JP4779848B2 - 第13族金属窒化物結晶の製造方法およびそれを用いた半導体デバイスの製造方法 - Google Patents

第13族金属窒化物結晶の製造方法およびそれを用いた半導体デバイスの製造方法 Download PDF

Info

Publication number
JP4779848B2
JP4779848B2 JP2006196553A JP2006196553A JP4779848B2 JP 4779848 B2 JP4779848 B2 JP 4779848B2 JP 2006196553 A JP2006196553 A JP 2006196553A JP 2006196553 A JP2006196553 A JP 2006196553A JP 4779848 B2 JP4779848 B2 JP 4779848B2
Authority
JP
Japan
Prior art keywords
group
metal
melt
crystal
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006196553A
Other languages
English (en)
Other versions
JP2008024535A (ja
Inventor
陽二 有田
義則 関
佐千江 竹内
秀 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2006196553A priority Critical patent/JP4779848B2/ja
Publication of JP2008024535A publication Critical patent/JP2008024535A/ja
Application granted granted Critical
Publication of JP4779848B2 publication Critical patent/JP4779848B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、GaN結晶等の周期表第13族金属の窒化物結晶の製造方法および該製造方法を用いた半導体デバイスの製造方法に関する。
窒化ガリウム(GaN)に代表される第13族金属と窒素との化合物結晶は、発光ダイオード、レーザダイオード、高周波対応の電子デバイス等で使用される物質として有用である。GaNの場合、実用的な結晶の製造方法としては、サファイア基板または炭化珪素等のような基板上にMOCVD(Metal Organic Chemical Vapor Deposition)法により気相エピタキシャル成長を行う方法が提案されている(例えば、非特許文献1参照)。
しかし、上記方法では、格子定数および熱膨張係数の異なる異種基板上にGaN結晶をエピタキシャル成長させるため、得られたGaN結晶には多くの格子欠陥が存在する。そのような格子欠陥が多く存在するGaN結晶を用いた場合、電子素子の動作に悪影響を与え、青色レーザ等の応用分野で用いるためには満足すべき性能を発現することはできない。このため、近年、基板上に成長したGaNの結晶の品質の改善、GaNの塊状単結晶の製造技術の確立が強く望まれている。
現在、気相法によるヘテロエピタキシャルGaN結晶成長法では、GaN結晶の欠陥濃度を減らすために、複雑かつ長い工程が必要とされる。このため、最近では、液相法によりGaNの単結晶化について精力的な研究がなされており、窒素とGaを高温高圧で反応させる高圧法(非特許文献2参照)が提案されているが、過酷な反応条件のため工業的に実施することは困難である。またGaとNaN3とを昇圧下で反応させる方法(非特許文献3)、フラックス成長法(非特許文献4、5参照)等が提案されている。フラックスにはアルカリ金属が使われる場合が多いが、Ga融液にアルカリ金属を添加した合金融液を用いても、この合金融液に溶解するN量またはGaN量が非常に小さいため、GaN結晶を大型化することが困難とされている。さらに、アモノサーマル法によるGaNの合成法(非特許文献6参照)も報告されているが、結晶サイズと格子欠陥数に問題があり、また製造装置が高価なことから工業化されるに至っていない。
特許文献1には、GaN粉末とアルカリメタルハライドの混合物を加熱し、GaN結晶を作成する方法が提案されているが、アルカリメタルハライドへのGaNの溶解度は小さく、かつ結晶成長を高圧で行う必要があるため、工業的に結晶成長を行う上で不利である。また、GaN粉、Ga金属、LiGa合金などをリチウム化合物と加熱混合してGaN結晶を生成することが、特許文献2や非特許文献7に記載されている。このうち特許文献2にはリチウムの化合物を補助溶融剤として用いると記載されているが、合金融液中の組成を制御しておらず、非特許文献4、5と同様の問題を抱えている。一方、特許文献3には、融液中の窒素の溶解度を増加させる目的で、NaとLi3GaN2をあらかじめ混合融液として融液保持容器中に保持し、昇温および降温のみによってGaNを結晶成長させる方法が提案されている。しかし、大きくかつ良質な結晶を継続して成長させる上で不可欠な、結晶成長領域への原料の輸送については記載がなく、むしろ、金属からなる混合融液の高い熱伝導性を考慮すると、温度差を設けることによって融液を対流させることは容易とは考えにくい。
