JP4796798B2 - 水素供給方法 - Google Patents

水素供給方法 Download PDF

Info

Publication number
JP4796798B2
JP4796798B2 JP2005231931A JP2005231931A JP4796798B2 JP 4796798 B2 JP4796798 B2 JP 4796798B2 JP 2005231931 A JP2005231931 A JP 2005231931A JP 2005231931 A JP2005231931 A JP 2005231931A JP 4796798 B2 JP4796798 B2 JP 4796798B2
Authority
JP
Japan
Prior art keywords
hydrogen
pressure
tank
vehicle
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005231931A
Other languages
English (en)
Other versions
JP2007048599A (ja
Inventor
真佐人 喜多
聡 田口
栄次 針生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005231931A priority Critical patent/JP4796798B2/ja
Publication of JP2007048599A publication Critical patent/JP2007048599A/ja
Application granted granted Critical
Publication of JP4796798B2 publication Critical patent/JP4796798B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Description

本発明は、水を電気分解して高圧水素を発生させる水電解装置と、前記水電解装置から送られる前記水素を燃料電池車両に供給するために貯蔵する水素供給タンクとを備える水素供給システムにおいて、前記水素を前記燃料電池車両の車載水素タンクに供給する水素供給方法に関する。
近年、水素を燃料として電力又は動力を供給するシステム、例えば、燃料電池システムが提案されている。燃料である水素を製造する水電解装置は、水を分解して水素(及び酸素)を発生させるために、一般的に固体高分子電解膜を用いている。
固体高分子電解質膜の両面には、電極触媒層が設けられて電解質膜・電極構造体が構成されるとともに、前記電解質膜・電極構造体の両側には、給電体が配設されてユニット(水電解セル)が形成されている。すなわち、ユニットは、実質的には、燃料電池と同様に構成されている。
そこで、複数のユニットが積層された状態で、積層方向両端に電圧が付与されるとともに、アノード側給電体に純水が供給される。このため、電解質膜・電極構造体のアノード側では、水が分解されて水素イオン(プロトン)が生成され、この水素イオンが固体高分子電解質膜を透過してカソード側に移動し、電子と結合して水素が製造される。一方、アノード側では、水素と共に生成された酸素が、余剰の水を伴ってユニットから排出される。
上記の水電解装置は、通常、燃料電池車両の車載水素タンクに水素を供給するための水素供給システムに組み込まれている。この種の水素供給システムとしては、例えば、特許文献1に開示された高圧水素の製造装置が知られている。この製造装置は、図6に示すように、水電解セル1が収容される高圧容器2を備えており、前記水電解セル1の陽極室(図示せず)には、純水供給管3を介して電解用の純水が供給されている。水電解セル1には、電源4から電気が供給されており、この水電解セル1の陽極室で発生する酸素は、電解用の純水の一部と共に、戻り管5を介して電解用純水層6に送られている。
水電解セル1の陰極室(図示せず)で発生した水素は、高圧容器2内に放出された後、前記高圧容器2の外部に配置された熱交換器7によって冷却され、さらに前記高圧容器2の内部に戻されている。そして、高圧容器2内の水素を使用する際には、この高圧容器2に付設されたバルブ8aを開放してニードルバルブ8bの開度を調整することにより、水素の流出量が制御されている。
その際、高圧容器2内の圧力低下が圧力計9によって検知され、電源4を介して水電解セル1で水電解が行われている。これにより、圧力を略一定に保った水素が、ニードルバルブ8bから取り出されることになる。
一方、特許文献2に開示されている水素供給ステーションは、貯蔵する水素の圧力ステージを複数段に異ならせた複数の貯蔵タンクにそれぞれ水素を貯蔵するタンクユニットと、該タンクユニット内の水素を車載タンクへ供給するための供給ラインと、該供給ラインに接続する前記貯蔵タンクを切替える切替装置とを有している。このため、水素充填を行う初期段階では、低い圧力ステージの貯蔵タンクから水素の充填を開始するとともに、車載タンク内の圧力が高くなったときには、前記の貯蔵タンクよりも高い圧力ステージの貯蔵タンクに切り替えて、水素の充填を継続することができる、としている。
特開2003−221690号公報(図1) 特開2005−69332号公報(図1)
しかしながら、上記の特許文献1では、高圧容器2内に水電解セル1が配置されるとともに、この高圧容器2に水素が貯蔵されるため、前記高圧容器2が相当に大型化してしまう。これにより、製造装置全体を有効に小型化することができないという問題がある。
しかも、高圧容器2内からニードルバルブ8bにより抜き出された量と同量の水素が、電源4の作用下に水電解セル1で生成されている。このため、電源4から水電解セル1に通電される電気量の制御が煩雑になるとともに、この電源4の消費電力が増大して経済的でないという問題がある。
一方、上記の特許文献2では、複数の貯蔵タンクを備えているため、各貯蔵タンクの配管が複雑になるとともに、制御弁の数が増加してしまい、設備全体の小型化には適さないという問題がある。
本発明はこの種の問題を解決するものであり、燃料電池車両に水素を簡単且つ経済的に供給するとともに、設備全体の小型化及び簡素化を図ることが可能な水素供給方法を提供することを目的とする。
本発明は、水を電気分解して高圧水素を発生させる水電解装置と、前記水電解装置から送られる前記水素を、燃料電池車両に供給するために貯蔵する水素供給タンクとを備える水素供給システムにおいて、前記水素を前記燃料電池車両の車載水素タンクに供給する水素供給方法である。ここで、高圧水素とは、5Mpa〜70Mpaの水素をいう。
この水素供給方法では、水素供給タンク内の第1水素圧力と、車載水素タンク内の第2水素圧力とが検出され、前記第1水素圧力から前記第2水素圧力を引いた差圧が、規定圧力よりも大きいと判断された際、前記差圧により前記水素供給タンク内の前記水素が前記車載水素タンクに供給されている。
一方、前記工程により第2水素圧力が上昇する一方、第1水素圧力が減少することにより、差圧が、規定圧力を下回った場合に、水電解装置を運転して高圧な水素を発生させながら、発生した前記水素の圧力のみで車載水素タンクに前記水素が供給されている。
本発明によれば、水素供給タンク内の第1水素圧力と車載水素タンク内の第2水素圧力との差圧が、規定圧力よりも小さいと判断された際にのみ、水電解装置が運転されている。このため、水電解装置の制御が簡素化するとともに、車載水素タンクへの水素の供給が迅速且つ確実に遂行される。車載水素タンク内の水素圧力が上昇した際には、水電解装置から水素が生成されて水素圧が上昇するため、前記車載水素タンク内への水素の供給が円滑に行われるからである。これにより、燃料電池車両に水素を簡単且つ経済的に供給するとともに、設備全体の小型化及び簡素化を図ることが可能になる。
図1は、本発明の実施形態に係る水素供給方法が適用される水素供給システム10の概略構成説明図であり、図2は、前記水素供給システム10の詳細説明図である。
水素供給システム10は、電力を供給するための電源装置12と、水道水(市水)から純水を製造する純水製造装置14と、前記純水を電気分解することによって高圧水素(5Mpa〜70Mpa)を製造する水電解装置16と、製造された前記水素から水分を除去する除湿装置18と、除湿された前記水素を貯蔵する水素供給タンク20とを備え、燃料電池自動車(車両)22の車載水素タンク24に前記水素を供給する。
図2に示すように、電源装置12は、水電解装置16に電力を供給するための1つの手段として、例えば、太陽電池26(又は、風力発電機等)を備えるとともに、別の手段として商用電源28を備える。商用電源28は、AC/DCコンバータ30を介して分配ユニット32に接続される一方、この分配ユニット32には、太陽電池26が接続される。
分配ユニット32は、DC/ACコンバータ34を介して家庭に電力(交流電源)を供給可能であるとともに、エネルギーストレージであるバッテリ36を介装して配電ユニット38に接続される。水電解装置16には、この配電ユニット38から電力が供給される。
純水製造装置14は、水電解装置16から導出される水素及び水蒸気と水道水との間で熱交換を行う熱交換器40を備える。この熱交換器40には、前記熱交換器40により熱交換を行った水道水から純水を製造する純水製造部(EDI)42が給水ライン44を介して接続される。純水製造部42で製造された純水は、純水供給ライン46を介して水電解装置16の純水供給口(図示せず)に供給される。
水電解装置16は、所定数の水電解セルが積層される水電解スタック50を備え、前記水電解スタック50には、DC/DCコンバータ52が電気的に接続される。水電解スタック50から酸素を含む純水が導出される純水ライン54には、酸素気液分離器56が接続されるとともに、この酸素気液分離器56には、前記酸素から分離された純水を水電解装置16の純水供給口に戻す純水戻しライン58が接続される。
水電解スタック50から水素及び水蒸気が導出される水素ライン60には、水素気液分離器62が接続される。水素気液分離器62には、この水素気液分離器62で水分が除去された水素を熱交換器40に供給する水素ライン64と、前記水分を水電解スタック50に戻す純水戻りライン65とが接続される。
熱交換器40で熱交換された水素は、水素供給ライン66を介して除湿装置18に送られる。除湿装置18は、例えば、熱交換器等により構成されており、この除湿装置18には、水素充填ライン68を介して水素供給タンク20が接続される。この水素供給タンク20には、水素供給ライン70が接続されるとともに、前記水素供給ライン70の先端には、ノズル72が装着される。
水素供給タンク20には、この水素供給タンク20内の水素圧を検出するための第1圧力センサ76が設けられるとともに、車載水素タンク24には、前記車載水素タンク24内の水素圧を検出するための第2圧力センサ78が設けられる。第1及び第2圧力センサ76、78の検出信号は、制御回路80に送られる一方、この制御回路80では、前記検出信号に基づいて水電解装置16の運転制御等を行う。制御回路80は、さらに水素供給システム10全体の運転制御を行う機能を有する。
このように構成される水素供給システム10の動作について、図3以降に示すフローチャートに沿って以下に説明する。
先ず、太陽電池26を使用して水素を製造する際には、この太陽電池26が発電しているか否かが判断される(ステップS1)。太陽電池26が水素供給システム10の運転に必要な電力を発電していると判断すると(ステップS1中、YES)、ステップS2に進んで、水素供給タンク20の残量が検出される。
なお、必要な電力量が得られないときは、家庭に供給することも可能である。そして、ステップS3に進んで、水素を製造すると判断されると(ステップS3中、YES)、太陽電池26による発電電力は、分配ユニット32より配電ユニット38から水電解装置16に供給される。
その際、純水製造装置14では、水道水が熱交換器40に供給されるため、この水道水は、水電解装置16から導出される水素及び水蒸気と熱交換を行って加熱された後、純水製造部42に供給される。さらに、この純水製造部42で製造された純水は、純水供給ライン46を介して水電解装置16の純水供給口に供給される。
