JP4779580B2 - Electroformed thin blade whetstone - Google Patents

Electroformed thin blade whetstone Download PDF

Info

Publication number
JP4779580B2
JP4779580B2 JP2005319286A JP2005319286A JP4779580B2 JP 4779580 B2 JP4779580 B2 JP 4779580B2 JP 2005319286 A JP2005319286 A JP 2005319286A JP 2005319286 A JP2005319286 A JP 2005319286A JP 4779580 B2 JP4779580 B2 JP 4779580B2
Authority
JP
Japan
Prior art keywords
abrasive
layer
layers
abrasive grain
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005319286A
Other languages
Japanese (ja)
Other versions
JP2007125636A (en
Inventor
吉隆 池田
隆之 花見
英格 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005319286A priority Critical patent/JP4779580B2/en
Priority to TW095139492A priority patent/TWI314497B/en
Priority to KR1020060106965A priority patent/KR20070047705A/en
Priority to CNA2006101436102A priority patent/CN1958239A/en
Priority to CN201410070821.2A priority patent/CN104029136B/en
Publication of JP2007125636A publication Critical patent/JP2007125636A/en
Application granted granted Critical
Publication of JP4779580B2 publication Critical patent/JP4779580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/14Zonally-graded wheels; Composite wheels comprising different abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/12Cut-off wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

本発明は、特に基板上に一括して素子等を実装してモールディングした後に切断することにより個片化して電子材料部品を製造する場合において、このモールディング後の切断に用いて好適な電鋳薄刃砥石に関するものである。   The present invention is an electroformed thin blade suitable for use in cutting after molding, particularly when an electronic material part is manufactured by cutting it after mounting it on a substrate and molding it after molding. It relates to a grindstone.

このような電子材料部品を製造する際の切断には、従来よりダイヤモンド等の超砥粒をニッケル等の金属めっき相に分散した極薄の砥粒層よりなる電鋳薄刃砥石が用いられている。ところが、近年ではこのような電子材料部品として、例えばQFN(quad flat non−leaded package)と称されるもののように、リードフレーム上に一括して多数の素子を実装してこれらをまとめてモールディングした後に切断することにより個片化されて製造される電子材料部品や、IrDA(赤外線データ通信協会)規格の光伝送モジュール(以下、単にIrDAと略称する。)のように、ガラスエポキシ樹脂製の基体に形成されたスルーホールの内周面にNi、Au、Cu等のめっきが施された基板を有するもの、あるいは金属の電極を有するやはりガラスエポキシ樹脂製の基盤を備えたLEDワークのような電子材料部品が増えてきており、このような電子材料部品の製造の際には、モールディング樹脂中に間隔をあけて配置されたCu等の延性の高い金属リードフレーム、めっき、電極を薄刃砥石が切断することとなるため、切断の際の薄刃砥石の送り方向や回転方向(下方向)にこのリードフレームや電極等の金属バリが生じ易いという問題がある。   Conventionally, an electroformed thin blade whetstone composed of an ultrathin abrasive layer in which superabrasive grains such as diamond are dispersed in a metal plating phase such as nickel has been used for cutting when manufacturing such electronic material parts. . However, in recent years, as such electronic material parts, a large number of elements are collectively mounted on a lead frame and molded together, such as a so-called QFN (quad flat non-leaded package). Substrates made of glass epoxy resin, such as electronic material parts manufactured by cutting into individual pieces and optical transmission modules (hereinafter simply referred to as IrDA) conforming to IrDA (Infrared Data Communication Association) standards Electrodes such as those having a substrate plated with Ni, Au, Cu, etc. on the inner peripheral surface of the through-hole formed in the above, or an LED work having a base made of glass epoxy resin having a metal electrode The number of material parts is increasing, and when manufacturing such electronic material parts, molding resin Since the thin-blade grindstone cuts highly ductile metal lead frames such as Cu, plating, and electrodes that are spaced apart from each other, the thin-blade grindstone feed direction and rotational direction (downward) during cutting There is a problem that metal burrs such as lead frames and electrodes are easily generated.

そこで、例えば特許文献1には、環状の切れ刃部が砥粒をメッキで固定した電鋳砥粒層によって構成された切削ブレードであって、該環状の切れ刃部は、集中度の低い砥粒層で形成された中央電鋳砥粒層と、この中央電鋳砥粒層より集中度の高い砥粒層で形成されている該中央電鋳砥粒層の両側にそれぞれ形成された外側電鋳砥粒層とからなる切削ブレード(電鋳薄刃砥石)が提案されている。この特許文献1には、かかる切削ブレードによれば、ドレッシングあるいは使用によって中央電鋳砥粒層が多量に摩耗して、環状の切れ刃部外周の幅方向中央部に環状凹部が形成され、この環状凹部に切粉が取り込まれて排除されるので、バリの発生が防止されると記載されている。
特開2002−331464号公報
Thus, for example, Patent Document 1 discloses a cutting blade in which an annular cutting edge portion is configured by an electroformed abrasive grain layer in which abrasive grains are fixed by plating, and the annular cutting edge portion is a low-concentration abrasive. A central electroformed abrasive grain layer formed of a grain layer and outer electroformed abrasive grains formed on both sides of the central electroformed abrasive grain layer formed of an abrasive grain layer having a higher concentration than the central electroformed abrasive grain layer. A cutting blade (electroformed thin blade grindstone) composed of a cast abrasive grain layer has been proposed. According to Patent Document 1, according to such a cutting blade, a large amount of the central electroformed abrasive layer is worn by dressing or use, and an annular recess is formed in the center in the width direction of the outer periphery of the annular cutting edge. It is described that generation of burrs is prevented because chips are taken in and removed from the annular recess.
JP 2002-331464 A

しかしながら、このような特許文献1に記載の中央電鋳砥粒層とその両側の外側電鋳砥粒層からなる3層の電鋳薄刃砥石では、上述のような電子材料部品の切断において中央電鋳砥粒層が摩耗して環状凹部が形成されると、その両側の一対の外側電鋳砥粒層が先行して切り込まれてモールディング樹脂中の金属リードフレームや金属電極を断続的に切断してゆくことになるので、例えば切断時にこれら一対の外側電鋳砥粒層が同時にリードフレームや電極に接触して切り込まれずに、両外側電鋳砥粒層に作用する抵抗や負荷が不均一になったりすると、薄刃砥石が砥粒層の層厚方向に振れを生じて蛇行が発生するおそれがある。そして、このように切断時に薄刃砥石が蛇行すると、砥石による切断幅を大きく設定しなければならなくなるため、限られた大きさの基板等から製造可能な電子材料部品の数が減少してしまったり、場合によっては切断自体が不可能となったりするおそれすらある。   However, in such a three-layer electroformed thin blade whetstone composed of the central electroformed abrasive grain layer described in Patent Document 1 and the outer electroformed abrasive grain layers on both sides thereof, the central electroforming component is cut when the electronic material component is cut as described above. When the cast abrasive layer wears out and an annular recess is formed, a pair of outer electroformed abrasive layers on both sides are cut in advance to intermittently cut the metal lead frame and metal electrode in the molding resin. Therefore, for example, when cutting, the pair of outer electroformed abrasive layers are not simultaneously cut into contact with the lead frame and the electrodes, and resistance and load acting on both outer electroformed abrasive layers are not affected. If it becomes uniform, the thin-blade grindstone may wobble in the direction of the thickness of the abrasive layer, and there is a risk of meandering. And if the thin blade grindstone meanders during cutting in this way, the cutting width by the grindstone must be set large, so the number of electronic material parts that can be manufactured from a limited size substrate etc. may decrease. In some cases, the cutting itself may be impossible.

また、中央電鋳砥粒層が摩耗して形成される環状凹部は、1つの凹部で両外側電鋳砥粒層により生成された切粉を上述のように取り込んで排除することになるため、ある程度大きな幅と深さで凹まされなければならず、こうして大きく凹んだ中央電鋳砥粒層と外側電鋳砥粒層との境界部から各層間で剥離が発生し易いという問題もある。さらに、こうして砥粒の集中度が低くて摩耗されやすい中央電鋳砥粒層が大きな幅および深さで設けられているため、電鋳薄刃砥石全体としての耐摩耗性に乏しく、早期に寿命が費えてしまうという問題もある。   In addition, the annular recess formed by the wear of the central electroformed abrasive layer is to remove the chips generated by the outer electroformed abrasive layer in one recess as described above, There is also a problem that peeling must occur between each layer from the boundary between the central electroformed abrasive grain layer and the outer electroformed abrasive grain layer that are greatly dented in this way. Furthermore, since the central electroformed abrasive layer with low abrasive concentration and easy to wear is provided with a large width and depth, the electroformed thin blade grinding wheel as a whole has poor wear resistance and has an early life. There is also the problem of spending.

本発明は、このような背景の下になされたもので、上述したQFNやIrDA、LEDワークのような電子材料部品の切断に用いて、バリの発生を抑制することができるのは勿論、直進性が高くて高精度の切断が可能であり、さらに耐摩耗性や耐剥離性にも秀でていて砥石寿命が長く、切断された電子材料部品に対して高い品位を安定して維持することが可能な電鋳薄刃砥石を提供することを目的としている。   The present invention has been made under such a background, and can be used for cutting electronic material parts such as the above-described QFN, IrDA, and LED work to suppress the occurrence of burrs. Highly accurate cutting is possible, and it has excellent wear resistance and peeling resistance, has a long grinding wheel life, and stably maintains high quality for the cut electronic material parts. An object of the present invention is to provide an electroformed thin-blade grindstone that can be used.

上記課題を解決して、このような目的を達成するために、本発明は、金属めっき相に砥粒を分散してなる薄刃砥粒層を備え、この薄刃砥粒層は、該薄刃砥粒層の層厚方向に順次積層された第1〜第5の砥粒層を有していて、このうち第1、第3、第5の砥粒層における上記砥粒の含有量を、第2、第4の砥粒層における上記砥粒の含有量よりも多くするとともに、これら第1〜第5の砥粒層に分散される上記砥粒は同種のものであって、一定の平均粒径のものとしたことを特徴とする。 In order to solve the above-described problems and achieve such an object, the present invention includes a thin-blade abrasive grain layer formed by dispersing abrasive grains in a metal plating phase, and the thin-blade abrasive grain layer includes the thin-blade abrasive grain. The first to fifth abrasive grain layers are sequentially laminated in the layer thickness direction of the layers, and the content of the abrasive grains in the first, third, and fifth abrasive grain layers is the second. The content of the abrasive grains in the fourth abrasive layer is larger than that of the abrasive grains and the abrasive grains dispersed in the first to fifth abrasive layers are of the same kind, and have a constant average particle size. characterized in that were of.

本発明の電鋳薄刃砥石では、このように薄刃砥粒層が、砥粒含有量の多い第1、第3、第5の砥粒層と砥粒含有量の少ない第2、第4の砥粒層とを交互に積層した5層構造を有しており、すなわち該薄刃砥粒層の層厚方向の両端と中央とに砥粒含有量の多い砥粒層が配設されることになる。従って、まずこの層厚方向両端に配設される砥粒含有量の多い第1、第5の砥粒層により、切刃エッジとして作用する薄刃砥粒層の周面と両側面との交差稜線部の摩耗を抑えて、この切刃エッジが丸められること、すなわち薄刃砥粒層のいわゆる角ダレを防ぐことができ、鋭い切れ味を維持して上述のような電子材料部品の切断におけるバリの発生を抑制することが可能となる。   In the electroformed thin blade grindstone of the present invention, the thin blade abrasive layer is composed of the first, third and fifth abrasive layers having a large abrasive content and the second and fourth abrasives having a small abrasive content. It has a five-layer structure in which grain layers are alternately laminated, that is, an abrasive grain layer having a large abrasive grain content is disposed at both ends and the center in the layer thickness direction of the thin blade abrasive grain layer. . Therefore, first, the first and fifth abrasive layers having a large abrasive content disposed at both ends in the layer thickness direction are used to intersect the ridge line between the circumferential surface and both side surfaces of the thin-blade abrasive layer acting as a cutting edge. It is possible to prevent the cutting edge from being rounded, that is, to prevent so-called corner sagging of the thin-blade abrasive grain layer, and to maintain the sharpness and to generate burrs when cutting electronic material parts as described above. Can be suppressed.

また、これら第1、第5の砥粒層と第3の砥粒層との間に配設される砥粒含有量の少ない第2、第4の砥粒層においては、このような電子材料部品の切断やドレッシングにより第1、第3、第5の砥粒層に比べて摩耗が促進されて凹部が形成されるが、こうして砥粒含有量の少ない砥粒層が2層に分けられていることにより、第2、第4の砥粒層の個々の幅は薄刃砥粒層全体の層厚に対して小さく抑えられ、これに伴い凹部の深さも浅くなる。このため、砥粒含有量の多い第1、第3、第5の砥粒層による高い耐摩耗性とも相俟って、薄刃砥粒層全体としての耐摩耗性を確保し、かつ持続させることができるとともに、かかる凹部から砥粒層に剥離が生じたりするのも防ぐことができ、砥石寿命の延長を図ることができる。   In the second and fourth abrasive layers having a small abrasive content disposed between the first and fifth abrasive layers and the third abrasive layer, such an electronic material is used. Wearing is promoted by cutting and dressing of parts compared to the first, third, and fifth abrasive layers to form recesses, and thus the abrasive layer having a low abrasive content is divided into two layers. Thus, the individual widths of the second and fourth abrasive grain layers are kept small relative to the thickness of the entire thin-blade abrasive grain layer, and the depth of the recesses is also reduced accordingly. For this reason, in combination with the high wear resistance of the first, third and fifth abrasive grain layers having a large abrasive content, the wear resistance of the thin blade abrasive grain layer as a whole is secured and sustained. In addition, it is possible to prevent the abrasive grain layer from being peeled off from the concave portion, thereby extending the life of the grindstone.

そして、こうして凹部を形成する第2、第4の砥粒層の間の、薄刃砥粒層の層厚方向中央には、上述のようにこれら第2、第4の砥粒層よりも砥粒含有量が多い第3の砥粒層が配設されており、当該薄刃砥粒層が上記電子材料部品を切断する際には、この第3の砥粒層と上記第1、第5の砥粒層とが先行して樹脂モールド中のリードフレームや電極等に切り込まれることとなるので、たとえ層厚方向両端の第1、第5の砥粒層のいずれか一方がこのリードフレーム等に接触し、他方が接触していない状態で薄刃砥粒層が切り込まれても、中央の第3の砥粒層が接触していれば、薄刃砥粒層に層厚方向の振れが生じるのを抑えて薄刃砥石の蛇行を防ぐことができる。従って、上記構成の電鋳薄刃砥石によれば、高い直進性を確保して高精度の切断が可能であり、しかもバリの発生を抑制することができるとともに耐摩耗性も高いので、上述したような電子材料部品等のワークの切断に用いて、高品位の電子材料部品を長期に亙って安定的に製造することが可能となる。   And in the layer thickness direction center of the thin-blade abrasive grain layer between the second and fourth abrasive grain layers thus forming the recesses, the abrasive grains than those of the second and fourth abrasive grain layers as described above. A third abrasive layer having a high content is disposed, and when the thin blade abrasive layer cuts the electronic material component, the third abrasive layer and the first and fifth abrasive layers are disposed. Since the grain layer is first cut into the lead frame or electrode in the resin mold, even one of the first and fifth abrasive grain layers at both ends in the layer thickness direction is formed on the lead frame or the like. Even if the thin-blade abrasive layer is cut in a state where the other is not in contact, if the third abrasive layer in the center is in contact, the thin-blade abrasive layer will shake in the layer thickness direction. This can suppress the meandering of the thin blade grindstone. Therefore, according to the electroformed thin-blade grindstone having the above-described configuration, high straightness can be ensured and high-precision cutting can be performed. Moreover, generation of burrs can be suppressed and wear resistance is also high. High-quality electronic material parts can be manufactured stably over a long period of time by cutting workpieces such as electronic material parts.

ここで、上記第1、第3、第5の砥粒層における砥粒の含有量は15〜40vol%の範囲内とされるのが望ましく、また第2、第4の砥粒層における砥粒の含有量は1〜10vol%の範囲内とされるのが望ましい。すなわち、第1、第3、第5の砥粒層の砥粒含有量が15vol%を下回ると耐摩耗性が著しく低下して、特に上述のように切刃エッジとされる第1、第5の砥粒層の角ダレを防ぐことができなくなる一方、逆に砥粒含有量が40vol%を上回っても砥粒の脱落による切刃の自生が促されずに切れ味が鈍くなり、いずれの場合もバリの発生を確実に防止することができなくなるおそれが生じる。   Here, it is desirable that the content of abrasive grains in the first, third and fifth abrasive layers is in the range of 15 to 40 vol%, and the abrasive grains in the second and fourth abrasive layers. The content of is desirably in the range of 1 to 10 vol%. That is, when the abrasive content of the first, third and fifth abrasive layers is less than 15 vol%, the wear resistance is remarkably reduced, and the first and fifth cutting edges are particularly formed as described above. On the other hand, even if the abrasive grain content exceeds 40 vol%, the sharpness is dulled without being promoted by the self-growth of the cutting edge due to falling off of the abrasive grains. However, there is a possibility that the generation of burrs cannot be reliably prevented.

また、第2、第4の砥粒層の砥粒含有量が1vol%を下回ると摩耗による凹部が深くなりすぎて容易に剥離を生じるおそれがある一方、10vol%を上回るほど多くなると第1、第3、第5の砥粒層との砥粒含有量の差が小さくなって切粉排出のための凹部が形成され難くなり、やはりバリの発生を防止することができなくなるおそれが生じる。なお、第1、第3、第5の砥粒層の砥粒含有量は互いに等しくされるのが望ましく、また第2、第4の砥粒層の砥粒含有量も互いに等しくされるのが望ましい。   Further, if the abrasive content of the second and fourth abrasive layers is less than 1 vol%, the concave portion due to wear may become too deep and easily peel off, whereas if it exceeds 10 vol%, the first, The difference in the abrasive content with the third and fifth abrasive layers becomes small, and it becomes difficult to form a recess for discharging chips, which may also prevent the generation of burrs. It is desirable that the first, third, and fifth abrasive layers have the same abrasive content, and the second and fourth abrasive layers have the same abrasive content. desirable.

さらに、これら第1〜第5の砥粒層の層厚は、いずれも上記薄刃砥粒層全体の層厚の1/6〜1/4の範囲内とされるのが望ましい。すなわち、上述のように切刃エッジとして作用する第1、第5の砥粒層の層厚が薄刃砥粒層全体の層厚の1/6よりも薄いと、この切刃エッジ部分の耐摩耗性が損なわれて角ダレを確実に防ぐことができず、また第2、第4の砥粒層が薄いと切粉排出のための凹部が小さくなり、いずれもバリの発生を防止することができなくなるおそれがあるとともに、第3の砥粒層の層厚が薄いと十分な直進性を得ることができなくなるおそれがある。   Furthermore, it is desirable that the thicknesses of these first to fifth abrasive layers are all in the range of 1/6 to 1/4 of the thickness of the entire thin blade abrasive layer. That is, if the layer thickness of the first and fifth abrasive layers acting as the cutting edge as described above is less than 1/6 of the total thickness of the thin blade abrasive layer, the wear resistance of the cutting edge portion is reduced. And the sag cannot be reliably prevented, and if the second and fourth abrasive layers are thin, the recess for discharging chips is reduced, and both can prevent the occurrence of burrs. There is a possibility that it will not be possible, and if the thickness of the third abrasive layer is thin, there is a possibility that sufficient straightness cannot be obtained.

一方、逆にこれらの砥粒層のいずれかの層厚が薄刃砥粒層全体の層厚の1/4よりも厚いと、他のいずれかの砥粒層の層厚が薄刃砥粒層全体の層厚の1/6よりも薄くなり、やはりバリの発生防止や切断時の直進性確保といった効果を十分に奏することができなくなるおそれが生じる。なお、このような効果を確実に奏するには、第1〜第5の砥粒層の層厚は互いに等しく、すなわちいずれも薄刃砥粒層全体の層厚の1/5とされるのが望ましい。   On the other hand, if the thickness of any one of these abrasive layers is greater than 1/4 of the total thickness of the thin blade abrasive layer, the thickness of any other abrasive layer is the entire thin blade abrasive layer. Therefore, there is a possibility that the effects of preventing the generation of burrs and ensuring the straightness at the time of cutting cannot be sufficiently obtained. In order to reliably achieve such an effect, the layer thicknesses of the first to fifth abrasive grain layers are preferably equal to each other, i.e., all of them should be 1/5 of the entire thickness of the thin blade abrasive grain layer. .

さらにまた、これら第1〜第5の砥粒層に分散される砥粒の粒径は、上記薄刃砥粒層全体の層厚の1/5以下とされるのが望ましく、これよりも砥粒の粒径が大きくなると、層厚方向に隣接する砥粒層間で一方から他方に粒径の大きな砥粒が突出してしまい、互いの砥粒層の界面の制御が困難となって第1〜第5の砥粒層に上述のような層厚を確保することができなくなるおそれが生じる。ただし、この砥粒の粒径が小さくなりすぎても、研削抵抗が大きくなってワークに焼けが生じたりするおそれがあるので、この砥粒径は薄刃砥粒層全体の層厚の1/30以上とされるのが望ましい。   Furthermore, it is desirable that the grain size of the abrasive grains dispersed in the first to fifth abrasive grain layers be 1/5 or less of the layer thickness of the whole thin blade abrasive grain layer. When the grain size of the abrasive grain increases, abrasive grains having a large grain size protrude from one to the other between the abrasive grain layers adjacent in the layer thickness direction, making it difficult to control the interface between the abrasive grain layers. There is a possibility that the above-mentioned layer thickness cannot be secured in the abrasive layer 5. However, even if the grain size of the abrasive grains becomes too small, there is a possibility that the grinding resistance will increase and the workpiece may be burned. Therefore, this abrasive grain size is 1/30 of the total thickness of the thin blade abrasive grain layer. The above is desirable.

図1および図2は、本発明の一実施形態を示すものである。本実施形態の電鋳薄刃砥石は図1に示すように軸線Oを中心とした円環形で厚さ0.05〜0.5mm程度の薄肉板状をなし、それ自体が図2に示すような薄刃砥粒層1によって形成されていて、その内径部が切断装置の主軸に取り付けられて上記軸線O回りに回転されつつ該軸線Oに垂直な方向に送り出されることにより、この薄刃砥粒層1の外周縁部、すなわち上記厚さと等しい極小さな幅の外周面と、両側面の外周側、およびこれら外周面と両側面とが交差する円周状の両エッジ部とによって、上述したQFNやIrDA、LEDワークのような樹脂中に金属材を有する電子部品材料の切断に使用される。   1 and 2 show an embodiment of the present invention. As shown in FIG. 1, the electroformed thin blade grindstone of the present embodiment has an annular shape centering on the axis O and has a thin plate shape with a thickness of about 0.05 to 0.5 mm, as shown in FIG. The thin-blade abrasive grain layer 1 is formed by being sent out in a direction perpendicular to the axis O while being rotated around the axis O while the inner diameter portion thereof is attached to the main shaft of the cutting device. QFN and IrDA described above by the outer peripheral edge of each of the outer peripheral surfaces, that is, the outer peripheral surface having a very small width equal to the thickness, the outer peripheral side of both side surfaces, and both circumferential edge portions intersecting the outer peripheral surface and both side surfaces. It is used for cutting electronic component materials having a metal material in a resin such as an LED work.

そして、この薄刃砥粒層1は、図2に示すようにその層厚方向(図1において図面に直交する方向。図2においては左右方向。)に順次積層されて一体化された第1〜第5の砥粒層1A〜1Eによって構成されており、これらの砥粒層1A〜1Eは、いずれもニッケル等の金属めっき相2にダイヤモンドやcBN等の砥粒(超砥粒)3をそれぞれの層において均一に分散してなるものであって、ただし各砥粒層1A〜1Eにおける砥粒3の含有量は、第1、第3、第5の砥粒層1A,1C,1Eにおける含有量が、第2、第4の砥粒層1B,1Dにおける含有量よりも多くされている。   And this thin blade abrasive grain layer 1 is laminated | stacked one by one in the layer thickness direction (the direction orthogonal to drawing in FIG. 1, the left-right direction in FIG. 2) as shown in FIG. Each of the abrasive layers 1A to 1E is composed of a metal plating phase 2 such as nickel and abrasive grains (superabrasive grains) 3 such as diamond and cBN, respectively. However, the content of the abrasive grains 3 in each of the abrasive grain layers 1A to 1E is the content in the first, third, and fifth abrasive grain layers 1A, 1C, and 1E. The amount is larger than the content in the second and fourth abrasive grain layers 1B and 1D.

ここで、上記第1、第5の砥粒層1A,1Eにおける砥粒3の含有量は互いに等しく、15〜40vol%の範囲内とされるとともに、第3の砥粒層1Cの砥粒3の含有量もこれら第1、第5の砥粒層1A,1Eと等しくされている。また、第2、第4の砥粒層1B,1D同士の砥粒3の含有量も互いに等しくされ、本実施形態では1〜10vol%の範囲内とされている。さらに、これら第1〜第5の砥粒層1A〜1Eの層厚は、薄刃砥粒層1全体の層厚の1/6〜1/4の範囲内とされ、特に本実施形態では全ての砥粒層1A〜1Eの層厚が等しく、すなわち薄刃砥粒層1全体の層厚の1/5とされている。   Here, the contents of the abrasive grains 3 in the first and fifth abrasive grain layers 1A and 1E are equal to each other, and are within the range of 15 to 40 vol%, and the abrasive grains 3 of the third abrasive grain layer 1C. Is also made equal to the first and fifth abrasive layers 1A and 1E. Further, the contents of the abrasive grains 3 between the second and fourth abrasive grain layers 1B and 1D are also equal to each other, and in the present embodiment, they are in the range of 1 to 10 vol%. Furthermore, the layer thicknesses of the first to fifth abrasive grain layers 1A to 1E are set within a range of 1/6 to 1/4 of the layer thickness of the entire thin-blade abrasive grain layer 1. The layer thicknesses of the abrasive grain layers 1A to 1E are equal, that is, 1/5 of the layer thickness of the thin blade abrasive grain layer 1 as a whole.

さらに、これらの砥粒層1A〜1Eに分散される上記砥粒3は同種のものであって、その粒径は薄刃砥粒層1全体の層厚の1/5〜1/30の範囲で、一定の平均粒径のものとされている。従って、本実施形態において薄刃砥粒層1は、その層厚方向の中央部に第3の砥粒層1Cが位置して、この第3の砥粒層1Cに対し第1、第2の砥粒層1A,1Bと第5、第4の砥粒層1E,1Dとが対称に配設された構成とされ、薄刃砥粒層1の上記両側面が第1、第5の砥粒層1A,1Eによって形成されることになる。   Further, the abrasive grains 3 dispersed in these abrasive grain layers 1A to 1E are of the same type, and the grain size thereof is in the range of 1/5 to 1/30 of the layer thickness of the thin blade abrasive grain layer 1 as a whole. , Having a certain average particle diameter. Therefore, in this embodiment, the thin-blade abrasive grain layer 1 has the third abrasive grain layer 1C located at the center in the layer thickness direction, and the first and second abrasive grains 1C with respect to the third abrasive grain layer 1C. The grain layers 1A and 1B and the fifth and fourth abrasive grain layers 1E and 1D are arranged symmetrically, and the both side surfaces of the thin-blade abrasive grain layer 1 are the first and fifth abrasive grain layers 1A. , 1E.

なお、各砥粒層1A〜1Eには、砥粒3の他に図2に示すようにセラミック等のフィラー4が分散されていてもよい。ただし、これらのフィラー4についても、その含有量は第1、第3、第5の砥粒層1A,1C,1Eで互いに等しくされるとともに、第2、第4の砥粒層1B,1D間でも互いに等しくされる一方で、第1、第3、第5の砥粒層1A,1C,1Eの含有量は第2、第4の砥粒層1B,1Dの含有量よりも多くされ、さらにその平均粒径も第1〜第5の砥粒層1A〜1Eで等しくされて、図2に示すように上述した薄刃砥粒層1の層厚方向の対称性が維持されるのが望ましい。   In addition to the abrasive grains 3, fillers 4 such as ceramics may be dispersed in each of the abrasive grain layers 1A to 1E as shown in FIG. However, the content of these fillers 4 is also equal between the first, third, and fifth abrasive grain layers 1A, 1C, and 1E and between the second and fourth abrasive grain layers 1B and 1D. However, while being made equal to each other, the contents of the first, third, and fifth abrasive layers 1A, 1C, and 1E are made larger than the contents of the second and fourth abrasive layers 1B and 1D, and It is desirable that the average grain size is also made equal in the first to fifth abrasive grain layers 1A to 1E, so that the symmetry in the thickness direction of the thin-blade abrasive grain layer 1 described above is maintained as shown in FIG.

このように薄刃砥粒層1が第1〜第5の砥粒層1A〜1Eからなる5層構造の電鋳薄刃砥石を製造するには、砥粒3と必要に応じてフィラー4とを分散した金属めっき液中に台金を浸漬して、その上面に例えば第1〜第5の砥粒層1A〜1Eの順で、所定の層厚の金属めっき相2を成長させつつ砥粒3を固定することにより砥粒層1A〜1Eを順次積層してゆき、その際に、金属めっき液に分散される砥粒3やフィラー4の分散量を、各砥粒層1A〜1Eごとに制御して、その砥粒3やフィラー4の含有量に応じて異なる量とすればよい。例えば、第1、第3、第5の砥粒層1A,1C,1Eの砥粒3の含有量と第2、第4の砥粒層1B,1Dの砥粒3の含有量がそれぞれ等しくされた本実施形態の電鋳薄刃砥石では、それぞれの含有量に応じた分散量で砥粒3が分散された金属めっき液に台金を交互に浸漬して金属めっき相2を成長させ、第1〜第5の砥粒層1A〜1Eを順次積層して薄刃砥粒層1を形成した後に台金から剥離すればよい。   Thus, in order to manufacture an electroformed thin blade grindstone having a five-layer structure in which the thin blade abrasive grain layer 1 is composed of the first to fifth abrasive grain layers 1A to 1E, the abrasive grains 3 and the filler 4 are dispersed as required. The base metal is immersed in the metal plating solution, and the abrasive grains 3 are formed on the upper surface while growing the metal plating phase 2 having a predetermined layer thickness in the order of, for example, the first to fifth abrasive grain layers 1A to 1E. By fixing, the abrasive layers 1A to 1E are sequentially laminated, and the dispersion amount of the abrasive grains 3 and filler 4 dispersed in the metal plating solution is controlled for each of the abrasive layers 1A to 1E. And what is necessary is just to set it as a different quantity according to content of the abrasive grain 3 or the filler 4. FIG. For example, the content of the abrasive grains 3 in the first, third, and fifth abrasive layers 1A, 1C, and 1E and the content of the abrasive grains 3 in the second and fourth abrasive layers 1B and 1D are made equal. In the electroformed thin-blade grindstone of this embodiment, the metal plating phase 2 is grown by alternately immersing the base metal in the metal plating solution in which the abrasive grains 3 are dispersed in a dispersion amount corresponding to each content. The fifth abrasive grain layers 1A to 1E may be sequentially laminated to form the thin blade abrasive grain layer 1 and then peeled off from the base metal.

従って、このように構成された電鋳薄刃砥石によれば、まず薄刃砥粒層1の層厚方向両端に砥粒3の含有量の多い第1、第5の砥粒層1A,1Eが配設されているので、この薄刃砥粒層1の上記外周縁部のうち特に外周面と両側面とが交差する円周状の両エッジ部の耐摩耗性を高めることができ、切刃エッジとされるこれら両エッジ部が丸められることにより角ダレが生じるのを防いで、切断ブレードとして鋭い切れ味を維持することができる。このため、上述のような樹脂モールド中に金属リードフレーム等が内包された電子材料部品の個片化や、金属電極を有する樹脂基盤よりなる電子材料部品の切断においても、これら金属部分にバリを生じるのを抑えることができ、高品位の電子材料部品を提供することが可能となる。   Therefore, according to the electroformed thin blade whetstone configured in this way, first, the first and fifth abrasive particle layers 1A and 1E having a large content of the abrasive particles 3 are arranged at both ends in the thickness direction of the thin blade abrasive particle layer 1. Since it is provided, it is possible to improve the wear resistance of both circumferential edges of the outer peripheral edge of the thin blade abrasive grain layer 1 where the outer peripheral surface and both side surfaces cross each other. By rounding these two edge portions, it is possible to prevent the occurrence of corner sagging and maintain a sharpness as a cutting blade. For this reason, even when individual electronic material parts in which a metal lead frame or the like is included in the resin mold as described above or when cutting electronic material parts made of a resin base having metal electrodes, burrs are not formed on these metal parts. It is possible to suppress the occurrence and to provide a high-quality electronic material part.

また、これら第1、第5の砥粒層1A,1Eの層厚方向内側には、砥粒3の含有量の少ない第2、第4の砥粒層1B,1Dが配設されており、従ってこれら第2、第4の砥粒層1B,1Dは、上記電子材料部品ワークの切断や切断前のドレッシングにより第1、第5の砥粒層1A,1Eに対して相対的に大きく摩耗し、これにより図2に示すように薄刃砥粒層1の上記外周面に環状の凹部が画成されることになる。そして、切断時に生じた切粉はこの凹部を介して排出されるため、かかる切粉の滞留に起因するバリの発生や切断面の傷付きを防止して、一層高品位の切断加工を促すことができる。また、上述のように切刃エッジとされる第1、第5の砥粒層1A,1Eの層厚方向内側に第2、第4の砥粒層1B,1Dが隣接してこのような凹部が形成されることにより、上記エッジ部を相対的に外周側に突き出させて鋭い切れ味をされに確実に維持することができる。   In addition, the second and fourth abrasive grain layers 1B and 1D with a small content of the abrasive grains 3 are disposed on the inner side in the layer thickness direction of the first and fifth abrasive grain layers 1A and 1E. Accordingly, the second and fourth abrasive grain layers 1B and 1D are relatively worn with respect to the first and fifth abrasive grain layers 1A and 1E due to the cutting of the electronic material component work and dressing before cutting. Thus, as shown in FIG. 2, an annular recess is defined on the outer peripheral surface of the thin-blade abrasive grain layer 1. And since the chips generated at the time of cutting are discharged through this recess, the generation of burrs and scratches on the cut surface due to the retention of such chips is prevented, and further high-quality cutting processing is promoted. Can do. In addition, the second and fourth abrasive grain layers 1B and 1D are adjacent to the inner side in the layer thickness direction of the first and fifth abrasive grain layers 1A and 1E, which are the cutting edge as described above. By forming the edge portion, the edge portion can be protruded relatively to the outer peripheral side, and the sharpness can be reliably maintained.

その一方で、こうして第1、第5の砥粒層1A,1Eの層厚方向内側にそれぞれ隣接する第2、第4の2層の砥粒層1B,1Dによって凹部が形成されることにより、上記構成の電鋳薄刃砥石によれば、例えば集中度が低い中央電鋳砥粒層が1層設けられた特許文献1に記載の電鋳薄刃砥石などに対して、個々の凹部の幅や深さは小さくしながらも、第1、第5の砥粒層1A,1Eによる切粉を各々隣接する凹部に収容して確実に排出することができる。このため、かかる凹部が必要以上に大きくなって薄刃砥粒層1全体としての耐摩耗性を損ねたり、あるいはこうして深い凹部が形成されることによって第1、第5の砥粒層1A,1Eに剥離が生じたりするのを防ぐことができ、寿命の長い電鋳薄刃砥石を提供することが可能となる。   On the other hand, the recesses are formed by the second and fourth abrasive layers 1B and 1D adjacent to the inner sides in the layer thickness direction of the first and fifth abrasive layers 1A and 1E, respectively. According to the electroformed thin blade grindstone having the above-described configuration, for example, the width and depth of the individual recesses compared to the electrocast thin blade grindstone described in Patent Document 1 in which one central electroformed abrasive grain layer having a low concentration is provided. Although the height is small, chips from the first and fifth abrasive grain layers 1A and 1E can be accommodated in the adjacent recesses and reliably discharged. For this reason, the concave portion becomes larger than necessary, and the wear resistance of the thin blade abrasive grain layer 1 as a whole is impaired, or the deep concave portion is formed in this way, thereby forming the first and fifth abrasive grain layers 1A and 1E. It is possible to prevent peeling and to provide an electroformed thin blade whetstone having a long life.

そして、さらにこれら第2、第4の砥粒層1B,1Dの間には、該第2、第4の砥粒層1B,1Dよりも砥粒3の含有量の多い第3の砥粒層1Cが配設されており、従ってこの第3の砥粒層1Cは、上記凹部を画成する第2、第4の砥粒層1B,1Dよりも突出して、第1、第5の砥粒層1A,1Eと同様の切刃エッジを形成することになり、上述のような電子材料部品を切断する際には、これらの切刃エッジが先行して上記リードフレームや電極等の金属部分に切り込まれることになる。このため、上記第1、第5の砥粒層1A,1Eのうち一方がこの金属部分に接触しなくても、他方と層厚方向中央部の第3の砥粒層1Cとが接触していれば薄刃砥粒層1に振れが生じるのを防ぐことができ、すなわち当該電鋳薄刃砥石の直進性を確保して蛇行が生じるのを防止することができる。   And between these 2nd, 4th abrasive grain layers 1B and 1D, the 3rd abrasive grain layer with more content of the abrasive grain 3 than this 2nd and 4th abrasive grain layers 1B and 1D Therefore, the third abrasive grain layer 1C protrudes from the second and fourth abrasive grain layers 1B and 1D that define the recesses, and the first and fifth abrasive grains. Cutting edges similar to those of the layers 1A and 1E are formed, and when cutting electronic material parts as described above, these cutting edges are preceded by metal parts such as the lead frame and the electrodes. Will be cut. For this reason, even if one of the first and fifth abrasive layers 1A and 1E does not contact this metal portion, the other and the third abrasive layer 1C in the center in the layer thickness direction are in contact. If this is the case, it is possible to prevent the thin-blade abrasive grain layer 1 from wobbling, that is, to ensure straightness of the electroformed thin-blade grindstone and to prevent meandering.

従って、上記構成の電鋳薄刃砥石によれば、このような蛇行によって切断加工自体が不可能となったり、切断不可能には至らないまでも蛇行を考慮して切断幅を大きめに設定せざるを得なくなって、限られた大きさの基板から製造可能な電子材料部品の数が低減されたりするような事態を防ぐことができる。しかも、ワークの切断面も蛇行することがないことから一層高品位の電子材料部品を製造することができ、上述のように砥石寿命の延長が図られることにより、そのような電子材料部品を長期に亙って安定的かつ効率的に提供することが可能となる。   Therefore, according to the electroformed thin-blade grindstone having the above-described configuration, the cutting width cannot be set by such meandering, or the cutting width is set to be large in consideration of meandering even if it cannot be cut. Therefore, it is possible to prevent a situation in which the number of electronic material parts that can be manufactured from a limited-sized substrate is reduced. In addition, since the cut surface of the workpiece does not meander, it is possible to manufacture higher-quality electronic material parts. By extending the life of the grindstone as described above, such electronic material parts can be used for a long time. Therefore, it is possible to provide a stable and efficient manner.

また、本実施形態の電鋳薄刃砥石では、第1、第3、第5の砥粒層1A,1C,1Eにおける砥粒3の含有量が15〜40vol%の範囲内とされるとともに、第2、第4の砥粒層1B,1Dにおける砥粒3の含有量は1〜10vol%の範囲内とされており、このような効果をより確実に奏功することが可能となる。すなわち、第1、第3、第5の砥粒層1A,1C,1Eにおける砥粒3の含有量が15vol%を下回るほど少ないと耐摩耗性が低下して、上述のようにバリの発生を抑制する切刃エッジとしての第1、第5の砥粒層1A,1Eに角ダレが生じたり、直進性を確保する切刃エッジとしての第3の砥粒層1Cが後退して第1、第5の砥粒層1A,1Eとの金属部分への同時接触が図られなくなったりするおそれがある。また、逆に砥粒3の含有量が40vol%を上回るほど多いと、特に第1、第5の砥粒層1A,1Eの硬度が高くなりすぎて砥粒3が脱落し難くなり、切刃の自生が促されずに切れ味が鈍くなってバリの発生を確実に抑えることができなくなるおそれがある。   Moreover, in the electroformed thin blade grindstone of this embodiment, while content of the abrasive grain 3 in 1st, 3rd, 5th abrasive grain layer 1A, 1C, 1E is made into the range of 15-40 vol%, The content of the abrasive grains 3 in the second and fourth abrasive grain layers 1B and 1D is in the range of 1 to 10 vol%, and such an effect can be achieved more reliably. That is, if the content of the abrasive grains 3 in the first, third, and fifth abrasive grain layers 1A, 1C, and 1E is less than 15 vol%, the wear resistance is reduced, and the generation of burrs as described above. The first and fifth abrasive grain layers 1A and 1E serving as cutting edge edges to be suppressed are subject to corner sagging, or the third abrasive grain layer 1C serving as a cutting edge edge that ensures straightness is retracted to cause the first, There is a possibility that simultaneous contact with the metal part with the fifth abrasive grain layers 1A and 1E may not be achieved. On the other hand, if the content of the abrasive grains 3 exceeds 40 vol%, the hardness of the first and fifth abrasive grain layers 1A and 1E will be too high, and the abrasive grains 3 will be difficult to fall off. There is a risk that the generation of burrs may not be reliably suppressed due to the dullness of the burr without being promoted.

一方、第2、第4の砥粒層1B,1Dにおける砥粒3の含有量が1vol%を下回るほど少ないと、摩耗により画成される上記凹部が幅は狭くても深くなりすぎて第1、第5の砥粒層1A,1Eが容易に剥離を生じるおそれがあり、逆に10vol%を上回るほど多くなると第1、第3、第5の砥粒層1A,1C,1Eとの砥粒3含有量の差が小さくなって凹部が浅くなりすぎ、切粉の排出性が阻害されてバリの抑制効果が不十分となるおそれが生じる。なお、上述した第1、第5の砥粒層1A,1Eと第3の砥粒層1Cとの同時接触性を確実に確保するには、これらの砥粒層1A,1C,1Eにおける砥粒3の含有量は本実施形態のように互いに等しくされるのが望ましく、また第2、第4の砥粒層1B,1Dによる凹部を等しい深さとして偏りのない切粉の排出を図るには、これらの砥粒層1B,1Dの砥粒3含有量もやはり本実施形態のように互いに等しくされるのが望ましい。   On the other hand, if the content of the abrasive grains 3 in the second and fourth abrasive grain layers 1B and 1D is so low that it is less than 1 vol%, the recesses defined by the wear will be too deep even if the width is narrow. The fifth abrasive grain layers 1A and 1E may be easily peeled. Conversely, when the amount exceeds 10 vol%, the abrasive grains with the first, third and fifth abrasive grain layers 1A, 1C and 1E 3 The difference in the content becomes small and the concave portion becomes too shallow, so that the chip discharging property is hindered and the burr suppressing effect may be insufficient. In order to ensure the simultaneous contact between the first and fifth abrasive grain layers 1A, 1E and the third abrasive grain layer 1C, the abrasive grains in these abrasive grain layers 1A, 1C, 1E are assured. The content of 3 is preferably equal to each other as in this embodiment, and the recesses by the second and fourth abrasive grain layers 1B and 1D are set to the same depth to discharge chips without unevenness. In addition, it is desirable that the abrasive grain 3 contents of these abrasive grain layers 1B and 1D are also equal to each other as in this embodiment.

また、本実施形態ではこれら第1〜第5の砥粒層1A〜1Eの層厚が、薄刃砥粒層1全体の層厚の1/5とされていて、すなわち互いに等しい層厚とされており、バリの抑制・防止効果を奏する第1、第5の砥粒層1A,1Eや切屑排出性を確保するための第2、第4の砥粒層1B,1C、および直進性を確保するための第3の砥粒層1Cを、互いにバランスよく配設することができて、それぞれの作用効果を確実に奏功することが可能となる。すなわち、これらの砥粒層1A〜1Eのうちのいずれかの層厚が例えば厚すぎると、残りの砥粒層1A〜1Eのうち少なくとも一つは薄くなりすぎ、この少なくとも1つの砥粒層が第1、第5の砥粒層1A,1Eであればバリの抑制効果が得られず、第2、第4の砥粒層1B,1Dであれば切屑排出性が損なわれてやはりバリの抑制効果が不十分となり、第3の砥粒層1Cであれば切断時の電鋳薄刃砥石の直進性が損なわれるおそれがそれぞれ生じる。   In the present embodiment, the layer thicknesses of the first to fifth abrasive grain layers 1A to 1E are set to 1/5 of the entire layer thickness of the thin blade abrasive grain layer 1, that is, the layer thicknesses are equal to each other. The first and fifth abrasive grain layers 1A and 1E exhibiting the effect of suppressing / preventing burrs, the second and fourth abrasive grain layers 1B and 1C for ensuring chip discharge, and the straightness are ensured. Therefore, the third abrasive layer 1C can be arranged in a balanced manner, and the respective effects can be reliably achieved. That is, when the layer thickness of any one of these abrasive grain layers 1A to 1E is too thick, for example, at least one of the remaining abrasive grain layers 1A to 1E becomes too thin, and the at least one abrasive grain layer is If the first and fifth abrasive layers 1A and 1E are not effective in suppressing burrs, if the second and fourth abrasive layers 1B and 1D are used, chip evacuation is impaired and burrs are also suppressed. If the effect is insufficient and the third abrasive grain layer 1C is used, there is a possibility that the straightness of the electroformed thin blade grindstone at the time of cutting is impaired.

なお、このように第1〜第5の砥粒層1A〜1Eによる作用効果をそれぞれ確実に奏功するには、上述した通りこれらの層厚がいずれも薄刃砥粒層1全体の層厚の1/6〜1/4の範囲内とされていればよい。例えば、砥粒層1A〜1Eのうち3層が薄刃砥粒層1全体の層厚の1/6で、残りの2層が1/4ずつであってもよい。ただし、上述のような薄刃砥粒層1の対称性を確保するには、第1の砥粒層1Aと第5の砥粒層1Eとの層厚は互いに等しく、また第2の砥粒層1Bと第4の砥粒層1Dとの層厚も互いに等しくされるのが望ましく、さらに第1、第5の砥粒層1A,1Eと第3の砥粒層1Cとの層厚も互いに等しくされるのが望ましく、特に本実施形態のように全ての砥粒層1A〜1Eの層厚が互いに等しく薄刃砥粒層1全体層厚の1/5とされるのがより望ましい。   In addition, in order to reliably achieve the effects of the first to fifth abrasive grain layers 1A to 1E as described above, each of these layer thicknesses is 1 of the total thickness of the thin blade abrasive grain layer 1 as described above. What is necessary is just to be in the range of / 6 to 1/4. For example, three of the abrasive grain layers 1A to 1E may be 1/6 of the total thickness of the thin-blade abrasive grain layer 1, and the remaining two layers may be 1/4. However, in order to ensure the symmetry of the thin-blade abrasive grain layer 1 as described above, the first abrasive grain layer 1A and the fifth abrasive grain layer 1E have the same layer thickness, and the second abrasive grain layer. It is desirable that the layer thicknesses of 1B and the fourth abrasive layer 1D are also equal to each other, and the layer thicknesses of the first and fifth abrasive layer 1A, 1E and the third abrasive layer 1C are also equal to each other. In particular, it is more desirable that the thicknesses of all the abrasive grain layers 1A to 1E are equal to each other and be 1 / of the entire thickness of the thin-blade abrasive grain layer 1 as in this embodiment.

また、こうして第1〜第5の砥粒層1A〜1Eの層厚を薄刃砥粒層1全体の層厚の1/6〜1/4の範囲内、特に薄刃砥粒層1全体層厚の1/5に確実に制御するには、該砥粒層1A〜1Eの金属めっき相2に分散させられる砥粒3の粒径(平均粒径)も、薄刃砥粒層1全体層厚の1/5以下とされるのが望ましい。すなわち、この砥粒3の粒径が大きすぎると、砥粒層1A〜1Eの金属めっき相2の厚さが薄刃砥粒層1の層厚の1/6以上であっても該金属めっき相2から砥粒3が突出して隣接する砥粒層1A〜1Eに内包されてしまい、その結果これら層厚方向に隣接する砥粒層同士の界面(境界面)が制御できなくなって部分的に層厚に大小が生じ、各砥粒層1A〜1Eによる作用効果を確実に奏功することができなくなるおそれが生じる。ただし、この砥粒3の粒径があまり小さくなりすぎても、研削抵抗が大きくなってワークに焼けが生じたりするおそれがあるので、この砥粒3の平均粒径は、薄刃砥粒層1全体の層厚に対して1/30以上とされるのが望ましい。   In addition, the layer thickness of the first to fifth abrasive grain layers 1A to 1E is thus within the range of 1/6 to 1/4 of the layer thickness of the entire thin blade abrasive grain layer 1, particularly the entire layer thickness of the thin blade abrasive grain layer 1. In order to control to 1/5 reliably, the particle diameter (average particle diameter) of the abrasive grains 3 dispersed in the metal plating phase 2 of the abrasive grain layers 1A to 1E is also 1 of the total thickness of the thin-blade abrasive grain layer 1 / 5 or less is desirable. That is, when the grain size of the abrasive grains 3 is too large, even if the thickness of the metal plating phase 2 of the abrasive grain layers 1A to 1E is 1/6 or more of the layer thickness of the thin blade abrasive grain layer 1, the metal plating phase The abrasive grain 3 protrudes from 2 and is contained in the adjacent abrasive grain layers 1A to 1E. As a result, the interface (boundary surface) between the abrasive grain layers adjacent to each other in the layer thickness direction cannot be controlled, and the layer partially There is a possibility that the thickness may vary, and the effects of the abrasive layers 1A to 1E cannot be reliably achieved. However, even if the grain size of the abrasive grains 3 becomes too small, there is a risk that the grinding resistance increases and the workpiece may be burned. Therefore, the average grain size of the abrasive grains 3 is the thin-blade abrasive grain layer 1. It is desirable to be 1/30 or more with respect to the total layer thickness.

以下、より具体的な実施例を挙げて、本発明の効果について説明する。本実施例では、上記実施形態に基づく電鋳薄刃砥石により、図3に示すような金属(Cu)の電極11を有するガラスエポキシ樹脂の基盤12よりなるLEDワーク13の切断を行い、その際の電極11から発生したバリ14の大きさ(ただし、図3に示すように横方向(送り方向)に延びるバリ14の大きさをX、下方向に延びるバリ14の大きさをYとする。)を、切断初期と50m切断時とで測定した。この結果を実施例1として、その薄刃砥粒層の第1〜第5の砥粒層における砥粒含有量とともに表1に示す。なお、LEDワーク13の符号15部分はエポキシ樹脂製である。   Hereinafter, the effects of the present invention will be described with reference to more specific examples. In this example, the electroformed thin-blade grindstone based on the above embodiment is used to cut the LED workpiece 13 made of the glass epoxy resin substrate 12 having the metal (Cu) electrode 11 as shown in FIG. The size of the burr 14 generated from the electrode 11 (however, as shown in FIG. 3, the size of the burr 14 extending in the lateral direction (feeding direction) is X, and the size of the burr 14 extending downward is Y). Was measured at the beginning of cutting and at the time of cutting 50 m. The results are shown in Table 1 as Example 1 together with the abrasive content in the first to fifth abrasive layers of the thin blade abrasive layer. In addition, the code | symbol 15 part of the LED workpiece 13 is a product made from an epoxy resin.

ただし、この実施例1において、電鋳薄刃砥石は外径58mm、内径40mm、厚さ(薄刃砥粒層の層厚)0.15mmであり、第1〜第5の砥粒層の層厚はそれぞれ0.03mm、金属めっき相はNi、砥粒は粒径8/20μmのダイヤモンド砥粒であって、フィラーは分散されてはいない。また、切断条件は、主軸回転数18000(1/min)、送り速度100(mm/sec)であり、切断部位に向けて薄刃砥石の送り方向側から1.6(L/min)の冷却水を、また両側面側から1.2(L/min)の冷却水をそれぞれ供給しながら切断を行った。なお、切断したLEDワーク13の寸法は図3に示す通りである。   However, in this Example 1, the electroformed thin blade grindstone has an outer diameter of 58 mm, an inner diameter of 40 mm, and a thickness (layer thickness of the thin blade abrasive grain layer) of 0.15 mm, and the layer thicknesses of the first to fifth abrasive grain layers are Each is 0.03 mm, the metal plating phase is Ni, the abrasive grains are diamond abrasive grains having a particle diameter of 8/20 μm, and the filler is not dispersed. The cutting conditions were a spindle rotation speed of 18000 (1 / min) and a feed rate of 100 (mm / sec), and 1.6 (L / min) of cooling water from the feed direction side of the thin-blade grindstone toward the cutting site. Further, cutting was performed while supplying 1.2 (L / min) of cooling water from both sides. In addition, the dimension of the cut | disconnected LED workpiece 13 is as showing in FIG.

一方、この実施例1に対する比較例として、実施例1の電鋳薄刃砥石と同様の金属めっき相に同様の砥粒を分散してなる同様の外形寸法の薄刃砥粒層を備え、この薄刃砥粒層がその層厚方向に順次積層された第1〜第3の砥粒層を有してこのうち第1、第3の砥粒層における砥粒含有量が第2の砥粒層における砥粒含有量よりも多くされた3層構造の電鋳薄刃砥石(比較例1)と、第1の砥粒層のみからなる単層構造の電鋳薄刃砥石(比較例2)とにより、同様の条件で発生したバリ14の大きさを測定した。この結果を、第1〜第3の砥粒層の砥粒含有量とともに表1に示す。ただし、比較例1において第1〜第3の砥粒層の層厚は、薄刃砥粒層の層厚0.15mmの1/3であった。   On the other hand, as a comparative example with respect to Example 1, a thin blade abrasive layer having the same outer dimensions formed by dispersing similar abrasive grains in the same metal plating phase as the electroformed thin blade grindstone of Example 1 is provided. The grain layer has first to third abrasive layers sequentially laminated in the layer thickness direction, and the abrasive content in the first and third abrasive layers is the abrasive in the second abrasive layer. The electrocast thin blade whetstone having a three-layer structure (Comparative Example 1) having a larger content than the grain content and the single layer structure electroformed thin blade whetstone (Comparative Example 2) consisting of only the first abrasive layer are the same. The size of the burr 14 generated under the conditions was measured. The results are shown in Table 1 together with the abrasive content of the first to third abrasive layers. However, in Comparative Example 1, the layer thickness of the first to third abrasive grain layers was 1/3 of the layer thickness of the thin blade abrasive grain layer of 0.15 mm.

Figure 0004779580
Figure 0004779580

この表1の結果より、まず薄刃砥粒層が一定の砥粒含有量(25vol%)で砥粒を分散した単一の第1の砥粒層よりなる比較例2では、切断初期から送り方向および下方向のバリ14の大きさX,Yがともに大きく、切断距離が増すに従い漸次増大していって、50m切断時ではX,Yともに100μmを越える大きさとなり、そのまま製品として使用することは不可能であった。また、上記特許文献1に準ずる比較例1では、切断初期のバリ14はX,Yとも小さく抑えられていたものの、切断距離が増すに従って電鋳薄刃砥石に蛇行が生じるようになり、50m切断時では所定のストリートから大きくはみ出すようになって切断自体が不可能となった。これらに対して、本発明に係る実施例1の電鋳薄刃砥石によれば、切断初期からバリの大きさがX,Yともに小さく、50m切断時でも小さく抑えられたままで、しかも蛇行の発生もなく高品位の切断が可能であった。   From the results shown in Table 1, first, in Comparative Example 2 in which the thin-blade abrasive layer is composed of a single first abrasive layer in which abrasive grains are dispersed with a constant abrasive content (25 vol%), the feed direction from the beginning of cutting In addition, both the size X and Y of the burr 14 in the downward direction are large, and gradually increase as the cutting distance increases. When cutting 50 m, both X and Y exceed 100 μm, and can be used as products. It was impossible. Further, in Comparative Example 1 according to Patent Document 1, the burrs 14 at the initial stage of cutting were kept small in both X and Y, but meandering occurred in the electroformed thin blade whetstone as the cutting distance increased. Then, it started to protrude greatly from the predetermined street, and cutting itself became impossible. On the other hand, according to the electroformed thin-blade grindstone of Example 1 according to the present invention, the size of the burrs is small from the beginning of cutting, both X and Y, and is kept small even at the time of cutting 50 m, and the meandering also occurs. High-quality cutting was possible.

次に、本発明の実施例の電鋳薄刃砥石において、第2、第4の砥粒層の砥粒含有量を5vol%で一定として、第1、第3、第5の砥粒層の砥粒含有量を種々に変化させた7種の電鋳薄刃砥石と、逆に第1、第3、第5の砥粒層の砥粒含有量を25vol%で一定として、第2、第4の砥粒層の砥粒含有量を種々に変化させた4種の電鋳薄刃砥石とで、実施例1と同様の条件で同様のLEDワーク13を切断したときのバリ14の大きさX,Yを所定の切断距離ごとに測定した。これらの結果を、それぞれ実施例11〜17および実施例21〜24として表2、3に示す。なお、表3には比較例3として、第2、第4の砥粒層の砥粒含有量を0vol%、すなわち第2、第4の砥粒層に砥粒を分散させなかったものについてもバリ14の大きさX,Yを測定した結果も示す。ただし、各電鋳薄刃砥石の外形寸法、金属めっき相、砥粒、各砥粒層の層厚についても実施例1と同様である。   Next, in the electroformed thin blade grindstone of the embodiment of the present invention, the abrasive content of the second, fourth abrasive layer is constant at 5 vol%, and the abrasive of the first, third, fifth abrasive layer is set. Seven types of electroformed thin blade whetstones with various changes in the grain content, and conversely, the second, fourth, and fourth abrasive grain contents of the first, third, and fifth abrasive layers are constant at 25 vol%. The sizes of burrs 14 when cutting the same LED workpiece 13 under the same conditions as in Example 1 with four types of electroformed thin blade whetstones having various abrasive grain contents in the abrasive layer. Was measured for each predetermined cutting distance. These results are shown in Tables 2 and 3 as Examples 11 to 17 and Examples 21 to 24, respectively. In Table 3, as Comparative Example 3, the abrasive content of the second and fourth abrasive layers is 0 vol%, that is, no abrasive particles are dispersed in the second and fourth abrasive layers. The result of measuring the sizes X and Y of the burr 14 is also shown. However, the outer dimensions, the metal plating phase, the abrasive grains, and the layer thickness of each abrasive grain layer of each electroformed thin blade grindstone are the same as those in the first embodiment.

Figure 0004779580
Figure 0004779580

Figure 0004779580
Figure 0004779580

このうち、まず表2の結果より、第1、第3、第5の砥粒層の砥粒含有量が45vol%と多くされた実施例11では、切断初期の切断距離1mの時点からX,Yともにバリ14が100μmに迫るほど大きく、切断距離が増すに従い著しく増大はしなかったものの、その傾向は50m切断時まで続いて特にYは100μmを越える大きさとなった。また、第1、第3、第5の砥粒層の砥粒含有量が10vol%と少なくされた実施例17では、切断初期はバリ14の発生が少ないものの、切断距離が進むにつれてバリ14の増大量が大きくなってX,Yともに急激に大きなバリ14が発生するようになり、50m切断時には実施例11と略同等の大きなバリ14が生じるようになった。   Among these, first, from the results of Table 2, in Example 11 in which the abrasive content of the first, third, and fifth abrasive layers was increased to 45 vol%, X, X, In both Y, the burrs 14 were so large that they approached 100 μm and did not increase remarkably as the cutting distance increased. However, the tendency continued until 50 m was cut, and in particular, Y exceeded 100 μm. Further, in Example 17 in which the abrasive content of the first, third, and fifth abrasive layers was reduced to 10 vol%, the generation of burrs 14 was small at the initial stage of cutting, but as the cutting distance progressed, As the amount of increase becomes large, large burrs 14 are suddenly generated in both X and Y, and large burrs 14 substantially the same as in Example 11 are generated when cutting 50 m.

これらに対して、第1、第3、第5の砥粒層の砥粒含有量が15〜40vol%とされた実施例12〜16では、実施例11に比べては切断初期のバリ14が小さい一方で、実施例17に比べては切断距離が増すに伴ってのバリ14の増大量がX,Yともに少なく抑制されており、50m切断時でも80μmを下回る大きさに抑えられていた。特に、このうち第1、第3、第5の砥粒層の砥粒含有量が20〜35vol%とされた実施例13〜15では、切断初期のバリ14の大きさおよび50m切断時までの増大量がともにより小さく、すなわち高いバリ抑制効果が安定的に維持されていることが分かる。   On the other hand, in Examples 12 to 16 in which the abrasive content of the first, third, and fifth abrasive layers was 15 to 40 vol%, the burrs 14 at the initial stage of cutting were compared to Example 11. On the other hand, as compared with Example 17, the amount of increase in the burr 14 as the cutting distance was increased was suppressed to a small amount for both X and Y, and was suppressed to less than 80 μm even when cutting 50 m. In particular, in Examples 13 to 15 in which the abrasive content of the first, third, and fifth abrasive layers was 20 to 35 vol%, the size of the burrs 14 at the initial stage of cutting and up to the time of cutting 50 m were obtained. It can be seen that the amount of increase is smaller, that is, a high burr suppression effect is stably maintained.

一方、表3の結果より、第2、第4の砥粒層の砥粒含有量が0vol%、すなわち第2、第4の砥粒層が砥粒を含まない単なるNiめっき相とされた比較例3では、切断初期はバリ14が小さいものの、これら第2、第4の砥粒層の摩耗が著しく、50m切断時前に第1、第5の砥粒層に剥離が生じて切断が不可能となった。また、逆に第2、第4の砥粒層の砥粒含有量が15vol%と他の実施例21〜23よりも多くされた実施例24では、実施例21〜23や比較例2に比べても切断初期からバリ14が大きい傾向となった。   On the other hand, the results of Table 3 show that the abrasive content of the second and fourth abrasive layers is 0 vol%, that is, the second and fourth abrasive layers are simply Ni-plated phases containing no abrasive grains. In Example 3, although the burr 14 is small at the initial stage of cutting, the wear of the second and fourth abrasive layers is significant, and the first and fifth abrasive layers are peeled off before cutting 50 m, so that the cutting is not performed. It has become possible. On the contrary, in Example 24 in which the abrasive content of the second and fourth abrasive layers is 15 vol%, which is higher than those of other Examples 21 to 23, compared to Examples 21 to 23 and Comparative Example 2. However, the burr 14 tended to be large from the beginning of cutting.

これらに対し、第2、第4の砥粒層の砥粒含有量を1〜10vol%とした実施例21〜23では、切断初期のバリ14がX,Yともに小さく、しかも50m切断時までのバリ14の増大量も小さく抑制されており、特に第2、第4の砥粒層の砥粒含有量を5vol%とした実施例22ではその傾向が顕著である。また、次表4、5は、第1、第3、第5の砥粒層の砥粒含有量をそれぞれ35vol%、20vol%として、第2、第4の砥粒層の砥粒含有量1〜10vol%とした実施例31〜33および実施例41〜43による結果を示すものであるが、表3の実施例21〜23と同様の傾向が認められる。   On the other hand, in Examples 21 to 23 in which the abrasive content of the second and fourth abrasive layers was 1 to 10 vol%, the burrs 14 at the initial stage of cutting were small in both X and Y, and up to 50 m cutting time. The increase amount of the burr 14 is also suppressed to a small value, and this tendency is particularly remarkable in Example 22 in which the abrasive grain content of the second and fourth abrasive grain layers is 5 vol%. Tables 4 and 5 show that the abrasive content of the first, third, and fifth abrasive layers is 35 vol% and 20 vol%, respectively, and the abrasive content 1 of the second and fourth abrasive layers is 1, respectively. Although the result by Examples 31-33 and Examples 41-43 set to 10 vol% is shown, the tendency similar to Examples 21-23 of Table 3 is recognized.

Figure 0004779580
Figure 0004779580

Figure 0004779580
Figure 0004779580

次いで、表6は、第1、第3、第5の砥粒層の砥粒含有量を25vol%、第2、第4の砥粒層の砥粒含有量を5vol%として、これら第1、第3、第5の砥粒層の層厚と第2、第4の砥粒層の層厚とを変化させた実施例51〜55による切断結果を示すものであり、他の条件等は実施例1と同様であって、すなわち薄刃砥粒層全体の層厚は0.15mmで共通である。   Next, Table 6 shows that the first, third, and fifth abrasive layers have an abrasive content of 25 vol%, the second and fourth abrasive layers have an abrasive content of 5 vol%, and the first, The cutting | disconnection result by Examples 51-55 which changed the layer thickness of the 3rd, 5th abrasive grain layer and the layer thickness of the 2nd, 4th abrasive grain layer is shown, Other conditions etc. are implemented. It is the same as that of Example 1, ie, the layer thickness of the whole thin blade abrasive grain layer is 0.15 mm, and is common.

Figure 0004779580
Figure 0004779580

この表6の結果より、第1、第3、第5の砥粒層の層厚が0.02mmで薄刃砥粒層の層厚の1/6(0.025mm)よりも薄くされ、また第2、第4の砥粒層の層厚が0.045mmで薄刃砥粒層の層厚の1/4(0.0375mm)よりも厚くされた実施例51では、特に下方向のバリ14の大きさYが切断初期から大きく、その傾向は50m切断時まで続いた。一方、逆に第1、第3、第5の砥粒層の層厚が0.04mmで薄刃砥粒層の層厚の1/4よりも厚く、また第2、第4の砥粒層の層厚が0.015mmで薄刃砥粒層の層厚の1/6より薄くされた実施例55では、特に送り方向のバリ14の大きさXおよびその増大量が切断初期から50m切断時にかけて大きい。   From the results of Table 6, the thicknesses of the first, third, and fifth abrasive layers are 0.02 mm, which is thinner than 1/6 (0.025 mm) of the thin-blade abrasive layer, 2. In Example 51 in which the layer thickness of the fourth abrasive layer is 0.045 mm and is larger than 1/4 (0.0375 mm) of the thin blade abrasive layer, the size of the burr 14 in the downward direction is particularly large. The length Y was large from the beginning of cutting, and this tendency continued until cutting 50 m. On the other hand, the thickness of the first, third, and fifth abrasive layers is 0.04 mm, which is larger than 1/4 of the thickness of the thin-blade abrasive layer, and the second and fourth abrasive layers are In Example 55 in which the layer thickness was 0.015 mm and less than 1/6 of the layer thickness of the thin-blade abrasive layer, the size X of the burr 14 in the feed direction and the amount of increase were particularly large from the initial cutting to the 50 m cutting. .

これらに対して、第1〜第5の砥粒層の層厚がいずれも薄刃砥粒層全体の層厚の1/6〜1/4の範囲内とされた実施例52〜54では、切断初期のバリ14およびその増大量がX,Yともに小さく、特に第1〜第5の砥粒層の層厚が互いに等しく、すなわち薄刃砥粒層の層厚の1/5(0.03mm)とされた実施例53では、この傾向が最も顕著である。   On the other hand, in Examples 52 to 54 in which the layer thicknesses of the first to fifth abrasive layers are all within the range of 1/6 to 1/4 of the layer thickness of the entire thin blade abrasive layer, cutting is performed. The initial burr 14 and the amount of increase thereof are small in both X and Y, and the layer thicknesses of the first to fifth abrasive grain layers are particularly equal to each other, that is, 1/5 (0.03 mm) of the layer thickness of the thin blade abrasive grain layer. In Example 53, this tendency is most prominent.

最後に、表7は、やはり第1、第3、第5の砥粒層の砥粒含有量を25vol%、第2、第4の砥粒層の砥粒含有量を5vol%として、この砥粒の粒径を種々に変化させた実施例61〜65による切断結果を示すものであり、他の条件等は実施例1と同様である。   Finally, Table 7 shows that the abrasive content of the first, third, and fifth abrasive layers is 25 vol%, and the abrasive content of the second and fourth abrasive layers is 5 vol%. The cutting result by Examples 61-65 which changed the particle size of the particle | grains variously is shown, Other conditions etc. are the same as that of Example 1. FIG.

Figure 0004779580
Figure 0004779580

この表7の結果より、まず砥粒径が薄刃砥粒層全体の層厚の1/5(0.03mm)を越える30/40μmである実施例65では、切断初期からバリ14がX,Yともに大きく、増大量はそれほど大きくはないものの、その傾向は50m切断時まで続いた。これに対して、砥粒径が薄刃砥粒層全体の層厚の1/5以下とされた実施例61〜64では、切断初期からバリ14が小さく、しかも切断距離が増すのに伴う増大量も少なくて、50m切断時でも十分小さく抑えられている。ただし、砥粒径が薄刃砥粒層全体の層厚の1/30(0.005mm)を下回る実施例61では、バリ14自体は小さいものの、LEDワーク13のガラスエポキシ樹脂よりなる基盤12に焼けが生じており、そのまま製品とするには不適とされた。   From the results shown in Table 7, in Example 65 where the abrasive grain size is 30/40 μm, which exceeds 1/5 (0.03 mm) of the entire thickness of the thin blade abrasive grain layer, the burrs 14 are X, Y from the beginning of cutting. Although both were large and the amount of increase was not so large, the trend continued until cutting 50 m. On the other hand, in Examples 61 to 64 in which the abrasive grain size was set to 1/5 or less of the entire thickness of the thin-blade abrasive grain layer, the burr 14 was small from the initial stage of cutting, and the amount increased as the cutting distance increased. However, it is sufficiently small even when cutting 50 m. However, in Example 61 in which the abrasive grain size is less than 1/30 (0.005 mm) of the total thickness of the thin-blade abrasive grain layer, the burr 14 itself is small, but the LED work 13 is burned on the base 12 made of glass epoxy resin. It was unsuitable for a product as it was.

本発明の一実施形態を示す電鋳薄刃砥石の側面図である。It is a side view of the electroformed thin blade grindstone which shows one Embodiment of this invention. 図1に示す実施形態の薄刃砥粒層1の外周縁部の拡大断面図である。It is an expanded sectional view of the outer periphery part of the thin blade abrasive grain layer 1 of embodiment shown in FIG. 本発明の実施例および比較例によって切断したLEDワーク13の断面図である。It is sectional drawing of the LED workpiece 13 cut | disconnected by the Example and comparative example of this invention.

符号の説明Explanation of symbols

1 薄刃砥粒層
1A 第1の砥粒層
1B 第2の砥粒層
1C 第3の砥粒層
1D 第4の砥粒層
1E 第5の砥粒層
2 金属めっき相
3 砥粒
4 フィラー
DESCRIPTION OF SYMBOLS 1 Thin blade abrasive grain layer 1A 1st abrasive grain layer 1B 2nd abrasive grain layer 1C 3rd abrasive grain layer 1D 4th abrasive grain layer 1E 5th abrasive grain layer 2 Metal plating phase 3 Abrasive grain 4 Filler

Claims (4)

金属めっき相に砥粒を分散してなる薄刃砥粒層を備え、この薄刃砥粒層は、該薄刃砥粒層の層厚方向に順次積層された第1〜第5の砥粒層を有していて、このうち第1、第3、第5の砥粒層における上記砥粒の含有量が、第2、第4の砥粒層における上記砥粒の含有量よりも多くされているとともに、これら第1〜第5の砥粒層に分散される上記砥粒は同種のものであって、一定の平均粒径のものとされていることを特徴とする電鋳薄刃砥石。 A thin-blade abrasive layer is formed by dispersing abrasive grains in the metal plating phase, and this thin-blade abrasive layer has first to fifth abrasive layers sequentially laminated in the layer thickness direction of the thin-blade abrasive layer. If you are, of first, third, the content of the abrasive grains in the fifth abrasive layer of a second, with being more than the content of the abrasive grains in the fourth abrasive grain layer of The above-mentioned abrasive grains dispersed in the first to fifth abrasive grain layers are of the same type and have a constant average particle diameter . 上記第1、第3、第5の砥粒層における上記砥粒の含有量が15〜40vol%の範囲内であり、上記第2、第4の砥粒層における上記砥粒の含有量が1〜10vol%の範囲内であることを特徴とする請求項1に記載の電鋳薄刃砥石。   The content of the abrasive grains in the first, third, and fifth abrasive layers is in the range of 15 to 40 vol%, and the content of the abrasive grains in the second and fourth abrasive layers is 1. The electroformed thin-blade grindstone according to claim 1, which is in a range of -10 vol%. 上記第1〜第5の砥粒層の層厚が、いずれも上記薄刃砥粒層全体の層厚の1/6〜1/4の範囲内であることを特徴とする請求項1または請求項2に記載の電鋳薄刃砥石。   The thickness of each of the first to fifth abrasive grain layers is within a range of 1/6 to 1/4 of the layer thickness of the entire thin blade abrasive grain layer. 2. An electroformed thin-blade grindstone according to 2. 上記砥粒の粒径が、上記薄刃砥粒層全体の層厚の1/5以下とされていることを特徴とする請求項1〜請求項3のいずれかに記載の電鋳薄刃砥石。
The electroformed thin blade grindstone according to any one of claims 1 to 3, wherein the grain size of the abrasive grains is 1/5 or less of the layer thickness of the entire thin blade abrasive grain layer.
JP2005319286A 2005-11-02 2005-11-02 Electroformed thin blade whetstone Active JP4779580B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005319286A JP4779580B2 (en) 2005-11-02 2005-11-02 Electroformed thin blade whetstone
TW095139492A TWI314497B (en) 2005-11-02 2006-10-26 Eletro deposited thin grinding stone blade
KR1020060106965A KR20070047705A (en) 2005-11-02 2006-11-01 Electrocast thin blade abrasive media
CNA2006101436102A CN1958239A (en) 2005-11-02 2006-11-02 Electroforming thin edge grinding wheel
CN201410070821.2A CN104029136B (en) 2005-11-02 2006-11-02 Electroforming thin edge grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005319286A JP4779580B2 (en) 2005-11-02 2005-11-02 Electroformed thin blade whetstone

Publications (2)

Publication Number Publication Date
JP2007125636A JP2007125636A (en) 2007-05-24
JP4779580B2 true JP4779580B2 (en) 2011-09-28

Family

ID=38070170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005319286A Active JP4779580B2 (en) 2005-11-02 2005-11-02 Electroformed thin blade whetstone

Country Status (4)

Country Link
JP (1) JP4779580B2 (en)
KR (1) KR20070047705A (en)
CN (2) CN1958239A (en)
TW (1) TWI314497B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5651045B2 (en) * 2011-02-28 2015-01-07 株式会社東京精密 Cutting blade
JP6194600B2 (en) * 2013-02-15 2017-09-13 山形県 Composite plating film and thin grindstone using the same
JP6233928B2 (en) * 2014-02-28 2017-11-22 国立大学法人 岡山大学 Grinding grain adhesion device
JP6211472B2 (en) * 2014-06-26 2017-10-11 株式会社ノリタケカンパニーリミテド Segment chip
JP2016168660A (en) * 2015-03-13 2016-09-23 株式会社ディスコ Grinding wheel
JP6668178B2 (en) * 2015-06-23 2020-03-18 株式会社ノリタケカンパニーリミテド Segment chip
JP6872342B2 (en) * 2016-10-18 2021-05-19 株式会社ディスコ Cutting blade
JP2019102757A (en) * 2017-12-07 2019-06-24 株式会社ディスコ Method for cutting qfn package substrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783372A (en) * 1980-10-31 1982-05-25 Yasuo Arakawa Metal bond grinder element composed of main and auxiliary grinding layers
JPH081651B2 (en) * 1986-12-10 1996-01-10 富士通株式会社 Data registration device
JPH0730279Y2 (en) * 1987-03-17 1995-07-12 三菱マテリアル株式会社 Electroformed thin blade grindstone
JP2001212769A (en) * 2000-01-31 2001-08-07 Allied Material Corp Super-abrasive grain wheel
JP3823830B2 (en) * 2002-01-10 2006-09-20 三菱マテリアル株式会社 Electroformed thin blade whetstone

Also Published As

Publication number Publication date
TWI314497B (en) 2009-09-11
KR20070047705A (en) 2007-05-07
CN104029136A (en) 2014-09-10
CN104029136B (en) 2017-05-31
JP2007125636A (en) 2007-05-24
CN1958239A (en) 2007-05-09
TW200726583A (en) 2007-07-16

Similar Documents

Publication Publication Date Title
JP4779580B2 (en) Electroformed thin blade whetstone
KR20020060735A (en) Ultra abrasive grain wheel f0r mirror finish
JP6309161B2 (en) Abrasive
KR101151051B1 (en) Sharp-edge grinding wheel
JPS63174877A (en) Electroformed thin blade grinding stone
JP4141454B2 (en) Grinding wheel
JP4852892B2 (en) Truing tool and grinding tool truing method
JP2006082187A (en) Thin blade grinding wheel
JP2009006409A (en) Thin edge grinding wheel
JP5566189B2 (en) Thin blade
JPH0730279Y2 (en) Electroformed thin blade grindstone
JP2006062009A (en) Resin-bond thin blade grinding wheel
JP5567900B2 (en) Electrodeposition whetstone and method for manufacturing the same
JP2010173015A (en) Nickel-plated film, cutting tool using the nickel-plated film, and method of forming the nickel-plated film
JP4896114B2 (en) Electrodeposition tool manufacturing method
JP3823830B2 (en) Electroformed thin blade whetstone
JP2008238304A (en) Cutting electrodeposition blade
JP3006458B2 (en) Inner circumference grinding wheel
JP2009006407A (en) Thin edge grinding wheel
JP2005288614A (en) Ultra-thin blade grinding wheel and its manufacturing method
JP4419652B2 (en) Grinding wheel and method for manufacturing the same
JP2972629B2 (en) Inner peripheral blade
JP2004268237A (en) Method of manufacturing electrodeposition tool
CN107953224A (en) Cutting tool
JP2004268238A (en) Electrodeposition tool and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4779580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250