特開2005−112718号公報 中国特許公開第1288079A号公報 特開2005−263511号公報 J. Appl. Phys. 37 (1998) 309頁 J. Crystal Growth 178 (1977) 174頁 J. Crystal Growth 218 (2000) 712頁 J. Crystal Growth 260 (2004) 327頁 金属 Vol.73 No.11(2003)1060頁 Acta Physica Polonica A Vol.88 (1995) 137頁 J. Crystal Growth 247 (2003) 275頁
上記のように、気相法による基板上へのヘテロエピタキシャル結晶成長法では格子欠陥が少ない第13族金属の窒化物結晶は得られない。さらに、他の高圧を用いる方法では装置が大掛かりとなり、経済性が低い。さらに、超臨界状態のアンモニアを使うアモノサーマル法では、装置や使う材料が非常に高価である。また、アルカリメタルハライド、あるいはアルカリ金属をフラックスとして使う方法などでも、溶解度または反応系内の液相の組成制御性に問題があり、工業的に利用するには解決すべき課題が残されている。
本発明は、このような従来技術の課題を解決するためになされたものであり、本発明の目的は、高圧にせずに、常圧付近の比較的低い圧力で、良質のGaN結晶等の第13族金属窒化物結晶を工業的に安価に製造する方法を提供することにある。
さらに、本発明のもう一つの目的は、前記製造方法を用いた発光ダイオード、レーザダイオード、高周波用、パワーIC用等の半導体デバイスの製造方法を提供することにある。
本発明者らは、上記の課題に鑑み、工業的に利用可能であり、さらに経済的な方法により、半導体デバイスに応用可能な結晶サイズを有し、かつ高品質な金属窒化物結晶を成長させる方法につき鋭意検討し、本発明を完成するに至った。
すなわち、本発明の目的は、以下の第13族金属窒化物結晶の製造方法により達成される。
[1] 周期表第13族の金属元素を含む融液中に、周期表第13族の金属元素と周期表第13族以外の金属元素とを含む複合窒化物を含有する原料、及びシードを配置し、少なくとも融液の一部を誘導電流による電磁力によって強制的に流動させることによりシードの表面に第13族金属窒化物結晶を成長させることを特徴とする第13族金属窒化物結晶の製造方法。
[2] 前記原料近傍から前記シード近傍に向かって融液を流動させることを特徴とする[1]に記載の第13族金属窒化物結晶の製造方法。
[3] 前記シード近傍から前記原料近傍に向かって融液を流動させることを特徴とする[1]に記載の第13族金属窒化物結晶の製造方法。
[4] 前記原料近傍から前記シード近傍に向かって融液を流動させ、かつ、前記シード近傍を通過した融液を前記原料近傍に循環させることを特徴とする[1]に記載の第13族金属窒化物結晶の製造方法。
] 融液中に発生させた電磁力によるピンチ力を制御するために、非導電性部材を前記融液中に配置して融液を流動させることを特徴とする[1]〜[4]のいずれかに記載の第13族金属窒化物結晶の製造方法。
] 周期表第13族以外の金属元素がアルカリ金属またはアルカリ土類金属であることを特徴とする[1]〜[]のいずれかに記載の第13族金属窒化物結晶の製造方法。
周期表第13族の金属元素と周期表第13族以外の金属元素とを含む複合窒化物が、Li 3 GaN 2 、Na 3 GaN 2 、Ca 3 Ga 2 4 、またはBa 3 Ga 2 4 である[6]に記載の第13族金属窒化物結晶の製造方法。
[8] 窒素ガスを前記融液中に吹き込むことを特徴とする[1]〜[7]のいずれかに記載の第13族金属窒化物結晶の製造方法。
[9] [1]〜[8]のいずれかに記載の製造方法により第13族金属窒化物結晶を製造する工程を有することを特徴とする半導体デバイスの製造方法。
本発明のもう一つの目的は、上記[1]〜[8]のいずれかに記載の製造方法により第13族金属窒化物結晶を製造する工程を有する半導体デバイスの製造方法により達成される。
本発明の製造方法によれば、高圧にせずに常圧付近の比較的低い圧力で、良質の第13族金属窒化物バルク結晶を安価に製造することができる。特に、第13族金属と第13族以外の金属元素を含む複合窒化物原料を、第13族金属単体または第13族金属合金を含む融液に溶解することによって、結晶のシード成長を行うことができる。つまり、複合窒化物を含む原料を前記融液の高温部に置き、低温部のシードに結晶成長させることができる。このとき、少なくとも前記融液の一部を、前記複合窒化物を含む原料からシード部へ流動させることにより、シード表面に厚膜状またはバルク状の結晶を効率よく作ることができる。また、結晶の成長界面付近において、溶解している第13族金属以外の金属窒化物成分(所望の結晶成長には寄与しない成分)を速やかに取り除くことで、結晶成長の速度、品質、結晶の大きさを制御できる。