水電解装置16では、水電解スタック50内で純水が電気分解されて水素と酸素とが得られる。水電解スタック50内で得られた酸素を含む純水は、純水ライン54を介して酸素気液分離器56に供給され、前記酸素から分離された純水が純水戻しライン58を介して水電解装置16の純水供給口に戻される。
一方、水電解スタック50内で製造された水素及び水蒸気は、水素ライン60を介して水素気液分離器62に供給される。この水素気液分離器62で水素から分離された水分は、純水戻りライン65を介して水電解装置16に戻されるとともに、前記水分が除去された水素は、水素ライン64から熱交換器40に供給される。熱交換された水素は、除湿装置18に送られて除湿された後、水素充填ライン68を介して水素供給タンク20内に充填される。
次に、水素供給タンク20が満タンであると判断されると(ステップS4中、YES)、ステップS5に進んで、水電解装置16の運転が停止されて水素製造作業が終了する。
ところで、ステップS3において、水素を製造しないと判断されると(ステップS3中、NO)、ステップS6に進んで、夜間水素供給可能な電力が計算される。なお、制御回路80には、過去の水素製造量が記録されており、このデータに基づいて、上記の電力の計算が行われる。太陽電池26で発電された電力は、この計算された電力に基づいて、バッテリ36に充電され(ステップS7)、及び/又は、DC/ACコンバータ34を介して家庭用電力として供給される(ステップS8)。
次いで、夜間に、燃料電池自動車22の車載水素タンク24に水素を充填する際には、先ず、ノズル72が前記車載水素タンク24に装着される(図4中、ステップS11)。その際、図示しないモニタには、明日の出発予想時間が表示される(ステップS12)。制御回路80では、燃料電池自動車22の毎日の出発時間が記憶されており、この記憶データに基づいて、明日の出発予想時間が表示される。
そこで、明日の出発時間が、表示された予想時間と異なると(ステップS13中、NO)、ステップS14に進んで、明日の出発時間が入力される。さらに、制御回路80に記憶されている毎日の供給量、すなわち、消費水素量に基づいて、航続距離の予想が表示される(ステップS15)。そして、表示された航続予想距離に対して、実際の航続(予定)距離が異なるときには(ステップS16中、NO)、ステップS17に進んで、実際の航続距離が入力される。
制御回路80では、車載水素タンク24の残余容量を、例えば、第2圧力センサ78による検出信号に基づいて受信すると(ステップS18中、YES)、ステップS19に進んで、前記車載水素タンク24の残量が検出される。次に、ステップS20に進んで、車載水素タンク24の水素残量と、明日の出発時刻、航続距離から計算される必要水素量とから水素の充填パターンが計算される。
さらに、制御回路80では、水素供給タンク20内の第1水素圧力と車載水素タンク24内の第2水素圧力とが、第1及び第2圧力センサ76、78により検出される。そして、第1水素圧力と第2水素圧力との差圧が、規定圧力よりも大きいか否かが判断される(ステップS21)。
差圧が規定圧力以上であると判断されると(ステップS21中、YES)、ステップS22に進んで、前記差圧により水素供給タンク20内の水素が車載水素タンク24内に充填を開始する。車載水素タンク24内では、水素が充填されることによって、第2水素圧力が上昇する。この第2水素圧力が設定値に至ることにより(ステップS23中、YES)、車載水素タンク24内への水素の充填が停止される(ステップS24)。
ところで、水素の充填により車載水素タンク24内の第2水素圧力が上昇する一方、水素供給タンク20内では、水素が放出されることにより第1水素圧力が減少する。そして、差圧が規定圧力を下回ると(ステップS21中、NO)、ステップS25に進む。このステップS25では、家庭における電力消費量が監視されるとともに、ステップS26では、バッテリ36の残量が検出される。これにより、水素を製造するための電力は、バッテリ36及び/又は商用電源28から確保される(ステップS27)。家庭の消費電力を監視するのは、電力消費が家庭の供給容量を超えることがないようにするためである。そして、電力消費が家庭の供給容量を超えないように、バッテリ36との出力の比が決定される。
上記の電力によって、水電解装置16による水素の製造が開始される(ステップS28)。このため、水電解装置16で発生する高圧水素は、水素供給タンク20側に送られ、前記水電解装置16により水素を発生させながら、発生した前記水素の圧力によって車載水素タンク24内に前記水素が供給される。
このように、本実施形態では、水素供給タンク20内の第1水素圧力と車載水素タンク24の第2水素圧力との差圧が規定圧力以上であれば、前記差圧により前記水素供給タンク20内の水素を前記車載水素タンク24に供給する。一方、差圧が規定圧力以下となる際にのみ、水電解装置16を運転して水素を発生させながら、発生した前記水素の圧力により車載水素タンク24に前記水素を供給している。
従って、水電解装置16の運転を含めた制御全体が簡素化するとともに、車載水素タンク24への水素の供給が迅速且つ確実に遂行されるという効果が得られる。これにより、燃料電池自動車22に水素を簡単且つ経済的に供給するとともに、水素供給システム10全体の小型化及び簡素化を図ることが可能になる。
本発明の実施形態に係る水素供給システムの概略構成説明図である。 前記水素供給システムの詳細説明図である。 前記水素供給システムによる水素製造工程を説明するフローチャートである。 前記水素供給システムによる夜間の水素充填工程を説明するフローチャートの前段である。 前記夜間の水素充填工程を説明するフローチャートの後段である。 特許文献1の製造装置の説明図である。
符号の説明
10…水素供給システム 12…電源装置
14…純水製造装置 16…水電解装置
18…除湿装置 20…水素供給タンク
22…燃料電池自動車 24…車載水素タンク
26…太陽電池 28…商用電源
32…分配ユニット 36…バッテリ
38…配電ユニット 40…熱交換器
42…純水製造部 50…水電解スタック
56…酸素気液分離器 62…水素気液分離器
72…ノズル 76、78…圧力センサ
80…制御回路

