CN1295733C - 高精细和高亮度ac型等离子体显示面板及其驱动方法 - Google Patents

高精细和高亮度ac型等离子体显示面板及其驱动方法 Download PDF

Info

Publication number
CN1295733C
CN1295733C CNB008189951A CN00818995A CN1295733C CN 1295733 C CN1295733 C CN 1295733C CN B008189951 A CNB008189951 A CN B008189951A CN 00818995 A CN00818995 A CN 00818995A CN 1295733 C CN1295733 C CN 1295733C
Authority
CN
China
Prior art keywords
electrode
mentioned
discharge
keep
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008189951A
Other languages
English (en)
Other versions
CN1434975A (zh
Inventor
安藤亨
橘弘之
小杉直贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1434975A publication Critical patent/CN1434975A/zh
Application granted granted Critical
Publication of CN1295733C publication Critical patent/CN1295733C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • H01J11/32Disposition of the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/50Filling, e.g. selection of gas mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/32Disposition of the electrodes
    • H01J2211/323Mutual disposition of electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本发明的目的在于提供能够将放电维持电压压低,并且能比现有技术大幅度提高发光效率的PDP和PDP显示装置及其驱动方法。为此,本发明在将相互平行地形成了被电介质层覆盖的第1电极和第2电极的第1基板和在与上述第1电极和第2电极正交的方向形成了第3电极的第2基板经间壁相向配置,在用第1基板与上述第2基板之间的间壁隔开的空间封入放电气体的AC面放电型PDP中,使用含5体积%以上,但不足100体积%的氙的混合气体作为放电气体,将氙分压设定在2kPa以上,同时将第1电极与第2电极的间隙设定得比放电空间的高度大。

Description

高精细和高亮度AC型 等离子体显示面板及其驱动方法
技术领域
本发明涉及用于计算机、电视机等的AC型等离子体显示面板及其驱动方法。
背景技术
近年来,在显示领域提出了高精细显示(高分辨率等)、平面化等高性能化的要求,与此相应的各种研究开发正在进行。
作为平面显示器的代表,可以列举出液晶显示器(LCD)、等离子体显示面板(PDP),其中的PDP适合于薄型且为大画面,已经开发出了50英寸级的产品。
PDP大致分为直流型(DC型)和交流型(AC型),现在适合于大型化的AC型成为主流。
图11(a)是示出AC面放电型PDP的现有例的主要部分的剖面图。另外,图11(b)是图11(a)的A-A剖面图。
一般地说,PDP为各色发光单元呈矩阵状排列的结构。AC面放电型PDP在例如特开平9-35628号公报中予以公开:如图11所示,正面玻璃基板211和背面玻璃基板221经间壁224平行配置,在正面玻璃基板211上平行地设置放电电极对(扫描电极212a和维持电极212b),电介质层213和保护层214以覆盖在它们上面的方式形成。另一方面,在背面玻璃基板221上,与扫描电极212a正交地配置地址电极222,借助于在用两板间的间壁隔开的空间230内配置各色荧光体层225,封入放电气体(例如氖和氙)形成各色发光单元,PDP即呈这样的面板结构。
虽然用驱动电路对PDP的各电极施加电压,但由于各放电单元原本只能进行点亮或熄灭2级灰度显示,所以采用了对红(R)、绿(G)、蓝(B)各色,将1场分割为多个子场,对点亮时间进行时分,由其组合来显示中间灰度的方法(场内时分灰度显示模式)。
在各子场中,一般用ADS(Address Display-period Separation,地址显示期间分割)方式在PDP上显示图像。采用此方式时,进行了一系列称为如下各期间的工作:向全体扫描电极施加脉冲电压进行初始化的初始化期间,对依次向扫描电极施加脉冲电压,同时向地址电极中的被选择的电极施加脉冲电压进行点亮的单元积累壁电荷的寻址期间,在扫描电极与维持电极之间施加脉冲电压进行放电维持的放电维持期间。然后,借助于维持放电发出紫外线,通过荧光体层225的荧光体粒子(红、绿、蓝)受该紫外线激发发光而进行图像显示。
对这样的PDP,将驱动电压尽可能地压低,同时尽可能地提高发光效率是迄今研究的课题。这里,将驱动电压尽可能地压低是为了使电路设计容易,以及能降低无效功率引起的损耗。
考虑到这一点,PDP的封入气压一般设定在约40~65kPa,氙气的比例一般设定为约5体积%左右。另外,扫描电极212a与维持电极212b的间隙(以下称维持放电间隙)dp设定在可在帕申曲线上得到最低放电电压的值(通常约80μm)的附近,将外部维持电压VSUS抑制到180~200V。
另外,也可以如图11那样,借助于由透明电极2121a、2121b和金属母线2122a、2122b构成放电电极212a、212b,通过透明电极使放电得到拓宽。
此项技术对提高发光效率是有效的,但是,在这种PDP中,发光效率为11m/W左右,将此值与CRT的进行比较,发光效率约为其1/5。
另外,为提高发光效率,将封入气体中的氙气分压设定高些也是有效的,例如,在USP 5,770,921中公开了借助于将氙(Xe)设定在10体积%以上来提高发光效率的技术,但是,还希望获得更高的发光效率。
发明公开
本发明的目的在于提供能够将放电维持电压压低,并且能比现有技术大幅度提高发光效率的PDP和PDP显示装置及其驱动方法。
为此,本发明在将相互平行地形成了被电介质层覆盖的第1电极和第2电极的第1基板和在与上述第1电极和第2电极正交的方向形成了第3电极的第2基板经间壁相向配置,在用第1基板与上述第2基板之间的间壁隔开的空间封入放电气体的PDP中,使用含5体积%以上,但不足100体积%的氙的混合气体作为放电气体,或者将氙分压设定在2kPa以上,与此同时,将第1电极与第2电极的间隙设定成比放电空间的高度大。这里,所谓的“放电空间的高度”指的是放电空间在PDP厚度方向上的长度,大致相当于第1电极与第3电极的距离,或者第2电极与第3电极的距离。
根据此结构,因氙分压设定得高,所以放电空间中存在大量氙气,从而在驱动时可以得到高的发光效率。
其理由可以认为是如在USP 5,770,921中说明的那样,借助于当放电空间中的Xe的量多时紫外线的发生量也多,以及在发射的紫外线中,依赖于Xe分子的分子束的激发波长(波长173nm)的比例增大,提高了利用荧光体向可见光转换的转换效率等。
另外,根据上述结构,由于将第1电极与第2电极的间隙设定成比放电空间的高度大,所以在第1电极与第2电极之间施加极性交互变换的维持脉冲进行维持放电时,放电路径加长,形成阳光柱放电。阳光柱放电,如熟知的那样,是发光效率高的放电模式,因此利用它可以得到高的发光效率。
另外,当施加维持脉冲进行维持放电时,由于同第1电极与第2电极的间隙相比,放电在距离较短的第2电极与第3电极之间或者第1电极与第3电极之间启动,所以能将用于启动放电的电压压低。
即,该PDP在维持放电时,一有第2电极侧为负极性的维持脉冲施加,即使该施加电压低,在第2电极与第3电极之间也启动放电,并且放电向第1电极伸展。另一方面,一有第1电极侧为负极性的维持脉冲施加,即使该施加电压低,在第1电极与第3电极之间也启动放电,并且放电向第2电极伸展。因此,虽然第1电极与第2电极的间隙大,也能够以比较低的电压进行放电维持。
因此,与现有的PDP相比,上述本发明的PDP可以将放电电压压低,并且能大幅度提高发光效率。
还有,虽然第1电极与第2电极的间隙大时可以得到高的放电效率,但实际上其上限被单元间距和驱动电压限定,一般认为可以设定到放电空间高度的约数倍。
附图的简单说明
图1是示出本发明的一个实施形态的交流面放电型PDP的概略结构的斜视图。
图2是将驱动电路100连接到上述PDP的显示装置的结构图。
图3是示出一例在驱动上述显示装置时1场的分割方法的图。
图4是示出驱动电路在1个子场对各电极施加脉冲的时序图。
图5是沿地址电极剖切上述PDP的剖面图。
图6、7是说明上述PDP的放电工作的图。
图8是示出维持放电间隙与放电电压的关系的特性图。
图9是对于现有类型的PDP和本实施形态类型的PDP示出氙分压与发光效率的关系的图。
图10示出了本实施形态的PDP中氙分压(kPa)与发光效率的关系。
图11是现有例的PDP的主要部分的剖面图。
实施发明的最佳形态
[关于PDP的结构及驱动方法的总体说明]
图1是示出本发明的一个实施形态的AC面放电型PDP的概略结构的斜视图。
该PDP被构成如下:在正面玻璃基板11上配置了第1电极(扫描电极)12a、第2电极(维持电极)12b、电介质层13、保护层14的正面面板10和在背面玻璃基板21上配置了第3电极(地址电极)22的背面面板20以电极12a、12b与第3电极22相向的状态隔着间隔相互平行地配置。然后,对正面面板10与背面面板20的间隙,借助于用条形间壁30隔开形成放电空间40,并在该放电空间40内封入放电气体。
另外,在背面面板20侧,在间壁30上配置了荧光体层25。该荧光体层25最好按红、绿、蓝的顺序重复排列,并且面临各放电空间40。
第1电极12a、第2电极12b和第3电极22皆是条形金属电极,例如通过将银膏涂敷成条状进行烧结而形成。第1电极12a、第2电极12b在与间壁30正交的方向配置,第3电极22与间壁30平行配置(参照图2)。
另外,成对的第1电极12a与第2电极12b的间隙(维持放电间隙)设定得比放电空间40的高度(面板厚度方向上的距离,以下称“相向放电间隙”)大,对此下面将详细叙述。
电介质层13是由以覆盖上述玻璃基板11的、配置了电极12a、12b的整个表面而配置的电介质物质构成的层,一般来说,使用铅系低熔点玻璃或铋系低熔点玻璃。
保护层14是由以氧化镁(MgO)为代表的二次电子发射系数高的材料构成的薄层,覆盖电介质层13的整个表面。
间壁30周玻璃材料形成,设置在背面玻璃基板21的表面上。
另外,这里仅在正面面板10侧设置了电介质层13,但也可在背面面板20侧、在第3电极22与荧光体层25之间设置电介质层。
关于放电气体的组成,使用迄今一直用于PDP的氦(He)、氖(Ne)和氩(Ar)等中的至少一种和氙(Xe)的混合气体。但是,要将氙分压设定在2kPa以上,使得放电空间中的氙量较多。当放电气体的封入压力为40kPa~67kPa时,氙的混合比例在相当于5体积%以上的范围内。
另外,下面将详细叙述,为得到比2kPa高的发光效率,最好将氙分压设定在6.7kPa以上,甚至10kPa以上。另一方面,从现在的驱动电路的性能来看,可将氙分压的上限考虑为16kPa左右。
图2是示出将驱动电路100连接到该PDP上的显示装置的结构的图。电极12a、12b与第3电极22相互正交配置,在正面玻璃基板11与背面玻璃基板21之间的空间,在电极交叉处形成放电单元,在第1电极12a和第2电极12b延伸的方向,由相邻的3个放电单元(红、绿、蓝)形成1个像素。
由于相邻的放电单元之间用间壁30隔开,挡住了放电向相邻的放电单元扩展,所以可以进行分辨率高的显示。
该PDP用场内时分灰度显示方式驱动。
图3是示出一例进行256级灰度显示时的1场的分割方法,横方向表示时间,斜线部表示放电维持期间。
在图3所示的分割方法的例子中,1场由8个子场构成,各子场的放电维持期间之比被设定为1∶2∶4∶8∶16∶32∶64∶128,这8个二进制位的组合,可以显示256级灰度。另外,在NTSC制的电视影像中,由于影像以每秒60幅的场图像构成,所以一场的时间设定为16.7ms。
各子场由初始化期间、寻址期间、放电维持期间这一个序列构成,通过将1个子场部分的工作重复进行8次来进行1场的图像显示。
图4是示出在1个子场内驱动电路100对各电极施加脉冲的时序图。
在图4的时序图中,(a)是对第1电极12a施加的电压波形Vx,(b)是对第2电极12b施加的电压波形Vy,(c)是对第3电极22施加的电压波形Va。还有,图4(d)是示出因放电而流过的电流的绝对值的波形。
另外,在寻址期间对多条第1电极依次施加脉冲,并与此同步地对多个第3电极的被选择的电极施加脉冲,但是,为了方便,在图4中只对第1电极12a、第2电极12b和第3电极22的各1个作了记载。
在初始化期间,借助于对所有第1电极12a一起施加正极性的初始化脉冲,在保护膜14和荧光体层25上积累壁电荷,使所有放电单元的状态初始化。
在寻址期间,依次在第1电极12a上施加负极性的扫描脉冲,同时在从第3电极22中选出的电极上施加正极性的数据脉冲。据此,在欲将其点亮的单元(称为“点亮单元”)中,在第1电极12a与数据电极22之间引起放电,在保护膜14的表面形成壁电荷,写入1个画面部分的像素信息。
在放电维持期间,在第1电极12a与第2电极12b之间一起施加AC电压。据此,在积累了壁电荷的放电单元中,有选择地引起等离子体放电。此放电仅在与该子场的权重相当的期间持续进行。
(本实施形态的维持放电间隙与相向放电间隙的关系)
图5是沿第3电极22剖切上述PDP的剖面图。
将第1电极12a与第2电极12b的维持放电间隙dss设定得比相向放电间隙dsa(第3电极22的中心线上的荧光体层25的表面与保护层14的表面的距离)大(dss>dsa)。
这里,在设计AC面放电型PDP时,要将相向放电间隙dsa的尺寸设定成使寻址放电易于进行的距离,但是,该距离实际上由单元间距、放电气体的压力等条件决定。
另一方面,如上所述,现在的维持放电间隙dss根据帕申法则设定,这时,它为比相向放电间隙dsa小的值。
因此,如本实施形态这样,将维持放电间隙dss设置得比相向放电间隙dsa大,就使得维持放电时的放电长度设定得比现有PDP的大。
然而,作为维持放电间隙dss可以设定的值,虽然也受单元间距的限制,但可以设定得大到相向放电间隙dsa的数倍左右。
即,第1电极12a与第2电极12b的外缘相互间的距离dst其上限由单元间距决定,与此相随,维持放电间隙dss的上限也被决定,但是,为了在此限制内尽可能地将维持放电间隙dss设定得较大,最好是第1电极12a和第2电极12b不使用透明电极只用金属电极构成,并且尽可能地使电极宽度变窄。如果这样使电极宽度变窄,可以确保维持放电间隙dss为相向放电间隙dsa的数倍左右。
另外,由于当将维持放电间隙dss增大时,驱动电压会上升比如说一点点,所以也可以由该驱动电压来确定上限,现确认直到相向放电间隙dsa的5~6倍都能够进行驱动。
另一方面,为了尽可能地加大维持放电时的放电长度,最好将维持放电间隙dss尽可能地设定得较大,从这一点看,就是在比相向放电间隙dsa大的范围中,最好也还是将其设定在大于相向放电间隙dsa的1.2倍以上、1.5倍以上、2倍以上、3倍以上的范围内。
在表1中,示出了一例本实施形态的PDP的设计参数。
[表1]
  1个像素的尺寸   1080×1080μm2
  放电间隙(dss)   400μm
  相向放电间隙(dsa)   90μm
  间壁的高度   120μm
  第1电极、第2电极的宽度   100μm
  气体组成   Ne(80%),Xe(20%)
  气体压力   80kPa
根据此设计参数,第1电极12a与第2电极12b的维持放电间隙dss为400μm,此值与相向放电间隙dsa的值(90μm)相比,为其4倍强,与图11的现有类型的PDP的维持放电间隙(80μm)相比,为其近5倍大的值。
(关于各期间施加的脉冲和与之相伴的放电工作)
下面根据图4的时序图。对在初始化、寻址、放电维持各期间施加的脉冲和放电工作进行说明。另外,驱动电路100施加的脉冲波形与迄今一直用于PDP的波形大致相同,但在放电工作方面有其特点。
在图4的曲线(a)中,用虚线示出了在第3电极22上的荧光体层25、第1电极12a上的电介质层13和保护层14上产生的壁电压,在(b)中,用虚线示出了在第3电极22上的荧光体层25和第2电极12b上的电介质层13、保护层14上产生的壁电压。另外,在图4中,在上述虚线上还示出了积累的壁电荷的极性。
随着放电的发生,上述的壁电压由在保护层14或荧光体层25上积累的壁电荷生成。
而且,用实线表示的施加电压和用虚线表示的壁电压之差相当于加在各种电极间的放电空间的电压。
另外,图6、7是说明上述PDP的放电动作的图。下面参照它们进行说明。
初始化期间:
在初始化期间的前半段,对第1电极12a和第2电极12b都施加了对第3电极22下降的倾斜电压。
借助于这样对第1电极12a和第2电极12b施加电压,二次电子发射系数比较大的保护膜14为阴极,放电启动容易,在第1相向放电空间和第2相向放电空间发生微弱的放电。然后,与该放电相伴随,在第1相向放电空间30a和第2相向放电空间30b形成初始电荷。
在初始化期间的中段,对第1电极12a和第2电极12b都施加相对于第3电极22其振幅呈较大上升的倾斜电压。据此,在第1相向放电空间30a和第2相向放电空间30b发生放电,其结果是在第1电极12a和第2电极12b上的保护层14上积累了负电荷。
在初始化期间的后半段,对第1电极12a施加对第3电极22下降的倾斜电压。据此,在第1相向放电空间30a引起放电。其结果是消去了第1电极12a上的保护层14表面上的一部分负电荷。
在施加该倾斜电压的期间,放电电流持续流过,对第1相向放电空间30a一直施加约为放电维持电压Vs的电压。因此,在初始化期间结束的时刻,施加电压和壁电压之差与该放电空间的放电维持电压Vs大致相等。在图4中,标出了在初始化期间结束时对第1相向放电空间30a施加的电压(Vsx-a)。
另外,上述的初始化脉冲波形与在特开平12-267625号公报中说明的大致相同,通过使用这样的波形,能在比较短的时间内进行初始化,因此,可以加长放电维持期间。
寻址期间:
在寻址期间,借助于对第1电极12a施加偏置电压Vab,依次扫描第1电极12a,并施加负极性的脉冲电压,同时对与点亮单元对应的第3电极22施加正极性的数据脉冲(电压Va),从而只在点亮单元有选择地引起放电。
并且,在此期间对第2电极12b持续施加相对于第1电极12a为正极性的电压。
据此,在点亮单元中,在时刻t1对第1电极12a与第3电极之间的第1相向放电空间30a施加电压(Vsx-a+Va),在该第1相向放电空间30a启动放电。
这里,由于上述电压(Vsx-a)与第1相向放电空间30a的放电维持电压大致相等,所以数据脉冲电压Va的值即使比较小,也能启动放电。
然后,如上所述,由于对第2电极12b施加了相对于第1电极12a为正极性的电压,所以在第1相向放电空间30a发生的上述放电向第2电极12b的方向延伸,在时刻t2,在第2电极12b与第3电极22之间的第2相向放电空间30b也形成放电。
以上的结果是,在第1电极12a上的保护层14上积累正极性的电荷,在第2电极12b上的保护层14上积累与此相反的负极性的电荷(参照图6(a))。
另一方面,在与非点亮单元对应的第3电极22上,不施加数据脉冲,放电也不发生。因此,在非点亮单元中,在初始化期间结束时,在第1电极12a和第2电极12b上的保护层14上积累的电荷大致保持原状。
放电维持期间:
在放电维持期间,对第1电极12a和第2电极12b的每一个,交互施加振幅为VSUA的第1维持脉冲和与它反极性的第2维持脉冲。
图6和图7简略地示出了本实施形态的PDP的剖面,也图示了施加第1维持脉冲时的施加电压和壁电荷,以及放电等离子体的状态,但保护层14从略。
参照该图6和图7,对在维持期间在一个相向放电空间30a启动的放电向另一相向放电空间30b延伸的机制进行了详细说明。
如图4所示,在时刻t3对第1电极12a施加外部维持电压VSUS,第2电极12b接地。
因此,在该时刻t3开始施加的第1维持脉冲的相位是:第2电极12b侧为负极性,第1电极12a为正极性。
在上述寻址期间,由于在点亮单元的第2电极12b上的电介质层13上积累了负极性的壁电荷,因此,借助于这样施加使第2电极12b为负极性的第1维持脉冲,以第2电极12b为阴极侧的放电就在第2相向放电空间30b启动。
由于在荧光体层25上积累了正的壁电荷(这是因为在寻址期间在第2电极12b上施加了大的正电压,与此相对照,电位低的第3电极22使正电荷移近。),所以在第2相向放电空间30b发生的上述放电向第1电极12a的方向伸展。
图6(b)示出了在第2相向放电空间30b内放电启动时的状态。放电一在第2相向放电空间30b启动,就产生大量的正、负电荷,它们分别被移向第2电极12b、第3电极22的方向,形成壁电荷。由壁电荷产生的壁电压起抵消对第2相向放电空间30b施加的电压,使放电停止的作用。
第2电极12b上的电介质层13与第3电极22上的荧光体层25相比,由于后者的介电常数小,所以荧光体层25的表面(第3电极22侧)的壁电荷积累比电介质层13的表面(第2电极12b侧)进行得快。
其结果是,放电的阳极端寻求流入了负电荷的荧光体层25的表面,从而进行移动。
另一方面,由于对第1电极12a施加了相对于第2电极12b为正极性的电压,所以放电的移动方向为第1电极12a的方向。图6(c)示出了放电的阳极端,一边抵消在荧光体层25上积累的正电荷,一边向第1电极12a的方向伸展的状态。
然后,在图4的时刻t4,如图7(a)所示,放电的阳极端到达第1电极12a上,在第1相向放电空间30a也形成放电。
图7(b)示出了放电刚刚停止之前的状态。还有,图7(c)示出了由于壁电荷在电介质层13和荧光体层25上积累,而放电停止的状态。
上述放电在第1相向放电空间30a的第1电极12a上的电介质层13上形成了负极性的壁电荷,以及在第3电极22上的荧光体层25上形成了正极性的壁电荷。据此,在第1电极12a上的电介质层13上积累了负电荷,在第2电极12b上的电介质层13和荧光体层25上积累了正电荷。
另一方面,如图7(c)所示,在放电启动时的第2相向放电空间30b侧,壁电压几乎被消去。
如上所述,由于形成了从第2相向放电空间30b连接到第1相向放电空间30a的长的放电,所以因阳光柱放电而发射出大量的紫外线。这里,所谓阳光柱一般指在电极间距离长的放电空间产生的丝状放电之类的放电。
该图7(c)是将时刻t3的图6(a)的壁电荷分布进行了反转的状态。因此,在图4的时刻t5,将第1电极12a与第2电极12b互换位置,像上述时刻t3那样开始施加第2个维持脉冲。即,对第2电极12b施加正的外部维持电压VSUS,将第1电极12a接地。
这样,可以重复同样的维持放电。
如上所述,本实施形态的维持放电期间的放电工作在经相向放电间隙这一点上与图11的现有类型的PDP的面放电工作不同,而宁可说接近相向放电。
另外,在上述时刻t3的对第1电极12a开始施加外部维持电压VSUS的时刻和第2电极12b接地的时刻,也可以是在第2相向放电空间以第2电极12b侧为阴极启动放电这样的时刻,这时可以考虑如下的状态。
例如,可以先对第1电极12a施加用于启动的外部维持电压VSUS(此处,放电未启动)。之后通过将第2电极12b接地启动放电,或者也可以在从第2电极12b接地放电启动开始到放电结束为止的期间,对第1电极12a施加外部维持电压VSUS进行启动。在后者的场合,因放电电流减小,所以施加于驱动电路的负载减少。
(关于本实施形态的PDP的效果)
如上所述,在本实施形态的PDP中,借助于将氙的分压设定在2kPa以上(放电气体的封入压力在40kPa以上,放电气体中的氙的混合比例在5体积%以上)来增加放电空间30中的氙量。与此同时,由于通过将维持放电间隙dss设定得大于放电空间30的高度dsa,能压低放电电压和加长放电长度,所以可以压低放电电压,提高放电效率,下面对其理由和证据进行叙述。
首先对能压低维持放电电压的理由进行说明。
当第1电极12a和第2电极12b的维持放电间隙dss大时,如果不经第3电极22在第1电极12a与第2电极12b之间进行放电维持,根据帕申法则,该放电启动电压(VfSS)变得非常高。
放电启动电压(VfSS)一高,外部驱动电压VSUS就增大。这是由于如下原因:当设第1电极12a上的电介质层13的壁电压与第2电极12b上的电介质层13的壁电压之和为VwSS时,施加于放电空间的电压为外部驱动电压VSUS+VwSS,因此,为了在第1电极12a与第2电极12b之间维持放电,在放电维持期间,式(1)的关系必须得到满足。
VfSS<VSUS+VwSS......(1)
但是,在本实施形态中,如在放电动作部分说明过的那样,在第1电极12a与第2电极12b之间形成维持放电时,由于在第1电极12a与第3电极22之间(第1相向放电空间30a)或者第2电极12b与第3电极22之间(第2相向放电空间30b)启动放电,所以放电启动电压VfSS可以被抑制得相当低,从而可以将外部驱动电压VSUS也抑制得相当低。
其次,如在放电工作部分说明过的那样,在施加维持脉冲之际,借助于按照在第1相向放电空间30a启动放电时以第1电极12a作为阴极侧启动放电的方式,或者在第2相向放电空间30b启动放电时以第2电极12b作为阴极侧启动放电的方式进行施加,更能压低放电启动电压,其理由如下。
首先,进行下述的定义。
定义第1电极12a与第3电极22之间的放电空间为第1相向放电空间,第2电极12b与第3电极22之间的放电空间为第2相向放电空间。
定义第1电极12a与第2电极12b之间(电极间的距离为dss)的放电启动电压为VfSS。
定义使第1电极12a相对于第3电极22处于低电位侧时的第1相向放电空间的放电启动电压为VfSa。使第2电极12b处于低电位侧时的第2相向放电空间的放电启动电压同样也定义为VfSa。
定义使第3电极22相对于第1电极12a处于低电位侧时的第1相向放电空间的放电启动电压为VfaS。使第3电极22处于低电位侧时的第2相向放电空间的放电启动电压同样也定义为VfaS。
这时,比较VfSa和VfaS,两者是放电极性互逆时的放电启动电压,而由于VfSa是以二次电子发射系数高的保护层14侧作为阴极侧时的放电启动电压,与此相对照,VfaS是以二次电子发射系数比保护层14低相当多的荧光体层25侧作为阴极侧时的放电启动电压,所以存在VfSa<<VfaS的关系。
因此,在以保护层14侧作为阴极侧时以低的放电启动电压来启动放电。
下面根据图8~10的数据对本发明的效果进行说明。
图8是示出维持放电间隙d与放电电压的关系的特性图,曲线Q表示本实施形态这样的经第3电极22在第1电极12a与第2电极12b之间进行维持放电的情形。而曲线P表示不存在第3电极,只是在第1电极12a与第2电极12b之间进行维持放电的情形。
曲线P遵循所谓的帕申法则,在比较小的放电间隙d放电电压取极小值,随着维持放电间隙d的增大,放电电压急剧上升。
另一方面,在曲线Q中,即使维持放电间隙d增大,放电电压也只有微量上升,保持约为相向放电空间的放电电压的值。这是由于相向放电间隙恒定,而放电电压由该相向放电间隙决定的缘故。
另外,根据图8,在维持放电间隙d小的区域,曲线Q大于曲线P,但在某间隙长度dc以上时,曲线Q则低于曲线P。即,在经第3电极22和荧光体层25的场合,放电电压降低。该间隙长度dc称为特征放电长度。
该特征放电长度dc大致等于相向放电间隙dsa。
由此可知,在维持放电间隙d大于相向放电间隙dsa时,可以以比由曲线P预测的放电电压低的放电电压进行驱动。
此结果证明了本实施形态的PDP可以以远低于根据帕申法则从维持放电间隙d预测的放电电压的放电电压进行驱动。
图9是对放电间隙比放电空间的高度小的现有类型的PDP(图11的类型)和放电间隙比放电空间的高度大的本实施形态类型的PDP的发光效率随氙分压变化而变化的研究结果。这里,氙分压的调整系借助于将封入的放电气体的总气压固定为67kPa,改变放电气体中的氙的比例来进行。
图中的曲线X示出了现有类型的PDP的结果,曲线Y示出了本实施形态类型的PDP的结果。另外,在图中,氙分压以对总气压67kPa的比率(%)示出。
从图9可以知道,虽然任何一条曲线都是发光效率随着氙的分压比的增加而上升,但曲线Y与曲线X相比,效率对氙分压增加的上升率相当大。
这表示对于放电间隙比放电空间的高度大的PDP由提高氙分压取得的提高发光效率的效果,显著地高于对现有类型的PDP由提高氙分压取得的提高发光效率的效果。
另外,特别是氙分压比在10%以上(氙分压在6.7kPa以上)的范围内时,从图9可以得到高的发光效率。
对于现有的一般PDP(Xe的混合比例为约5体积%,放电间隙小于放电空间的高度的PDP),发光效率只能得到约1.0lm/W,而由本图可知,将氙分压设定得越高,越能得到高的发光效率。另外,还可以得知,如本实施形态这样,借助于使放电间隙大于放电空间的高度,氙分压在2kPa以上(例如,若放电气体的总气压为66.7kPa,氙的比例就在3.3体积%以上),可以得到具有比这还要高的发光效率的PDP。
还有,可以知道,虽然在图9中示出了使总气压恒定而改变氙的比例的情形,但是,当通过改变总气压使氙分压增加时,也与图9大致一样,随着氙分压的增加,发光效率上升。
图10示出了在上述本实施形态的试作的PDP中,在改变封入的氙的分压时发光效率如何变化的情况,在本图中示出了氙分压(kPa)与发光效率的关系。
另外,在上述试作的PDP中,虽然使用了氖和氙的混合气体,但使用氦、氩、氪或它们的混合气体代替氖也能得到与图10相同的效果。
关于氙分压的上限,可以认为实际上由驱动电路的耐压决定。
例如,在上述表1中列出的制成的PDP中,外部维持电压VSUS为340V,发光效率达到2.1lm/W。这里,如果能将氙分压再提高些,预计可以得到更高的发光效率,但是,由于从耐压性方面看,在现在的驱动电路中,上述的外部维持电压340V左右被认为是上限,所以可以说若将氙分压设定在超过16kPa的范围时,实际驱动是困难的。
从这一点可以认为将氙分压设定在16kPa以下的范围内是适当的。
但是,如果驱动IC的耐压性能被提高,则可以使氙分压高于16kPa,例如将氙分压设定在30kPa左右。由于按照图10,发光效率对氙分压以极好的线性上升,所以当将氙分压设定为高达30kPa左右的值时,从图10的曲线可以预测发光效率将上升至约3.5lm/W。
还有,由氙的混合比例来看,当放电气体的总气压为66.7kPa左右时,在氙的混合比超过20%的范围内,实际驱动变得困难,若降低放电气体的总气压,氙的混合比即使超过20%,也可以进行驱动。
如上所述,在本实施形态的AC型PDP中,通过将氙分压设定在2kPa以上,或者说总气压的5%以上,以及加大第1电极12a和第2电极12b之间的间隙,可以抑制驱动电压的升高和大幅度地提高发光效率。
另外,如考虑到在高精细的PDP中相向放电间隙dsa相当小,对此,容易将维持放电间隙dss设定得远大于相向放电间隙dsa,则可以说本实施形态的PDP特别适合于高精细的规格。
(变例等)
另外。虽然在上述实施形态中对进行寻址维持分离型驱动的AC型PDP进行了说明,但在用其他驱动方法(例如,对每行依次进行寻址,紧接其后进行维持放电的驱动)驱动的AC型PDP中,也能得到同样的效果。
还有,在初始化期间和寻址期间施加的电压波形不限于本实施形态这样的波形,只要是根据图像数据有选择地对放电单元形成壁电荷的波形即可。
还有,在上述实施形态中,对形成平行于第3电极的带状间壁的结构进行了说明,但是,只要是能形成放电空间的结构,就是井字状等形状的结构也能得到同样的效果。
产业上利用的可能性
本发明的PDP驱动方法和显示装置,对实现计算机、电视机等的显示装置,特别是大型的高精细、高亮度的显示装置是有效的。