これにより本発明によれば、従来技術のような高温高圧工程を経ることなく、かつ2〜3属金属元素を含む耐火材(例えば、Mg、Ca、Al,Ti,Y,Ce等の酸化物からなる耐火材、特に、酸化マグネシウム、酸化カルシウム、ジルコニア等の安価な塩基性耐火材)の容器を用いて、半導体デバイスに応用するのに十分なサイズを有する第13族金属窒化物結晶を製造することができる。
本発明の半導体デバイスの製造方法は、本発明の第13族金属窒化物結晶を製造する工程を有し、安価で高品質な結晶を利用できるため、パワーIC、高周波対応可能な半導体デバイスを製造することができ、産業的に大きなメリットがある。
以下に、本発明の第13族金属窒化物結晶の製造方法およびその製造方法を用いた半導体デバイスの製造方法について詳細に説明する。以下に記載する構成要件の説明は、本発明の実施態様の代表例に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[第13属金属窒化物結晶の製造方法]
本発明の製造方法は、第13族の金属元素と第13族以外の金属元素とを含む複合窒化物を、第13族金属元素を含む融液に溶解し、少なくとも融液の一部を強制的に流動させることによってシードの表面に第13族金属窒化物結晶を成長させることを特徴とする。
本発明の製造方法で用いられる第13族の金属元素と第13族以外の金属元素とを含む複合窒化物は、例えば、第13族金属の窒化物粉体と第13族以外の金属の窒化物粉体とを混合して温度を上げて固相反応させる方法や、第13族金属と第13族以外の金属の合金を窒素気流中で加熱する方法などにより合成することができる。また、第13族の金属元素と第13族以外の金属元素とを含む複合窒化物は、反応性スパッター等のドライプロセスで製造することもできる。
第13属の金属としては、Ga、Al、In、GaAl、GaIn等を好ましい例として挙げることができる。また、第13族以外の金属元素としては、Li、Na、Ca、Sr、Ba、Mg等を挙げることができ、中でもLi、Ca、Baを好ましい元素として挙げることができる。好ましい複合窒化物としては、Li3GaN2、Na3GaN2、Ca3Ga24、Ba3Ga24等を挙げることができる。本発明で用いる複合窒化物は、構成元素の組成が必ずしも化学量論組成でなくてもよい。
第13族金属と第13族以外の金属元素を含む複合窒化物は、上記のように、第13族金属と第13族以外の金属元素との合金をつくっておき、窒素雰囲気中で温度を上げながら溶解することによって容易に合成することができる。一般にアモノサーマル法等では、目的の第13族金属窒化物結晶の微粉または微結晶を合成し、これを溶媒に溶解する方法が採られるが、こうしたプロセスに較べると、本発明では非常に容易に原料を作ることができる。このため、本発明の工業的な価値は大きい。また、本発明で用いられる複合窒化物は、第13族金属窒化物結晶の微粉と第13族金属以外の元素の窒化物を高温で固相反応させることによっても合成することができる。複合窒化物は化学的に合成された結晶性のものでなくてもよく、例えば、複合窒化物を構成する金属元素の合金からなるターゲットを用いた反応性スパッターによって作製した、窒素プラズマとの反応で作製したサファイア基板や石英等の基板上に生成した化学量論組成からずれた混合窒化物膜であってもよい。こうしたドライプロセスで作られた複合窒化物薄膜は、第13族金属元素合金の融液と接触させておくと、窒化物薄膜から液体金属へ窒化物が少しずつ溶解し、界面付近に拡散支配の窒化物溶解相を形成でき、シードをこの界面付近に置くことによって容易に結晶成長させることができる。また、ドライプロセスによれば、化学的に合成が難しいような窒化物でも容易に作製ができるという利点がある。
本発明の製造方法で用いられる原料は、第13族の金属元素と第13族以外の金属元素とを含む上記の複合窒化物を含有する。好ましい原料としては、前記の好ましい複合窒化物に第13属金属元素以外の金属窒化物を混合したものを挙げることができる。ここでいう第13属金属元素以外の金属窒化物としては、1族または2族金属窒化物であるLi3N、Ca32、Mg32等を挙げることができる。このようにして第13属金属元素以外の金属窒化物を混合することにより、複合窒化物の溶解度を制御することができる。
本発明における原料の使用量は、原料と第13族の金属元素を含む融液の重量比が0.01〜500%となる量であることが好ましく、0.05〜100%となる量であることがより好ましく、0.1〜10%となる量であることがさらに好ましい。また第13属金属元素以外の金属窒化物の添加量は、第13族金属元素以外の金属窒化物と第13族の金属元素を含む融液の重量比が0.01〜500%となる量であることが好ましく、0.05〜100%となる量であることがより好ましく、0.1〜10%となる量であることがさらに好ましい。
本発明の製造方法で用いる第13族の金属元素を含む融液は、第13族金属単体あるいは第13族金属同士の合金、および、それらに、Li、Na、K等のアルカリ金属および/またはMg、Ca、Sr等のアルカリ土類金属との合金であることが好ましい。より好ましい融液は第13族金属単体である。
本発明の製造方法では、結晶成長のためのシード(種結晶)として、第13族金属窒化物結晶または基板を用いることが好ましい。シードの形状は特に制限されず、平板状であっても、棒状であってもよい。また、ホモエピタキシャル成長用のシードであってもよいし、ヘテロエピタキシャル成長用のシードであってもよい。具体的には、気相成長させたGaN、InGaN、AlGaN等の第13族金属窒化物の種結晶を挙げることができる。また、サファイア、シリカ、ZnO、BeO等の金属酸化物や、SiC、Si等の珪素含有物や、GaAs等の気相成長等で基板として用いられる材料を挙げることもできる。これらのシードの材料としては、本発明で成長させる第13族金属窒化物結晶の格子定数にできるだけ近いものを選択することが好ましい。棒状の種結晶を用いる場合には、最初に種結晶部分で成長させ、次いで水平方向にも結晶成長を行いながら、垂直方向に結晶成長を行うことによってバルク状の結晶を作製することもできる。
本発明の製造方法では、少なくとも融液の一部を強制的に流動させることを特徴とする。ここでいう「強制的に流動させる」とは、結晶成長に伴う化学反応の進行によって生じる融液の自然流動の方向および/または速度を変化させるように、反応系にエネルギーを付加することをいう。このため、従来技術にしたがって特定温度下で結晶成長を行った場合に生じる融液の自然流動は、ここでいう強制的な流動には該当しない。
本発明において、流動エネルギーを強制的に付加する具体的方法については、特に制限されない。例えば、誘導コイルを利用して誘導電流により電磁力、ピンチ力を発生させることによって流動エネルギーを付加する方法を好ましい例として挙げることができる。この他に、反応系内に外部からGa等の液体金属を特定の部分に連続的に流し込むと同時に、特定の場所から系外に取り除くことにより強制的な流動を発生させる方法等も採用することが可能である。
本発明で行う強制的な流動の方向は、融液の自然流動の方向と同じであってもよいし、融液の自然流動の方向に逆行するものであってもよい。エネルギー効率の点を考えると、自然流動の方向の±90°以内であって、自然流動の方向に近い方向であることが好ましい。
また、本発明において強制的に付加する流動のエネルギー量は、本発明の目的を達成するのに必要な量とする。すなわち、本発明で意図する方向に意図する速度で融液を流動させるのに必要な量とする。具体的には、強制的に流動エネルギーを付加する地点における融液の自然流動エネルギーの30%以上を付加することが好ましく、50%以上を付加することがより好ましい。
本発明では、流動エネルギーを強制的に付加することによって、原料近傍からシード近傍に向かって融液を流動させることが好ましい。ここで原料近傍とはLi3GaN2等の複合窒化物がGa−アルカリ金属に溶け出している部分を意味し、シード近傍とはGaN等の窒化物結晶、あるいは、エピタキシャル成長が可能な結晶基板の周辺を意味する。また、本発明では、流動エネルギーを強制的に付加することによって、シード近傍から原料近傍に向かって融液を流動させることも好ましい。本発明では、これらを組み合わせて、原料近傍からシード近傍に向かって融液を流動させ、かつ、シード近傍を通過した融液を原料近傍に循環させることが特に好ましい。このときの流動速度は、1〜1000mm/sが好ましく、5〜300mm/sがより好ましく、10〜100mm/sがさらに好ましい。このような融液の循環は、後述する図1および図2に記載されるような非導電性の仕切板5を反応系内に設けておき、仕切板の表面と裏面で融液が流れる方向が逆になるように流動エネルギーを付加することにより実現することができる。
以下において、本発明の製造方法をガリウムおよびリチウムを含む複合窒化物を用いた場合を例にとり説明する。この場合、金属Ga融液中で、Li3GaN2を溶解させた融液からのシード表面でのGaNの析出は、以下のいずれか又は双方の反応式で表されると考えられる。
Figure 0004779848
GaN粉、Ga金属、Li−Ga合金などをリチウム化合物と加熱混合してGaN結晶を生成することは、J. Crystal Growth 247 (2003) 275−278頁および中国特許公開第1288079A号公報により公知である。しかし、中国特許公開第1288079A号公報では、リチウム化合物はGaNの原料ではなく、GaNの溶解度が低いことを補う補助溶融剤として用いているに過ぎない。
本発明では、Li3GaN2を第13族金属合金中に溶解させ、溶解した成分を外部からエネルギーを付加することにより強制的に作製した融液の流れにしたがってシードへ到達させ、シード成長することが好ましい。
反応式(1)や(2)にしたがってシード成長した後の融液は、第13族金属以外の金属(この場合はLi)の濃度が高くなっている。本発明の製造方法では、これを強制的に作製した融液の流れによって速やかに取り去ることが好ましい。特に本発明では、第13族金属窒化物原料へ融液が循環して行く途中で窒素ガスを吹き込んで、増加したLiを窒化することが有効であり好ましい。こうすることによって連続的な結晶成長が可能となり、大型の結晶を作ることができるようになる。
一方、従来のアルカリメタルフラックス法などではGaに対するNの溶解量を増加させるためにアルカリメタルなどを補助溶融剤として添加しているが、この手法で溶解するNの量は系内のGa全てを窒化させる量に比べて非常に少ない。このためアルカリフラックス法では気相からのNの溶解がGaN析出の律速となってしまっている。金属融液と気相の反応速度を結晶成長速度に合わせて制御することは難しいため、これが現在アルカリフラックス法で大型結晶を得られていない原因と考えることができる。
これに対して、本発明ではLi3GaN2を原料として用いるために、GaNが生成するために十分な量のNが融液中に含まれている。このような特徴を有するため、本発明は窒素を含まない反応雰囲気で実施することも可能であるが、通常は、結晶成長に伴って第13族金属合金中のLi濃度が上昇するため、これを制御するように合金液体中のLi濃度の高い部分に窒素ガスを吹き込むことが好ましい。すなわち、窒素ガスを吹き込むことにより、Liが窒化されてLi3Nとなるため、GaNの副生成物としてのLiの濃度を減少させることができる。
第13族金属は、第13族窒化物結晶の原料の一部であると同時に、反応式(1)や(2)によって生成するLi金属を溶かし込み、Liの活量を下げる性質をもつ。このため、反応式(1)や(2)は穏やかに右に進行する。
こうした反応を連続的に進行させるためには、結晶成長に伴って生成するLiを第13族の金属元素を含む融液中で、強制的な対流を作ることによって結晶成長界面近傍から取り除くことが重要である。これは、外部に高周波誘導コイルを設置し、前記合金中に誘導電流によるピンチ力を発生させることによって容易に実現することができる。具体的には、図1や図2に記載される装置を用いて行うことが可能である。
なお、反応式(1)や(2)においては、平衡としては温度が低い時に、生成系側にシフトすることから、Li3GaN2の前記融液への溶解部を高温に、また、結晶の成長部分を相対的に低い温度にしておくことも好ましい。
本発明では、第13族金属複合窒化物が固体の第13族金属窒化物結晶を析出する反応は、シード表面で行われる。反応温度は、通常200〜1000℃であり、好ましくは400〜850℃、さらに好ましくは600〜800℃である。
本発明において、過剰の複合窒化物を入れておけば、複合窒化物付近の合金融液中の濃度は飽和溶解度となり、反応式(1)におけるLi3GaN2の活量は1となるため好ましい。
また、結晶中への第13属金属以外の物質をドーピングする場合は、窒化物の形にして合金融液中に溶解すればよく、本発明の製造工程内で目的を達成してもよい。
Li3GaN2は、GaNとLi3Nを約700〜800℃で焼結するか、あるいはGa−Li合金を窒素雰囲気中で600〜800℃で加熱処理することによって作製することができる。また、Li金属、Ga−Li合金をターゲットとして、窒素プラズマによる反応性スパッターを行い、Li−N、Ga−Li−Nの混合組成膜を作り、これをLi3GaN2の代用とすることもできる。この場合は薄膜状の結晶を作るのに好都合であるばかりでなく、化学的には合成が困難な材料系でも作製が可能という長所がある。
一般的には、液相の結晶成長の原料としては、製品の単結晶と同じ粉あるいは微結晶が用いられている。例えば、GaN単結晶を製造する場合は原料としてGaN粉が必要とされるが、そのGaN粉を調製するにはコストがかかる。一方、本発明の製造方法によれば、このようなGaN粉を調製する必要はなく、容易に製造可能な複合窒化物を使うことができる。このため、本発明の製造方法は工業プロセスとして有利である。
本発明の製造方法により得られる第13族金属窒化物結晶は、単独金属のナイトライド(例えば、GaN、AlN、InN)または合成組成のナイトライド(例えば、GaInN、GaAlN)であり、特にGaNの結晶製造方法として好適に用いることができる。第13属金属窒化物の結晶成長は、シードまたは基板上に結晶を成長させることにより行うことが好ましい。
次に、本発明の製造方法を図面を参照しながらさらに具体的に説明する。図1、図2は、本発明を実施する際に用いる第13族金属窒化物結晶成長のための製造装置の構成例を示すものである。
ここでは、第13族の金属元素と第13族以外の金属元素からなる複合窒化物Li3GaN2を原料とし、第13族金属元素としてGaを用いてGa−Li合金系の融液を作製した場合を例にとって説明する。以下の説明は、これら以外の材料を選択した場合にも応用しうる。
図1は、本発明を実施する際に用いる典型的な製造装置の模式図である。まず、酸化マグネシウム、または、酸化カルシウムの反応容器7中にGa−Li合金2を入れ、誘導加熱用のコイル6に高周波電流を流すことにより、650〜780℃で加熱溶解する。この時、合金融液には誘導電流による電磁力に起因して内向きのピンチ力11が働くが、このピンチ力は絶縁性の仕切り板耐火材5で遮られているため、上部では矢印で示したような合金融液の流れが発生する。こうした流れを定常的に作っておいて、原料である複合窒化物4(Li3GaN2)を容器7の底に置く。このとき、流れによって複合窒化物4が移動しないように、溶融金属が通過可能な耐火材10で押さえる。
このようにして、溶融金属2に複合窒化物4が少しずつ溶解しながらシード1のところに移動し、表面で反応式(1)や(2)にしたがってGaN結晶が成長する。この時にLiが生成するため、溶融金属の上部3近傍では、Li濃度が増加する。Ga金属2の量が十分に多い場合には、このままLiの濃度が上昇しても結晶成長は持続するが、さらに、長期間にわたり大きな結晶を連続的に成長させるためには、図2に示すように、濃度の上がったGa−Li合金融液の部分に窒素ガス導入管13を通して窒素ガスを吹き込み、Liと窒素を反応させるのが好ましい。なお、複合窒化物は高温の方がGaを含む融液への溶解度が高いため、図1および図2においては、下部を高温に、また、シード1の部分の温度を下げておくことが好ましい。雰囲気ガスは、雰囲気ガス導入管8から導入し、排出管9から排出させる。雰囲気ガスとしては、窒素、あるいは不活性ガスであるアルゴン等を用いることができる。
なお、シード1としては、例えばサファイア、SiC等を用いることができるが、板状のGaN結晶を用いることが好ましい。板状のGaN結晶にGaN結晶をホモエピタキシャル成長させ、これらから何枚かのウエハーを作り、それらの一枚を次の結晶成長用の基板とするのが好ましい。
図1および図2における誘導コイル6は、融液を意図する方向に流動させるために、反応容器7の外側の必要な箇所に設けられている。すなわち、誘導コイルは、少なくとも非導電性の仕切板5の設置場所の外側に設けられており、図示するように複合窒化物4の設置場所の外側をもカバーするように設けられていることが好ましい。一方、誘導コイルは、Li濃度が高い上部には設けられていないか、設けられていても巻数を少なくしておくことが好ましい。本発明において、融液をより強く意図する方向に流動させたい場合は、その領域により強いピンチ力がかかるようにコイルの巻数を部分的に増やしたり、その部分に別のコイルを重ねて設けたりすることができる。誘電コイルに接続する電源としては、通常、1〜10KW、周波数としては、1〜500KHzのものを用いる。
本発明の製造方法では、コイルに流す電流の強さを反応の経過に伴って変化させることができる。例えば、反応初期には電流を比較的小さくしておき、反応が進行するに伴って電流を大きくすることによって、流れを制御することができる。
また、本発明では、コイルに逆向きの電流を流すことも可能である。これによって、反応容器内に発生する融液の滞流箇所に強制的に流動を与えて、融液を効率よく利用することができる場合がある。また、シード上における結晶成長をより均一化するために、融液の流れを変化させる必要があるときに、コイルに逆向きの電流を流すこともできる。
[半導体デバイスの製造方法]
本発明の製造方法は、半導体デバイスの製造方法における第13族金属窒化物結晶を製造する工程に用いることができる。その他の工程における原料、製造条件および装置は一般的な半導体デバイスの製造方法で用いられる原料、条件および装置をそのまま適用することができる。
本発明の第13族金属窒化物結晶の製造方法によれば、半導体デバイスに応用するのに十分なサイズを有する第13族金属窒化物結晶を安価な装置を用いて簡便に製造することができる。特にこれまでに製造が困難とされていた周波対応可能な半導体デバイスの製造に利用することができるため、産業的に大きなメリットがある。
本発明の第13族金属窒化物の結晶の製造で用いる好適な結晶成長装置(その1)を示す概略説明図である。 本発明の第13族金属窒化物の結晶の製造で用いる好適な結晶成長装置(その2)を示す概略説明図である。
符号の説明
1 シードおよび成長したGaN結晶
2 Ga−Li合金
3 Li濃度が高いGa金属合金
4 複合窒化物
5 仕切板
6 誘導コイル
7 反応容器
8 雰囲気ガス導入管
9 ガス排出管
10 耐火材
11 ピンチ力
12 反応管
13 窒素ガス導入管

Claims (6)

  1. 周期表第13族の金属元素を含む融液中に、周期表第13族の金属元素と周期表第13族以外の金属元素とを含む複合窒化物を含有する原料、及びシードを配置し、少なくとも融液の一部を誘導電流による電磁力によって強制的に流動させることによりシードの表面に第13族金属窒化物結晶を成長させることを特徴とする第13族金属窒化物結晶の製造方法。
  2. 融液中に発生させた電磁力によるピンチ力を制御するために、非導電性部材を前記融液中に配置して融液を流動させることを特徴とする請求項に記載の第13族金属窒化物結晶の製造方法。
  3. 周期表第13族以外の金属元素がアルカリ金属またはアルカリ土類金属であることを特徴とする請求項1または2に記載の第13族金属窒化物結晶の製造方法。
  4. 周期表第13族の金属元素と周期表第13族以外の金属元素とを含む複合窒化物が、Li 3 GaN 2 、Na 3 GaN 2 、Ca 3 Ga 2 4 、またはBa 3 Ga 2 4 である請求項3に記載の第13族金属窒化物結晶の製造方法。
  5. 窒素ガスを前記融液中に吹き込むことを特徴とする請求項1〜のいずれか一項に記載の第13族金属窒化物結晶の製造方法。
  6. 請求項1〜のいずれか一項に記載の製造方法により第13族金属窒化物結晶を製造する工程を有することを特徴とする半導体デバイスの製造方法。
JP2006196553A 2006-07-19 2006-07-19 第13族金属窒化物結晶の製造方法およびそれを用いた半導体デバイスの製造方法 Expired - Fee Related JP4779848B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006196553A JP4779848B2 (ja) 2006-07-19 2006-07-19 第13族金属窒化物結晶の製造方法およびそれを用いた半導体デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006196553A JP4779848B2 (ja) 2006-07-19 2006-07-19 第13族金属窒化物結晶の製造方法およびそれを用いた半導体デバイスの製造方法