Claims (1)

  1. 水を電気分解して高圧水素を発生させる水電解装置と、前記水電解装置から送られる前記水素を燃料電池車両に供給するために貯蔵する水素供給タンクとを備える水素供給システムにおいて、前記水素を前記燃料電池車両の車載水素タンクに供給する水素供給方法であって、
    前記水素供給タンク内の第1水素圧力と、前記車載水素タンク内の第2水素圧力とを検出する工程と、
    前記第1水素圧力から前記第2水素圧力を引いた差圧が、規定圧力よりも大きいと判断された際、前記差圧により前記水素供給タンク内の前記水素を前記車載水素タンクに供給する工程と、
    前記工程により前記第2水素圧力が上昇する一方、前記第1水素圧力が減少することにより、前記差圧が前記規定圧力を下回った場合に、前記水電解装置を運転して高圧な水素を発生させながら、発生した前記水素の圧力のみで前記車載水素タンクに前記水素を供給する工程と、
    を有することを特徴とする水素供給方法。
JP2005231931A 2005-08-10 2005-08-10 水素供給方法 Expired - Fee Related JP4796798B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231931A JP4796798B2 (ja) 2005-08-10 2005-08-10 水素供給方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005231931A JP4796798B2 (ja) 2005-08-10 2005-08-10 水素供給方法

Publications (2)

Publication Number Publication Date
JP2007048599A JP2007048599A (ja) 2007-02-22
JP4796798B2 true JP4796798B2 (ja) 2011-10-19

Family

ID=37851258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231931A Expired - Fee Related JP4796798B2 (ja) 2005-08-10 2005-08-10 水素供給方法

Country Status (1)

Country Link
JP (1) JP4796798B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645931B2 (en) * 2007-03-27 2010-01-12 Gm Global Technology Operations, Inc. Apparatus to reduce the cost of renewable hydrogen fuel generation by electrolysis using combined solar and grid power
JP5569116B2 (ja) * 2010-04-16 2014-08-13 セントラル硝子株式会社 フッ素ガス生成装置
JP2011251857A (ja) * 2010-05-31 2011-12-15 Japan Petroleum Energy Center 熱電供給型有機ハイドライドステーション
JP5367673B2 (ja) * 2010-10-22 2013-12-11 本田技研工業株式会社 高圧水電解システムの制御方法
JP5355623B2 (ja) * 2011-05-23 2013-11-27 本田技研工業株式会社 水電解システム及びその運転方法
JP5647956B2 (ja) * 2011-08-31 2015-01-07 株式会社日立製作所 エネルギー供給システム
CN108199061B (zh) * 2017-12-25 2022-09-02 卓斐(东营)农业科技研究院有限公司 农机燃料电池加气装置、加气系统及其加气方法
WO2022153533A1 (ja) * 2021-01-18 2022-07-21 株式会社安川電機 電解システム及びコンバータ
JP2022124322A (ja) * 2021-02-15 2022-08-25 弘江 川島 水素生成システム、及び水素燃料利用システム
CN117802536A (zh) * 2023-12-28 2024-04-02 广东卡沃罗氢科技有限公司 一种pem电解制氢及储氢供氢的控制方法、装置及设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3468555B2 (ja) * 1993-09-28 2003-11-17 マツダ株式会社 車両用燃料電池システム
JP2002061797A (ja) * 2000-08-23 2002-02-28 Honda Motor Co Ltd 水素ステーション
JP2002161998A (ja) * 2000-11-27 2002-06-07 Honda Motor Co Ltd 水素ステーション
JP4793892B2 (ja) * 2000-12-19 2011-10-12 株式会社神鋼環境ソリューション 水素補給システム
JP2004116544A (ja) * 2002-09-24 2004-04-15 Mitsubishi Kakoki Kaisha Ltd 水素供給ステーション及びその制御方法
JP2005069327A (ja) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc 水素供給ステーション
JP2005197102A (ja) * 2004-01-08 2005-07-21 Tatsuno Corp 供給装置および供給システム

Also Published As

Publication number Publication date
JP2007048599A (ja) 2007-02-22

Similar Documents

Publication Publication Date Title
JP4796798B2 (ja) 水素供給方法
JP5048814B2 (ja) 水素充填システムの運転方法
CN105862066B (zh) 一种高压质子膜水电解装置及方法
JP6257911B2 (ja) 水素製造手段を備えた太陽光発電システム
US7727647B2 (en) Portable hydrogen fuel container charger
US8815075B2 (en) Water electrolysis system and method of operating same
JP5908457B2 (ja) 電気エネルギーの蓄積および復元のための装置
JP2008011614A (ja) 水素生成システム
US9487874B2 (en) Method for operating the water electrolysis system
JP2019200839A (ja) 発電システム
US20110266142A1 (en) Unitized electrolyzer apparatus
WO2017169204A1 (ja) 水素製造システム
US20100219066A1 (en) Water electrolysis system
US8663434B2 (en) Water electrolysis system and method for operating water electrolysis system
JP2010053378A (ja) 水素生成システム及びその運転方法
US20090226776A1 (en) Hydrogen charging apparatus
JP2018193573A (ja) 電解液タンク、電解装置、および水素製造システム
JP2006299323A (ja) 水電解装置
JP6544628B2 (ja) 水の電気分解装置
US20120255867A1 (en) Water electrolysis system and method of operating water electrolysis system
JP2009224293A (ja) 燃料電池システム
JP5112310B2 (ja) 燃料電池再充填器
US20230038338A1 (en) Controller and operation control method for electrolysis stack module powered by renewable energy power generation device and electrolysis system using the same
JP2011168862A (ja) 水電解システム及びその運転方法
JP6528315B2 (ja) 水素ガス圧縮貯蔵装置及び水素ガス圧縮貯蔵方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

R150 Certificate of patent or registration of utility model

Ref document number: 4796798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees