JP4807318B2 - 動力伝達装置 - Google Patents

動力伝達装置 Download PDF

Info

Publication number
JP4807318B2
JP4807318B2 JP2007124805A JP2007124805A JP4807318B2 JP 4807318 B2 JP4807318 B2 JP 4807318B2 JP 2007124805 A JP2007124805 A JP 2007124805A JP 2007124805 A JP2007124805 A JP 2007124805A JP 4807318 B2 JP4807318 B2 JP 4807318B2
Authority
JP
Japan
Prior art keywords
pair
magnetic
power transmission
rotating bodies
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007124805A
Other languages
English (en)
Other versions
JP2008281078A (ja
Inventor
裕之 小川
新 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007124805A priority Critical patent/JP4807318B2/ja
Priority to DE112008001271T priority patent/DE112008001271T5/de
Priority to CN2008800151061A priority patent/CN101680498B/zh
Priority to US12/598,152 priority patent/US7999429B2/en
Priority to PCT/JP2008/058532 priority patent/WO2008140010A1/ja
Publication of JP2008281078A publication Critical patent/JP2008281078A/ja
Application granted granted Critical
Publication of JP4807318B2 publication Critical patent/JP4807318B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/004Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with permanent magnets combined with electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D37/02Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive the particles being magnetisable

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Friction Gearing (AREA)

Description

本発明は、磁性流体を利用した動力伝達装置に関する。
互いに同軸上に配置された一対の円板間に磁性流体を介在させ、その磁性流体に作用する磁場を変化させることにより、円板間にて伝達されるトルクを制御する動力伝達装置が知られている(例えば特許文献1参照)。
特開平5−106654号公報
従来の動力伝達装置は、一対の円板を同軸上に配置しているため、動力伝達の有無を切り替えるクラッチとして使用できるに過ぎず、動力伝達に関する設定の自由度が低い。例えば、従来の動力伝達装置では、円板間で回転速度を変化させることができず、円板間のトルク比も、磁場の強さを変化させて滑りを生じさせない限り、これを変化させることができない。
そこで、本発明は磁性流体を利用して一対の回転体間で動力を伝達することができ、しかも動力伝達に関する設定の自由度も高い動力伝達装置を提供することを目的とする。
本発明の第1の動力伝達装置は、互いに異なる軸線の回りに回転可能であり、かつ隙間を空けて設けられた磁性材料製の一対の回転体と、前記一対の回転体を取り囲むケースと、前記ケースを貫いて前記一対の回転体のそれぞれと同軸に接続される一対の動力伝達軸と、前記隙間を埋めるようにして前記ケース内に収容された磁性流体と、磁気を発生する磁気発生手段と、一方の回転体から前記隙間を介して他方の回転体に向かう磁場が生じるように、前記磁気発生手段が発生した磁気の磁路を形成する磁路形成手段とを備え、前記一対の回転体のそれぞれの軸線が互いに平行であり、かつ、前記一対の回転体の外周面の間に前記隙間が設けられ、前記一対の動力伝達軸間には複数の伝達部が設けられ、前記複数の伝達部のそれぞれに前記一対の回転体が配置され、前記複数の伝達部間にて、前記一対の回転体の回転半径の比率が互いに相違し、前記磁路形成手段は、前記複数の伝達部からいずれか一つの伝達部を選択して該伝達部の一対の回転体と前記磁気発生手段との間に前記磁路を形成させ、選択されなかった他の伝達部の回転体と前記磁気発生手段との間は磁路が形成されないように切り離す磁路切替手段を備えていることにより、上述した課題を解決する(請求項1)。
第1の動力伝達装置によれば、一対の回転体間に磁場を生じさせることにより、それらの回転体の隙間にて磁性流体のせん断応力が増加し、回転体間で磁性流体を介した動力の伝達が可能となる。回転体の軸線が互いに異なるため、回転体間の変速比を、回転体のそれぞれの軸線から磁性流体による動力伝達位置までの距離の比率に応じた値に設定することができる。回転体間のトルク比もそれらの間の変速比に応じた値に設定することができる。磁場を消滅させた場合には磁性流体のせん断応力が略ゼロとなり、回転体間の動力伝達をなくすことができる。従って、一対の動力伝達軸間における動力伝達の有無を切り替える装置のみならず、動力伝達軸間で回転速度及びトルク比を変化させて伝達する装置としても、動力伝達装置を機能させることが可能である。よって、動力伝達に関する設定の自由度を高めることができる。また、一対の回転体の外周面間で半径方向に磁場が作用し、その磁場で磁性流体のせん断応力が増加して動力が伝達される。この場合、回転体のそれぞれの軸線を中心とした回転半径の比率を調整することにより、回転体間の変速比を適宜の値に設定することができる。さらに、複数の伝達部間にて一対の回転体の回転半径の比率が互いに相違しているため、回転体間の変速比及びトルク比が伝達部間で互いに相違する。よって、磁路切替手段にて選択される伝達部を切り替えることにより、一対の動力伝達軸間の変速比を、伝達部と同数の複数段の間で切り替えることができる。
本発明の第2の動力伝達装置は、互いに異なる軸線の回りに回転可能であり、かつ隙間を空けて設けられた磁性材料製の一対の回転体と、前記一対の回転体を取り囲むケースと、前記ケースを貫いて前記一対の回転体のそれぞれと同軸的に接続される一対の動力伝達軸と、前記隙間を埋めるようにして前記ケース内に収容された磁性流体と、磁気を発生する磁気発生手段と、一方の回転体から前記隙間を介して他方の回転体に向かう磁場が生じるように、前記磁気発生手段が発生した磁気の磁路を形成する磁路形成手段と、を備え、前記一対の回転体のそれぞれの軸線が互いに平行であり、かつ、前記一対の回転体が前記隙間を介して軸線方向に対向するように設けられ、前記磁路形成手段には、前記一対の回転体を挟むように前記軸線方向に並べられた一対の磁極が設けられ、前記一対の磁極の位置を前記回転体の半径方向に変化させる位置変更手段をさらに備えていることにより、上述した課題を解決する(請求項2)。
第2の動力伝達装置によれば、一対の回転体間に磁場を生じさせることにより、それらの回転体の隙間にて磁性流体のせん断応力が増加し、回転体間で磁性流体を介した動力の伝達が可能となる。回転体の軸線が互いに異なるため、回転体間の変速比を、回転体のそれぞれの軸線から磁性流体による動力伝達位置までの距離の比率に応じた値に設定することができる。回転体間のトルク比もそれらの間の変速比に応じた値に設定することができる。磁場を消滅させた場合には磁性流体のせん断応力が略ゼロとなり、回転体間の動力伝達をなくすことができる。従って、一対の動力伝達軸間における動力伝達の有無を切り替える装置のみならず、動力伝達軸間で回転速度及びトルク比を変化させて伝達する装置としても、動力伝達装置を機能させることが可能である。よって、動力伝達に関する設定の自由度を高めることができる。また、一対の回転体間の隙間を軸線方向に横切るように磁場が作用し、その磁場で磁性流体のせん断応力が増加して動力が伝達される。この場合、回転体の軸線から磁場の中心までの距離の比率を調整することにより、回転体間の変速比を適宜の値に設定することができる。さらに、位置変更手段にて磁極の位置を半径方向に変化させることにより、一対の回転体の軸線から磁場の中心位置までの距離の比率が変化する。これにより、一対の回転体間における変速比を磁極の位置に応じて変化させることができる。
本発明の第1又は第2の動力伝達装置においては、前記磁場の強さを変化させる磁場調整手段をさらに備えてもよい(請求項)。磁場の強さを変化させることにより、磁性流体のせん断応力を増減して、回転体間のトルク比を変化させることができる。これにより、変速比の設定に応じて定まるトルク比をさらに柔軟に変化させることが可能となり、動力伝達に関する設定の自由度がさらに高まる。
本発明の第1又は第2の動力伝達装置においては、少なくともいずれか一方の回転体の前記隙間に臨む表面に、当該回転体の周方向に沿って凹凸が付されてもよい(請求項)。凹凸を付すことにより、磁場によってせん断応力が増加した磁性流体と回転体との間のトルクの伝達効率を高めることができる。
以上に説明したように、本発明の動力伝達装置によれば、一対の磁性材料製の回転体を互いに平行な2本の軸線の回りにそれぞれ回転可能に配置し、それらの回転体を磁路の一部として利用しつつ、一方の回転体から隙間を介して他方の回転体に磁場を作用させて回転体間で動力を伝達しているため、動力伝達の有無だけではなく、回転速度及びトルク比を変化させて動力を伝達する変速装置としても動力伝達装置を機能させることが可能となる。これにより、動力伝達に関する設定の自由度を高めることができる。
[第1の形態]
図1は本発明の第1の形態に係る動力伝達装置を示す断面図である。動力伝達装置1は、回転体としてのドライブローラ2及びドリブンローラ3と、それらのローラ2、3を取り囲むケース4と、ローラ2、3及びケース4を支持する支持機構5とを備えている。ローラ2、3はいずれも円板状であり、それらの直径及び厚さは互いに等しく設定されている。支持機構5は、ベース6と、そのベース6上に固定された一対の支持脚7、8とを備えている。ケース4は支持脚7、8の上面7a、8aに固定されている。支持脚7、8の上面7a、8aには支軸10、11が設けられ、それらの支軸10、11はケース4の内部に挿入されている。支軸10の軸線X1と支軸11の軸線X2とは互いに平行である。ドライブローラ2は支軸10に対して同軸かつ回転可能に嵌め合わされ、ドリブンローラ3は支軸11に対して同軸かつ回転可能に嵌め合わされている。これにより、ローラ2、3は互いに平行な軸線X1、X2の回りに回転可能に支持されている。なお、ローラ2、3はボルト12及びナット13によって支軸10、11に対して抜け止めされている。
支軸10、11に支持された状態において、ローラ2、3の軸線方向(軸線X1、X2の方向)の位置は互いに等しい。また、図2にも示したように、ローラ2、3の外周面2a、3aの間には半径方向の隙間15が設けられている。隙間15の大きさはローラ2、3間で磁路が形成できる範囲に設定される。ドライブローラ2の上部には入力軸16がローラ2と一体回転可能に取り付けられ、ドリブンローラ3の上部には出力軸17がローラ3と一体回転可能に取り付けられている。それらの軸16、17はケース4の上方に突出し、動力伝達軸として機能する。入力軸16は動力を発生する側と接続され、出力軸17は動力にて駆動される側と接続される。例えば、車両の原動機(内燃機関、電動モータ等)と駆動輪との間に動力伝達装置1を組み込む場合には、原動機の出力軸側と入力軸16とが連結され、車両の駆動輪側と出力軸17とが連結される。
ケース4の内部には、隙間15を埋めるようにして磁性流体18が収容されている。ローラ2、3と支軸10、11との間への磁性流体18の侵入を防ぐため、ローラ2、3の内周の上下端部にはシールリング19が取り付けられている。同様に、ケース4と支軸10、11との隙間からの磁性流体18の漏れを防止するため、支持脚7、8とケース4との間には、支軸10、11を取り囲むようにシールリング20が取り付けられている。
ドリブンローラ3側の支持脚8の外周には、磁気発生手段として電磁コイル21が設けられている。電磁コイル21は、直流電源22とスイッチ23を介して接続されている。ベース6、支持脚7、8、支軸10、11及びローラ2、3はいずれも磁性材料にて形成されている。磁性材料としては、保磁力が小さく透磁率が大きい軟磁性材料を用いることが好ましい。例えば鉄、あるいは鉄系合金にてローラ2、3等を形成することができる。なお、磁路24の意図しない変化を防止するため、ケース4、入力軸16、及び出力軸17は非磁性材料にて構成されている。
以上のように構成された動力伝達装置1においては、スイッチ23を閉じて電磁コイル21を励磁した場合、図1に破線で示したように、支持脚8、支軸11、ドリブンローラ3、隙間15、ドライブローラ2、支軸10、支持脚7及びベース6を順次経由して支持脚8に戻るように磁路24が形成される。これにより、図2に矢印MFで示したように、ローラ2、3の間では、ドリブンローラ3から隙間15を介してドライブローラ2へと向かう半径方向の磁場が生じる。その磁場の影響で、磁性流体18のせん断応力が増加する。この結果、ドライブローラ2とドリブンローラ3との間での動力伝達が可能となる。よって、図2に示したように、入力軸16からドライブローラ2に角速度ω1、トルクT1の回転を与えると、ドリブンローラ3がドライブローラ2と反対方向に角速度ω2、トルクT2で回転する。ドリブンローラ3の回転は出力軸17から取り出される。
一方、スイッチ23を開いて電磁コイル21の励磁を解除した場合には、ローラ2、3の間の磁場が消滅し、ドライブローラ2からドリブンローラ3への動力伝達が不可能となる。従って、ドライブローラ2にトルクを入力しても、ドリブンローラ3へはトルクが伝達されず、ドリブンローラ3は回転しない。このとき、ローラ2、3の間の摩擦抵抗は無視し得るほどに小さく、略ゼロである。よって、動力の非伝達中におけるエネルギー損失は極めて少ない。
本形態の動力伝達装置1では、ドライブローラ2の回転半径Raと、ドリブンローラ3の回転半径Rbとが等しいため、ドライブローラ2の角速度ω1とドリブンローラ3の角速度ω2とは互いに等しい。しかし、これらの回転半径Ra、Rbの比率を変化させることにより、ローラ2、3の間の変速比ω1/ω2を適宜の値に設定することができる。これにより、ドライブローラ2の回転を増速又は減速してドリブンローラ3に伝達することが可能である。例えば、ドライブローラ2の回転半径Raをドリブンローラ3の回転半径Rbよりも大きく設定した場合には、ドライブローラ2に対してドリブンローラ3が増速される。ドライブローラ2の回転半径Raをドリブンローラ3の回転半径Rbよりも小さく設定した場合には、ドライブローラ2に対してドリブンローラ3が減速される。また、ローラ2、3間における滑り損失が無視し得るほど小さければ、ローラ2、3間のトルク比も変速比の逆数に応じて変化する。例えば、ドライブローラ2に対してドリブンローラ3を増速した場合、ドライブローラ2に入力されるトルクT1よりもドリブンローラ3から取り出されるトルクT2が大きくなる。反対に、ドライブローラ2に対してドリブンローラ3を減速した場合、ドライブローラ2に入力されるトルクT1よりもドリブンローラ3から取り出されるトルクT2が小さくなる。このように、本形態の動力伝達装置1では、ローラ2、3の回転半径Ra、Rbを適宜に設定することにより、ローラ2、3間の変速比、及びトルク比を任意の値に設定することが可能である。
しかも、本形態の動力伝達装置1によれば、隙間15を横断する磁場の強さを変化させることにより、ローラ2、3間のトルク比を、それらの回転半径Ra、Rbの比率に従って定まるトルク比からさらに変化させることができる。図3に示したように、磁性流体18に作用する磁場の強さと磁性流体18のせん断応力との間には、磁場が強いほどせん断応力も増加する関係が存在する。一方、図4に示したように、磁性流体18のせん断応力と、ドライブローラ2からドリブンローラ3に伝達されるトルクの大きさとの間には、せん断応力が大きいほどトルクも増加する関係が存在する。従って、ローラ2、3の間で伝達されるトルクの大きさは、それらのローラ2、3の間の隙間15に作用する磁場の強さによって定まり、磁場を強くするほど、より大きなトルクをドライブローラ2からドリブンローラ3に伝達することができる。磁場の強さは、例えば電源22の電圧を変更し、電気回路内に可変抵抗を配置してこれを操作し、あるいは電源電圧又は励磁電流に対してパルス幅変調制御を適用することによって変化させることができる。
以上の動力伝達装置1においては、ローラ2、3、ベース6、支持脚7、8、及び支軸10、11の組み合わせが磁路形成手段として機能する。但し、磁路形成手段の構成は、ローラ2、3を磁路形成手段の一部として利用しつつ、ローラ2、3の間に、隙間15を半径方向に横切る磁場を生じさせることができる限りにおいて、適宜に変更可能である。なお、ローラ2、3を磁性材料で構成してこれらを磁路の一部として利用しているので、磁束を隙間15に効率よく集中させて動力伝達効率を高められる。
[第2の形態]
図5は本発明の第2の形態に係る動力伝達装置30を示している。動力伝達装置30は、入力軸31と出力軸32との間の変速比を複数段(図示例では3段)に変更可能な変速装置として機能するように構成されている。入力軸31と出力軸32とは一対の動力伝達軸として設けられており、それらの軸31、32は軸受33によって互いに平行な軸線X1、X2の回りに回転自在に支持されている。入力軸31は非磁性材料にて構成され、出力軸32は磁性材料にて構成されている。入力軸31と出力軸32との間には、3つの伝達部34A、34B、34Cが設けられている。
第1の伝達部34Aには、回転体として、入力軸31と一体に回転可能な第1のドライブローラ35Aと、出力軸32と一体に回転可能な第1のドリブンローラ36Aとが設けられている。ドライブローラ35Aとドリブンローラ36Aとは軸線方向(図において左右方向)に同一位置に並べられ、それらの外周面間には半径方向の隙間37Aが設けられている。第2の伝達部34Bには、回転体として、入力軸31と一体に回転可能な第2のドライブローラ35Bと、出力軸32と一体に回転可能な第2のドリブンローラ36Bとが設けられている。ドライブローラ35Bとドリブンローラ36Bとは軸線方向に同一位置に並べられ、それらの外周面間には半径方向の隙間37Bが設けられている。第3の伝達部34Cには、回転体として、入力軸31と一体に回転可能な第3のドライブローラ35Cと、出力軸32と一体に回転可能な第3のドリブンローラ36Cとが設けられている。ドライブローラ35Cとドリブンローラ36Cとは軸線方向に同一位置に並べられ、それらの外周面間には半径方向の隙間37Cが設けられている。
ドライブローラ35A、35B、35Cは第1の形態のドライブローラ2と同様に磁性材料製の円板であり、ドリブンローラ36A、36B、36Cは第1の形態のドリブンローラ3と同様に磁性材料製の円板である。但し、ドライブローラ35A、35B、35Cのそれぞれの直径は互いに異なっている。第1のドライブローラ35Aの直径が最も小さく、第3のドライブローラ35Cの直径が最も大きく、第2のドライブローラ35Bの直径はそれらの中間である。図中の回転半径Ra1、Ra2、Ra3の関係で示せば、Ra1<Ra2<Ra3である。ドリブンローラ36A、36B、36Cのそれぞれの直径は、隙間37A、37B、37Cが互いに略等しくなるように、対応するドライブローラ35A、35B、35Cの直径に応じて差別化されている。回転半径Rb1、Rb2、Rb3の関係は、Rb1>Rb2>Rb3である。また、ドライブローラ35Aの回転半径Ra1はドリブンローラ36Aの回転半径Rb1よりも小さく、ドライブローラ35Bの回転半径Ra2とドリブンローラ36Bの回転半径Rb2は略等しく、ドライブローラ35Cの回転半径Ra3はドリブンローラ36Cの回転半径Rb3よりも大きい。隙間37A、37B、37Cの大きさは、第1の形態におけるローラ2、3間の隙間15と同様に設定される。
ドライブローラ35A、35B、35C及びドリブンローラ36A、36B、36Cは共通のケース38によって取り囲まれている。ケース38は非磁性材料にて形成されている。ケース38内には、隙間37A、37B、37Cを埋めるようにして磁性流体39が収容されている。なお、共通のケース38に代えて、伝達部34A、34B、34Cのそれぞれで個別にケースを用意し、それらの内部に磁性流体を収容してもよい。ケースを個別に設ける場合には、伝達部34A、34B、34Cのそれぞれに最適な動力伝達特性が得られるように、ケース間で磁性流体の特性を変化させてもよい。
動力伝達装置30には、さらに磁気発生手段として電磁コイル40が設けられている。電磁コイル40はスイッチ41を介して直流電源42と接続されている。電磁コイル40の中心には磁性材料製のコア43が配置され、そのコア43の一端は出力軸32と接続され、他端は磁路切替手段としての磁路切替装置44と接続されている。磁路切替装置44は、コア43を、磁性材料製の磁路構成部材45A、45B、45Cのいずれか一つに対して選択的に接続させる。図5は磁路構成部材45Aとコア43とを接続した状態を示している。磁路構成部材45Aは第1の伝達部34Aまで延ばされ、その先端部45aは第1のドライブローラ35Aと略接触する。すなわち、磁路構成部材45Aと第1のドライブローラ35Aとの間に磁路が形成されるように両者は接触又は近接している。例えば、磁路構成部材45Aの先端部45aを磁性材料製のブラシ等の接触子として構成し、これを第1のドライブローラ35Aと接触させてもよい。あるいは、磁路構成部材45Aの先端部45aを第1のドライブローラ35Aに対して接しない程度にローラ35Aの表面に接近させてもよい。磁路構成部材45Bは第2のドライブローラ35Bと略接触し、磁路構成部材45Cは第3のドライブローラ35Cと略接触する。磁路構成部材45Bの先端部45bと第2のドライブローラ35Bとの関係、及び磁路構成部材45Cの先端部45cと第3のドライブローラ35Cとの関係は、磁路構成部材45Aの先端部45aと第1のドライブローラ35Aとの関係と同様でよい。
以上のように構成された動力伝達装置30においては、スイッチ41を閉じて電磁コイル40に励磁電流を供給することにより、入力軸31に入力されたトルクを、いずれか一つの伝達部34A、34B、34Cを介して出力軸32へと伝達することができる。動力伝達を担当する伝達部34A、34B、34Cは、磁路切替装置44によって選択することができる。
磁路構成部材45Aがコア43と接続されるように磁路切替装置44を操作した場合には、図6に小矢印で示したように、コア43、磁路構成部材45A、第1のドライブローラ35A、隙間37A、第1のドリブンローラ36A及び出力軸32を順次経由してコア43に戻る磁路が形成される。これにより、第1のドライブローラ35Aと第1のドリブンローラ36Aとの間では、第1のドライブローラ35Aから隙間37Aを介して第1のドリブンローラ36Aに向かう磁場MFが生じる。従って、隙間37Aにて磁性流体39のせん断応力が増加し、第1の伝達部34Aを介した入力軸31と出力軸32との間の動力伝達が可能となる。その一方、磁路構成部材45B、45Cはコア43に対して磁気的に切り離されているので、第2の伝達部34Bのドライブローラ35Bと電磁コイル40との間、第3の伝達部34Cのドライブローラ35Cと電磁コイル40との間には磁路が形成されず、これらの伝達部34B、34Cでは動力が伝達されない。つまり、ドライブローラ35B、35Cに対してドリブンローラ36B、36Cは自由に相対回転することができ、それらの間の摩擦抵抗は略ゼロとなる。
この結果、図6の状態では、図中に太線矢印で示したように、入力軸31に与えられたトルクが、第1の伝達部34Aのドライブローラ35Aからドリブンローラ36Aを介して出力軸32へと伝達される。このとき、入力軸31の角速度をω1、出力軸32の角速度をω2とすれば、変速比ω1/ω2は、ドライブローラ35Aの回転半径Ra1に対するドリブンローラ36Aの回転半径Rb1の比Rb1/Ra1(図5参照)に等しい。図示例ではRa1よりもRb1が大きいため、変速比ω1/ω2は1よりも大きく、出力軸32は入力軸31に対して減速される。入力軸31に与えたトルクT1と出力軸32のトルクT2との比T1/T2は変速比ω1/ω2の逆数となるため、図6の状態では入力軸31のトルクよりも出力軸32のトルクの方が大きい。但し、そのトルク比は、磁場の強さを変化させてローラ35A、36A間の滑り率を増減させることにより、適宜の値に調整することができる。
図7は、磁路切替装置44によって磁路構成部材45Bをコア43と接続した場合を示す。このときは、第2の伝達部34Bのドライブローラ35B及びドリブンローラ36Bが磁路の構成部材として利用されて、ドライブローラ35Bから隙間37Bを介してドリブンローラ36Bへと向かう磁場MFが生じる。第1の伝達部34A、第3の伝達部34Cにおいては磁場が生じない。従って、図中に太線矢印で示したように、入力軸31に与えられたトルクが、第2の伝達部34Bのドライブローラ35Bからドリブンローラ36Bを介して出力軸32へと伝達される。このとき、入力軸31と出力軸32との間の変速比ω1/ω2は、ドライブローラ35Bの回転半径Ra2と、ドリブンローラ36Bの回転半径Rb2とが略等しいためにほぼ1となる。よって、出力軸32は入力軸31に対して略等速で回転する。入力軸31と出力軸32との間のトルク比T1/T2も略1である。但し、そのトルク比は、磁場の強さを変化させてローラ35B、36B間の滑り率を増減させることにより、適宜の値に調整することができる。
図8は、磁路切替装置44によって磁路構成部材45Cをコア43と接続した場合を示す。このときは、第3の伝達部34Cのドライブローラ35C及びドリブンローラ36Cが磁路の構成部材として利用されて、ドライブローラ35Cから隙間37Cを介してドリブンローラ36Cへと向かう磁場MFが生じる。第1の伝達部34A、第2の伝達部34Bにおいては磁場が生じない。従って、図中に太線矢印で示したように、入力軸31に与えられたトルクが、第3の伝達部34Cのドライブローラ35Cからドリブンローラ36Cを介して出力軸32へと伝達される。このとき、ドライブローラ35Cの回転半径Ra3がドリブンローラ36Cの回転半径Rb3よりも大きいため、入力軸31と出力軸32との間の変速比ω1/ω2は1よりも小さい。よって、出力軸32は入力軸31に対して増速される。入力軸31と出力軸32との間のトルク比T1/T2は変速比ω1/ω2の逆数となるため、図8の状態では入力軸31のトルクよりも出力軸32のトルクの方が小さい。但し、トルク比は、磁場の強さを変化させてローラ35C、36C間の滑り率を増減させることにより、適宜の値に調整することができる。
スイッチ41を開いて電磁コイル40の励磁を解除した場合、いずれの伝達部34A、34B、34Cにおいても磁場が作用せず、入力軸31から出力軸32への動力伝達は不可能となる。つまり、出力軸32の角速度ω2及びトルクT2はいずれもゼロである。
以上のように、本形態によれば、スイッチ41の開閉操作によって動力伝達の有無を切り替えることができる。しかも、動力伝達時においては、磁路切替装置44における磁路の切替操作を行うだけで、出力軸32の出力トルク及び回転速度を3段階に切り替えることができる。各速度段において、磁場の強さを変化させることにより、出力トルクをさらに多段に、あるいは無段階に変化させることができる。この結果、動力の伝達及び変速が可能な動力伝達装置を簡単な構成で実現することができる。
以上の形態では、出力軸32、コア43、磁路切替装置44、磁路構成部材45A、45B、45C、ドライブローラ35A、35B、35C、ドリブンローラ36A、36B、36Cの組み合わせが磁路形成手段として機能する。但し、入力軸31を磁性材料で構成してコア43と接続し、出力軸32は非磁性材料で構成して、磁路構成部材45A、45B、45Cをドリブンローラ36A、36B、36Cと略接触させ、磁路構成部材45A、45B、45Cとコア43との間に磁路切替装置44を設けてもよい。磁路構成部材45A、45B、45Cはローラの外周面と略接触するように設けられてもよい。変速段数は3段に限らず、適宜に増減してよい。なお、本形態の動力伝達装置30は、伝達部34A、34B、34Cのそれぞれにおいて第1の形態と同様の作用効果が得られる。
[第3の形態]
図9〜図11は本発明の第3の形態に係る動力伝達装置50を示している。動力伝達装置50は、回転体としての一対のドライブローラ51及びドリブンローラ52と、それらのローラ51、52を取り囲むケース53とを備えている。ドライブローラ51は入力軸54と同軸かつ一体に回転可能に接続され、ドリブンローラ52は出力軸55と同軸かつ一体に回転可能に接続されている。入力軸54及び出力軸55は、不図示の軸受により、互いに平行な軸線X1、X2を中心として回転可能に支持されている。図9及び図10から明らかなようにローラ51、52は円板状である。ローラ51、52の直径は互いに等しく、かつ軸線方向(図9の上下方向)の厚さも互いに等しい。ローラ51、52は、いずれも磁性材料にて形成されている。ローラ51、52は、軸線方向に隙間56を挟んで互いに対向するように配置されている。つまり、ローラ51、52は軸線方向から見てそれらの一部が互いに重なり合うように配置され、それらの間に軸線方向の隙間56が設けられている。ケース53の内部には、隙間56を埋めるようにして磁性流体57が収容されている。隙間56の大きさは、ローラ51、52の間で磁路が形成できる範囲に設定される。
ケース53の下面側及び上面側には、磁性材料にて形成された一対の磁極58、59がローラ51、52を挟むように軸線方向に並べて設けられている。それらの磁極58、59は、ケース53の抜き穴53a、53bを介してケース53内に挿入され、ローラ51、52とそれぞれ接するか、又は磁路の形成に支障がない程度に近接している。図9及び図11に示すように、磁極58は下アーム60を介してコア62と接続され、磁極59は上アーム61を介してコア62と接続されている。アーム60、61及びコア62はいずれも磁性材料にて形成されている。コア62の外周には、磁気発生手段としての電磁コイル63が設けられている。電磁コイル63はスイッチ64を介して直流電源65と接続されている。コア62の下端には軸部62aが設けられ、その軸部62aは軸受66によってコア軸線X3の回りに回転自在に支持されている。軸部62aの下端部はアクチュエータ67と接続されている。アクチュエータ67は、コア62を軸線X3を中心として図10に示す範囲θの間で回転させる駆動源として設けられている。範囲θは、磁極58、59がドリブンローラ52の最外周の限界位置Paと、ドライブローラ51の最外周の限界位置Pbとの間にてローラ51、52の略半径方向に位置を変更することができるように設定されている。なお、図10では上側の磁極59のみ示すが、下側の磁極58は磁極59に隠れて見えない。
ケース53は非磁性材料にて構成される。但し、ローラ51、52を迂回して磁路が形成されるおそれがない場合には、ケース53を磁性材料にて形成してもよい。ケース53外への磁性流体57の漏れを防止するため、磁極58、59とケース53との間には弾性材料製のシール68が設けられている。シール68には、磁極58、59の動きを阻害しないように、例えばラバーブーツ、ベローズといったシール部品を用いるとよい。
以上のように構成された動力伝達装置50においては、スイッチ64を閉じて電磁コイル63を励磁した場合、図11に破線で示したように、コア62、下アーム60、磁極58、ドリブンローラ52、隙間56、ドライブローラ51、磁極59及び上アーム61を順次経由してコア62に戻るように磁路70が形成される。これにより、図9及び図11に矢印MFで示したように、ローラ51、52の間では、ドリブンローラ52から隙間56を介してドライブローラ51へと向かう軸線方向の磁場が生じる。その磁場の影響で、磁性流体57のせん断応力が増加する。この結果、ドライブローラ51とドリブンローラ52との間での動力伝達が可能となる。よって、図10に示したように、入力軸54からドライブローラ51にトルクT1を与えると、ドリブンローラ52にトルクT2が伝達されて、ドリブンローラ52がドライブローラ51と同一方向に駆動され、そのトルクT2が出力軸55から取り出される。
また、本形態の動力伝達装置50では、アクチュエータ67によってコア62を回転させることにより、磁極58、59を略半径方向に移動させてローラ51、52の間に作用する磁場の位置を変化させることができる。ドライブローラ51からドリブンローラ52へのトルク伝達は磁極58、59の位置にて行われる。よって、磁場の位置を半径方向に変化させることにより、ドライブローラ51とドリブンローラ52との間の回転速度の比を増減させることができる。すなわち、図10に示したように、ドライブローラ51の軸線X1から磁極58、59が作用させる磁場の中心(動力伝達位置)までの距離をRa、ドリブンローラ52の軸線X2から磁場の中心までの距離をRb、ドライブローラ51の角速度をω1、ドリブンローラ52の角速度をω2としたとき、ローラ51、52間の変速比ω1/ω2はRb/Raにて定まる。
よって、半径Ra、Rbが等しい基準位置(図10に実線で示す位置)Prefに磁極58、59を配置すれば変速比は1となり、入力軸54と出力軸55とは等速で回転する。磁極58、59を基準位置Prefよりもドリブンローラ52側の限界位置Pbに向かって移動させたときは、変速比ω1/ω2が1よりも小さくなり、入力軸54に対して出力軸55が増速される。反対に、磁極58、59を基準位置Prefよりもドライブローラ51側の限界位置Paに向かって移動させたときは、変速比ω1/ω2が1よりも大きくなり、入力軸54に対して出力軸55が減速される。なお、磁場を作用させる位置をPb〜Pa間で変化させたときの変速比ω1/ω2の変化を図12に示す。
スイッチ64を開いて電磁コイル63の励磁を解除した場合には、ローラ51、52の間の磁場が消滅し、ドライブローラ51からドリブンローラ52への動力伝達が不可能となる。従って、入力軸54にトルクを入力しても、出力軸55へはトルクが伝達されず、出力軸55は回転しない。このとき、ローラ51、52の間の摩擦抵抗は無視し得るほどに小さく、略ゼロである。よって、動力の非伝達中におけるエネルギー損失は極めて少ない。
入力軸54と出力軸55との間のトルク比T1/T2は変速比ω1/ω2の逆数に従って変化する。但し、そのトルク比は、磁場の強さを変化させてローラ51、52間の滑り率を変化させることにより、これを増減させることができる。磁場の強さは、例えば電源65の電圧を変更し、電気回路内に可変抵抗を配置してこれを操作し、あるいは電源電圧又は励磁電流に対してパルス幅変調制御を適用することによって変化させることができる。
以上に説明したように、本形態の動力伝達装置50においては、一対のローラ51、52を横切る磁場の位置を半径方向に変化させるだけで、ローラ51、52間の変速比及びトルク比を変化させることができる。よって、動力伝達の有無の切り替え機能及び変速機能の両者を備えた簡素かつ小型な動力伝達装置を提供することができる。
本形態の動力伝達装置50においては、ローラ51、52、磁極58、59、アーム60、61、及びコア62の組み合わせが磁路形成手段として機能する。但し、磁路形成手段は、ローラ51、52を磁路形成手段の一部として利用しつつ、ローラ51、52の間に、隙間56を軸線方向に横切る磁場を生じさせることができる限りにおいて、適宜に変更可能である。本形態においても、ローラ51、52を磁性材料で構成してこれらを磁路の一部として利用しているので、磁束を隙間56に効率よく集中させて動力伝達効率を高められる。また、本形態の動力伝達装置50においては、アクチュエータ67が位置変更手段として機能する。但し、位置変更手段の構成は、磁極58、59をローラ51、52の半径方向に変化させる限りにおいて適宜に変更可能である。例えば、アーム60又は61、あるいはコア62を軸線X1、X2を結ぶ方向に直線的に移動させる機構を設けてもよい。
本発明は上述した第1〜第3の形態に限ることなく、適宜の形態にて実施することができる。例えば、回転体は円板状に限らず、適宜の形状に変更してよい。図13はドライブローラ2及びドリブンローラ3のそれぞれの外周面2a、3aに多数の突起2b、3bを周方向に等間隔に設けた例を示す。また、図14はドライブローラ2及びドリブンローラ3の外周を正多角形状に形成した例を示す。これらの例に示すように、ドライブローラ2及びドリブンローラ3の外周面、つまり隙間15に臨む表面に、周方向へ沿って凹凸を付した場合には、隙間15に磁場を作用させて磁性流体18のせん断応力を増加させたときに、その磁性流体18とローラ2、3との間の滑りが減少して動力伝達効率が高まる。第2の形態のドライブローラ35A、35B、35C、及びドリブンローラ36A、36B、36Cについても同様に凹凸を付してよい。
図15及び図16は第3の形態のドライブローラ51及びドリブンローラ52の軸線方向に重なり合う領域A1、A2、つまり隙間56に臨む表面に、多数の突起51a、52aを周方向に沿って等間隔に設けた例を示す。この場合も、上記と同様に、ローラ51、52と磁性流体57との間の滑りが減少して動力伝達効率が高まる。なお、図13〜図16のいずれの例においても、回転体に設けるべき凹凸は図示の形状に限らず、磁性流体と周方向に噛み合う作用を奏する形状である限りにおいて、適宜の変更が可能である。凹凸をいずれか一方の回転体に限って付してもよい。
本発明において、磁気発生手段は電磁コイルに限らず、永久磁石又はヨークでもよい。磁場の方向は図示の例に限らず、ドライブローラ側からドリブンローラ側へと磁場を作用させてもよい。本発明の動力伝達装置は、車両の動力伝達系に限らず、適宜の動力伝達系に組み込むことができる。例えば、遊星ローラ機構の太陽ローラと遊星ローラとの間、又は遊星ローラとリングローラとの間に本発明を適用して、それらのローラ間の動力伝達の有無の切り替え、並びに変速比及びトルク比の変更を行ってもよい。
本発明において、回転体は互いに平行な軸線の回りに回転可能に配置される例に限らない。それらの軸線は同軸でない限り、非平行であってもよい。例えば、円錐状の回転体をそれらの円錐面間に隙間が空くようにして配置し、一方の回転体から隙間を介して他方の回転体に磁場を作用させてもよい。
本発明の第1の形態に係る動力伝達装置の軸線方向断面図。 第1の形態に係る動力伝達装置のローラ間の関係を示す平面図。 磁場と磁性流体のせん断応力との関係を示す図。 磁性流体のせん断応力と回転体間で伝達されるトルクとの関係を示す図。 本発明の第2の形態に係る動力伝達装置のスケルトン図。 第1の伝達部を介して動力が伝達されるときのスケルトン図。 第2の伝達部を介して動力が伝達されるときのスケルトン図。 第3の伝達部を介して動力が伝達されるときのスケルトン図。 本発明の第3の形態に係る動力伝達装置の軸線方向断面図。 第3の形態に係る動力伝達装置のローラ間の関係を示す平面図。 図10のXI−XI線に沿った断面図。 磁場の位置とローラ間の変速比との関係を示す図。 一対の回転体の外周面に凹凸を付した例を示す図。 一対の回転体の外周面に凹凸を付した他の例を示す図。 一対の回転体の軸線方向における対向面に凹凸を付した例を示す図。 図15のXVI−XVI線に沿った断面図。
符号の説明
1 動力伝達装置
2 ドライブローラ(回転体、磁路形成手段)
3 ドリブンローラ(回転体、磁路形成手段)
4 ケース
6 ベース(磁路形成手段)
7、8 支持脚(磁路形成手段)
10、11 支軸(磁路形成手段)
15 半径方向の隙間
16 入力軸(動力伝達軸)
17 出力軸(動力伝達軸)
18 磁性流体
21 電磁コイル(磁気発生手段)
24 磁路
30 動力伝達装置
31 入力軸(動力伝達軸)
32 出力軸(動力伝達軸)
34A、34B、34C 伝達部
35A、35B、35C ドライブローラ(回転体、磁路形成手段)
36A、36B、36C ドリブンローラ(回転体、磁路形成手段)
37A、37B、37C 隙間
38 ケース
39 磁性流体
40 電磁コイル(磁気発生手段)
43 コア(磁路形成手段)
44 磁路切替装置(磁路形成手段、磁路切替手段)
45A、45B、45C 磁路構成部材(磁路形成手段)
50 動力伝達装置
51 ドライブローラ(回転体、磁路形成手段)
52 ドリブンローラ(回転体、磁路形成手段)
53 ケース
54 入力軸(動力伝達軸)
55 出力軸(動力伝達軸)
56 隙間
57 磁性流体
58、59 磁極
60 下アーム(磁路形成手段)
61 上アーム(磁路形成手段)
62 コア(磁路形成手段)
63 電磁コイル(磁気発生手段)
67 アクチュエータ(位置変更手段)
70 磁路
MF 磁場
X1、X2 回転体の軸線

Claims (4)

  1. 互いに異なる軸線の回りに回転可能であり、かつ隙間を空けて設けられた磁性材料製の一対の回転体と、
    前記一対の回転体を取り囲むケースと、
    前記ケースを貫いて前記一対の回転体のそれぞれと同軸的に接続される一対の動力伝達軸と、
    前記隙間を埋めるようにして前記ケース内に収容された磁性流体と、
    磁気を発生する磁気発生手段と、
    一方の回転体から前記隙間を介して他方の回転体に向かう磁場が生じるように、前記磁気発生手段が発生した磁気の磁路を形成する磁路形成手段と、を備え、
    前記一対の回転体のそれぞれの軸線が互いに平行であり、かつ、前記一対の回転体の外周面の間に前記隙間が設けられ、
    前記一対の動力伝達軸間には複数の伝達部が設けられ、
    前記複数の伝達部のそれぞれに前記一対の回転体が配置され、
    前記複数の伝達部間にて、前記一対の回転体の回転半径の比率が互いに相違し、
    前記磁路形成手段は、前記複数の伝達部からいずれか一つの伝達部を選択して該伝達部の一対の回転体と前記磁気発生手段との間に前記磁路を形成させ、選択されなかった他の伝達部の回転体と前記磁気発生手段との間は磁路が形成されないように切り離す磁路切替手段を備えている、
    ことを特徴とする動力伝達装置。
  2. 互いに異なる軸線の回りに回転可能であり、かつ隙間を空けて設けられた磁性材料製の一対の回転体と、
    前記一対の回転体を取り囲むケースと、
    前記ケースを貫いて前記一対の回転体のそれぞれと同軸的に接続される一対の動力伝達軸と、
    前記隙間を埋めるようにして前記ケース内に収容された磁性流体と、
    磁気を発生する磁気発生手段と、
    一方の回転体から前記隙間を介して他方の回転体に向かう磁場が生じるように、前記磁気発生手段が発生した磁気の磁路を形成する磁路形成手段と、を備え、

    前記一対の回転体のそれぞれの軸線が互いに平行であり、かつ、前記一対の回転体が前記隙間を介して軸線方向に対向するように設けられ、
    前記磁路形成手段には、前記一対の回転体を挟むように前記軸線方向に並べられた一対の磁極が設けられ、
    前記一対の磁極の位置を前記回転体の半径方向に変化させる位置変更手段をさらに備えている、
    ことを特徴とする動力伝達装置。
  3. 前記磁場の強さを変化させる磁場調整手段をさらに備えたことを特徴とする請求項1又は2に記載の動力伝達装置。
  4. 少なくともいずれか一方の回転体の前記隙間に臨む表面に、当該回転体の周方向に沿って凹凸が付されていることを特徴とする請求項1〜3のいずれか一項に記載の動力伝達装置。
JP2007124805A 2007-05-09 2007-05-09 動力伝達装置 Expired - Fee Related JP4807318B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007124805A JP4807318B2 (ja) 2007-05-09 2007-05-09 動力伝達装置
DE112008001271T DE112008001271T5 (de) 2007-05-09 2008-05-08 Leistungsübertragungsgerät
CN2008800151061A CN101680498B (zh) 2007-05-09 2008-05-08 动力传递装置
US12/598,152 US7999429B2 (en) 2007-05-09 2008-05-08 Power transmission apparatus
PCT/JP2008/058532 WO2008140010A1 (ja) 2007-05-09 2008-05-08 動力伝達装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007124805A JP4807318B2 (ja) 2007-05-09 2007-05-09 動力伝達装置

Publications (2)

Publication Number Publication Date
JP2008281078A JP2008281078A (ja) 2008-11-20
JP4807318B2 true JP4807318B2 (ja) 2011-11-02

Family

ID=40002210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007124805A Expired - Fee Related JP4807318B2 (ja) 2007-05-09 2007-05-09 動力伝達装置

Country Status (5)

Country Link
US (1) US7999429B2 (ja)
JP (1) JP4807318B2 (ja)
CN (1) CN101680498B (ja)
DE (1) DE112008001271T5 (ja)
WO (1) WO2008140010A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596051B2 (ja) * 2008-07-09 2010-12-08 トヨタ自動車株式会社 ツインクラッチ装置
DE102011116783A1 (de) 2011-10-24 2013-04-25 Maxon Motor Ag Kraftübertragungseinheit für einen elektromotorisch betriebenen Antrieb und magnetorheologische Kupplung
DE102012022798A1 (de) * 2012-11-21 2014-05-22 Maxon Motor Ag Linearantrieb

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB767000A (en) 1954-03-25 1957-01-30 Smith & Sons Ltd S Improvements in or relating to sealing means for preventing the escape of powdered flowable material from a space between relatively rotatable parts
US2870642A (en) * 1955-07-27 1959-01-27 Glenn T Randol Automotive variable-ratio power transmission
JPS62251529A (ja) * 1986-04-22 1987-11-02 Mitsubishi Electric Corp 磁性粒子式電磁連結装置
JPH0193629A (ja) * 1987-10-05 1989-04-12 Hitachi Ltd 磁性流体クラッチ装置
JPH02134417A (ja) * 1988-11-14 1990-05-23 Honda Motor Co Ltd 無段減速装置
JPH03260438A (ja) * 1990-03-08 1991-11-20 Hino Motors Ltd 電磁クラッチ式変速機
JP3235138B2 (ja) * 1991-10-18 2001-12-04 大豊工業株式会社 トルク伝達可変装置
JP3260438B2 (ja) 1992-08-24 2002-02-25 ジヤトコ・トランステクノロジー株式会社 自動変速機の制御装置
DE19815881A1 (de) 1998-04-08 1999-10-14 Dana Corp Differential mit rheologischem Fluid
CN2623950Y (zh) * 2003-06-03 2004-07-07 王蜀 可控式轿车用磁粉离合器
JP2008157446A (ja) * 2006-11-30 2008-07-10 Anest Iwata Corp 2軸以上の回転軸間の駆動力伝達機構と該駆動力伝達機構を用いた無給油流体機械

Also Published As

Publication number Publication date
CN101680498B (zh) 2012-01-11
WO2008140010A1 (ja) 2008-11-20
JP2008281078A (ja) 2008-11-20
DE112008001271T5 (de) 2010-03-04
CN101680498A (zh) 2010-03-24
US20100108453A1 (en) 2010-05-06
US7999429B2 (en) 2011-08-16

Similar Documents

Publication Publication Date Title
JP5263388B2 (ja) 変速機能のある電動機
CN107339398B (zh) 驱动装置
JP5215387B2 (ja) 磁気カップリング装置
CN100422587C (zh) 用于分动箱并具有多极电磁致动器的离合器
JP5885039B2 (ja) 回転電機および車両用動力装置
JP4596051B2 (ja) ツインクラッチ装置
JP4807318B2 (ja) 動力伝達装置
WO2020183787A1 (ja) 動力伝達装置
JP2006300208A (ja) 差動制限装置
JP4363188B2 (ja) 差動制限装置
CN109416109B (zh) 可变速度传动机构及使用其的系统
JP2007064388A (ja) 駆動装置およびこれを備える動力出力装置
CN109882523B (zh) 两档输出的电磁离合器及其控制方法
WO2021235535A2 (ja) 磁力発電及び自発電動(自動推進)システム
US10054204B2 (en) Variable output planetary gear set with electromagnetic braking
JPWO2020161996A1 (ja) 動力伝達装置
JP2018118546A (ja) 車両
JP2016017596A (ja) 噛合式係合装置
CN214534147U (zh) 电磁离合器
JP2003011693A (ja) デファレンシャル装置
JP2017008972A (ja) 磁気動力伝達装置
WO2015029748A1 (ja) 互いに逆回転する複数の大口径薄型の回転電機を電気自動車の駆動用モーターとして使う場合に適する変速装置
JP2022547925A (ja) 磁気回転結合装置のためのシステムおよび方法
JP2010002000A (ja) 無段変速機
JP4759489B2 (ja) 非接触動力伝達装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees