場合は、該ゾーンZ2に対応した受光パルス信号BC2が選択される様にしてもよい。
受光信号パルスBC2が選択された場合のBD1に対する遅延時間はΔtref2である。
従って、測定対象物迄のパルスレーザ光線が往復する時間tL は、下記の式により算出することができる。
tL =Δtext −Δtref2+Δf
ここで、Δf は前記光ファイバ27の光学長による時間差を補正するものである。又、Δtext とΔtref2には、前記第1受光素子18と前記第2受光素子26の光電変換の遅延時間、或は前記第1受光素子18と前記第2受光素子26からの光電流を電圧に変換する遅延時間が含まれているが、これらはΔtext とΔtref2に共通に含まれているからΔtext からΔtref2を減ずることで、相殺することができる。
而して、対象物迄の距離Lは下記の式から算出できる。
L=C×tL /2
尚、装置内での前記第1光源1と前記第1受光素子18間の光学長と、前記第1光源1と前記第2受光素子26間の光学長との差、及び前記第2光源19と前記第2受光素子26間、前記第2光源19と前記第1受光素子18間の光学長の差は固定値であるので、装置を較正することで予め取除いておくことができる。
本発明では、測距光Aの受光光量に対応して内部参照光の光量調整をする必要が無く、予め取得しておいた、前記受光パルス信号BC1,BC2,BC3,BC4,BC5とを比較するので、光量調整の為の機械的な作動が無く、高速での測定が可能となる。
次に、図3により第2の実施の形態について説明する。図3は該第2の実施の形態の測距部20の基本構成を示している。
図3中、図1中で示したものと同等のものには同符号を付してある。又、第1の実施の形態と第2の実施の形態の構成上の大きな相違は、光ファイバの配置にあり、第1の実施の形態では、前記光ファイバ27を前記第3分割ミラー23と前記第2分割ミラー16との間に配置したが、第2の実施の形態では、光ファイバ38を第5コンデンサレンズ22と第2光源19との間に配置したものである。他の共通する構成については同様であるので、その説明を省略する。
第4光軸21上に第2受光素子26、第6コンデンサレンズ25、第4分割ミラー24、第3分割ミラー23、前記第5コンデンサレンズ22が配設され、更に光量調整手段36及び前記第4光軸21の延長上に前記第2光源19、リレーレンズ37が設けられ、該リレーレンズ37と前記第4光軸21間には前記光ファイバ38が設けられている。該光ファイバ38の両面は所要の反射率を有するハーフミラーとなっている。又、該光ファイバ38の長さは、未知でもよく、又該光ファイバ38を往復するパルスレーザ光線の波形は等しくなくてもよく、マルチモードの光ファイバを使用することができる。
前記光量調整手段36は、例えば円周方向で漸次透過率の異なる円板を前記第4光軸21を遮る様に設け、モータ等のアクチュエータにより回転させる様にしたものである。
第2の実施の形態の作用について、図4を参照して説明する。
先ず、前記第2光源19を発光させ、パルスレーザ光線Bを射出する。
該パルスレーザ光線Bは前記光ファイバ38に入射し、一部が透過して該光ファイバ38の他端から射出され、又残部が両端面のハーフミラーによって反射され、前記光ファイバ38内を往復し、更に残部の一部が他端から射出される等して、前記光ファイバ38の他端からは、漸次光量が減少されたパルスレーザ光線が所定時間間隔で射出される。尚、この時間間隔は、第1の実施の形態で説明した様に、パルス光が前記光ファイバ38を往復した時間であり、2L(Lは前記光ファイバ38の光学長)/C(光速)に等しい。
前記光ファイバ38から射出されたパルスレーザ光線は、前記第3分割ミラー23で分割され、前記第2受光素子26、前記第1受光素子18に入射される。該第1受光素子18がパルスレーザ光線を受光して発する受光パルス信号は、図4中でBC1,BC2,BC3,BC4,BC5として表され、前記第2受光素子26がパルスレーザ光線を受光して発する受光パルス信号は図4中でBD1,BD2,BD3,BD4,BD5として表される。
更に、該受光パルス信号BD1,BD2,BD3,BD4,BD5に対する前記受光パルス信号BC1,BC2,BC3,BC4,BC5それぞれの遅延時間Δtref1,Δtref2,Δtref3,Δtref4,Δtref5を測定する。尚、前記受光パルス信号BD1,BD2,BD3,BD4,BD5、及び前記受光パルス信号BC1,BC2,BC3,BC4,BC5の減光量は、前記光ファイバ38の両端面に形成したハーフミラーの反射率を設定することで調整することができる。
前記受光パルス信号BC1,BC2,BC3,BC4,BC5の受光光量、前記受光パルス信号BD1,BD2,BD3,BD4,BD5の受光光量及び前記延時間Δtref1,Δtref2,Δtref3,Δtref4,Δtref5は演算制御部32を介して記憶部34に記憶される。
又、前記第2光源19を発光させ、パルスレーザ光線Bを前記光ファイバ38、前記光量調整手段36を介して前記第2受光素子26に受光させる。この時、前記光量調整手段36は、前記第2受光素子26に入射する光量を調整する。調整は、前記受光パルス信号BD1,BD2,BD3,BD4,BD5のそれぞれを、内部参照光路30を介して前記第2受光素子26に入射する第1光源1からのパルスレーザ光線Aの光量(図4中、AD1として表される受光パルス信号)と同一となる様に調整する。
又調整した光量で前記第2受光素子26が受光し、発するパルス信号と前記受光パルス信号BD1,BD2,BD3,BD4,BD5の内対応するパルス信号との時間差Δtref1′,Δtref2′,Δtref3′,Δtref4′,Δtref5′をそれぞれ求め、前記記憶部34に記憶させる。
例えば受光パルス信号BD2について、前記光量調整手段36を透過した場合の前記第2受光素子26が発するパルス信号が、パルスレーザ光線Aを受光して前記第2受光素子26が発するパルス信号と同一となる様に調整する。光量調整したパルスレーザ光線を受光して発するパルスと前記受光パルス信号BD2との遅延時間が、図示されるΔtref2′である。
次に、前記第1光源1が発光され、パルスレーザ光線Aが射出される。該パルスレーザ光線Aは発光側光ファイバ6、照射光路11、反射光路12、及び受光側光ファイバ13を経て前記第1受光素子18に入射し、該第1受光素子18からは受光パルス信号AC1が発せられる。又、前記第1光源1からのパルスレーザ光線Aの一部は第1分割ミラー4により反射され、前記内部参照光路30を経て前記第2受光素子26に受光される。前記内部参照光路30を受光して発せられる受光パルス信号は、図4中、AD1として表されている。
受光パルス信号AD1に対する前記受光パルス信号AC1の遅延時間Δtext を測定する。
前記記憶部34に格納されている演算プログラムが展開されて、以下の演算がなされる。
測定対象物迄の測距光Aが往復する時間tL は、下記の式から演算される。
tL =Δtext −Δtref2−Δtref2′
Δtext とΔtref2には前記第1受光素子18、前記第2受光素子26の光電変換の遅延時間、或は第1受光素子18と第2受光素子26からの光電流を電圧に変換する遅延時間が含まれているが、これらはΔtext とΔtref2に共通に含まれているからΔtext からΔtref2を減ずることで、相殺することができる。
而して、測定対象物迄の距離Lは下記の式から算出できる。
L=C×tL /2
又、第1の実施の形態と同様、装置内での前記第1光源1と前記第1受光素子18間の光学長と、前記第1光源1と前記第2受光素子26間の光学長との差、及び前記第2光源19と前記第2受光素子26間、前記第2光源19と前記第1受光素子18間の光学長の差は固定値であるので、装置を較正することで予め取除いておくことができる。更に、本実施の形態でも、測距光Aの受光光量に対応して内部参照光の光量調整をする為の機械的な作動がなく、高速での測定が可能となる。
上記第2の実施の形態に於いて、前記第1受光素子18、前記第2受光素子26に入射する前記第2光源19からのパルスレーザ光線Bは前記光ファイバ38を透過した同一条件のパルス光を使用することになり、受光状態が前記光ファイバ38の光学長に影響されない。従って、該光ファイバ38の光学長を正確に測定する必要がなく、任意の長さでよい。
更に、前記光量調整手段36により、前記第2光源19の前記光ファイバ38を透過して得られる光パルスの内どの光パルスを使用するにしても、前記第1光源1を発光させた時の前記第2受光素子26での受光光量と等しい光量で測定するので、該第2受光素子26からの複数のパルス光は同じ形状である必要はなくなる。この為、前記光ファイバ38には、モード分散が大きなマルチモードファイバの使用が可能となる。
マルチモードファイバを使用することで、前記第2光源19には光密度が低い光源を使用することができ、該第2光源19に関するコストの低減が可能である。又、マルチモードファイバは、シングルモードファイバに対してコア径が大きく前記第2光源19と前記光ファイバ38との光学調整が容易になる。
次に、図5、図6に於いて、本発明が実施される距離測定装置について説明する。
図5に示される距離測定装置39は、図1或は図3で示した測距部20を具備している。前記距離測定装置39は、第2光軸8上に測距光40を射出し、又該測距光40を回転照射可能であり、回転照射中に該測距光40により照射される複数箇所の測定対象物41迄の距離を測定可能としている。
図6は前記距離測定装置39の回転照射部の概略を示しており、例えばトータルステーションの回転照射部を示している。尚、図6中、図1中で示したものと同等のものには同符号を付してある。
基板42の上側には円筒状の投光窓43が配置され、該投光窓43は透明ガラス等の材質となっている。該投光窓43の上端には上基板44が設けられ、前記投光窓43の内部には中間基板45が設けられている。
前記基板42、前記中間基板45に軸受46を介してミラーホルダ47が回転自在に設けられ、該ミラーホルダ47には反射プリズム7が保持されている。
前記上基板44にはレンズホルダ48が設けられ、該レンズホルダ48に対物レンズ9が保持されており、該対物レンズ9の光軸(第2光軸8:図1参照)は前記ミラーホルダ47の回転中心と合致している。又、前記対物レンズ9の光軸上には該対物レンズ9の径より小さい偏向ミラー10、受光側光ファイバ13の入射端面が配置されており、又前記偏向ミラー10によって偏向された光軸上には発光側光ファイバ6の射出端面が配置されている。
前記ミラーホルダ47は走査モータ49によって回転され、又前記測距光40の照射方向(照射水平角)はエンコーダ50によって検出される様になっている。
前記走査モータ49は、演算制御部32(以下、図1参照)によって駆動が制御され、又前記測定対象物41で反射された反射測距光が前記受光側光ファイバ13を介して第1受光素子18に受光された時の角度が前記エンコーダ50から検出され、検出角度は演算制御部32を介して記憶部34に記憶される。
前記距離測定装置39による測定は、前記測距光40を射出した状態で、又前記走査モータ49により前記ミラーホルダ47が連続的に回転された状態で実施される。
前記発光側光ファイバ6から射出された前記測距光40は、連続回転照射され、所要箇所の測定対象物41を照射することで該測定対象物41からの反射測距光が前記反射プリズム7に入射し、更に前記対物レンズ9を経て前記受光側光ファイバ13に入射し、該受光側光ファイバ13を介して前記第1受光素子18により受光されて測定対象物41迄の測距が行われる。又、前記第1受光素子18からの受光と対応させて前記測距光40の照射方向が前記エンコーダ50によって検出されるので、測距結果と照射方向の角度が対応されて前記記憶部34に記録される。又、前記照射方向が検出されるので、測定した測定対象物41の特定も同時に行われる。
尚、建築物等を3次元測定する為に多数の点を自動測量する場合は、回転角度を設定し、設定した角度の範囲で往復走査しつつ、所定時間間隔で測距の実施がなされる。
第1の実施の形態、第2の実施の形態で説明した様に、内部参照光と測距光との切換え、測定中の光量調整が電気信号の切換え等で行われ、機械的な動作がないので、高速、多点の測定が可能である。
本発明の第1の実施の形態を示す測距部の基本構成図である。 第1の実施の形態に於ける第1受光素子、第2受光素子の受光状態を示す説明図である。 本発明の第2の実施の形態を示す測距部の基本構成図である。 第2の実施の形態に於ける第1受光素子、第2受光素子の受光状態を示す説明図である。 本発明が実施される距離測定装置の概略を示す説明図である。 該距離測定装置に於ける回転照射部の概略を示す断面図である。 従来例を示す概略構成図である。
符号の説明
1 第1光源
2 第1光軸
7 反射プリズム
8 第2光軸
11 照射光路
12 反射光路
14 第3光軸
18 第1受光素子
19 第2光源
21 第4光軸
26 第2受光素子
29 測距光路
30 内部参照光路
31 発光素子駆動回路
32 演算制御部
33 受光回路
34 記憶部

Claims (6)

  1. 測定対象物に向けてパルスレーザ光線を射出し、測定対象物からの反射光を受光して距離を測定する距離測定装置に於いて、測距用パルスレーザ光線を射出する第1発光部と、基準パルスレーザ光線を発する第2発光部と、前記測距用パルスレーザ光線を第1受光部に導く測距光路と、前記測距用パルスレーザ光線を分割して第2受光部に導く内部参照光路と、前記基準パルスレーザ光線を分割して前記第1受光部と前記第2受光部とに導く内部基準光路と、前記第1受光部と前記第2受光部から得られるパルス光の受光時間差を基に距離を演算する演算制御部とを有し、
    前記内部基準光路は光量の異なる複数の基準光を生成し、前記測距光路を経て受光した前記第1受光部の受光光量に応じて内部参照光とする基準光を前記複数の基準光から選択することを特徴とする距離測定装置。
  2. 前記内部基準光路は光ファイバを有し、該光ファイバにパルスレーザ光線を往復させることで光量の異なる複数の基準光を生成する請求項1の距離測定装置。
  3. 前記光ファイバは第2発光部から発せられたパルスレーザ光線の分割された一方のパルスレーザ光線から光量の異なる複数の基準光を生成し、第1受光部に導く様にした請求項の距離測定装置。
  4. 前記光ファイバは第2発光部から発せられたパルスレーザ光線から光量の異なる複数の基準光を生成し、前記内部基準光路は前記光ファイバから射出された複数の基準光を分割して前記第1受光部と、前記第2受光部とに導く請求項の距離測定装置。
  5. 前記光ファイバから射出されたパルスレーザ光線の光量を調整する光量調整手段を具備した請求項の距離測定装置。
  6. 前記演算制御部が、前記測距用パルスレーザ光線によって前記第1受光部と前記第2受光部とから得られるパルス光の受光時間差と、前記基準パルスレーザ光線によって前記第1受光部と前記第2受光部とから得られるパルス光の受光時間差とに基づいて距離を演算する請求項1の距離測定装置。
JP2005183455A 2005-06-23 2005-06-23 距離測定装置 Active JP4851737B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005183455A JP4851737B2 (ja) 2005-06-23 2005-06-23 距離測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005183455A JP4851737B2 (ja) 2005-06-23 2005-06-23 距離測定装置

Publications (3)

Publication Number Publication Date
JP2007003333A JP2007003333A (ja) 2007-01-11
JP2007003333A5 JP2007003333A5 (ja) 2008-08-07
JP4851737B2 true JP4851737B2 (ja) 2012-01-11

Family

ID=37689116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005183455A Active JP4851737B2 (ja) 2005-06-23 2005-06-23 距離測定装置

Country Status (1)

Country Link
JP (1) JP4851737B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105319560A (zh) * 2014-06-26 2016-02-10 株式会社拓普康 光波测距仪

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4851754B2 (ja) * 2005-09-05 2012-01-11 株式会社トプコン 距離測定装置
KR101021175B1 (ko) 2008-07-07 2011-03-15 대한측량협회 거리 측정 장치 및 방법
JP5616025B2 (ja) * 2009-01-22 2014-10-29 株式会社トプコン 光波距離測定方法及び光波距離測定装置
JP5475349B2 (ja) * 2009-07-01 2014-04-16 株式会社 ソキア・トプコン 光波距離計
JP2021110697A (ja) * 2020-01-15 2021-08-02 ソニーセミコンダクタソリューションズ株式会社 観測装置、観測方法、測距システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2066015B (en) * 1979-10-23 1984-02-15 South African Inventions Distance measurment
JPS5838880A (ja) * 1981-08-31 1983-03-07 Tokyo Optical Co Ltd 光波距離計
JPS5988673A (ja) * 1982-11-12 1984-05-22 Hitachi Ltd レ−ザ測距装置
JPS636483A (ja) * 1986-06-27 1988-01-12 Hamamatsu Photonics Kk 時間間隔測定装置
GB2272123B (en) * 1992-11-03 1996-08-07 Marconi Gec Ltd Laser radar system
JP2001201573A (ja) * 2000-01-20 2001-07-27 Mitsubishi Electric Corp コヒーレントレーザレーダ装置および目標測定方法
DE10006493C2 (de) * 2000-02-14 2002-02-07 Hilti Ag Verfahren und Vorrichtung zur optoelektronischen Entfernungsmessung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105319560A (zh) * 2014-06-26 2016-02-10 株式会社拓普康 光波测距仪

Also Published As

Publication number Publication date
JP2007003333A (ja) 2007-01-11

Similar Documents

Publication Publication Date Title
EP1772749B1 (en) Distance measuring device
JP4819403B2 (ja) 距離測定装置
JP4796834B2 (ja) 距離測定方法及び距離測定装置
KR101264671B1 (ko) 광 간섭 계측 방법 및 광 간섭 계측 장치
US8643828B2 (en) Laser surveying instrument
EP2381272B1 (en) Laser scanner
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
JP4851737B2 (ja) 距離測定装置
US10012831B2 (en) Optical monitoring of scan parameters
US9329027B2 (en) Measuring unit, measuring system and method for determining a relative position and relative orientation
JP4851754B2 (ja) 距離測定装置
JP4996043B2 (ja) 光波距離測定方法及び光波距離測定装置
JP6920538B2 (ja) 走査装置及び測定装置
KR102540387B1 (ko) 광 경로 분할 고속 3차원 센서장치
JP2020046341A (ja) 投光装置、投受光装置及び測距装置
US10656402B2 (en) Three-dimensional infrared imaging of surfaces utilizing laser displacement sensors
KR20070015267A (ko) 변위 측정 장치
JPS6355409A (ja) 車両用レ−ザ−距離測定装置
JP5447574B2 (ja) 表面プロファイル測定装置および透光性物体厚さ測定装置
JPH08178632A (ja) 表面形状測定装置
WO2023074206A1 (ja) 制御装置、制御方法、制御プログラム
JPH06185977A (ja) 干渉測長装置
CN115280164A (zh) 用于确定产品的速度和/或长度的设备
JP2019168235A (ja) 走査装置及び測距装置
JPH05157527A (ja) 2次元又は3次元形状測定装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111021

R150 Certificate of patent or registration of utility model

Ref document number: 4851737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250