Claims (8)

1.一种等离子体显示面板,它是相互平行地形成了被电介质层覆盖的第1电极和第2电极的第1基板以及在与上述第1电极和第2电极正交的方向形成了第3电极的第2基板经间壁相向配置,
在用上述第1基板与上述第2基板之间的间壁隔开的空间封入放电气体的等离子体显示面板,
交替地将维持脉冲施加在第1电极和第2电极上而在两电极间进行维持放电,其特征在于:
上述放电气体是含5体积%以上,但不到100体积%的氙的混合气体,
上述第1电极与上述第2电极的间隙被设定得比上述放电空间的高度大。
2.一种等离子体显示面板,它是相互平行地形成了被电介质层覆盖的第1电极和第2电极的第1基板以及在与上述第1电极和第2电极正交的方向形成了第3电极的第2基板经间壁相向配置,
在用上述第1基板与上述第2基板间的之间壁隔开的空间封入放电气体的等离子体显示面板,
交替地将维持脉冲施加在第1电极和第2电极上而在两电极间进行维持放电,其特征在于:
上述放电气体是含氙的混合气体,该氙的分压在2kPa以上,
上述第1电极与上述第2电极的间隙被设定得比上述放电空间的高度大。
3.一种等离子体显示面板,它是相互平行地形成了被电介质层覆盖的第1电极和第2电极的第1基板以及在与上述第1电极和第2电极正交的方向形成了第3电极的第2基板经间壁相向配置,
在用上述第1基板与上述第2基板之间的间壁隔开的空间封入放电气体的等离子体显示面板,
交替地将维持脉冲施加在第1电极和第2电极上而在两电极间进行维持放电,其特征在于:
上述放电气体是含氙的混合气体,该氙的分压在6.7kPa以上、16kPa以下的范围内,
上述第1电极与上述第2电极的间隙被设定得比上述放电空间的高度大。
4.一种等离子体显示面板,它是相互平行地形成了被电介质层覆盖的第1电极和第2电极的第1基板以及在与上述第1电极和第2电极正交的方向形成了第3电极的第2基板经间壁相向配置,
在用上述第1基板与上述第2基板之间的间壁隔开的空间封入放电气体的等离子体显示面板,
交替地将维持脉冲施加在第1电极和第2电极上而在两电极间进行维持放电,其特征在于:
上述放电气体是含氙的混合气体,该氙的分压在10kPa以上、16kPa以下的范围内,
上述第1电极与上述第2电极的间隙被设定得比上述放电空间的高度大。
5.如权利要求1~4的任何一项所述的等离子体显示面板,其特征在于,它以如下方式构成:
在上述第2电极与上述第3电极之间的放电空间的放电沿上述第3电极向上述第1电极和上述第3电极间的放电空间伸展,同时
在上述第1电极与上述第3电极之间的放电空间的放电沿上述第3电极向上述第2电极和上述第3电极间的放电空间伸展。
6.一种等离子体显示面板的驱动方法,它是对权利要求1~4的任何一项所述的等离子体显示面板,反复进行借助于在第1电极与第3电极之间施加写入脉冲将图像写入的写入步骤以及在上述写入步骤之后,借助于在上述第1电极与第2电极之间交互施加上述第1电极相对于上述第2电极为正极性的第1维持脉冲和上述第1电极相对于上述第2电极为负极性的第2维持脉冲进行放电维持的放电维持步骤,以进行图像显示的驱动方法,其特征在于:
在上述维持步骤中,施加上述第1维持脉冲和第2维持脉冲的时序按如下方式设定:
随着上述第1维持脉冲的施加,在上述第2电极与上述第3电极之间的放电空间,施加使以上述第2电极为阴极侧来启动放电的电压,
随着上述第2维持脉冲的施加,对上述第1电极,在上述第1电极与上述第3电极之间的放电空间,施加使以上述第1电极为阴极侧来启动放电的电压。
7.如权利要求6所述的等离子体显示面板的驱动方法,其特征在于:
在上述维持步骤中,施加于上述第1电极与上述第2电极的放电空间的维持脉冲电压小于不经上述第3电极而在上述第1电极与上述第2电极之间进行面放电所必须的最小电压。
8.一种等离子体显示面板显示装置,其特征在于,包括:
权利要求1~4的任何一项所述的等离子体显示面板;以及
驱动该PDP的驱动部。
CNB008189951A 1999-12-14 2000-12-11 高精细和高亮度ac型等离子体显示面板及其驱动方法 Expired - Fee Related CN1295733C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP354298/99 1999-12-14
JP35429899 1999-12-14
JP354298/1999 1999-12-14

Publications (2)

Publication Number Publication Date
CN1434975A CN1434975A (zh) 2003-08-06
CN1295733C true CN1295733C (zh) 2007-01-17

Family

ID=18436603

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008189951A Expired - Fee Related CN1295733C (zh) 1999-12-14 2000-12-11 高精细和高亮度ac型等离子体显示面板及其驱动方法

Country Status (5)

Country Link
US (1) US7215303B2 (zh)
KR (1) KR20020062656A (zh)
CN (1) CN1295733C (zh)
TW (1) TW512385B (zh)
WO (1) WO2001045132A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593173B1 (en) 2000-11-28 2003-07-15 Ibis Technology Corporation Low defect density, thin-layer, SOI substrates
KR100649188B1 (ko) * 2004-03-11 2006-11-24 삼성에스디아이 주식회사 플라즈마 표시 장치 및 플라즈마 표시 패널의 구동 방법
US7408531B2 (en) * 2004-04-14 2008-08-05 Pioneer Corporation Plasma display device and method for driving the same
CN1957436A (zh) * 2004-11-05 2007-05-02 株式会社爱发科 等离子显示屏用保护膜及其制造方法、等离子显示屏及其制造方法
KR100708649B1 (ko) * 2004-11-10 2007-04-17 삼성에스디아이 주식회사 플라즈마 디스플레이 패널 및, 그것의 제조 방법
KR20080014048A (ko) * 2005-06-09 2008-02-13 마츠시타 덴끼 산교 가부시키가이샤 플라즈마 디스플레이패널장치의 구동방법 및 플라즈마디스플레이패널장치
CN101218657B (zh) * 2005-07-08 2010-06-09 松下电器产业株式会社 等离子体显示面板和等离子体显示面板装置
EP1758143A3 (en) * 2005-08-23 2009-08-26 Advanced PDP Development Center Corporation Plasma display panel
JP2007271658A (ja) * 2006-03-30 2007-10-18 Hitachi Ltd プラズマディスプレイ装置
JP2008027608A (ja) * 2006-07-18 2008-02-07 Advanced Pdp Development Corp プラズマディスプレイパネル
WO2008035937A1 (en) * 2006-09-21 2008-03-27 Lg Electronics Inc. Plasma display apparatus and television set including the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274140A (ja) 1991-03-01 1992-09-30 Fujitsu Ltd プラズマディスプレイパネル
JP3339554B2 (ja) * 1995-12-15 2002-10-28 松下電器産業株式会社 プラズマディスプレイパネル及びその製造方法
SG64446A1 (en) 1996-10-08 1999-04-27 Hitachi Ltd Plasma display driving apparatus of plasma display panel and driving method thereof
JP3331907B2 (ja) * 1997-05-30 2002-10-07 松下電器産業株式会社 プラズマディスプレイパネルおよびその製造方法
JPH11125809A (ja) * 1997-10-23 1999-05-11 Sharp Corp プラズマアドレス情報表示素子
JP3479900B2 (ja) 1997-11-13 2003-12-15 株式会社ティーティーティー Ac型pdpの駆動方法
JPH11153969A (ja) * 1997-11-19 1999-06-08 Sony Corp 表示装置
TW423006B (en) * 1998-03-31 2001-02-21 Toshiba Corp Discharge type flat display device
JP2000097339A (ja) 1998-09-22 2000-04-04 Nippon Piston Ring Co Ltd ピストンリングの組合せ
US6184848B1 (en) * 1998-09-23 2001-02-06 Matsushita Electric Industrial Co., Ltd. Positive column AC plasma display
JP4048637B2 (ja) * 1999-03-10 2008-02-20 松下電器産業株式会社 Ac型プラズマディスプレイ装置
JP4052756B2 (ja) * 1999-04-06 2008-02-27 松下電器産業株式会社 Ac型プラズマディスプレイ装置

Also Published As

Publication number Publication date
US20030112206A1 (en) 2003-06-19
WO2001045132A1 (fr) 2001-06-21
CN1434975A (zh) 2003-08-06
US7215303B2 (en) 2007-05-08
KR20020062656A (ko) 2002-07-26
TW512385B (en) 2002-12-01

Similar Documents

Publication Publication Date Title
CN1241160C (zh) 高分辨率高亮度的等离子体显示板及其驱动方法
CN1263068C (zh) 等离子体显示面板
CN1165938C (zh) 气体放电板
CN1535456A (zh) 等离子体显示屏显示装置及其驱动方法
CN1790593A (zh) 气体放电屏
CN1157449A (zh) 等离子显示板及其驱动方法和等离子显示设备
CN1539131A (zh) 等离子体显示装置
CN1295733C (zh) 高精细和高亮度ac型等离子体显示面板及其驱动方法
CN1787051A (zh) 等离子显示设备及其驱动方法
CN1349242A (zh) 等离子显示面板及其驱动方法和装置
CN1345457A (zh) 发光特性良好的等离子体显示面板
CN1650339A (zh) 等离子体显示面板显示装置及其驱动方法
CN1251164C (zh) 可显示高质量图像的气体放电显示装置
CN1527345A (zh) 等离子显示面板及其驱动方法
CN1804969A (zh) 等离子显示装置及其驱动方法
CN1862637A (zh) 等离子显示设备及其驱动方法
CN1614734A (zh) 等离子显示板
CN1504981A (zh) 在每个单位发光区域内具有多个放电单元的显示装置
CN1783402A (zh) 等离子体显示面板和等离子体显示装置
CN1581409A (zh) 等离子显示板,及其驱动方法和装置
CN1282213C (zh) 在位于一对行电极上的多个单元内进行放电的屏板
CN100341101C (zh) 等离子显示板
CN1809857A (zh) 等离子显示装置及其驱动方法
CN1801275A (zh) 等离子显示设备及其驱动方法
CN1338094A (zh) 显示装置及图像显示方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070117

Termination date: 20141211

EXPY Termination of patent right or utility model