Publications (2)

Publication Number Publication Date
JP2008024535A JP2008024535A (ja) 2008-02-07
JP4779848B2 true JP4779848B2 (ja) 2011-09-28

Family

ID=39115558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006196553A Expired - Fee Related JP4779848B2 (ja) 2006-07-19 2006-07-19 第13族金属窒化物結晶の製造方法およびそれを用いた半導体デバイスの製造方法

Country Status (1)

Country Link
JP (1) JP4779848B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105903A (ja) * 2008-08-21 2010-05-13 Mitsubishi Chemicals Corp 第13族金属窒化物結晶の製造方法および半導体デバイスの製造方法
JP5003642B2 (ja) * 2008-09-30 2012-08-15 豊田合成株式会社 Iii族窒化物半導体結晶の製造装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263511A (ja) * 2004-03-16 2005-09-29 Ricoh Co Ltd Iii族窒化物の結晶成長方法およびiii族窒化物結晶および半導体デバイス
JP4661069B2 (ja) * 2004-03-26 2011-03-30 三菱化学株式会社 周期表第13族金属窒化物結晶の製造方法
JP4609207B2 (ja) * 2004-07-02 2011-01-12 三菱化学株式会社 周期表第13族金属窒化物結晶の製造方法およびそれを用いた半導体デバイスの製造方法

Also Published As

Publication number Publication date
JP2008024535A (ja) 2008-02-07

Similar Documents

Publication Publication Date Title
JP4647525B2 (ja) Iii族窒化物結晶の製造方法
JP5129527B2 (ja) 結晶製造方法及び基板製造方法
JP2007204359A (ja) 自立iii−n層の製造方法および自立iii−n基板
JP2005206403A (ja) ガリウム含有窒化物単結晶の製造方法
JP2009234800A (ja) Iii族元素窒化物結晶の製造方法およびそれにより得られるiii族元素窒化物結晶
CN105529248A (zh) Iii族氮化物半导体元件制造用基板的制造方法、iii族氮化物半导体自支撑基板或iii族氮化物半导体元件的制造方法、以及iii族氮化物生长用基板
JPH11189498A (ja) 窒化物結晶の製造方法、混合物、液相成長方法、窒化物結晶、窒化物結晶粉末、および気相成長方法
JP4788524B2 (ja) 第13族金属窒化物結晶の製造方法およびこれらの製造方法に用いる溶液と融液
JP4779848B2 (ja) 第13族金属窒化物結晶の製造方法およびそれを用いた半導体デバイスの製造方法
JP4609207B2 (ja) 周期表第13族金属窒化物結晶の製造方法およびそれを用いた半導体デバイスの製造方法
JP2008515755A (ja) 溶融金属からiii属窒化物のバルク結晶または結晶層を製造する方法
JP5252002B2 (ja) 第13族金属窒化物結晶の製造方法および半導体デバイスの製造方法
JP4451265B2 (ja) Iii族元素窒化物結晶基板およびiii族元素窒化物半導体デバイスの製造方法
JP2007145679A (ja) 窒化アルミニウム単結晶の製造装置及びその製造方法
JP2002293697A (ja) GaNエピタキシャル層の成長方法
US20080203409A1 (en) PROCESS FOR PRODUCING (Al, Ga)N CRYSTALS
JP5573225B2 (ja) 第13族金属窒化物結晶の製造方法、該製造方法により得られる第13族金属窒化物結晶および半導体デバイスの製造方法
Boćkowski et al. Recent Progress in Crystal Growth of Bulk GaN
JP2009221056A (ja) 結晶成長方法、結晶成長装置、および半導体デバイス
JP2006027976A (ja) 窒化物単結晶の製造方法及びその製造装置
JP4661069B2 (ja) 周期表第13族金属窒化物結晶の製造方法
JP4590636B2 (ja) 窒化アルミニウム単結晶の製造方法
JP5066640B2 (ja) 不純物の含有量が制御された単結晶の製造方法
JP2006240968A (ja) 単結晶成長方法、その方法により得られるIII族窒化物単結晶およびSiC単結晶
JP5392317B2 (ja) 結晶製造方法および結晶成長速度制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees