JP4789319B2 - レーザダイオードおよびその製造方法 - Google Patents

レーザダイオードおよびその製造方法 Download PDF

Info

Publication number
JP4789319B2
JP4789319B2 JP2000356008A JP2000356008A JP4789319B2 JP 4789319 B2 JP4789319 B2 JP 4789319B2 JP 2000356008 A JP2000356008 A JP 2000356008A JP 2000356008 A JP2000356008 A JP 2000356008A JP 4789319 B2 JP4789319 B2 JP 4789319B2
Authority
JP
Japan
Prior art keywords
laser diode
gain spectrum
active layer
diffraction grating
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000356008A
Other languages
English (en)
Other versions
JP2002158399A (ja
Inventor
伸明 羽鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2000356008A priority Critical patent/JP4789319B2/ja
Priority to US09/854,469 priority patent/US6628691B2/en
Publication of JP2002158399A publication Critical patent/JP2002158399A/ja
Application granted granted Critical
Publication of JP4789319B2 publication Critical patent/JP4789319B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • H01S5/3412Structures having reduced dimensionality, e.g. quantum wires quantum box or quantum dash

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は一般に光半導体装置に係り、特に回折格子よりなる光共振器を有するレーザダイオードに関する。
【0002】
DFBレーザダイオードあるいはDBRレーザダイオードは回折格子よりなる光共振器を有し、光ファイバを使った高速光通信ネットワークにおいて、高速光変調が可能な単一モード光源として広く使われている。
【0003】
【従来の技術】
高速光通信ネットワークで光源として使われるレーザダイオードは単一モードで動作することが要求され、このため従来より、かかる高速光通信ネットワークの光源としては、光共振器をミラーの代わりに回折格子で構成したDFBレーザダイオードやDBRレーザダイオードが使われている。
【0004】
図1は、このような従来のDFBレーザダイオード10の構成を示す。
【0005】
図1を参照するに、レーザダイオード10はn型InP基板11上に形成され、前記InP基板11上にはn型InPよりなるクラッド層12と非ドープInGaAsPよりなるSCH層13と、非ドープInGaAsよりなる活性層14とが順次エピタキシャルに形成されている。
【0006】
前記活性層14上にはさらに別の非ドープInGaAsPよりなるSCH層15がエピタキシャルに形成され、前記SCH層15にはDFB回折格子15Aが形成されている。さらに前記SCH層15上にはp型InPよりなるクラッド層16とp型InPよりなるコンタクト層17とが順次エピタキシャルに形成され、前記コンタクト層17上にはp型電極18が、また前記基板11の下面上にはn型電極19が形成される。
【0007】
かかるレーザダイオード20では前記電極18,19よりキャリアが前記活性層14中に注入され、注入されたキャリアの再結合により前記活性層14中に形成された光放射が前記SCH層13および15中を導波され、前記活性層14中における誘導放出により光増幅される。その際、前記回折格子15Aの実効的なピッチに同調した、すなわち前記回折格子15Aのブラッグ波長ないしDFB波長λgに対応した光成分が前記DFB回折格子15Aにより繰り返し反射され、選択的に増幅を受ける。
【0008】
【発明が解決しようとする課題】
しかし、これらの単一モードレーザダイオードを変調信号により駆動した場合、前記活性層14中において注入キャリア密度が変調信号により変化するため活性層の屈折率も同時に変化してしまい、変調信号に伴って回折格子の実効的な周期が変化し、その結果発信波長が変調信号と共に変化する、いわゆるチャーピングと呼ばれる現象が生じる。かかるチャーピングが生じると光信号の波長が光ファイバの最適透過帯域からずれることがあり、光信号の伝送距離が制限されてしまう。
【0009】
チャーピングの大きさは、一般的に式
【0010】
【数1】
Figure 0004789319
で定義される線幅増大係数αにより決定される。ここでχ(N)はレーザダイオードを構成する活性層の複素感受率、Nはキャリア密度であり、Re{χ(N)}はχ(N)の実数部を、またIm{χ(N)}はχ(N)の虚数部を表す。Re{χ(N)}は活性層の屈折率に関係し、一方Im{χ(N)}は吸収に関係する。
【0011】
Re{χ(N)}とIm{χ(N)}との間には周知のKramers-Kronigの関係式が成立し、さらに前記Im{χ(N)}がレーザダイオードの利得gに比K例することを考慮すると、前記線幅増大係数αは、式
【0012】
【数2】
Figure 0004789319
により表すことができる。ただし式2中、EおよびE’はエネルギ、PはCauchyの主値積分を表す。
【0013】
バルク構造の活性層14を有する通常のレーザダイオード20では一般に前記線幅増大係数αは4〜6の程度であり、従って変調信号により実質的なチャーピングが生じるのを回避することができない。これに対し活性層14中に前記SCH層15をバリア層とする量子井戸層を形成したレーザダイオードでは、線幅増大係数αの値を2程度まで減少させることができる。かかる量子井戸レーザダイオードでは、さらに量子井戸の材料や組成、レーザ構造を最適化し、DFB光共振器と組み合わせることにより、線幅増大係数αの値を1.4〜1.8程度まで減少させることが可能である。
【0014】
しかし、このような従来の量子井戸レーザダイオードでは、図2に示すように利得が最大になる波長と線幅増大係数αがゼロになる波長とがずれており、線幅増大係数αがゼロになる波長では利得は負になってしまうのがわかる。そこで、従来の量子井戸レ−ザダイオ−ドにおいては、レ−ザ発振が、利得スペクトルが正でしかも線幅増大係数αのゼロ点に可能な限り近い波長において生じるように、量子井戸の材料や組成、さらにDFB回折格子15Aのピッチを設定している。しかし、このような手法では、チャーピングの抑制には限りがあり、しかも十分な利得を実現することができない。
【0015】
一方、従来より図1のレーザダイオードにおいて前記活性層14を量子ドットにより形成したレ−ザダイオ−ドが公知である。例えば特開平9−326506号公報を参照。
【0016】
図3は、量子ドットを活性層に使った従来のレ−ザダイオ−ド20の構成を示す。
【0017】
図3を参照するに、レ−ザダイオ−ド20はn型GaAs基板21の(001)面上に形成され、前記基板21上にエピタキシャルに形成された組成がAl0.4Ga0.6Asのn型AlGaAsよりなるクラッド層22と、前記クラッド層22上に形成された非ドープGaAsよりなるSCH層23と、前記SCH層23上に形成された組成がAl0.4Ga0.6Asのp型AlGaAsよりなるクラッド層24と、前記クラッド層24上に形成されたp型GaAsよりなるコンタクト層25とを含み、前記SCH層23中には多数の量子ドット23Aよりなる活性層が形成されている。さらに前記SCH層23上にはレ−ザダイオ−ド20の軸方向に回折格子23Bが形成され、前記コンタクト層25上にはp型電極26が、また前記基板21の底面にはn型電極27が形成されている。
【0018】
このような量子ドットを使ったレ−ザダイオ−ド20において線幅増大係数αのゼロ点が利得スペクトルのピークに近接するならば、レ−ザダイオ−ドにおけるチャーピングを抑制するのに有効であると期待されている。
【0019】
一方図4に示すように、このような量子ドットを有するレ−ザダイオ−ド20においては利得スペクトルは約0.25nm/°Cの温度依存性を有し、レ−ザダイオ−ドの温度が上昇すると長波長側に変位する。これに対しDFB回折格子23Bのブラッグ波長は0.1nm/°C程度の温度依存性しか有さない。このため、従来の量子ドットDFBレ−ザダイオ−ド20では、動作温度が変化するとDFB回折格子23Bのブラッグ波長が利得スペクトルから外れてしまい、レ−ザ発振が停止するおそれがあった。
【0020】
そこで本発明は上記の課題を解決した、新規で有用な光半導体装置を提供することを概括的課題とする。
【0021】
本発明のより具体的な課題は、線幅増大係数の絶対値を最小化し、同時に動作温度範囲を拡張したレ−ザダイオ−ドを提供することにある。
【0022】
【課題を解決するための手段】
本発明は上記の課題を、第1の導電型を有する基板と、前記基板上に形成された第1の導電型を有する第1のクラッド層と、前記クラッド層上に形成され、複数の量子ドットを含む活性層と、前記活性層に沿って形成されたブラッグ波長がλgの回折格子と、前記活性層上に形成された、第2の導電型を有する第2のクラッド層と、前記基板を介して前記活性層中に第1の極性のキャリアを注入する第1の電極と、前記第2のクラッド層を介して前記活性層中に第2の極性のキャリアを注入する第2の電極とよりなるレ−ザダイオ−ドにおいて、前記活性層は半値全幅がΓの利得スペクトルを有し、前記回折格子は、前記ブラッグ波長λgに対応するエネルギの前記利得スペクトルの中心波長エネルギからのずれをΔEとして、関係式ΔE≦1.1Γを満足するようなピッチを有することを特徴とするレ−ザダイオ−ドにより、解決する。本発明によれば、前記活性層の線幅増大係数αの絶対値を4以下に抑制することが可能である。
【0023】
本発明において、前記回折格子を、前記ブラッグ波長λgに対応するエネルギの前記利得スペクトルの中心波長エネルギからのずれをΔEとして、関係式ΔE≦0.6Γが成立するようなピッチに形成してもよい。かかる構成により、前記活性層の線幅増大係数αの絶対値を2以下に抑制することが可能になる。
【0024】
本発明において前記回折格子を、前記ブラッグ波長λgに対応するエネルギの前記利得スペクトルの中心波長エネルギからのずれをΔEとして、関係式ΔE≦0.5Γが成立するようなピッチに形成してもよい。かかる構成により、前記活性層の線幅増大係数αの絶対値を1.4以下に抑制することが可能になる。
【0025】
本発明において前記回折格子を、前記ブラッグ波長λgに対応するエネルギの前記利得スペクトルの中心波長エネルギからのずれをΔEとして、関係式ΔE≦0.3Γが成立するようなピッチに形成してもよい。かかる構成により、前記活性層の線幅増大係数αの絶対値を1.0以下に抑制することが可能になる。
【0026】
本発明において、前記利得スペクトルは、前記レ−ザダイオ−ドの動作温度範囲をΔTとして、ナノメートルで表した幅が0.15ΔTを超えるものであるのが好ましい。かかる構成によれば、レ−ザダイオ−ドの動作温度が仮に85°Cの範囲で変動しても、活性層の利得スペクトルがブロードに広がっているため前記回折格子が規定するブラッグ波長は活性層の利得スペクトルの波長域内に含まれ、レ−ザダイオ−ドの発振が維持される。前記量子ドットを自己組織化量子ドットとすることにより、活性層を所望のブロードな利得スペクトルを有するように形成することが可能になる。かかる自己組織化量子ドットはInAsを使うことにより容易に形成でき、前記レ−ザダイオ−ドは1.3μm帯域あるいは1.55μm帯域において発振が可能である。
【0027】
本発明において前記回折格子を前記活性層のうち、前記量子ドットが形成されている部分に対応して、あるいは活性層のうち前記量子ドットが形成されている部分に形成することにより、DFBレーザダイオードを形成することができる。また前記回折格子を前記活性層のうち、前記量子ドットが形成されている部分からずらして形成することによりDBRレーザダイオードを形成することが可能である。
【0028】
【発明の実施の形態】
[第1実施例]
図5は、本発明の第1実施例によるDFBレーザダイオード30の構成を示す。ただし図5中、先に説明した部分には同一の参照符号を付し、説明を省略する。
【0029】
図5を参照するに、DFBレーザダイオード30は先に説明した従来のDFBレーザダイオード20と同様な構成を有するが、SCH層23上に回折格子23Bの代わりにピッチおよびブラッグ波長λgの異なる別の回折格子23Cを形成されている。先のレーザダイオード20と同様に、レーザダイオード30の活性層はSCH層23中に掲載された量子ドット23Aよりなる。
【0030】
図6は本発明の発明者が図5のDFBレ−ザダイオ−ド30について行った線幅増大係数αおよび利得スペクトルの計算結果を示す。ただし図6中、横軸は光波長エネルギを表し、左側の縦軸が利得を、また右側の縦軸が線幅増大係数αを表す。図6中、量子ドットの利得スペクトルの計算にはSunagawa, M., "Self-Assembled InGaAs/GaAs Quantum Dots," Chapter 1, Academic Press中の計算式を使い、単一の量子ドットのエネルギ幅(均一幅)と量子ドットのサイズ不均一に起因するエネルギ幅(不均一幅)とを考慮して計算を行った。図6の例では均一幅が30meV,不均一幅が30meVに設定されており、得られた利得スペクトルは36meVの半値全幅Γを有するのがわかる。一方、図6の線幅増大係数αは、先の式(2)と使って求めた。
【0031】
図6よりわかるように、活性層中に量子ドットを有するDFBレ−ザダイオ−ド30では利得スペクトルのピークと線幅増大係数αのゼロ点が一致するのが見出された。このことは、線幅増大係数の絶対値を4以下、2以下、1.4以下、1.0以下と、任意に指定した場合、いずれの場合でも対応するエネルギ幅内に利得スペクトルのピークが含まれることを意味している。
【0032】
例えば線幅増大係数αの絶対値が4以下の場合、これに対応する光波長域エネルギ幅ΔEは約38meVとなり、従って本実施例のレーザダイオード30において前記回折格子23Cのブラッグ波長λgを前記エネルギ幅ΔE内に収めておけば、絶対値が4.0以下の線幅増大係数αが保証されることになる。勿論前記エネルギ幅ΔEは利得スペクトル内に含まれており、従ってこのように設計されたDFBレ−ザダイオ−ドはチャーピングを効果的に抑制することが可能である。
【0033】
図6においては、さらに前記線幅増大係数αの絶対値を2.0以下、1.4以下、1.0以下と任意の範囲に選ぶことも可能である。この場合には、対応するエネルギ幅ΔEは、前記利得スペクトルの半値全幅が36meVである場合、それぞれ約22meV、18meVおよび12meVとなり、従って前記回折格子23Cのブラッグ波長λgを、対応するブラッグ波長エネルギが前記エネルギ幅内に収まるように設定しておくことにより、所望の線幅増大係数αを実現することが可能である。その結果、チャーピングをさらに効果的に抑制することができる。
【0034】
さらに本発明の発明者は、図6の計算を様々な線幅増大係数αおよび半値全幅Γについて実行したところ、前記エネルギ幅ΔEと半値全幅Γとの間の関係は、線幅増大係数αが4.0以下の場合、近似的には図7に示すように式ΔE=1.1Γの直線で表すことが可能であることを見出した。ただし図7中、縦軸は前記エネルギ幅ΔEを、また横軸は利得スペクトルの半値全幅の値Γを示す。
【0035】
図7を参照するに、ハッチングを施したΔE=1.1Γよりも下の領域では線幅増大係数αが4.0以下である条件が満足されており、従って図5のDFBレ−ザダイオ−ド30において、与えられた半値全幅Γの利得スペクトルに対して前記回折格子23Cのピッチをハッチングで示した範囲内に設定することにより、線幅増大係数αの絶対値を4.0以下に抑制されることがわかる。先にも説明したように、回折格子23Cについてこのようにピッチを設定しても、ブラッグ波長はレ−ザダイオ−ドの利得スペクトル内にあるため、レ−ザダイオ−ドは発振する。前記利得スペクトルの半値全幅Γが大きい場合、すなわち図6の利得スペクトルがブロードである場合には、前記エネルギ範囲ΔEも大きく、一方図6の利得スペクトルがシャープである場合には、前記エネルギ範囲ΔEは狭くなる。
【0036】
これに対し、線幅増大係数αの絶対値を2.0以下に抑制したい場合には、同様な計算により、図8に示したように、式ΔE=0.6Γで表される直線よりも下側のエネルギ領域に前記回折格子23Cの波長を設定すればよいことが示される。さらに線幅増大係数αの絶対値を1.4以下に抑制したい場合には、図9に示したように式ΔE=0.5Γで表されるよりも下のエネルギ領域に回折格子23Bの波長を設定すればよい。また線幅増大係数αの絶対値を1.0以下に抑制したい場合には、図10に示したように式ΔE=0.3Γで表されるよりも下のエネルギ領域に回折格子23Cの波長を設定すればよい。
【0037】
ところで先にも説明したように、図5の量子ドットを有するレ−ザダイオ−ド30では、動作温度が上昇すると利得スペクトルは0.25nm/°Cの割合で長波長側に変位する。これに対して前記回折格子23Cのピッチに対応したブラッグ波長λgは0.1nm/°Cの割合でしか変化しないため、回折格子23Cと利得スペクトルとの間には温度変化に伴ってデチューニングが生じる。
【0038】
温度変化ΔTに対するデチューニング量をΔDと定義すると、上記の関係から、ΔDは
ΔD(nm)=0.25ΔT−0.1ΔT=0.15ΔT
で表される。
【0039】
そこで、このようなデチューニングが生じた場合でもレーザ発振を維持するためには、前記量子ドット活性層23Aは、前記デチューニング量ΔDに対応した広がりを有する必要がある。例えば動作温度が80°Cの範囲で変動した場合でもレーザ発振を維持するためには、前記活性層23Aの利得スペクトルは12nmの半値全幅を有する必要がある。前記利得スペクトルがこのような半値全幅を有する場合、図11に示すように利得スペクトルが変位しても前記回折格子23Bのブラッグ波長λgは利得スペクトルの範囲に含まれる。前記12nmの幅は、エネルギに換算すると1.3μm帯域では約9meVの幅に対応し、また1.55μm帯域では約6meVの幅に対応する。前記利得スペクトルの半値全幅は、活性層23Aの発光スペクトル幅と同一と見なすことができる。
【0040】
図12は図5のDFBレーザダイオード30において、線幅増大係数αの絶対値が1.0以下で、しかも80°Cの温度変化ΔTが生じてもレーザ発振が維持されるエネルギ幅ΔEと活性層の利得スペクトル半値全幅Γとの関係を示す。
【0041】
図12を参照するに、図示の関係は基本的には図10の関係に対応しており、図10の関係に対して利得スペクトルの半値全幅Γについての下限を設定しているものである。すなわち、前記利得スペクトルの半値全幅Γの値を9meV以上に設定することにより、80°Cの温度変化ΔTが生じても回折格子23Cのブラッグ波長λgは利得スペクトルの半値全幅Γの範囲内に収まり、レーザ発振が生じる。しかも前記回折格子23Cのブラッグ波長λgを、ブラッグ波長エネルギが前記ΔE=0.3Γの直線で規定されるエネルギ幅ΔE内に収まるように設定することにより、線幅増大係数αの絶対値を1.0以下に収めることが可能になる。
【0042】
次に、図5のレーザダイオード30の製造方法について、図13(A)〜図14(F)を参照しながら説明する。
【0043】
図13(A)を参照するに、前記n型GaAs基板21の(001)面上には組成がAl0.4Ga0.6AsのAlGaAsクラッド層22がMBE法により約100nmの厚さに形成され、図13(B)の工程において前記クラッド層22上に非ドープGaAsSCH層23aが数nmの厚さに、同じくMBE法により形成される。
【0044】
図13(B)の工程ではさらに基板温度を510°Cに設定し、前記SCH層23a上にInAs層をMBE法により、約0.001分子層/秒の堆積速度で約1.8分子層の厚さに堆積する。このようにして形成されたInAs層はGaAs基板21に対して歪へテロ系を形成し、島状の自己組織化量子ドット23Aが形成される。このようにして形成された量子ドット23Aは一般に数nmから数十nmの径と数nmの高さを有し、また自然のサイズ不均一を有するが、成長速度を上記のように非常に小さく設定することにより、半値全幅が約40meVの利得スペクトルを実現することができる。
【0045】
さらに図13(C)の工程において図13(B)の構造を覆うように厚さが数nmのSCH層23bをMBE法により形成し、その上にさらに図13(B)と同様な自己組織化量子ドット23Aを、図13(B)の場合と同一の条件下で形成する。さらに図13(C)の工程を繰り返すことにより、図14(D)に示すように、前記SCH層23中に自己組織化InAs量子ドット23Aの集合の形で活性層が形成された構造が得られる。
【0046】
さらに図14(D)の工程では、このようにして形成された量子ドット活性層23Aの利得スペクトルを発光スペクトルを観測することにより確認し、得られた利得スペクトルの半値全幅Γおよび所望の線幅増大係数αの値に基づいて、前記回折格子23Cのピッチを決定し、図14(E)の工程において前記SCH層23を前記決定されたピッチに基づいてパターニングし、回折格子23Cを形成する。例えば線幅増大係数αの絶対値を1.0以下に抑制したい場合、先の関係式ΔE=0.3Γ(図10)より、前記回折格子23Cのピッチはブラッグ波長λgがΔE=12meV以内に入るように決定される。
【0047】
さらに図14(F)の工程では、図14(E)の構造上に前記回折格子23Cを覆うように組成がAl0.4Ga0.6Asのp型クラッド層24をMBE法により堆積し、さらにその上にp型GaAsよりなるコンタクト層をMBE法により堆積する。図14(F)の構造に、さらに図示を省略したリッジ構造をメサエッチング工程により形成し、前記p型電極26およびn型電極27を形成することにより、図5のDFBレーザダイオード30が得られる。
【0048】
このように、図5のDFBレーザダイオード30において、量子ドット活性層23Aの利得スペクトルは、図13(B),(C)のInAs量子ドット23Aを形成する工程においてInAsの堆積速度を制御することで、ある程度制御することが可能である。例えば図13(B),(C)の工程においてInAs層の堆積速度を0.1分子層/秒に設定すると、約100meVの半値半幅を有する利得スペクトルを得ることができる。この場合には、線幅増大係数αの絶対値を1.0以下にしようとすると、図14(E)の工程において前記回折格子23Cのブラッグ波長エネルギがΔE=30meVの範囲内に入るように回折格子23Cのピッチを決定すればよい。
【0049】
このようにして形成された量子ドット活性23Aは利得スペクトルの半値全幅が先に図12で説明した9meVあるいは6meVを超えており、従って1.3μmあるいは1.55μmでの動作中に80°Cの温度変化が生じてもレーザ発振が停止することはない。
[第2実施例]
図15は、本発明の第2実施例によるレーザダイオード40の構成を示す。ただし図15中、先に説明した部分には同一の参照符号を付し、説明を省略する。
【0050】
本実施例においても前記活性層は自己組織化量子ドット23Aにより形成されているが、前記レーザダイオード30におけるSCH層23上に形成された回折格子23Cの代わりに、本実施例のレーザダイオード40では回折格子23Dが、前記自己組織化量子ドット活性層23A中に形成されている。
【0051】
本実施例においても前記回折格子23Dを、ブラッグ波長エネルギが前記自己組織化量子ドット活性層23Aの利得スペクトルの半値全幅Γに対して定まる所定のエネルギ幅ΔE内に収まるように形成することにより、所望の線幅増大係数を実現することができる。例えば前記回折格子23Dのピッチを、ブラッグ波長エネルギがΔE=0.3Γのエネルギ幅内に収まるように決定することにより、線幅増大係数αの絶対値として1.0以内の値が実現可能である。
【0052】
また本実施例においても、前記量子ドット23Aを前記半値全幅Γの値が6meVあるいは9meV以上になるように形成することにより、80°Cの温度変化に対して安定なレ−ザ発振を実現することが可能である。
[第3実施例]
図16は本発明の第3実施例によるDBRレ−ザダイオ−ド50の構成を示す。ただし図16中、先に説明した部分に対応する部分には同一の参照符号を付し、説明を省略する。
【0053】
図16を参照するに、本実施例においては、図5のDFBレ−ザダイオ−ド30において前記GaAsSCH層23上に前記電極26に対応して形成されていた、換言するとキャリア注入領域に対応して形成されていた回折格子23Cが撤去され、その代わりに別の回折格子23Eが前記GaAsSCH層23の延長部に形成される。かかるSCH層23の延長部はDBRを形成し、レ−ザダイオ−ド50の対向端に形成されたミラー面Mと共に光共振器を形成する。
【0054】
本発明はかかるDBRレ−ザダイオ−ド50においても有効であり、前記DBRの共振波長、すなわちブラッグ波長λgを、ブラッグ波長エネルギが活性層23Aの利得スペクトルの半値全幅Γに対して所定の関係を満たすように設定することにより、線幅増大係数αの絶対値を所望の範囲に抑制することが可能になる。例えば前記半値全幅Γが40meVである場合、前記ブラッグ波長エネルギが式ΔE=0.3Γで与えられるエネルギ幅ΔEに収まるように前記回折格子23Eのピッチを決定することにより、線幅増大係数αの絶対値を1.0以下に抑制することが可能である。
【0055】
また前記量子ドット23Aを、前記半値全幅Γが6meVあるいは9meV以上になるように形成することにより、レ−ザダイオ−ド50は80°Cの温度変化が生じても安定に発振を維持することができる。
【0056】
以上、本発明を好ましい実施例について説明したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された要旨内において様々な変形や変更が可能である。
(付記)
(付記1) 第1の導電型を有する基板と、
前記基板上に形成された第1の導電型を有する第1のクラッド層と、
前記クラッド層上に形成され、複数の量子ドットを含む活性層と、
前記活性層に沿って形成されたブラッグ波長がλgの回折格子と、
前記活性層上に形成された、第2の導電型を有する第2のクラッド層と、
前記基板を介して前記活性層中に第1の極性のキャリアを注入する第1の電極と、
前記第2のクラッド層を介して前記活性層中に第2の極性のキャリアを注入する第2の電極とよりなるレ−ザダイオ−ドにおいて、
前記活性層は半値全幅がΓの利得スペクトルを有し、
前記回折格子は、前記ブラッグ波長λgに対応するエネルギの前記利得スペクトルの中心波長エネルギからのずれをΔEとして、関係式
ΔE≦1.1Γ
を満足するようなピッチを有することを特徴とするレ−ザダイオ−ド。(1)
(付記2) 前記回折格子は、前記ブラッグ波長λgに対応するエネルギの前記利得スペクトルの中心波長エネルギからのずれをΔEとして、関係式
ΔE≦0.6Γ
を満足するようなピッチを有することを特徴とする付記1記載のレ−ザダイオ−ド。(2)
(付記3) 前記回折格子は、前記ブラッグ波長λgに対応するエネルギの前記利得スペクトルの中心波長エネルギからのずれをΔEとして、関係式
ΔE≦0.5Γ
を満足するようなピッチを有することを特徴とする付記1記載のレ−ザダイオ−ド。(3)
(付記4) 前記回折格子は、前記ブラッグ波長λgに対応するエネルギの前記利得スペクトルの中心波長エネルギからのずれをΔEとして、関係式
ΔE≦0.3Γ
を満足するようなピッチを有することを特徴とする付記1記載のレ−ザダイオ−ド。(4)
(付記5) 前記利得スペクトルは、前記DFBレ−ザダイオ−ドの動作温度範囲をΔTとして、ナノメートルで表した半値全幅が0.15ΔTを超えることを特徴とする付記1〜4のうち、いずれか一項記載のレ−ザダイオ−ド。(5)
(付記6) 前記量子ドットは、自己組織化量子ドットであることを特徴とする付記1〜5のうち、いずれか一項記載のレ−ザダイオ−ド。
【0057】
(付記7) 前記量子ドットはInAsよりなる組成を有し、前記レ−ザダイオ−ドは1.3μm帯域あるいは1.55μm帯域において発振することを特徴とする付記1〜6のうち、いずれか一項記載のレ−ザダイオ−ド。
【0058】
(付記8) 前記回折格子は、前記活性層のうち、前記量子ドットが形成されている部分に対応して形成されていることを特徴とする付記1〜7のうち、いずれか一項記載のレーザダイオード。
【0059】
(付記9) 前記回折格子は、前記活性層中の、前記量子ドットが形成されている部分に形成されていることを特徴とする付記1〜8のうち、いずれか一項記載のレーザダイオード。
【0060】
(付記10) 前記回折格子は、前記活性層のうち、キャリアが注入される部分からずらして形成されていることを特徴とする付記1〜6のうち、いずれか一項記載のレーザダイオード。
【0061】
(付記11) 回折格子を有するレ−ザダイオ−ドの製造方法であって、
基板上に、レ−ザダイオ−ドの活性層として、複数の自己組織化量子ドットを形成する工程と、
前記活性層の利得スペクトルについて、半値全幅の値Γを求める工程と、
前記回折格子のピッチを、ブラッグ波長エネルギが、ΔE=1.1Γで与えられるエネルギ幅ΔE内に収まるように決定する工程と、
前記回折格子を、前記ピッチで形成する工程とを含むことを特徴とするレ−ザダイオ−ドの製造方法。
【0062】
(付記12) 前記回折格子のピッチを決定する工程は、前記回折格子のピッチを、ブラッグ波長エネルギが式ΔE=0.6Γで与えられるエネルギ幅ΔE内に収まるように決定することを特徴とする付記11記載のレーザダイオードの製造方法。
【0063】
(付記13) 前記回折格子のピッチを決定する工程は、前記回折格子のピッチを、ブラッグ波長エネルギが式ΔE=0.5Γで与えられるエネルギ幅ΔE内に収まるように決定することを特徴とする付記11記載のレーザダイオードの製造方法。
【0064】
(付記14) 前記回折格子のピッチを決定する工程は、前記回折格子のピッチを、ブラッグ波長エネルギが式ΔE=0.3Γで与えられるエネルギ幅ΔE内に収まるように決定することを特徴とする付記11記載のレーザダイオードの製造方法。
【0065】
(付記15) 前記自己組織化量子ドットを形成する工程は、InAs層を、GaAs層上に、約0.001分子層/秒の堆積速度で堆積する工程を含むことを特徴とする付記11〜14のうち、いずれか一項記載のレーザダイオードの製造方法。
【0066】
(付記16) 前記自己組織化量子ドットを形成する工程は、InAs層を、GaAs層上に、約0.1分子層/秒の堆積速度で堆積する工程を含むことを特徴とする付記11〜14のうち、いずれか一項記載のレーザダイオードの製造方法。
【0067】
【発明の効果】
本発明によれば、活性層中に量子ドットを含み、回折格子により構成される光共振器を有するレ−ザダイオ−ドにおいて、活性層の利得スペクトルの幅に対応して定まる所定のエネルギ幅に収まるように、前記回折格子のブラッグ波長を決定することにより、線幅増大係数を任意に選ぶことのできる所望の範囲内に抑制することができ、レ−ザダイオ−ドのチャーピングを抑制することが可能になる。また、前記量子ドットを自己組織化量子ドットとすることにより、レ−ザダイオ−ドの動作温度の変化に伴って活性層の利得スペクトルと回折格子のブラッグ波長との間にデチューニングが生じても、利得スペクトルの広がりによりブラッグ波長は利得スペクトルの範囲内にとどまり、レ−ザダイオ−ドの発振が継続される。
【図面の簡単な説明】
【図1】従来のDFBレ−ザダイオ−ドの構成を示す図である。
【図2】図1のレーザダイオードにおける利得と線幅増大係数との関係を示す図である。
【図3】活性層として量子ドットを使った従来のDFBレ−ザダイオ−ドの構成を示す図である。
【図4】図3のDFBレ−ザダイオ−ドの問題点を説明する図である。
【図5】本発明の第1実施例によるDFBレ−ザダイオ−ドの構成を示す図である。
【図6】図5のDFBレ−ザダイオ−ドにおける利得と線幅増大係数との関係を示す図である。
【図7】図5のDFBレーザダイオードにおける回折格子パターンの設計例を示す図である。
【図8】図5のDFBレーザダイオードにおける回折格子パターンの別の設計例を示す図である。
【図9】図5のDFBレーザダイオードにおける回折格子パターンのさらに別の設計例を示す図である。
【図10】図5のDFBレーザダイオードにおける回折格子パターンのさらに別の設計例を示す図である。
【図11】図5のDFBレーザダイオードにおける利得スペクトルの温度変化を示す図である。
【図12】図5のDFBレーザダイオードにおける、温度変化を考慮した回折格子パターンの設計例を示す図である。
【図13】(A)〜(C)は図5のDFBレーザダイオードの製造工程を示す図(その1)である。
【図14】(D)〜(F)は図5のDFBレーザダイオードの製造工程を示す図(その2)である。
【図15】本発明の第2実施例によるDFBレ−ザダイオ−ドの構成を示す図である。
【図16】本発明の第3実施例によるDBRレ−ザダイオ−ドの構成を示す図である。
【符号の説明】
11 n型InP基板
12 n型InPクラッド層
13,15 InGaAsP導波層
14 InGaAs活性層
15A 回折格子
16 p型InPクラッド層
17 p型InPコンタクト層
18 p型電極
19 n型電極
20,30,40 DFBレ−ザダイオ−ド
21 n型GaAs基板
22 n型AlGaAsクラッド層
23 GaAs導波層
23A InAs量子ドット活性層
23B,23C,23D,23E 回折格子
24 p型AlGaAsクラッド層
25 p型GaAsコンタクト層
26 p型電極
27 n型電極
50 DBRレ−ザダイオ−ド

Claims (10)

  1. 第1の導電型を有する基板と、
    前記基板上に形成された第1の導電型を有する第1のクラッド層と、
    前記クラッド層上に形成され、サイズ不均一の複数の島状の自己組織化量子ドットを含む活性層と、
    前記活性層に沿って形成されたブラッグ波長がλgの回折格子と、
    前記活性層上に形成された、第2の導電型を有する第2のクラッド層と、
    前記基板を介して前記活性層中に第1の極性のキャリアを注入する第1の電極と、
    前記第2のクラッド層を介して前記活性層中に第2の極性のキャリアを注入する第2の電極とよりなるレ−ザダイオ−ドにおいて、
    前記活性層は半値全幅がΓの利得スペクトルを有し、
    前記回折格子は、前記ブラッグ波長λgに対応するエネルギの前記利得スペクトルの中心波長エネルギからのずれをΔEとして、関係式
    ΔE≦1.1Γ
    を満足するようなピッチを有し、
    動作温度の変化に伴って前記活性層の利得スペクトルと前記回折格子のブラッグ波長λgとの間にデチューニングが生じても、前記利得スペクトルの広がりにより前記ブラッグ波長λgは前記利得スペクトルの範囲内にとどまり、レーザ発振が継続されることを特徴とするレーザダイオード。
  2. 前記回折格子は、前記ブラッグ波長λgに対応するエネルギの前記利得スペクトルの中心波長エネルギからのずれをΔEとして、関係式
    ΔE≦0.6Γ
    を満足するようなピッチを有することを特徴とする請求項1記載のレーザダイオード。
  3. 前記回折格子は、前記ブラッグ波長λgに対応するエネルギの前記利得スペクトルの中心波長エネルギからのずれをΔEとして、関係式
    ΔE≦0.5Γ
    を満足するようなピッチを有することを特徴とする請求項1記載のレーザダイオード。
  4. 前記回折格子は、前記ブラッグ波長λgに対応するエネルギの前記利得スペクトルの中心波長エネルギからのずれをΔEとして、関係式
    ΔE≦0.3Γ
    を満足するようなピッチを有することを特徴とする請求項1記載のレーザダイオード。
  5. 前記利得スペクトルは、前記DFBレーザダイオードの動作温度範囲をΔTとして、ナノメートルで表した半値全幅が0.15ΔTを超えることを特徴とする請求項1〜4のうち、いずれか一項記載のレーザダイオード。
  6. 前記利得スペクトルの半値全幅Γの下限が、1.3μm帯域では約9meVであることを特徴とする請求項1〜5のうち、いずれか一項記載のレーザダイオード。
  7. 前記利得スペクトルの半値全幅Γの下限が、1.55μm帯域では約6meVであることを特徴とする請求項1〜5のうち、いずれか一項記載のレーザダイオード。
  8. 第1の導電型を有する基板上に、第1の導電型を有する第1のクラッド層を形成する工程と、
    前記第1のクラッド層上に、サイズ不均一の複数の島状の自己組織化量子ドットを含む活性層を形成する工程と、
    前記活性層に沿って、ブラッグ波長がλgの回折格子を形成する工程と、
    前記活性層上に、第2の導電型を有する第2のクラッド層を形成する工程と、
    前記基板に第1の電極を形成する工程と、
    前記第2のクラッド層に第2の電極を形成する工程とを有し、
    前記活性層は半値全幅がΓの利得スペクトルを有し、前記回折格子は、前記ブラッグ波長λgに対応するエネルギの前記利得スペクトルの中心波長エネルギからのずれをΔEとして、関係式
    ΔE≦1.1Γ
    を満足するようなピッチを有し、
    動作温度の変化に伴って前記活性層の利得スペクトルと前記回折格子のブラッグ波長λgとの間にデチューニングが生じても、前記利得スペクトルの広がりにより前記ブラッグ波長λgは前記利得スペクトルの範囲内にとどまり、レーザ発振が継続される
    ことを特徴とするレーザダイオードの製造方法。
  9. 前記島状の自己組織化量子ドットは、約0.01分子層/秒の堆積速度で堆積されるInAs層であり、前記活性層は半値全幅が約40meVの利得スペクトルを得ることを特徴とする請求項8記載のレーザダイオードの製造方法。
  10. 前記島状の自己組織化量子ドットは、0.1分子層/秒の堆積速度で体積されるInAs層であり、前記活性層は半値全幅が約100meVの利得スペクトルを得ることを特徴とする請求項8記載のレーザダイオードの製造方法。
JP2000356008A 2000-11-22 2000-11-22 レーザダイオードおよびその製造方法 Expired - Lifetime JP4789319B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000356008A JP4789319B2 (ja) 2000-11-22 2000-11-22 レーザダイオードおよびその製造方法
US09/854,469 US6628691B2 (en) 2000-11-22 2001-05-15 Laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000356008A JP4789319B2 (ja) 2000-11-22 2000-11-22 レーザダイオードおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2002158399A JP2002158399A (ja) 2002-05-31
JP4789319B2 true JP4789319B2 (ja) 2011-10-12

Family

ID=18828327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000356008A Expired - Lifetime JP4789319B2 (ja) 2000-11-22 2000-11-22 レーザダイオードおよびその製造方法

Country Status (2)

Country Link
US (1) US6628691B2 (ja)
JP (1) JP4789319B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2854248B1 (fr) * 2003-04-22 2005-08-26 Cit Alcatel Filtre optique reconfigurable
US7103079B2 (en) * 2003-06-27 2006-09-05 Applied Materials, Inc. Pulsed quantum dot laser system with low jitter
US20060222024A1 (en) * 2005-03-15 2006-10-05 Gray Allen L Mode-locked semiconductor lasers with quantum-confined active region
US20060227825A1 (en) * 2005-04-07 2006-10-12 Nl-Nanosemiconductor Gmbh Mode-locked quantum dot laser with controllable gain properties by multiple stacking
KR100766069B1 (ko) 2005-12-06 2007-10-12 한국전자통신연구원 양자점 레이저 다이오드 및 그 제조 방법
US7575943B2 (en) 2005-12-06 2009-08-18 Electronics And Telecommunications Research Institute Quantum dot laser diode and method of manufacturing the same
WO2007065614A2 (en) * 2005-12-07 2007-06-14 Innolume Gmbh Laser source with broadband spectrum emission
US8411711B2 (en) * 2005-12-07 2013-04-02 Innolume Gmbh Semiconductor laser with low relative intensity noise of individual longitudinal modes and optical transmission system incorporating the laser
US7835408B2 (en) * 2005-12-07 2010-11-16 Innolume Gmbh Optical transmission system
US7561607B2 (en) * 2005-12-07 2009-07-14 Innolume Gmbh Laser source with broadband spectrum emission
JP4559999B2 (ja) * 2006-03-31 2010-10-13 財団法人光産業技術振興協会 偏光板
WO2008122096A1 (en) * 2007-04-05 2008-10-16 Antonio Vieira Lima Device with introduced liquid corrective in pen and similar
US20080310470A1 (en) * 2007-06-18 2008-12-18 Lehigh University Broadband semiconductor laser
JP5026905B2 (ja) * 2007-10-02 2012-09-19 富士通株式会社 半導体発光素子及びその製造方法
JP5362301B2 (ja) 2008-09-19 2013-12-11 株式会社Qdレーザ レーザシステム
JP2010153451A (ja) * 2008-12-24 2010-07-08 Anritsu Corp 半導体レーザ,およびこれを備えたラマン増幅器
JP2011029426A (ja) * 2009-07-27 2011-02-10 Qd Laser Inc レーザシステム
CN105322437A (zh) * 2014-08-05 2016-02-10 华中科技大学 分布反馈半导体激光器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8703743D0 (en) * 1987-02-18 1987-03-25 British Telecomm Semiconductor laser structures
JPH01257385A (ja) * 1988-04-07 1989-10-13 Fujitsu Ltd 半導体発光装置
US4905253A (en) * 1989-01-27 1990-02-27 American Telephone And Telegraph Company Distributed Bragg reflector laser for frequency modulated communication systems
JPH03148889A (ja) * 1989-11-06 1991-06-25 Nippon Telegr & Teleph Corp <Ntt> 半導体レーザ
JPH04112592A (ja) * 1990-09-03 1992-04-14 Hitachi Ltd 半導体レーザ
JP3407477B2 (ja) * 1995-06-08 2003-05-19 松下電器産業株式会社 位相格子とその作製方法並びに光学式エンコーダ
US5712865A (en) * 1995-09-28 1998-01-27 Sandia Corporation Temperature-insensitive vertical-cavity surface-emitting lasers and method for fabrication thereof
JP3672678B2 (ja) * 1996-04-05 2005-07-20 富士通株式会社 量子半導体装置およびその製造方法
JP2000058978A (ja) 1998-08-13 2000-02-25 Nec Corp 半導体量子ドット素子とその製造方法

Also Published As

Publication number Publication date
US20020085605A1 (en) 2002-07-04
US6628691B2 (en) 2003-09-30
JP2002158399A (ja) 2002-05-31

Similar Documents

Publication Publication Date Title
JP4789319B2 (ja) レーザダイオードおよびその製造方法
US5757833A (en) Semiconductor laser having a transparent light emitting section, and a process of producing the same
US5289484A (en) Laser diode
JPWO2009116140A1 (ja) 光半導体素子及びその製造方法
JP3339488B2 (ja) 光半導体装置およびその製造方法
WO2003073570A1 (en) Quantum nano-composite semiconductor laser and quantum nano-composite array
JPH08213703A (ja) レーザダイオード、その製造方法、およびかかるレーザダイオードを使った光通信システム
JPH03293790A (ja) 広ストライプ型レーザダイオード
US8891159B2 (en) Optical semiconductor element, semiconductor laser, and method of manufacturing optical semiconductor element
JP3745985B2 (ja) 複素結合型の分布帰還型半導体レーザ素子
US6867057B2 (en) Method of manufacturing a semiconductor laser
US7957442B2 (en) Semiconductor optical device
JP2763090B2 (ja) 半導体レーザ装置及びその製造方法、ならびに結晶成長方法
US6625189B1 (en) Semiconductor laser device and fabrication method thereof
JPH04100287A (ja) 半導体レーザ装置
US8731018B2 (en) Semiconductor laser
JP4999038B2 (ja) 半導体装置の製造方法
JPH11330635A (ja) 利得結合型分布帰還半導体レ―ザ装置及びその製造方法
JP2950297B2 (ja) 分布帰還型半導体レーザ及びその製造方法
JPH01248585A (ja) 分布帰還形半導体レーザ
JP2002368335A (ja) 半導体レーザ素子およびその作製方法および半導体レーザアレイおよび光通信システムおよび光インターコネクションシステムおよび光ピックアップシステムおよび電子写真システム
JPH09307179A (ja) 位相シフト型分布帰還半導体レーザ
JPH0770781B2 (ja) 半導体レーザアレイ
JPH09283850A (ja) 半導体分布帰還型レーザ装置及びその製造方法
JPH05102597A (ja) 半導体レーザ装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4789319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term