JP4829888B2 - プラズマディスプレイパネルおよびプラズマディスプレイパネル装置 - Google Patents

プラズマディスプレイパネルおよびプラズマディスプレイパネル装置 Download PDF

Info

Publication number
JP4829888B2
JP4829888B2 JP2007524552A JP2007524552A JP4829888B2 JP 4829888 B2 JP4829888 B2 JP 4829888B2 JP 2007524552 A JP2007524552 A JP 2007524552A JP 2007524552 A JP2007524552 A JP 2007524552A JP 4829888 B2 JP4829888 B2 JP 4829888B2
Authority
JP
Japan
Prior art keywords
gas
discharge
pdp
ratio
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007524552A
Other languages
English (en)
Other versions
JPWO2007007514A1 (ja
Inventor
真志 後藤
恭平 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007524552A priority Critical patent/JP4829888B2/ja
Publication of JPWO2007007514A1 publication Critical patent/JPWO2007007514A1/ja
Application granted granted Critical
Publication of JP4829888B2 publication Critical patent/JP4829888B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/50Filling, e.g. selection of gas mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space

Description

本発明は、プラズマディスプレイパネルおよびプラズマディスプレイパネル装置に関し、特に、放電空間に封入されるガス成分に関する。
近年、平面型表示装置の1種としてプラズマディスプレイパネル装置(以下では、「PDP装置」と記載する。)が広く普及してきている。現在広く普及しているPDP装置は、高い技術的ポテンシャルを有する交流型(AC型)であるが、中でも、寿命特性に優れる面放電AC型PDP装置(以下では、単に「PDP装置」と記載する。)が主流となっている。
PDP装置は、画像表示を行うパネル部と、入力信号に基づきパネル部の駆動を行う駆動部などから構成されている。この内、パネル部は、前面パネルと背面パネルとが互いの間に間隙をあけて対向配置され構成されている。前面パネルは、ガラス基板の一方の主面に対しストライプ状にスキャン電極とサスティン電極とからなる電極対が複数並設され、この上を誘電体層および保護層で被覆された構成を有する。
背面パネルは、ガラス基板の一方の主面に対しストライプ状にデータ電極が配され、この上を誘電体層で被覆され、さらにその上にストライプ状あるいは井桁状などの隔壁が突設されている。また、背面パネルには、誘電体層および隔壁によって形成される凹部の内壁面に蛍光体層が形成されている。蛍光体層は、隔壁によって仕切られる凹部ごとに色分けされて形成されている。
前面パネルと背面パネルとは、保護層と蛍光体層とが向き合い、且つ、スキャン電極およびサスティン電極とデータ電極とが立体交差する状態に配されている。また、前面パネルと背面パネルとの間に設けられた間隙は、放電空間であり、キセノン(Xe)/ネオン(Ne)やキセノン(Xe)/ネオン(Ne)/ヘリウム(He)などの混合ガスが充填されている。このように構成されたパネル部では、電極対とデータ電極とが交差する各部分が放電セルに相当する。
PDP装置の駆動部は、パネル部の各電極に対し接続されており、各電極に対して独立して電圧パルスを印加できるようになっている。駆動部が実行するパネル部の駆動においては、所謂、フィールド内時分割階調表示方式が用いられている。この方法では、1TVフィールドを複数のサブフィールドへと分割し、入力された映像信号に基づいて各サブフィールドの点灯/非点灯を制御し、1TVフィールドでの点灯の合計回数により階調表示が実行される。
ところで、PDP装置においては、その維持放電の放電効率が4[%]〜8[%]と非常に低く、消費電力の低減などの観点から放電効率の改善が求められている。このような要求に対して、様々なアプローチがなされているが、その一つとして、放電ガス中に占めるXeの割合を高めるという研究開発がなされている(例えば、特許文献1)。
特開2002−83543号公報
しかしながら、上記特許文献1の技術のように、放電ガス中におけるXeガスの占める割合を従来のPDP装置よりも高めていった場合には、放電効率は向上するものの、放電空間を臨む保護層が維持放電時のスパッタリングによって削り取られていくという問題を生じる。そして、維持放電による保護層の削れ量は、放電ガス中に占めるXeガスの割合(全圧に対するXeガスの分圧の比)を5[%]から10[%]、さらには30[%]と高くすれば高くするほど増加する。
前面パネルの保護層は、誘電体の表面保護という役割だけではなく、2次電子放出による駆動電圧の低減や壁電荷の保持といった非常に重要な役割も果たす部位である。このため、上記のように、ただ単に放電ガス中に占めるXeガスの割合を高くしたPDP装置は、放電効率の向上というメリットと引き換えに、寿命および信頼性の低下というデメリットを有することになってしまう。
本発明は、このような問題を解決しようとなされたものであって、高い放電効率を達成しながら、維持放電時のスパッタリングによる保護層の削れを抑え、長寿命で高い信頼性を有するプラズマディスプレイパネルおよびプラズマディスプレイパネル装置を提供することを目的とする。
本発明者等は、上記放電ガスの成分と駆動に伴う放電に起因する保護層のスパッタリングによる削れの発生との関係について探求したところ、次のようなメカニズムを解明するに至った。即ち、放電ガスとしてXe/Neの2元系ガスを用いる場合には、全圧に対するXeガスの分圧比を5[%]から30[%]あるいはそれ以上に上昇させるとき、Xeガスの分圧比を上げるのに従ってパネル駆動時における保護層の削れ量も増大する。そして、本発明者等は、放電ガスの構成要素であるNeの質量数(原子量)が、保護層を構成するマグネシウム(Mg)原子や酸素(O)原子の質量数と近い値を有することに着目し、放電ガス中に含まれるNeガスがパネル駆動時における保護層の削れに大きく影響を与えるものであることを見出した。
本発明は、上記検討結果を考慮し、次のような構成を有するものとする。
本発明に係るPDPは、内方の空間(放電空間)に放電ガスが充填されてなる密閉容器を有し、当該密閉容器において、保護層と蛍光体層とが互いに放電空間を臨む状態で形成されてなるパネルであって、放電ガスは、プラズマ放電時において蛍光体層の蛍光体を励起する光を出射する希ガス元素からなる第1ガス成分と、アルゴン(Ar)ガスからなる第2ガス成分とを含むとともに、全圧に対するNeガスの分圧比が0.5[%]以下であり、放電空間に対し1.50×10[Pa]以上6.66×10[Pa]未満の全圧を以って充填されている。ここで、「全圧に対するNeガスの分圧比が0.5[%]以下」というのは、「放電ガスの構成中にNeガスを含まない」という場合も包含する。
また、本発明に係るPDP装置は、上記本発明に係るPDPをパネル部とし、これに駆動部が接続されていることを特徴とする。
本発明に係るPDPおよびPDP装置では、放電ガスにおいて、第1ガス成分に対し、Arガスからなる第2ガス成分が含まれているとともに、Neガスについては、全圧に対し0.5[%]以下の分圧比で規定されている(放電ガスの構成中にNeガスを含まない場合も包含する)。本発明に係るPDPでは、このような構成を採用することによって、駆動時の放電によるスパッタリングによる保護層の削れが発生しにくく、パネル寿命および品質の安定性という観点から優位性を有する。即ち、従来のPDPのように放電ガスの構成要素としてNeガスを高い分圧比で含む場合には、Ne原子の質量数が保護層を構成するMg原子の質量数と近いことからパネル駆動時に保護層が削れるという現象が発生するが、本発明に係るPDPでは、Neガスの含有比率を分圧比0.5[%]以下としているので、パネル駆動時における保護層の削れという現象が発生しにくい。
また、本発明に係るPDPおよびPDP装置では、放電ガスの全圧を6.66×10[Pa]以下としているので、パネルの高い輝度を得るために、例えば、6.66×10[Pa]よりも高く放電ガスの全圧を上昇させた場合のように放電開始電圧が著しく上昇してしまうことがなく、実際のパネルを実現する上で問題を生じない。また、本発明に係るPDPでは、放電ガスの全圧を1.50×10[Pa]以上としているので、放電効率の低下と放電開始電圧の上昇とを生ずることがない。
なお、上記放電ガスの全圧に関しては、その上限を5.0×10[Pa]とすることが、放電開始電圧の上昇を抑えるという観点からより望ましい。
また、本発明に係るPDPおよびPDP装置では、放電ガスの構成中に実質的にNeガスを含まないが、第2ガス成分としてArガスを含む構成を採用しているので、パネル駆動時における高い発光効率を得ることができる。これは、Ar原子の有するぺニング効果を利用するものであって、Arガスの添加により放電開始電圧の低減を図ることができることに由来するものである。
従って、本発明に係るPDP、さらには当該PDPを備える本発明に係るPDP装置は、高い放電効率を達成しながら、維持放電時のスパッタリングによる保護層の削れを抑え、長寿命で高い信頼性を有する。
なお、本発明に係るPDPおよびPDP装置においては、上述のように、放電ガスの構成中に0.5[%]以下の分圧比であればNeガスを含むことも許容しているのは、保護層の削れ防止という目的からすれば放電ガスの構成中にNeガスを全く含まないことが望ましいのであるが、実際の製造過程などを考慮して許容できる範囲と考えられるためである。即ち、PDPの製造過程においては、パネル封着後に放電空間内の脱気を行い、その後に所要のガス(第1ガス成分および第2ガス成分を含む混合ガス)を充填するのであるが、放電空間内から完全にNeガス成分を排除するのはより厳密な工程管理が必要となり、また、脱気に要する時間も長くせざるを得ない。そこで、全圧に対する分圧比が0.5[%]以下の範囲でNeガスが存在しても(例えば、製造工程において放電空間からNeガスを排出しきれず不純物レベルで残留したような場合にも)、PDPの寿命特性に実質的な影響を与えないという知見に基づき、上記のようにNeガスの混在に関する許容レベルを規定したものである。
上記本発明に係るPDPおよびPDP装置では、放電ガスを構成する第1ガス成分として、次のようなものを採用することができる。
1)第1ガス成分;キセノン(Xe)ガス
2)第1ガス成分;クリプトン(Kr)ガス
なお、本発明に係るPDPおよびPDP装置では、放電ガスを2元系の混合ガスに限定するものではなく、3元系あるいはそれ以上の混合ガスを採用することもできる。なお、それらの場合においても、放電ガスの構成要素としてNeガスの含有比率を、全圧に対する分圧比で0.5[%]以下とすることが前提条件となる。
上記本発明に係るPDPおよびPDP装置では、放電ガスの全圧に対し67[%]以下の分圧比を以って上記第2ガス成分を含ませるようにしておけば、上述のように、パネル駆動時の保護層の削れの発生を抑制できるという優位性に加え、放電効率という観点からも優位となる。即ち、第2ガス成分の分圧比を67[%]以下としておけば、Xe(15[%])/Ne(85[%])の放電ガスを全圧6.66×10[Pa]で封入した高XeなPDP(放電ガス中におけるXeガスの含有比率が高いPDP)に対して、同等以上の放電効率を有することになる。このため、本発明に係るPDPおよびPDP装置において、このように第2ガス成分の比率を規定すれば、パネル駆動時の保護層の削れの発生の抑制と高い放電効率との両立が可能である。
また、上記本発明に係るPDPおよびPDP装置では、発光輝度の向上という観点から放電ガス中における第1ガス成分を主たる比率を占めるようにする場合、第2ガス成分(Arガス)の分圧比を25[%]以下とすれば、上記優位性に加えて、放電開始電圧を低く維持することができるという優位性も有する。
さらに、上記本発明に係るPDPおよびPDP装置では、第2ガス成分の分圧比を15[%]以下とすれば、より一層の放電効率の向上を図りながら、パネル駆動時における保護層の削れの発生を効果的に抑制することが可能となる。例えば、放電ガスとして、Xeガスを第1ガス成分とする2元系混合ガスとするとき、第2ガス成分の分圧比を15[%]以下とすれば、Xe(15[%])/Ne(85[%])の放電ガスを用いる場合に比べて、保護層の削れを低減することが可能であり、且つ、Xe分圧が高いので放電効率を高くすることができる。
また、上記本発明に係るPDPおよびPDP装置では、放電ガスの全圧に対する第2ガス成分(Arガス)の分圧比を1[%]以上、より望ましくは3[%]以上とすることが、装置製造時におけるエージング時間の長時間化を抑制するという観点から望ましい。即ち、放電ガス中におけるArガスの分圧比を1[%]以上とすることにより、エージング時間を従来のパネル構造を採用する場合と比較しても遜色のないレベルとすることができる。特に、Arガスの分圧比を3[%]以上とすることにより、エージング時間を10[hr.]以下とすることができ、製造上の観点より望ましい。
また、上記本発明に係るPDPおよびPDP装置では、放電ガス中に酸素ガスを添加しておくことが、駆動電圧の低減(放電効率の向上)という観点から望ましい。即ち、放電ガスに酸素ガスを添加することでXeOが形成されることになり、真空紫外線が高い効率で出射されることになる。なお、放電ガスに添加する酸素ガスの分圧比は、確実な放電効率の向上という観点から、0.01[%]以上1[%]以下としておくことが望ましい。
また、本発明に係るPDPおよびPDP装置では、誘電体層の厚みを20[μm]以下にしておくことが望ましい。これは、誘電体層の厚みを上記のように薄くすることで、パネル駆動時における放電開始電圧(維持電圧)を低く抑えることが可能であり、放電効率の向上およびパネル駆動時における保護層の削れの発生抑制という観点から望ましい。
上記本発明に係るPDPおよびPDP装置では、上述のように、第1ガス成分の比率を高めて高い発光輝度を確保することが可能であるので、(表示)電極対を金属材料からなり、構成要素として酸化膜(ITO(Indium Tin Oxide)、ZnO、SnOなど)を有しない構成とし、従来のPDPで用いていた酸化膜(透明電極膜)を省略することができる。これによって、本発明に係るPDPおよびPDP装置では、材料コストおよび製造コストなどの低減を果たすことが可能となる。
また、本発明に係るPDPおよびPDP装置では、具体的な保護層の構成材料として、酸化マグネシウム(MgO)を用いることができる。
なお、本発明に係るPDPおよびPDP装置では、放電ガス中に上記以外の成分、例えば、ヘリウム(He)などを微量添加する構成としても、同様の効果を得ることができる。
以下では、本発明を実施するための最良の形態について、一例を用いて説明する。なお、以下の説明で用いる形態は、あくまでも一例であって、本発明は、その本質的特徴とする部分以外これに限定を受けるものではない。
(実施の形態1)
1.パネル部10の構成
実施の形態1に係るPDP装置1の構成の内、パネル部10の構成について、図1を用いて説明する。図1は、パネル部10の構造を示す要部斜視図である。
図1に示すように、パネル部10は、2枚のパネル11、12が間に放電空間13をあけて対向配置された構成を有する。
1−1.前面パネル11の構成
図1に示すように、パネル部10を構成する2枚のパネル11、12の内の一方、前面パネル11は、前面基板111をベースとして構成されており、その一方の主面(図1では、下向き主面)にスキャン電極Scnとサスティン電極Susからなる表示電極対112が互いに並行して複数配設され、この表示電極対112を覆う状態に、誘電体層113および保護層114が順に積層形成されている。
ベースとなる前面基板111は、例えば、高歪点ガラスあるいはソーダライムガラスなどから構成されている。また、表示電極対112を構成するスキャン電極Scnおよびサスティン電極Susの各々は、例えば、アルミニウム合金(例えば、Al−Nd)などの金属材料から構成されており、従来のPDPで用いられていたような透明電極(ITOやSnO、ZnOなど)とバス電極(細幅金属線)との積層構造を有していない。ただし、スキャン電極Scnおよびサスティン電極Susの構成については、ITOやSnO、ZnOなどとバス電極との積層構造とすることも可能である。
前面パネル11の誘電体層113は、酸化シリコン(SiO)から形成されており、その厚みが約15[μm]に設定されている。また、保護層114は、酸化マグネシウム(MgO)から形成されている。
なお、前面基板111の表面において、隣り合う表示電極対112間には、隣り合う放電セル間で互いの光が漏れ出るのを防ぐためにブラックストライプが設けられた構成を採ることもできる。
1−2.背面パネル12の構成
背面パネル12は、背面基板121における上記前面パネル11と対向する側の主面(図1では、上向き主面)に、データ電極Datが複数配設されている。データ電極Datは、前面パネル11の表示電極対112に対して交差する方向を以って配設されている。データ電極Datが配設された背面基板121の主面には、誘電体層122が形成され、その上には、隔壁123が形成されている。隔壁123は、隣り合うデータ電極Dat間に立設される主隔壁1231とこれに交差する方向に形成された補助隔壁1232とからなる。
誘電体層122と隔壁123とで形成される各凹部は、その内壁面に蛍光体層124が形成されている。蛍光体層124は、各凹部ごとに赤色(R)蛍光体層124R、緑色(G)蛍光体層124G、青色(B)蛍光体層124Bがそれぞれ色分けされて形成されている。
背面パネル12における背面基板121についても、上記前面パネル11における前面基板111と同様、高歪点ガラス材料やソーダライムガラス材料などを用い形成されている。データ電極Datは、アルミニウム合金や銀(Ag)などといった金属材料から形成されている。
誘電体層122は、前面パネル11における誘電体層113と同様の酸化シリコンや、非鉛系の低融点ガラス材料などから形成されているが、これに酸化アルミニウム(Al)や酸化チタン(TiO)などが含まれた構成とすることもできる。隔壁123は、ガラス材料から形成され、蛍光体層124は、例えば、次に示すような各色蛍光体を単独で用いたり、あるいは、各色ごとに混合した材料を用い形成されている。
赤色(R)蛍光体;(Y、Gd)BO:Eu
YVO:Eu
緑色(G)蛍光体;ZnSiO:Mn
(Y、Gd)BO:Tb
BaAl1219:Mn
青色(B)蛍光体:BaMgAl1017:Eu
CaMgSi:Eu
1−3.前面パネル11と背面パネル12との配置
図1に示すように、パネル部10は、前面パネル11と背面パネル12とが、背面パネル12の隔壁123をギャップ材として間に挟み、且つ、表示電極対112とデータ電極Datとが略直交する方向になる状態に配され、外周部で封止された構成となっており、内方に放電空間13を有する密閉容器となっている。そして、前面パネル11と背面パネル12との間は、隔壁123により仕切られた放電空間13が形成される。
本実施の形態に係るパネル部10の放電空間13には、キセノン(Xe)ガスとアルゴン(Ar)ガスとの2元系混合ガス(放電ガス)が封入されている。放電ガスの封入圧力は、1.50×10[Pa]〜6.66×10[Pa]の範囲で設定されている。
放電ガスは、プラズマ放電時において蛍光体層の蛍光体を励起する光を出射する希ガス元素からなる第1ガス成分としてXeガスが含まれ、これに対し添加される第2ガス成分としてArガスが含まれ構成されている。放電ガス中において、全圧に対するArガスの分圧比は、67[%]以下に設定されている。Arガスの分圧比については、25[%]以下とすることが望ましく、15[%]以下とすることがより望ましい。さらに、Arガスの分圧比の下限値については、1[%]とすることが、製造時におけるエージング時間の長期化防止という観点から望ましく、3[%]とすることがより望ましい。これらの理由については、後述する。
2.PDP装置1の構成
上記パネル部10を備えるPDP装置1の全体構成について、図2を用いて説明する。図2は、PDP装置1の全体構成を模式的に示したブロック図である。なお、図2では、パネル部10の構成の内、電極Scn、Sus、Datの配列のみを模式的に示している。
図2に示すように、PDP装置1は、上記構成を有するパネル部10と、この各電極Scn、Sus、Datのそれぞれに対して所要にタイミングおよび波形で電圧パルスを印加する表示駆動部20とから構成されている。パネル部10のスキャン電極Scnおよびサスティン電極Susは、それぞれが交互に、n[本]づつ配設され、データ電極Datは、列方向にm[本]配設されている。パネル部10の放電セルは、一対の表示電極対112(Scn(k)、Sus(k))とデータ電極Dat(l)との各交差部分に形成され、パネル部10全体では、(m×n)個の放電セルを備えることになる。
表示駆動部20は、データ電極Dat、スキャン電極Scn、サスティン電極Susのそれぞれに接続されるデータドライバ21、スキャンドライバ22、サスティンドライバ23を有する。表示駆動部20には、各ドライバ21〜23に接続される、タイミング発生部24、A/D変換器25、走査数変換部26、サブフィールド変換部27およびAPL(平均ピクチャーレベル)検出部28などを有する。また、その図示を省略しているが、表示駆動部20には、電源回路も接続されている。
表示駆動部20に対して入力された映像信号VDは、A/D変換器25に入力され、また、水平同期信号Hおよび垂直同期信号Vは、タイミング発生部24、A/D変換器25、走査数変換部26およびサブフィールド変換部27に対して入力される。
A/D変換器25は、上記入力された映像信号VDをディジタル信号の画像データへと変換し、変換後の画像データを走査数変換部26およびAPL検出部28へと出力する。A/D変換器25からの画像データの入力を受けたAPL検出部28は、1画面ごとの各放電セルにおける各階調値を示す画面データに基づき、当該1画面の合計の階調値を計算し、これを全放電セルの数で割った値を求める。そして、APL検出部28は、上記求めた値より最大階調値(例えば、256階調)に対する百分率を算出して平均ピクチャーレベル(APL値)を求め、その値をタイミング発生部24へと出力する。
ここで、APL値は、その値が高ければ高いほど白っぽい画面となり、逆に、低ければ低いほど黒っぽい画面となる。
走査数変換部26は、A/D変換器25からの画像データを受け付け、これをパネル部10の画素数に応じた画像データへと変換して、当該値をサブフィールド変換部27へと出力する。サブフィールド変換部27は、走査数変換部26から転送されてくる画像データを、パネル部10に階調表示させるための各サブフィールドでの放電セルの点灯/非点灯を示す2値データの集合であるサブフィールドデータに変換し、備えるサブフィールドメモリ(不図示)に一旦格納する。そして、サブフィールド変換部27は、タイミング発生部24からのタイミング信号に応じてサブフィールドメモリに格納しているサブフィールドデータをデータドライバ21へと出力する。
データドライバ21は、サブフィールドごとの画像データを各データ電極Dat(1)〜Dat(m)に対応する信号に変換し、各データ電極Dat(1)〜Dat(m)に対し電圧パルスを印加する。データドライバ21は、公知のドライバICなどによって構成されている。
タイミング発生部24は、入力される水平同期信号Hおよび垂直同期信号Vに基づいて、タイミング信号を生成し、当該タイミング信号を各ドライバ21〜23に対して出力する。
スキャンドライバ22は、タイミング発生部24からのタイミング信号に基づいてスキャン電極Scn(1)〜Scn(n)に対し電圧パルスを印加する。スキャンドライバ22についても、上記データドライバ21と同様に、公知のドライバICなどによって構成されている。
サスティンドライバ23は、タイミング発生部24からのタイミング信号に基づいてサスティン電極Sus(1)〜Sus(n)に対し電圧パルスを印加する。このサスティンドライバ23についても、上記データドライバ21、スキャンドライバ22と同様に、公知のドライバICなどによって構成されている。
3.PDP装置1の駆動
次に、上記構成を有するPDP装置1の駆動方法について、図3を用いて説明する。図3は、フィールド内時分割階調表示方式(サブフィールド法)を用いてPDP装置1の駆動を実行する方法を示す波形図である。
図3に示すように、PDP装置1の駆動においては、一例として、256階調を表現するために1TVフィールドを8サブフィールドSF1〜SF8に分割し、それぞれのサブフィールドSF1〜SF8に初期化期間T、書き込み期間Tおよび維持期間Tの3つの期間を設定し、サスティン電極Sus(1)〜Sus(n)に対し電圧パルス2001を、スキャン電極Scn(1)〜Scn(n)に対し電圧パルス2002を、データ電極Dat(1)〜Dat(m)に対し電圧パルス2003を各々印加する。なお、上述のように、各電極Sus、Scn、Datの各々に対する電圧パルス2001、2002、2003の印加は、タイミング発生部24からのタイミング信号に基づいて実行される。
図3の下部分に示すように、各サブフィールドSFにおける初期化期間Tでは、パネル部10の全ての放電セルにおいて弱放電である初期化放電を生じさせ、当該放電により先行するサブフィールドにおける放電の有無による影響の除去や、放電特性によるバラツキ等を吸収する初期化が実施される。初期化期間Tでは、スキャン電極Scn(1)〜Scn(n)に対し、緩やかな電圧−時間の傾きを以って上りおよび下り方向に変化するランプ波形電圧パルスを印加し、この傾斜部分の印加の際に定常的に放電電流を流す。初期化期間Tでは、スキャン電極Scn(1)〜Scn(n)への印加電圧パルスにおける上り傾斜部分と下り傾斜部分とで各々1回づつ弱放電たる初期化放電が発生する。
上記初期化期間Tに続く書き込み期間Tでは、サブフィールド変換部27からのサブフィールドデータに基づいてスキャン電極Scn(1)〜Scn(n)を1ラインごとに順次スキャンして行き、当該サブフィールドで維持放電を生じさせたい放電セルに対し、スキャン電極Scnとデータ電極Datとの間で書き込み放電を生じさせ、当該放電の発生によって前面パネル11の保護層114表面に壁電荷を蓄積する。
図3に示すように、維持期間Tでは、パネル部10の全てのサスティン電極Sus(1)〜Sus(n)とスキャン電極Scn(1)〜Scn(n)に対し、極性が交互に変わるように維持パルスが印加される。維持期間Tにおいて、サスティン電極Sus(1)〜Sus(n)に印加される電圧パルスの波形とスキャン電極Scn(1)〜Scn(n)に印加される電圧パルスの波形とは、同一周期(例えば、λ=6[μsec.])であり、互いに半周期ずらした状態になっている。なお、各維持パルスの高さ、即ち、電圧値は、例えば、180[V]に設定されている。
維持期間Tにおいては、上記全てのサスティン電極Sus(1)〜Sus(n)およびスキャン電極Scn(1)〜Scn(n)への維持パルスの印加により、直前の書き込み期間Tで壁電荷の蓄積がなされた放電セルで維持放電が発生する。維持放電は、サスティン電極Susとスキャン電極Scnとの極性が反転するごとに発生する。そして、サブフィールドSFごとにおける維持放電の発生回数は、そのサブフィールドに割り当てられた輝度重みに基づき設定される。
上述のように、維持期間Tにおいて維持放電が発生した放電セルでは、放電空間13に充填された放電ガス中の励起Xe原子から波長147[nm]の共鳴線が放射され、励起Xe分子から波長173[nm]の分子線が放射される。そして、これら励起Xe原子および励起Xe分子から放射された共鳴線および分子線が背面パネル12における各放電セルの蛍光体層124で可視光に変換されて、前面パネル11側より出射される。
このようにして、PDP装置1では、入力映像信号VD等に基づく画像表示がなされる。
4.PDP装置1が有する優位性
本実施の形態に係るパネル部10は、放電空間13に2元系混合ガス(Xe/Ar)が充填されている。即ち、従来のPDPで用いられる放電ガス中には高い比率でNeガスが含まれているの対し、本実施の形態に係るパネル部10に充填される放電ガスは、その構成成分としてNeガスを含むものではなく(含んだとしても分圧比0.5[%]以下)、Xeガスに対する第2ガス成分としてArガスを有する。このため、パネル部10の放電ガス中には、前面パネル11の保護層114の構成要素であるMgと質量数が近いNeは存在せず、主たるガス成分であるXeガスの分圧比を高く設定しても、維持放電時のスパッタリングによる保護層114の削れという問題を生じにくい。
なお、上述のように、Mgの質量数に近いNeが放電ガス中に含有されていないことが望ましいのであるが、パネルの製造過程において放電空間13中に、全圧に対する分圧比が0.5[%]以下の比率(例えば、製造工程において排出しきれなかった不純物レベル)でNeガスを残留する場合にも、上述の効果が実質的に揺らぐことはない。
パネル部10における保護層114は、誘電体層113の表面の保護という目的の他に、駆動時における2次電子放出による駆動電圧の低減や書き込み期間Tから維持期間Tに至るまでの間などでの壁電荷の保持といった重要な役割を果たす部位である。よって、Xeガスの分圧比を高く設定して輝度の向上を図った場合にも、駆動時における保護層114の削れが発生しにくいPDP装置1は、高い放電効率を維持しながら、長寿命で高い信頼性を有する。
また、PDP装置1では、上述のように、放電ガスの全圧が1.50×10[Pa]以上6.66×10[Pa]以下の範囲で設定されているので、高い放電効率と低い放電開始電圧とを実現することができる。放電ガスの全圧に関しては、仮に1.50×10[Pa]よりも低く設定の場合には、放電効率の低下に加え、放電開始電圧の上昇を招いてしまう。他方、全圧を6.66×10[Pa]よりも高く設定の場合には、放電開始電圧が高くなり過ぎ、実際のPDPへの適用は困難となる。なお、放電ガスの全圧に関し、その上限を5.0×10[Pa]とすれば、高い放電効率と低い放電開始電圧との確保という観点から、より望ましい。
また、PDP装置1のパネル部10においては、表示電極対112を構成するスキャン電極Scnおよびサスティン電極Susの各々を、Al合金材料から構成し、ITOなどの透明電極膜を要素として含まない構成としている。これによって、パネル部10の製造にあたっては、透明電極膜の形成に係る材料および形成プロセスなどを省略することができ、製造コストという観点から優位性を有する。なお、このように透明電極膜を省略することができるのは、本実施の形態に係るPDP装置1が非常に高い輝度を有することができるためである。
なお、本実施の形態では、表示電極対112の各電極Scn、Susを1本の金属線として構成したが、並列接続され並設された複数の金属線を用いて各電極Scn、Susを構成することとしてもよい。また、これらの電極Scn、Susの構成材料には、Al合金材料の他にも、銀(Ag)や銅(Cu)なども用いることができる。
また、PDP装置1のパネル部10においては、前面パネル11の誘電体層113がSiOを材料として約15[μm]の膜厚で形成されている。このため、PDP装置1では、より一層の放電開始電圧の低減が可能となっている。即ち、SiOは、従来のPDPにおける誘電体層の形成に用いられてきた低融点ガラスなどに比べて低い誘電率を有するので、このように20[μm]以下とする薄肉化が可能である。薄い誘電体層113を形成するということは、維持期間Tなどにおいて表示電極対112にかかる電圧を効率的に放電空間13に対し印加することが可能となり、放電開始電圧の低減を図ることが可能となる。
以上のように、本実施の形態に係るPDP装置1では、高い放電効率を達成しながら、維持放電時のスパッタリングによる保護層の削れの発生を抑え、長寿命で高い信頼性を有する。
5.放電ガスの各成分の比率
以下では、放電ガスにおける成分比率を規定するにあたり確認した実験について説明する。以下で説明する確認実験には、上記PDP装置1と同一構成の装置を用いた。
5−1.放電効率のArガス添加比率依存性
先ず、PDP装置における放電ガス中のArガス添加比率(分圧比)と放電効率との関係について確認をした。本確認実験では、放電ガスに関する実験条件を次のように設定した。
・放電ガス;Xe/Arの2元系混合ガス
・Xeガスの分圧;2.2×10[Pa]で一定
・Arガスの添加比率;放電ガスの全圧に対する分圧比を、0[%]〜67[%]まで変化
なお、比較例として、放電ガスにXe/Neの2元系混合ガスを用い、上記同様にXeガスの分圧を2.2×10[Pa]とし、また、全圧に対するNeガスの分圧比が5[%]となる状態に設定した。
そして、上記各サンプルについての放電効率を測定し、従来のPDP装置(放電ガスが、Xe/Neの2元系混合ガスであり、Xe分圧比が15[%]で、Ne分圧比が85[%]、全圧が6.66×10[Pa])を基準とする相対値を算出し、図4に示す。
図4に示すように、放電ガスとしてXe/Arの2元系混合ガスを有するPDP装置では、Arガスの添加比率が0[%]から約33[%]の範囲でArガスの添加比率の上昇に伴って放電効率が上昇し、Arガスの添加比率が約33[%]を超えると放電効率が低下して行く。また、比較例は、同じ比率でArガスを含むサンプルに対して放電効率が高い。これは、放電ガスの構成要素としてNeガスを含む場合には、放電開始電圧の低減という優位性を得られるためであると考えられる。
しかし、本発明者等の確認によれば、放電ガスをXe/Neの2元系混合ガスとし、全圧に対するNeガスの分圧比を8[%]以上に高くする場合には、パネル駆動時における保護層の削れの発生が著しくなり、実用には耐えないものである。
なお、図4に示すように、放電ガスをXe/Arの2元系混合ガスとし、Arガスの添加比率を67[%]以下とする場合には、基準とした従来のPDP装置に対して、高い放電効率を有することが分かる。
5−2.放電開始電圧のArガス添加比率依存性
次に、上記と同一のサンプルの各々について、放電の発生に必要な最小電圧、即ち、放電開始電圧を測定し、その結果を図5に示す。
図5に示すように、放電開始電圧(図5では、「維持電圧」と記載する。)は、Arガスの添加比率が0[%]〜25[%]の範囲では約245[V]で安定しており、Arガスの添加比率が25[%]を超えると上昇する。例えば、Arガスの添加比率が67[%]のときには、放電開始電圧は約298[V]となり、Arガスの添加比率が25[%]以下の場合よりも約53[V]上昇する。
この結果より、Arガスの添加比率が25[%]以下の範囲では、Arガスによる電圧低減の作用と放電ガスの全圧上昇による電圧上昇の作用とがバランスしているが、Arガスの添加比率が25[%]を超えると放電ガスの全圧上昇による電圧上昇の作用が大きくなると考えられる。よって、低い放電開始電圧とするためには、放電ガス中におけるArガスの添加比率を25[%]以下とすることが望ましい。
5−3.スパッタリングレートのXeガス比率依存性
次に、パネル駆動時の放電による保護層114のスパッタリングレートと放電ガス中におけるXeガス比率との関係について、確認をした。確認には、次に示す条件を以ってサンプルを作製し、各サンプルでのスパッタリングレートを求めた。
・放電ガス;Xe/Arの2元系混合ガス
・放電ガス全圧;6.0×10[Pa]
・Xeガス比率;放電ガスの全圧に対する分圧比を、5[%]〜99[%]まで変化
なお、比較例として、放電ガスにXe/Neの2元系混合ガスを用い、Xeガスの比率を5[%]〜30[%]まで変化させたサンプルを作製し、これらについてもスパッタリングレートを求めた。
なお、スパッタリングレートの算出は、各イオンにおけるスパッタリング確率と、イオン密度およびイオンエネルギ分布とを考慮して行った。
図6に示すように、Xe/Neの放電ガスを充填した比較例に係るサンプルでは、Xeガスの比率の上昇に伴ってスパッタリングレートが上昇することが分かる。例えば、Xeガス比率が5[%]のときのスパッタリングレートは、”8”程度であるが、Xeガス比率が15[%]のときのスパッタリングレートは、”15”となり、Xeガス比率が30[%]のときのスパッタリングレートは、”31”となる。なお、図6には、比較例のサンプルにおける計算で求めたスパッタリングレートについても併記した。図6に示すように、実験結果と計算結果との整合がとれていることが分かる。
図6に示すように、放電ガスにXe/Arの2元系混合ガスを用いる場合には、Xeガス比率が5[%]〜75[%]の範囲では、Xeガス比率の上昇に伴ってスパッタリングレートが上昇する。ただし、Xe/Arの混合ガスを用いる場合には、スパッタリングレートの上昇度合いが、Xe/Neの混合ガスを用いる比較例の場合に比べて緩やかであり、Xeガス比率が75[%]のときにスパッタリングレートが”21”となり、最高値をとる。このXe/Arの混合ガスを用いる場合のスパッタリングレートの最高値”21”は、比較例におけるXeガス比率が20[%]のときの値と略同等である。
また、図6に示すように、Xe/Arの混合ガスを用いる場合のいて、Xeガス比率が75[%]〜99[%]の範囲におけるスパッタリングレートは、Xeガス比率が75[%]未満の範囲とは逆に、Xeガス比率の上昇に対し下降する。例えば、Xeガス比率が99[%]のときには、スパッタリングレートは略”0”となり、パネル駆動の放電によっても殆ど保護層の削れが発生しないことが分かる。
さらに、図6に示すように、放電ガスにXe/Arの2元系混合ガスを用いる場合において、従来のPDP装置(放電ガスが、Xe/Neの2元系混合ガスであり、Xeガス比率が15[%]で、Ne分圧比が85[%]、全圧が6.66×10[Pa])と同等かあるいはそれ以下のスパッタリングレートを確保するためには、Xeガス比率を85[%]以上とすればよいことが分かる。言換えると、放電ガスとしてXe/Arの2元系混合ガスを採用する場合には、Arガス添加比率を15[%]以下とすれば、従来のPDP装置に対し同等かあるいはそれ以下のスパッタリングレートを確保することが可能である。
以上の結果より、放電ガスに従来のXe/Neの2元系混合ガスを用いるのではなく、Neを含まず、Xe/Arの2元系混合ガスを用いることで、Xeガス比率を高く設定する場合にも、低いスパッタリングレートを確保することができる。
5−4.エージング時間(製造時)のArガス比率依存性
次に、放電ガス中におけるArガスの添加比率と製造過程におけるエージング時間とに関し、図7を用い説明する。図7の特性図を得るに際しては、放電ガスとして100[%]XeガスとXe/Arの2元系混合ガスとを用い、混合ガスに関してはXeガスの分圧を30[kPa]で一定とし、Arガスの添加比率を変化させた条件で各々のエージング時間を求めた。なお、エージング時間とは、装置の組立が終了して後に、各電極Scn、Sus、Datに電圧を印加して、放電開始電圧の初期変動が収束し、定常状態、例えば250[V]±5[V]の範囲内となるまでに要する時間である。
図7に示すように、放電ガス中におけるArガスの添加比率が1[%]以上であれば、100[%]Xeの放電ガスを有するPDP装置に比べてエージング時間の短縮を図ることが可能であることが分かる。また、Arガスの添加比率が1[%]から10[%]程度の範囲においては、Arガスの添加比率を上げていくに従ってエージング時間は急激に短くなって行く。そして、Arガスの添加比率が10[%]を越えると、エージング時間は大きく変化しなくなる。
Xe/Arの2元系混合ガスの場合には、Arガスの添加比率が3[%]以上であれば、エージング時間が10[hr.]よりも短くなり、従来のPDP装置でのエージング時間に比べて遜色のないレベルであるといえる。
なお、本確認では、Xe/Arの2元系混合ガスを用い、エージング時間との関係について実施したが、Xeガスの代りにクリプトン(Kr)ガスを用いた場合にあっても、略同様の結果となる。
従って、図7より、放電ガス中におけるArガスの添加比率については、エージング時間という観点から1[%]以上とすることが望ましく、3[%]以上とすることでエージング時間を10[hr.]よりも短くできることから一層望ましい。
5−5.考察
図4〜図7に示す確認実験の結果より、放電ガスとしてXe/Arの2元系混合ガスを用いる場合には、Arガスの添加比率を67[%]以下とすれば高い放電効率を得ながら低いスパッタリングレートを確保することができ、Arガスの添加比率を25[%]以下とすれば、一層の放電効率の向上が得られ、さらに、Arガスの添加比率を15[%]以下とすれば、従来のXe(15[%])/Ne(85[%])の放電ガスを有するPDP装置と同等以上の長い寿命を持たせることができる。
なお、上述のように、放電ガスをXe/Arの2元系混合ガスとし、その構成要素からNeを除いたことにより、パネル駆動時のおける放電での保護層114の削れの発生を低減できるのは次のような理由によるものであると考えられる。
即ち、保護層114には、上述のように、誘電体層113の保護および2次電子放出係数の確保という観点からMgOが用いられるが、従来のPDP装置では、この保護層114の構成要素であるMg原子やO原子に対し質量数が近いNeが放電ガス中に含まれていたため、パネル駆動によってNe原子が保護層に衝突することで、そのエネルギが共鳴的にMgおよびOに与えられる。そして、これにより従来のPDP装置では、高い確率で保護層がスパッタリングされていた。
これに対して、本実施の形態に係るPDP装置では、放電ガスをXe/Arの2元系混合ガスとして、構成中にNeガスを含まない(全圧に対し0.5[%]以下の分圧比での含有は許容する。)ので、上記スパッタリング確率の低減が図られる。その結果、本実施の形態に係るPDP装置1では、パネル駆動時において、放電によるスパッタリングでの保護層114の削れの発生は抑えられる。
また、製造時におけるエージング時間という観点から、放電ガス中におけるArガスの添加比率を1[%]以上とすることが望ましく、3[%]以上とすることがより望ましい。
ここで、本実施の形態においては、放電ガスのXe/Arの2元系混合ガスを用いたが、この他に、Kr/Arの2元系混合ガスやXe/Ar/Krの3元系混合ガスなどを用いても、上記同様の効果を得ることができる。また、Heガスを数[%]添加することとしても、上記同様の効果を得ることができる点にかわりはない。
さらに、放電ガスの全圧を1.50×10[Pa]〜6.66×10[Pa]の範囲であれば図4〜図7を用いて確認したのと同様の効果を得ることができる。
(実施の形態2)
次に、実施の形態2に係るPDP装置について説明する。本実施の形態に係るPDP装置が上記実施の形態1に係るPDP装置1と相違する点は、放電ガスの構成、放電ガスの全圧、前面パネルにおける誘電体層の材質、膜厚、および表示電極対の各電極の構成材料である。その他の部分については、上記実施の形態1と変わるところがないので、その説明を省略する。
本実施の形態に係るPDP装置では、パネル部における放電空間に対し、Kr/Arの2元系混合ガスが充填されている。この内、Krガスは、PDP装置の駆動時において、プラズマ放電により蛍光体層を構成する蛍光体を励起する光(真空紫外線)を出射する要素として含まれ、分圧が3×10[Pa]に設定されている。放電ガスを構成するもう一つの要素であるArガスは、上記実施の形態1と同様に、パネル駆動時における維持電圧の低減により、放電効率の向上を図るために添加されているものであり、分圧が7.5×10[Pa]に設定されている。
本実施の形態に係るPDP装置では、放電ガスの全圧は3.75×10[Pa]となっており、全圧に対するArガスの分圧比は、7.5×10/3.75×10=0.20、即ち、20[%]となっている。
また、パネル部における誘電体層は、非鉛の低融点ガラス材料を用い、膜厚約19[μm]に形成されている。表示電極対を構成するスキャン電極およびサスティン電極の各々は、全て銀(Ag)から形成され、上記実施の形態1と同様にITOなどの透明電極膜を有しない構成となっている。
図示を省略するが、本実施の形態に係るPDP装置についても、上記実施の形態1と同様に、放電効率および保護層のスパッタリングレートについての確認を実施した。この確認結果によると、本実施の形態に係るPDP装置は、放電ガスとして100[%]Krガスを採用する場合に比べて約6[%]の放電効率の向上が図られる。
また、本実施の形態に係るPDP装置では、図5に示すXe/Arの放電ガスの場合と同様に、Arガス添加比率が0[%]〜25[%]の範囲では、放電開始電圧が略一定で安定しており、Arガス添加比率が25[%]を超える範囲では、放電開始電圧が上昇する傾向にある。この点についても、上記実施の形態1と同様である。
本実施の形態に係るPDP装置においても、放電ガス中にNeガスを含まず(全圧に対し0.5[%]以下の分圧比での含有は許容する)、Arガスを含むので、パネル駆動時における放電による保護層のスパッタリングレートが低く抑えられている。放電ガスにおいて、全圧に対するArガスの分圧比の望ましい範囲としては、上記実施の形態に係る放電ガスとしてXe/Arの2元系混合ガスを採用する場合と同様に、67[%]以下であることが望ましく、25[%]以下とすることがより望ましく、15[%]以下とすることがさらに望ましい。
ここで、比較として、放電ガスにKr/Neの2元系混合ガスを用いた場合についても検討した。全圧に対するNeガスの分圧比は、20[%]とした。このPDP装置では、100[%]Krガスを放電ガスとする場合に比べて、放電効率の向上という観点からは優位であるものの、パネル駆動時のおける放電による保護層のスパッタリングレートが極めて大きくなってしまうというデメリットを有することになる。このため、このようなPDP装置は、実現することが困難である。
以上のように、本実施の形態に係るPDP装置においても、放電ガスの構成要素としてNeガスを含まず、保護層を構成するMgやOなどよりも質量数の大きいAr元素を放電ガスに含むようにすることで、高い放電効率を達成しながら、維持放電時のスパッタリングによる保護層の削れの発生を抑え、長寿命で高い信頼性を有する。
なお、本実施の形態に係るPDP装置に対しても、上記実施の形態1と同様の種々のバリエーションを採用することが可能である。
また、本実施の形態に係る誘電体層および表示電極対の構成についても、これを採用できる理由およびこれより奏される効果などについては、上記実施の形態1と同様である。
(実施の形態3)
次に、実施の形態3係るPDP装置について説明する。本実施の形態に係るPDP装置が上記実施の形態1に係るPDP装置1と相違する点は、放電ガスの構成、放電ガスの全圧、前面パネルにおける誘電体層の膜厚である。その他の部分については、上記実施の形態1と変わるところがないので、その説明を省略する。
本実施の形態に係るPDP装置では、パネル部における放電空間に対し、Xe/Ar/Oの3元系混合ガスが充填されている。即ち、本実施の形態に係るPDP装置では、プラズマ放電時において蛍光体層の蛍光体を励起する光を出射する希ガス元素からなる第1ガス成分としてXeガスが含まれ、これに添加の第2ガス成分としてArガスを含み、さらにこれらに対し第3ガス成分としての酸素(O)ガスが添加されている。放電ガスの全圧は、3.5×10[Pa]に設定されている。
放電ガスの全圧に対するArガスの分圧比は、24.5[%]であり、全圧に対するOガスの分圧比は、0.5[%]に設定されている。Oガスが微量添加された放電ガスでは、エキシマ状態であるXeOが存在することになり、このXeOの電離エネルギがXe単体に比べて小さく、初期電子の生成に友好的な作用を及ぼす。このため、本実施の形態に係るPDP装置では、上記実施の形態1に係るPDP装置1よりも一層の放電開始電圧の低減を図ることが可能となる。
さらに、本実施の形態では、第3ガス成分としてのOガスの添加比率を0.5[%]としているが、この比率については、0.01[%]以上1[%]以下とすることが望ましい。これは、放電ガス中におけるOガスの添加比率は、0.01[%]という微量であっても放電開始電圧を低減する効果を奏するものであるが、1[%]を超えると放電開始電圧の上昇を招いてしまうためである。
誘電体層は、上記実施の形態1に係るPDP装置と同じ酸化シリコン(SiO)を用いて、膜厚約16[μm]で形成されている。
以上のような構成を有する本実施の形態に係るPDP装置は、上記実施の形態1に係るPDP装置1が有するのと同様の維持放電時のスパッタリングによる保護層の削れの発生を抑え、長寿命で高い信頼性を有するとともに、PDP装置1よりも一層の放電開始電圧の低減という効果を得ることができる。
なお、本実施の形態に係るPDP装置においても、上記実施の形態1、2と同様に種々のバリエーションを適用することが可能である。
(その他の事項)
上記実施の形態1〜3では、本発明に係るPDPおよびPDP装置の構成およびそこから得られる効果を説明するために一例として示したものであって、本発明は、上記特徴とする部分以外の点について、何らこれに限定を受けるものではない。例えば、上記実施の形態1では、放電ガスとしてXe/Arの2元系混合ガスを用い、実施の形態2では、Kr/Arの2元系混合ガスを用い、実施の形態3では、Xe/Ar/Oの3元系混合ガスを用いることとしたが、次のような組み合わせであれば採用することが可能である。
(1)Xe/Ar
(2)Xe/Ar/Kr
(3)Xe/Ar/O
(4)Xe/Ar/Kr/O
(5)Kr/Ar
(6)Kr/Ar/O
(7)Xe/Kr
(8)Xe/Kr/O
また、上記の各組み合わせに対して、微量(例えば、数[%])のHeガスを添加することとしてもよい。そして、Neガスを除く成分であれば微量添加することも可能である。
また、上記実施の形態1などでは、蛍光体層124R、124G、124Bの各々を構成する蛍光体材料を例示したが、それ以外にも次に示すような各蛍光体材料を用いることができる。
R蛍光体;(Y、Gd)BO:Eu
G蛍光体;(Y、Gd)BO:TbとZnSiO:Mnとの混合物
B蛍光体;BaMgAl1424:Eu
さらに、本発明が意図するところは、放電ガスの成分としてNeガスを含まないということであり、パネル部の製造過程等において放電空間中に残留するNeガスまでも排除しなければならないものではない。即ち、全圧に対し0.5[%]以下の分圧比(例えば、不純物レベル)であれば放電ガス中にNeガスを含有していたとしても、実質的な問題を生じることはなく、許容の範囲内である。
また、上記実施の形態では、PDP装置のパネル部の形態の一例として、2枚のパネルを対向配置し、間に放電空間を形成するタイプのものを採用したが、本発明の本質的な部分は、放電ガスの組成であることから、このようなパネル部の形態については、種々のバリエーションを採ることができる。たとえば、SID’04−Session18.4:”Flexible AC Plasma Displays Using Plasma−spheres”(SID-SymposiumDigest of Technical Paper,May2004,Volume35,Issue1,pp.815-817,Carol A. Weddinget al,University of Toledo,OH)で紹介されている複数の球状セルの集合体を以って構成された表示装置や、あるいは、日本・特開2000−315460号公報に開示されている複数の柱状体を集合させて構成された表示装置に対しても適用することが可能である。
また、上記では、放電ガスの第1ガス成分(主ガス成分)として、実施の形態1、3でXeガスを採用し、実施の形態2でKrガスを採用することとしたが、これらの成分については背面パネルにおける蛍光体層を構成する蛍光体により適宜の変更が可能である。即ち、蛍光体の励起光波長によって主ガス成分を規定すればよい。
また、上記実施の形態1〜3においては、放電開始電圧の低減のため、その膜厚を20[μm]以下としているが、それ以上の膜厚とすることも可能であり、その場合にも、従来のPDP装置に対し放電ガスの組成を変更した分だけの効果を得ることはできる。また、誘電体層を形成するための材料についても、上記実施の形態1〜3で採用したSiOや非鉛の低融点ガラス材料以外の材料を採用することも可能である。
また、上記実施の形態においては、表示電極対を構成する各電極を、AgやAl−Ndなどの金属材料から形成することとしたが、これ以外にもCu−Cr−Cuの積層構造体や、その他の金属材料を用いることも可能であり、勿論、従来のPDP装置で採用されているような透明電極膜とバスラインとの積層構造を採用することも可能である。
また、上記実施の形態1などでは、放電ガスの全圧を6.66×10[Pa]以下の範囲としたが、放電開始電圧の低減などの目的からは、全圧の上限を5.0×10[Pa]とすることがより望ましい。
本発明は、高い放電効率を維持しながら、駆動の長短にかかわりなく安定して高い表示品質を維持することができ、大型で高精細なテレビジョンあるいは大型表示装置などに適用することができる。
実施の形態1に係るPDP装置1の内、パネル部10の構成を示す要部斜視図である。 PDP装置1の構成を模式的に示すブロック構成図である。 PDP装置1の駆動において、各電極Scn、Sus、Datに印加される電圧パルスの波形を示す波形図である。 放電ガスとしてXe/Arの2元系混合ガスを採用する場合において、放電ガスの全圧に対するArガスの分圧比と放電効率との関係を示す特性図である。 放電ガスとしてXe/Arの2元系混合ガスを採用する場合において、放電ガスの全圧に対するArガスの分圧比と維持期間において必要となる維持電圧との関係を示す特性図である。 放電ガスとしてXe/Arの2元系混合ガスを採用する場合において、放電ガスの全圧に対するXeガスの分圧比とスパッタリングレートとの関係を示す特性図である。 放電ガスとしてXe/Arの2元系混合ガスを採用する場合において、放電ガスの全圧に対するArガスの分圧比と製造過程におけるエージング時間との関係を示す特性図である。
符号の説明
1.PDP装置
10.パネル部
11.前面パネル
12.背面パネル
13.放電空間
20.表示駆動部
21.データドライバ
22.スキャンドライバ
23.サスティンドライバ
24.タイミング発生部
25.A/D変換器
26.走査数変換部
27.サブフィールド変換部
111、121.基板
112.表示電極対
113、122.誘電体層
114.保護層
123.隔壁
124.蛍光体層
Scn.スキャン電極
Sus.サスティン電極
Dat.データ電極

Claims (1)

  1. 内方の空間に放電ガスが充填されてなる密閉容器を有し、当該密閉容器において、保護層と蛍光体層とが互いに前記空間を臨む状態で形成されてなるプラズマディスプレイパネルにおいて、
    前記放電ガスは、キセノンガスまたはクリプトンガスである第1ガス成分と、アルゴンガスである第2ガス成分と、酸素ガスである第3ガス成分と、前記第1ガス成分および前記第2ガス成分および前記第3ガス成分に対して添加されたネオンガスとからなり、
    前記空間に対し1.50×10Pa以上6.66×10Pa以下の全圧を以って充填され
    前記放電ガスの全圧に対する前記第1ガス成分の分圧比は、最も高く、
    前記放電ガスの全圧に対する前記第2ガス成分の分圧比は、3%以上33%以下であり、
    前記放電ガスの全圧に対する前記第3ガス成分の分圧比は、0.01%以上1%以下であり、
    前記放電ガスの全圧に対する前記ネオンガスの分圧比は、0.5%以下である。
JP2007524552A 2005-07-08 2006-06-16 プラズマディスプレイパネルおよびプラズマディスプレイパネル装置 Expired - Fee Related JP4829888B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007524552A JP4829888B2 (ja) 2005-07-08 2006-06-16 プラズマディスプレイパネルおよびプラズマディスプレイパネル装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005200040 2005-07-08
JP2005200040 2005-07-08
JP2007524552A JP4829888B2 (ja) 2005-07-08 2006-06-16 プラズマディスプレイパネルおよびプラズマディスプレイパネル装置
PCT/JP2006/312164 WO2007007514A1 (ja) 2005-07-08 2006-06-16 プラズマディスプレイパネルおよびプラズマディスプレイパネル装置

Publications (2)

Publication Number Publication Date
JPWO2007007514A1 JPWO2007007514A1 (ja) 2009-01-29
JP4829888B2 true JP4829888B2 (ja) 2011-12-07

Family

ID=37636912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007524552A Expired - Fee Related JP4829888B2 (ja) 2005-07-08 2006-06-16 プラズマディスプレイパネルおよびプラズマディスプレイパネル装置

Country Status (4)

Country Link
US (1) US7948180B2 (ja)
JP (1) JP4829888B2 (ja)
CN (1) CN101218657B (ja)
WO (1) WO2007007514A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009752A (ja) * 2007-06-26 2009-01-15 Air Water Inc プラズマディスプレイパネル
CN103617939A (zh) * 2013-12-16 2014-03-05 陈涛 一种混合气体等离子集电管

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257163A (ja) * 1987-04-13 1988-10-25 Hitachi Ltd 直流ガス放電型デイスプレイデバイス
JPH05101782A (ja) * 1991-01-04 1993-04-23 Nec Corp 面放電型プラズマデイスプレイパネル
JPH10334811A (ja) * 1997-05-30 1998-12-18 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルおよびその製造方法
JPH11120920A (ja) * 1997-10-13 1999-04-30 Hitachi Ltd プラズマディスプレイ装置
JP2001250484A (ja) * 2000-03-08 2001-09-14 Mitsubishi Electric Corp プラズマディスプレイパネル
JP2002042663A (ja) * 2000-07-24 2002-02-08 Sony Corp 交流駆動型プラズマ表示装置及びその製造方法
JP2002083543A (ja) * 2000-01-12 2002-03-22 Sony Corp 交流駆動型プラズマ表示装置
JP2002093327A (ja) * 1995-12-15 2002-03-29 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル
JP2002352728A (ja) * 2001-05-28 2002-12-06 Matsushita Electric Ind Co Ltd ガス放電パネルおよびその製造方法
JP2003051259A (ja) * 2001-06-01 2003-02-21 Matsushita Electric Ind Co Ltd ガス放電パネルおよびその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2559602B1 (fr) * 1984-02-10 1991-02-15 Japan Broadcasting Corp Panneau d'affichage a decharge de gaz muni d'au moins une enveloppe scellee
US4703229A (en) * 1985-10-10 1987-10-27 United Technologies Corporation Optical display from XeF excimer fluorescence
JPH11125809A (ja) * 1997-10-23 1999-05-11 Sharp Corp プラズマアドレス情報表示素子
JPH11233022A (ja) 1998-02-20 1999-08-27 Hitachi Ltd プラズマディスプレイ装置
JP2000156164A (ja) * 1998-09-16 2000-06-06 Hitachi Ltd 表示パネル及び表示装置
CN1295733C (zh) * 1999-12-14 2007-01-17 松下电器产业株式会社 高精细和高亮度ac型等离子体显示面板及其驱动方法
US6657396B2 (en) * 2000-01-11 2003-12-02 Sony Corporation Alternating current driven type plasma display device and method for production thereof
KR100370397B1 (ko) * 2000-06-10 2003-01-29 삼성에스디아이 주식회사 엑시머 개스를 이용한 플라즈마 디스플레이 패널
US7235928B2 (en) * 2001-06-01 2007-06-26 Matsushita Electric Industrial Co., Ltd. Gas discharge panel and manufacturing method for the same
JP2003068195A (ja) * 2001-06-15 2003-03-07 Sony Corp プラズマ表示装置用パネルの製造方法およびプラズマ表示装置の製造方法
WO2003011526A1 (fr) * 2001-07-30 2003-02-13 Sony Corporation Procede permettant de former une fine barriere, procede de fabrication d'un affichage planaire et abrasif pour decapage par projection
EP1418608B1 (en) * 2001-08-14 2009-10-14 Sony Corporation Plasma display and method for manufacturing the same
JP2003140605A (ja) * 2001-08-24 2003-05-16 Sony Corp プラズマ表示装置及びその駆動方法
JP2003157773A (ja) * 2001-09-07 2003-05-30 Sony Corp プラズマ表示装置
JP2003114640A (ja) * 2001-10-04 2003-04-18 Nec Corp プラズマディスプレイパネル及びその駆動方法
JP3988515B2 (ja) 2002-04-22 2007-10-10 松下電器産業株式会社 プラズマディスプレイパネルおよびその製造方法
US20050017644A1 (en) * 2003-07-25 2005-01-27 Kabushiki Kaisha Toshiba Discharge lamp
US20050212428A1 (en) * 2004-03-24 2005-09-29 Pioneer Plasma Display Corporation Plasma display panel
KR100658740B1 (ko) * 2004-06-18 2006-12-15 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
US7847484B2 (en) * 2004-12-20 2010-12-07 General Electric Company Mercury-free and sodium-free compositions and radiation source incorporating same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257163A (ja) * 1987-04-13 1988-10-25 Hitachi Ltd 直流ガス放電型デイスプレイデバイス
JPH05101782A (ja) * 1991-01-04 1993-04-23 Nec Corp 面放電型プラズマデイスプレイパネル
JP2002093327A (ja) * 1995-12-15 2002-03-29 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル
JPH10334811A (ja) * 1997-05-30 1998-12-18 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルおよびその製造方法
JPH11120920A (ja) * 1997-10-13 1999-04-30 Hitachi Ltd プラズマディスプレイ装置
JP2002083543A (ja) * 2000-01-12 2002-03-22 Sony Corp 交流駆動型プラズマ表示装置
JP2001250484A (ja) * 2000-03-08 2001-09-14 Mitsubishi Electric Corp プラズマディスプレイパネル
JP2002042663A (ja) * 2000-07-24 2002-02-08 Sony Corp 交流駆動型プラズマ表示装置及びその製造方法
JP2002352728A (ja) * 2001-05-28 2002-12-06 Matsushita Electric Ind Co Ltd ガス放電パネルおよびその製造方法
JP2003051259A (ja) * 2001-06-01 2003-02-21 Matsushita Electric Ind Co Ltd ガス放電パネルおよびその製造方法

Also Published As

Publication number Publication date
WO2007007514A1 (ja) 2007-01-18
JPWO2007007514A1 (ja) 2009-01-29
US20100052509A1 (en) 2010-03-04
CN101218657B (zh) 2010-06-09
US7948180B2 (en) 2011-05-24
CN101218657A (zh) 2008-07-09

Similar Documents

Publication Publication Date Title
JP4839937B2 (ja) 酸化マグネシウム原材料およびプラズマディスプレイパネルの製造方法
JP4357463B2 (ja) プラズマディスプレーパネル
KR100849002B1 (ko) 플라즈마 디스플레이 패널 표시장치 및 그 구동방법
JP4271902B2 (ja) プラズマディスプレイパネル及びそれを用いた画像表示装置
WO2001045132A1 (fr) Ecran a plasma du type ca a affichage haute definition et haute luminosite et son procede d'excitation
JP4829888B2 (ja) プラズマディスプレイパネルおよびプラズマディスプレイパネル装置
JP3594953B2 (ja) プラズマディスプレイパネル及びその駆動方法
JP4820818B2 (ja) プラズマディスプレイパネルおよびプラズマディスプレイパネル装置
JP4760505B2 (ja) プラズマディスプレイパネル
JP3178816B2 (ja) ガス放電表示装置
JP2001318645A (ja) Ac型プラズマディスプレイパネルの駆動方法
JP2007287498A (ja) プラズマディスプレイパネルおよびプラズマディスプレイパネル装置
KR100344797B1 (ko) 플라즈마 디스플레이 패널의 방전가스
JP2007294360A (ja) プラズマディスプレイパネルおよびプラズマディスプレイパネル装置
KR100704515B1 (ko) 질소를 함유하는 방전 가스를 사용한 플라즈마 디스플레이패널
JP4634415B2 (ja) プラズマディスプレイパネル及びそれを用いた画像表示装置
KR100766823B1 (ko) 질소를 함유하는 방전 가스를 이용하는 플라즈마디스플레이 패널
JP2009021098A (ja) プラズマディスプレイパネル
JP2007271658A (ja) プラズマディスプレイ装置
KR100389020B1 (ko) 플라즈마 디스플레이 패널
JP2009277492A (ja) プラズマディスプレイパネル
JP2009277491A (ja) プラズマディスプレイパネル
JP2010097861A (ja) 表示装置およびプラズマディスプレイパネル
KR100290838B1 (ko) 가스방전표시장치
KR100634706B1 (ko) 플라즈마 디스플레이 패널

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees