JP5567900B2 - Electrodeposition whetstone and method for manufacturing the same - Google Patents

Electrodeposition whetstone and method for manufacturing the same Download PDF

Info

Publication number
JP5567900B2
JP5567900B2 JP2010117681A JP2010117681A JP5567900B2 JP 5567900 B2 JP5567900 B2 JP 5567900B2 JP 2010117681 A JP2010117681 A JP 2010117681A JP 2010117681 A JP2010117681 A JP 2010117681A JP 5567900 B2 JP5567900 B2 JP 5567900B2
Authority
JP
Japan
Prior art keywords
abrasive
layer
abrasive grains
grain
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010117681A
Other languages
Japanese (ja)
Other versions
JP2011245561A (en
Inventor
和正 北村
智毅 長江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2010117681A priority Critical patent/JP5567900B2/en
Publication of JP2011245561A publication Critical patent/JP2011245561A/en
Application granted granted Critical
Publication of JP5567900B2 publication Critical patent/JP5567900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Description

本発明は各種用途に使用される電着砥石及びその製造方法に関する。より詳しくは、砥粒密度が好適な範囲に制御され、研削時の目詰まりの少ない電着砥石及びその製造方法に関する。   The present invention relates to an electrodeposition grindstone used for various applications and a method for producing the same. More specifically, the present invention relates to an electrodeposited grindstone whose abrasive density is controlled within a suitable range and less clogging during grinding, and a method for producing the same.

電着砥石は、導電性を有する砥石台金の砥粒層形成面に、ダイヤモンドやCBN等の超砥粒を金属めっき層により固着したものであり、メタルボンド砥石やレジンボンド砥石、ビトリファイドボンド砥石に比べて結合剤層の強度が高く、高能率研削が可能であることから、様々な用途、例えばCMP(ケミカルメカニカルポリッシング)用のポリッシングパッドのコンディショニングをはじめ、プラスチック、ガラス、金属、セラミックスなどの研削加工に用いられている。しかしながら、電着砥石においては、その製造工程にて、先に砥粒を台金に撒き、その後からめっきによる固着を行うという性質上、砥粒密度を制御することが非常に困難である。   Electrodeposited whetstones are those in which superabrasive grains such as diamond and CBN are fixed to the surface of the conductive grindstone base metal by a metal plating layer. The strength of the binder layer is higher than that of high-performance grinding and high-efficiency grinding is possible. For example, conditioning of polishing pads for CMP (Chemical Mechanical Polishing), plastic, glass, metal, ceramics, etc. Used for grinding. However, in an electrodeposition grindstone, it is very difficult to control the abrasive density due to the property that in the production process, the abrasive grains are first spread on a base metal and then fixed by plating.

砥石の砥粒密度が低すぎると、少ない数の砥粒で断続的に被加工物が加工されることとなり、被加工物に対する負荷が増すため、特にセラミックス加工においては、欠け不良の原因となる。また、砥粒の磨耗が進行しやすく、砥石寿命が短くなる。一方、砥粒密度が高すぎると、切粉等の入り込むチップポケットの容積が小さくなるので、砥石が目詰まりをおこしやすくなり、研削抵抗の上昇により加工能率の低下を招く。このように、砥粒密度は、砥石の研削特性に大きく影響する重要な因子であるため、電着砥石においては、従来その制御が課題とされてきた。   If the abrasive grain density of the grindstone is too low, the workpiece will be processed intermittently with a small number of abrasive grains, and the load on the workpiece will increase, causing chipping defects, especially in ceramic processing. . In addition, the wear of the abrasive grains easily proceeds, and the life of the grindstone is shortened. On the other hand, if the abrasive grain density is too high, the volume of the chip pocket into which chips and the like enter becomes small, so that the grindstone is likely to be clogged, and the processing efficiency is lowered due to an increase in grinding resistance. Thus, since the abrasive density is an important factor that greatly affects the grinding characteristics of the grindstone, the control of the electrodeposition grindstone has heretofore been a problem.

上記課題を解決する方法として、例えば特許文献1には、粒径の等しい超砥粒を多層状に分散させ砥粒分布の均一化を図ることが開示されているが、最下層の砥粒についてはマスキングによって位置決めされているため、その分の工程数が余分に発生し、コスト高となるという問題があった。また、特許文献2には、砥石台金に砥粒の収まる溝を等ピッチで刻み、粒径の等しい砥粒からなる二層構造の砥粒層を形成することによって、砥粒間隔を制御する方法が開示されているが、例えば厚みの薄い研削ホイールなど特定の形状の砥石においては、その端面に凹凸加工を施すには多大な工程数を要するため、適さないという問題があった。更に、特許文献3には、点状接着剤を用いて一個一個の砥粒の位置決めを行い、砥粒密度を制御する方法が開示されているが、この方法についても、非常に多くの工程数を要するため、コスト高となることが避けられない。   As a method for solving the above-mentioned problem, for example, Patent Document 1 discloses that superabrasive grains having the same grain size are dispersed in a multilayered manner to make the abrasive grain distribution uniform. Since the positioning is performed by masking, there is a problem in that the number of processes is excessive and the cost is increased. Further, in Patent Document 2, a groove in which abrasive grains are contained in a grindstone base metal is cut at an equal pitch, and an abrasive grain layer having a two-layer structure composed of abrasive grains having equal grain diameters is formed to control the abrasive grain spacing. Although a method has been disclosed, for example, a grindstone having a specific shape such as a thin grinding wheel has a problem that it is not suitable because it requires a large number of steps to perform uneven processing on its end face. Further, Patent Document 3 discloses a method for positioning the abrasive grains one by one using a point adhesive and controlling the abrasive density, but this method also has a very large number of steps. Therefore, the cost is inevitable.

特開平6−254768号公報JP-A-6-254768 特開平7−314334号公報JP-A-7-314334 特開2000−153463号公報JP 2000-153463 A

本発明は、上記のような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、被加工物や加工条件に合わせた最適な砥粒密度を有する電着砥石及びその製造方法を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and the problem is that an electrodeposition grindstone having an optimum abrasive density according to the workpiece and processing conditions, and It is in providing the manufacturing method.

本発明の発明者は、上記課題に鑑み、鋭意検討した結果、平均粒径の異なる2種の砥粒を用い、平均粒径の大きい砥粒を敷き詰めて形成した砥粒層の上に平均粒径の小さい砥粒を重ね、2層式の砥粒層を形成することによって、砥粒密度が所望の範囲に制御された電着砥石を簡易に製造可能であることを見出した。即ち、本発明によれば、以下の電着砥石及びその製造方法が提供される。   The inventor of the present invention has intensively studied in view of the above problems, and as a result of using two types of abrasive grains having different average particle diameters, the average grains are formed on the abrasive grain layer formed by spreading abrasive grains having a large average particle diameter. It has been found that by depositing abrasive grains having a small diameter and forming a two-layered abrasive grain layer, an electrodeposition grindstone whose grain density is controlled within a desired range can be easily produced. That is, according to the present invention, the following electrodeposition grindstone and the manufacturing method thereof are provided.

[1] 砥石台金と、前記砥石台金の砥粒層形成面に形成された砥粒層とを有する電着砥石であって、前記砥粒層は、前記砥粒層形成面に、単層状に配置された第一の砥粒が、前記第一の砥粒の平均粒径の5〜75%の厚さの第一のめっき層によって前記砥粒層形成面に固着されてなる第一の砥粒層と、前記第一のめっき層から露出する前記第一の砥粒の形成する間隙に単層状に配置された、前記第一の砥粒よりも平均粒径の小さい第二の砥粒が、前記第一の砥粒を完全に覆う厚さの第二のめっき層によって前記第一の砥粒層に固着されてなる第二の砥粒層とを有する電着砥石。 [1] An electrodeposited grindstone having a grindstone base metal and an abrasive layer formed on an abrasive layer forming surface of the grindstone base metal, wherein the abrasive layer is formed on the abrasive layer forming surface. The first abrasive grains arranged in layers are fixed to the abrasive grain formation surface by a first plating layer having a thickness of 5 to 75% of the average grain diameter of the first abrasive grains. And a second abrasive having an average particle size smaller than that of the first abrasive grains, which is disposed in a single layer in the gap formed by the first abrasive grains exposed from the first plating layer. An electrodeposited grindstone having a second abrasive layer in which the grains are fixed to the first abrasive layer by a second plating layer having a thickness that completely covers the first abrasive.

[2] 砥石台金の砥粒層形成面に砥粒層の形成された電着砥石の製造方法であって、前記砥粒層形成面に、第一の砥粒を単層状に配置し、前記第一の砥粒の平均粒径の5〜75%の厚さの第一のめっき層を形成することによって、前記第一の砥粒を固着させ、第一の砥粒層を形成する第一工程と、前記第一のめっき層から露出する前記第一の砥粒の形成する間隙に、前記第一の砥粒よりも平均粒径の小さい第二の砥粒を単層状に配置し、前記第一の砥粒を完全に覆う厚さの第二のめっき層を形成することよって、前記第二の砥粒を固着させ、第二の砥粒層を形成する第二工程とを有する電着砥石の製造方法。 [2] A method for producing an electrodeposited whetstone in which an abrasive layer is formed on an abrasive layer forming surface of a grindstone base metal, wherein the first abrasive grains are arranged in a single layer on the abrasive layer forming surface, Forming a first plating layer having a thickness of 5 to 75% of an average particle diameter of the first abrasive grains, thereby fixing the first abrasive grains and forming a first abrasive grain layer; In one step, in the gap formed by the first abrasive grains exposed from the first plating layer, the second abrasive grains having an average particle size smaller than the first abrasive grains are arranged in a single layer, Forming a second plating layer having a thickness that completely covers the first abrasive grains, thereby fixing the second abrasive grains and forming a second abrasive grain layer. Manufacturing method of a grinding stone.

[3] 前記砥粒層における前記第二の砥粒の密度を、前記第一の砥粒及び前記第二の砥粒の平均粒径の差によって制御する前記[2]に記載の電着砥石の製造方法。 [3] The electrodeposition grindstone according to [2], wherein the density of the second abrasive grains in the abrasive grain layer is controlled by a difference in average particle diameter between the first abrasive grains and the second abrasive grains. Manufacturing method.

[4] 前記砥粒層における前記第二の砥粒の突き出し高さを、前記第一の砥粒を固着させる第一のめっき層の厚さによって制御する前記[2]又は[3]に記載の電着砥石の製造方法。 [4] The above [2] or [3], wherein the protruding height of the second abrasive grain in the abrasive layer is controlled by the thickness of the first plating layer to which the first abrasive grain is fixed. Method for producing an electrodeposited grinding wheel.

[5] 前記砥粒層における前記第二の砥粒の保持力を、前記第一の砥粒を固着させる第一のめっき層の厚さによって制御する前記[2]又は[3]に記載の電着砥石の製造方法。 [5] The above-mentioned [2] or [3], wherein the holding power of the second abrasive grains in the abrasive grain layer is controlled by the thickness of the first plating layer that fixes the first abrasive grains. A method for producing an electrodeposited whetstone.

本発明の電着砥石は、被加工品及び加工条件に合わせて砥粒密度が適切な範囲に制御されているため、切粉等の目詰まりによる研削能力の低下を防止することができる。また、砥粒層が二層構造となっているため砥粒保持力が高く、脱粒を防止することにより砥石の寿命を向上させることができる。更に、本発明の電着砥石の製造方法によれば、上記の電着砥石を短納期にて安価に製造することが可能である。   In the electrodeposition grindstone of the present invention, the abrasive density is controlled in an appropriate range in accordance with the workpiece and processing conditions, so that it is possible to prevent a reduction in grinding ability due to clogging of chips and the like. Moreover, since the abrasive grain layer has a two-layer structure, the abrasive grain holding power is high, and the life of the grindstone can be improved by preventing degranulation. Furthermore, according to the method for producing an electrodeposition grindstone of the present invention, it is possible to produce the electrodeposition grindstone at a low cost with a short delivery time.

本発明の電着砥石の一実施形態を示す模式的断面図である。It is typical sectional drawing which shows one Embodiment of the electrodeposition grindstone of this invention. 本発明の電着砥石の別の実施形態を示す模式的断面図である。It is typical sectional drawing which shows another embodiment of the electrodeposition grindstone of this invention. 従来の電着砥石の一実施形態を示す模式的断面図である。It is typical sectional drawing which shows one Embodiment of the conventional electrodeposition grindstone. 従来の電着砥石の別の実施形態を示す模式的断面図である。It is typical sectional drawing which shows another embodiment of the conventional electrodeposition grindstone. 従来の電着砥石の更に別の実施形態を示す模式的断面図である。It is typical sectional drawing which shows another embodiment of the conventional electrodeposition grindstone. 従来の電着砥石の更に別の実施形態を示す模式的断面図である。It is typical sectional drawing which shows another embodiment of the conventional electrodeposition grindstone. 本発明の電着砥石の製造工程の一実施形態を示す模式的断面図である。It is typical sectional drawing which shows one Embodiment of the manufacturing process of the electrodeposition grindstone of this invention.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

図1及び図2は、本発明の電着砥石の各実施形態を示す模式的断面図であり、図3A〜Dは、従来の電着砥石の各実施形態を示す模式的断面図である。従来の電着砥石の実施形態のうち、図3B〜Dに示す電着砥石10b,10c,10dは、特に砥粒密度の制御がなされたものであるが、例えば図3Bに示す電着砥石10bは、砥粒層形成面3における砥粒4の位置決めにマスキング等の工程を必要とし、図3Cに示す電着砥石10cは、電着工程の前段階として砥石台金2への加工工程を必要とし、図3Dに示す電着砥石10dは、接着剤7の塗布による砥粒4の個別の位置決めを必要とする。即ち、いずれも多大な工程数及びコストを要するものである。一方、図1及び図2に示す本発明の電着砥石1a,1bは、粒径の異なる二種の砥粒4a,4bを用いた二層構造の砥粒層6を有するものであり、図3Aに示す単層の砥粒層6からなる従来の電着砥石10aと同様の製造技術を用いるため、製造に要する時間やコストを抑えることができる。   FIG.1 and FIG.2 is typical sectional drawing which shows each embodiment of the electrodeposition grindstone of this invention, and FIG. 3A-D is typical sectional drawing which shows each embodiment of the conventional electrodeposition grindstone. Among the embodiments of the conventional electrodeposition grindstone, the electrodeposition grindstones 10b, 10c, and 10d shown in FIGS. 3B to 3D are those in which the abrasive density is particularly controlled. For example, the electrodeposition grindstone 10b shown in FIG. 3B. Requires a process such as masking for positioning the abrasive grains 4 on the abrasive layer forming surface 3, and the electrodeposition grindstone 10c shown in FIG. 3C requires a processing process to the grindstone base metal 2 as a pre-stage of the electrodeposition process. The electrodeposition grindstone 10 d shown in FIG. 3D requires individual positioning of the abrasive grains 4 by application of the adhesive 7. That is, both require a large number of steps and cost. On the other hand, the electrodeposition grindstones 1a and 1b of the present invention shown in FIGS. 1 and 2 have a two-layered abrasive grain layer 6 using two kinds of abrasive grains 4a and 4b having different grain sizes. Since the manufacturing technique similar to that of the conventional electrodeposition grindstone 10a including the single-layer abrasive grain layer 6 shown in 3A is used, the time and cost required for the manufacturing can be suppressed.

具体的には、本発明の電着砥石1a,1bは、砥石台金2の砥粒層形成面3に、第一の砥粒4aが第一のめっき層5aによって固着された第一の砥粒層6aが形成されており、更にその上に、第二の砥粒4bが第二のめっき層5bによって固着された第二の砥粒層6bが形成されている。ここで第一の砥粒4aとは、平均粒径の異なる二種類の砥粒のうち、平均粒径の大きい方の砥粒を指し、第二の砥粒4bとは、平均粒径の異なる二種類の砥粒のうち、平均粒径の小さい方の砥粒を指す。また、第一の砥粒層6aとは、第一の砥粒4a及び第一のめっき層5aを合わせた部分を指し、第二の砥粒層6bとは、第二の砥粒4b及び第二のめっき層5bを合わせた部分を指す。更に、砥粒層6とは、第一の砥粒層6a及び第二の砥粒層6bを合わせた部分を指す。   Specifically, the electrodeposition grindstones 1a and 1b of the present invention are the first abrasive grains in which the first abrasive grains 4a are fixed to the abrasive grain formation surface 3 of the grindstone base metal 2 by the first plating layer 5a. A grain layer 6a is formed, and a second abrasive grain layer 6b in which the second abrasive grain 4b is fixed by the second plating layer 5b is further formed thereon. Here, the first abrasive grain 4a refers to an abrasive grain having a larger average grain diameter among two kinds of abrasive grains having different average grain diameters, and the second abrasive grain 4b has a different average grain diameter. Among the two types of abrasive grains, it refers to the abrasive grain having the smaller average particle diameter. Moreover, the 1st abrasive grain layer 6a points out the part which match | combined the 1st abrasive grain 4a and the 1st plating layer 5a, and the 2nd abrasive grain layer 6b is the 2nd abrasive grain 4b and the 2nd abrasive grain. The part which match | combined the 2nd plating layer 5b is pointed out. Furthermore, the abrasive grain layer 6 refers to a portion where the first abrasive grain layer 6a and the second abrasive grain layer 6b are combined.

砥石台金2は、電着砥石1a,1bの基材となるもので、導電性を有するものであれば特にその材質は限定されないが、従来の電着砥石において慣用され、且つめっき付けが可能なものとして、例えばステンレス鋼、タングステン、チタン、モリブデンなどの金属や合金等が好適に用いられる。また、砥石台金2の形状についても特に制限はなく、最終製品である電着砥石1a,1bの用途に応じて適宜選択することができる。   The grindstone base 2 is a base material for the electrodeposition grindstones 1a and 1b, and the material is not particularly limited as long as it has conductivity, but it is commonly used in conventional electrodeposition grindstones and can be plated. For example, metals and alloys such as stainless steel, tungsten, titanium, and molybdenum are preferably used. Moreover, there is no restriction | limiting in particular also about the shape of the grindstone base metal 2, and it can select suitably according to the use of the electrodeposition grindstone 1a, 1b which is a final product.

第一の砥粒4aは、砥石台金2の砥粒層形成面3を覆うよう単層状に配置されながら、第一のめっき層5aによって砥粒層形成面3へと固着されている。ここで、第一のめっき層5aは、第一の砥粒4aが第一のめっき層5aから適度に露出するよう、第一の砥粒4aの平均粒径の5〜75%の厚みを有していることが好ましい。即ち、第一のめっき層5aは、第一の砥粒4aが砥石台金2の砥粒層形成面3へ固着される最低限の厚さを有していればよいが、その厚さが第一の砥粒4aの平均粒径の75%を越えると、第一の砥粒4aが第一のめっき層5aからほとんど露出しなくなり、第二の砥粒4bを配置するための間隙を確保することができなくなるため好ましくない。   The first abrasive grain 4 a is fixed to the abrasive grain layer forming surface 3 by the first plating layer 5 a while being arranged in a single layer so as to cover the abrasive grain layer forming face 3 of the grindstone base 2. Here, the first plating layer 5a has a thickness of 5 to 75% of the average particle diameter of the first abrasive grains 4a so that the first abrasive grains 4a are appropriately exposed from the first plating layer 5a. It is preferable. That is, the first plating layer 5a may have a minimum thickness that allows the first abrasive grains 4a to be fixed to the abrasive layer forming surface 3 of the grindstone base metal 2. When it exceeds 75% of the average grain size of the first abrasive grains 4a, the first abrasive grains 4a are hardly exposed from the first plating layer 5a, and a gap for arranging the second abrasive grains 4b is secured. This is not preferable because it cannot be performed.

第二の砥粒4bは、第一のめっき層5aから露出する第一の砥粒4aの間に形成される間隙に嵌るよう単層状に配置されながら、第二のめっき層5bによって、第一の砥粒層6aへと固着されている。このように配置されることによって、第二の砥粒4bが、隣り合う第一の砥粒4aの中間位置に分散配置される確率が高くなり、整然とした二層構造と均一な砥粒分布を有する砥粒層6とすることができる。また、第二の砥粒4bを、第一の砥粒4aが直接又は第二のめっき層5bを介して間接に支える構造であるため、研削時の砥粒保持力の高い、即ち第二の砥粒4bの脱粒しにくい電着砥石とすることができる。ここで第二のめっき層5bは、第一のめっき層5aから露出する第一の砥粒4aが、完全に隠れる厚さを有することが好ましい。第一の砥粒4aが第二のめっき層5bからも露出していると、最終製品である電着砥石において所望の砥石密度及び研削能力とならなくなる場合があり、好ましくない。   While the second abrasive grains 4b are arranged in a single layer so as to fit in the gap formed between the first abrasive grains 4a exposed from the first plating layer 5a, Are fixed to the abrasive layer 6a. By arranging in this way, the probability that the second abrasive grains 4b are dispersedly arranged at the intermediate positions of the adjacent first abrasive grains 4a is increased, and an orderly two-layer structure and uniform abrasive grain distribution are obtained. It can be set as the abrasive grain layer 6 which has. Further, since the second abrasive grain 4b is supported by the first abrasive grain 4a directly or indirectly via the second plating layer 5b, the abrasive grain holding power during grinding is high, that is, the second abrasive grain 4b. It can be set as the electrodeposition grindstone in which the abrasive grain 4b is hard to fall off. Here, the second plating layer 5b preferably has such a thickness that the first abrasive grains 4a exposed from the first plating layer 5a are completely hidden. If the first abrasive grains 4a are also exposed from the second plating layer 5b, the electrodeposition grindstone as the final product may not have a desired grindstone density and grinding ability, which is not preferable.

図2の電着砥石1bでは、図1の電着砥石1aと比べて、第一の砥粒4aの平均粒径が大きくなっている。即ち、図2の電着砥石1bでは、単位面積当たりの第一の砥粒4aの数が、図1の電着砥石1aと比べて少なくなっており、それに比例して、第一のめっき層5aから露出した第一の砥粒図4aの形成する間隙に配置される単位面積当たりの第二の砥粒4bの数も少なくなっている。結果として、図2の電着砥石1bにおいては、図1の電着砥石1aよりも、砥粒密度が低くなっている。ここで砥粒密度とは、電着砥石の砥粒層表面における単位面積あたりの砥粒の個数を指すが、図1及び図2においては、砥粒密度を示す指標として砥粒間隔を矢印にて図示した。以後、本明細書中、砥粒の密度に関する説明を行う場合には、「砥粒密度」及び「砥粒間隔」を併用して説明することとする。なお、砥粒間隔が大きいとは、砥粒密度が低いことを意味し、砥粒間隔が小さいとは、砥粒密度が高いことを意味する。   In the electrodeposition grindstone 1b of FIG. 2, the average particle diameter of the first abrasive grains 4a is larger than that of the electrodeposition grindstone 1a of FIG. That is, in the electrodeposition grindstone 1b of FIG. 2, the number of the first abrasive grains 4a per unit area is smaller than that of the electrodeposition grindstone 1a of FIG. First abrasive grains exposed from 5a The number of second abrasive grains 4b per unit area arranged in the gap formed in FIG. 4a is also reduced. As a result, in the electrodeposition grindstone 1b of FIG. 2, the abrasive grain density is lower than that of the electrodeposition grindstone 1a of FIG. Here, the abrasive density refers to the number of abrasive grains per unit area on the surface of the abrasive layer of the electrodeposited grindstone. In FIGS. 1 and 2, the abrasive grain interval is indicated by an arrow as an index indicating the abrasive density. Illustrated. Hereinafter, in the present specification, when explaining the density of the abrasive grains, the “abrasive density” and the “abrasive interval” will be used together. In addition, a large abrasive grain interval means that the abrasive grain density is low, and a small abrasive grain interval means that the abrasive grain density is high.

図4は、本発明の電着砥石の製造工程の一実施形態を示す模式的断面図である。本発明の電着砥石の製造方法においては、まず、砥石台金2の砥粒層形成面3に、第一の砥粒4aを単層状に配置し、第一の砥粒4aの平均粒径の5〜75%の厚さの第一のめっき層5aを形成することによって、第一の砥粒4aを固着させ、第一の砥粒層6aを形成する第一工程を行う。次いで、第一のめっき層5aから露出する第一の砥粒4aの形成する間隙に、第一の砥粒4aよりも平均粒径の小さい第二の砥粒4bを単層状に配置し、第一の砥粒4aを完全に覆う厚さの第二のめっき層5bを形成することよって、第二の砥粒4bを固着させ、第二の砥粒層6bを形成する第二工程を行う。   FIG. 4 is a schematic cross-sectional view showing an embodiment of the process for producing an electrodeposition grindstone of the present invention. In the method for producing an electrodeposition grindstone of the present invention, first, the first abrasive grains 4a are arranged in a single layer on the abrasive grain layer forming surface 3 of the grindstone base metal 2, and the average grain diameter of the first abrasive grains 4a is arranged. By forming the first plating layer 5a having a thickness of 5 to 75%, a first step of fixing the first abrasive grain 4a and forming the first abrasive grain layer 6a is performed. Next, in the gap formed by the first abrasive grains 4a exposed from the first plating layer 5a, the second abrasive grains 4b having an average particle size smaller than the first abrasive grains 4a are arranged in a single layer, By forming the second plating layer 5b having a thickness that completely covers one abrasive grain 4a, the second process is performed in which the second abrasive grain 4b is fixed and the second abrasive grain layer 6b is formed.

第一工程においては、第一の砥粒4aを、砥石台金2の砥粒層形成面3に敷き詰めるように単層状に配置することが好ましい。この際、図3B〜Dに示す従来の電着砥石10b,10c,10dの場合のように、砥粒密度制御のための特別な位置決め工程は必要なく、通常の方法によって、砥粒層形成面3に偏り無く分散配置させればよい。第二工程においては、第二の砥粒4bを、第一のめっき層5aから露出する第一の砥粒4aの間に形成される間隙に嵌め込むよう単層状に配置することが好ましい。このように配置することによって、第二砥粒4bの分散密度は、第一の砥粒層6aに配置された第一の砥粒4aの幾何学的配置から必然的に決定されることとなり、砥粒密度の制御が容易となる。   In the first step, the first abrasive grains 4a are preferably arranged in a single layer so as to be spread on the abrasive grain formation surface 3 of the grindstone base 2. At this time, unlike the conventional electrodeposition grindstones 10b, 10c, and 10d shown in FIGS. What is necessary is just to disperse | distribute and arrange in 3 without deviation. In the second step, it is preferable to arrange the second abrasive grains 4b in a single layer so as to fit in the gap formed between the first abrasive grains 4a exposed from the first plating layer 5a. By arranging in this way, the dispersion density of the second abrasive grains 4b is inevitably determined from the geometric arrangement of the first abrasive grains 4a arranged in the first abrasive grain layer 6a. Control of the abrasive density becomes easy.

本発明の電着砥石の製造方法においては、上述のとおり、最終製品である電着砥石の砥粒密度となる第二の砥粒4bの密度を、第一の砥粒4a及び第二の砥粒4bの平均粒径の差によって制御することが好ましい。第二の砥粒4bの平均粒径に対して、第一の砥粒4aの平均粒径を、より大きく設定すると、第一の砥粒4a同士の間隔が大きくなることから、形成される間隙同士の間隔も大きくなり、そこに配置される第二の砥粒4bの分散密度は必然的に低くなる。また、第二の砥粒4bの平均粒径に対して、第一の砥粒4aの平均粒径を、より小さく設定すると、第一の砥粒4a同士の間隔が小さくなることから、形成される間隙同士の間隔も小さくなり、そこに配置される第二の砥粒4bの分散密度は必然的に高くなる。   In the electrodeposition grindstone manufacturing method of the present invention, as described above, the density of the second abrasive grains 4b, which is the abrasive density of the electrodeposited grindstone as the final product, is set to the first abrasive grains 4a and the second abrasive grains. It is preferable to control by the difference in the average particle diameter of the grains 4b. Since the interval between the first abrasive grains 4a becomes larger when the average grain diameter of the first abrasive grains 4a is set larger than the average grain diameter of the second abrasive grains 4b, a gap is formed. The interval between them also increases, and the dispersion density of the second abrasive grains 4b disposed there necessarily becomes low. In addition, when the average grain size of the first abrasive grains 4a is set smaller than the average grain diameter of the second abrasive grains 4b, the interval between the first abrasive grains 4a is reduced. The interval between the gaps is also reduced, and the dispersion density of the second abrasive grains 4b disposed therein is inevitably increased.

より具体的には、例えば、第二の砥粒4bの番手(粒度)が#100のとき、第一の砥粒4aの番手を#80とすると、第二の砥粒4bの砥粒間隔は0.15mm〜0.25mmとなり、第一の砥粒4aの番手を#60とすると、第二の砥粒4bの砥粒間隔は0.2mm〜0.3mm、第一の砥粒4aの番手を#40とすると、第二の砥粒4bの砥粒間隔は0.3mm〜0.5mmとなる。このように、本発明の電着砥石の製造方法によれば、研削時における被加工物の特性や加工条件に応じて、所望の砥粒密度を有する電着砥石を容易且つ迅速に製造することが可能である。なお、上記の各砥粒の番手は、JIS B4 13に準拠している。   More specifically, for example, when the count (granularity) of the second abrasive grain 4b is # 100, and the count of the first abrasive grain 4a is # 80, the abrasive grain spacing of the second abrasive grain 4b is When the number of the first abrasive grains 4a is set to # 60 from 0.15 mm to 0.25 mm, the distance between the abrasive grains of the second abrasive grains 4b is 0.2 mm to 0.3 mm, and the count of the first abrasive grains 4a Is # 40, the abrasive grain spacing of the second abrasive grain 4b is 0.3 mm to 0.5 mm. As described above, according to the method for producing an electrodeposited grindstone of the present invention, an electrodeposited grindstone having a desired abrasive density can be produced easily and quickly according to the characteristics of the workpiece and the machining conditions during grinding. Is possible. In addition, the count of each said abrasive grain is based on JISB413.

また、本発明の電着砥石の製造方法においては、砥粒層6における第二の砥粒4bの突き出し高さを、第一の砥粒4aを固着させる第一のめっき層5aの厚さによって制御することが好ましい。具体的には、第一のめっき層5aの厚さを、第一の砥粒4aの平均粒径の50%程度までに設定すると、第一のめっき層5aから露出する第一の砥粒4aの形成する間隙において、配置される第二の砥粒4bは、間隙を形成する第一の砥粒4aに直接支えられることとなり、この場合、第二の砥粒4bの突き出し高さは最も低くなる。一方、第一のめっき層5aの厚さが、第一の砥粒4aの平均粒径の50%程度を超えてくると、第一のめっき層5aから露出する第一の砥粒4aの形成する間隙において、配置される第二の砥粒4bの底を、第一のめっき層5aが直接支える場合が生じ、第二の砥粒4bの突き出し高さが底上げされる。このように、本発明の電着砥石の製造方法によれば、研削時の加工条件に応じて、所望の突き出し高さを有する電着砥石を容易且つ迅速に製造することが可能である。   Moreover, in the manufacturing method of the electrodeposition grindstone of this invention, the protrusion height of the 2nd abrasive grain 4b in the abrasive grain layer 6 is set by the thickness of the 1st plating layer 5a which fixes the 1st abrasive grain 4a. It is preferable to control. Specifically, when the thickness of the first plating layer 5a is set to about 50% of the average particle diameter of the first abrasive grains 4a, the first abrasive grains 4a exposed from the first plating layer 5a. In the gap formed, the second abrasive grains 4b arranged are directly supported by the first abrasive grains 4a forming the gap. In this case, the protruding height of the second abrasive grains 4b is the lowest. Become. On the other hand, when the thickness of the first plating layer 5a exceeds about 50% of the average particle diameter of the first abrasive grains 4a, the formation of the first abrasive grains 4a exposed from the first plating layer 5a is formed. In the gap, the first plating layer 5a directly supports the bottom of the second abrasive grain 4b that is arranged, and the protruding height of the second abrasive grain 4b is raised. Thus, according to the method for producing an electrodeposition grindstone of the present invention, it is possible to easily and quickly produce an electrodeposition grindstone having a desired protruding height according to the processing conditions during grinding.

一方、本発明の電着砥石の製造方法においては、砥粒層6における第二の砥粒4bの保持力を、第一の砥粒4aを固着させる第一のめっき層5aの厚さによって制御することもまた好ましい。具体的には、第一のめっき層5aの厚さを、第一の砥粒4aの平均粒径の50%程度までに設定すると、第一のめっき層5aから露出する第一の砥粒4aの形成する間隙において、配置される第二の砥粒4bは、間隙を形成する第一の砥粒4aに直接支えられることとなり、この場合、第二の砥粒4bが、確実に所定位置に位置決めされるため、安定した固着状態を得ることができる。従って、研削時においても、第二の砥粒4bが第二の砥粒層6bから脱粒しにくく、第二の砥粒4bが、間隙を形成する第一の砥粒4aに第二のめっき層5bを介して間接的に支えられる場合よりも、砥粒保持力の一層高い電着砥石を得ることができる。なお、このとき、第二の砥粒4bは、間隙を形成する第一の砥粒4aのうちの少なくとも2個と同時に接触した状態で固着されていれば、十分な保持力を得ることができる。   On the other hand, in the method for producing an electrodeposition grindstone of the present invention, the holding power of the second abrasive grains 4b in the abrasive grain layer 6 is controlled by the thickness of the first plating layer 5a to which the first abrasive grains 4a are fixed. It is also preferable to do. Specifically, when the thickness of the first plating layer 5a is set to about 50% of the average particle diameter of the first abrasive grains 4a, the first abrasive grains 4a exposed from the first plating layer 5a. The second abrasive grains 4b that are arranged in the gap formed by are directly supported by the first abrasive grains 4a that form the gap. In this case, the second abrasive grains 4b are surely placed at a predetermined position. Since it is positioned, a stable fixed state can be obtained. Accordingly, even during grinding, the second abrasive grains 4b are unlikely to detach from the second abrasive grain layer 6b, and the second abrasive grains 4b form the second plating layer on the first abrasive grains 4a forming the gap. It is possible to obtain an electrodeposition grindstone with higher abrasive grain retention than when indirectly supported via 5b. At this time, if the second abrasive grains 4b are fixed in contact with at least two of the first abrasive grains 4a forming the gap, a sufficient holding force can be obtained. .

本発明の電着砥石は、各種素材の研削加工のための電着工具として好適に用いることができ、また、本発明の電着砥石の製造方法によれば、砥粒密度の制御された高性能且つ長寿命の電着砥石を簡易に製造することができ、産業上の利用可能性は大なるものである。   The electrodeposition grindstone of the present invention can be suitably used as an electrodeposition tool for grinding various materials, and according to the method for producing an electrodeposition grindstone of the present invention, a high grain density is controlled. The electrodeposition grindstone with high performance and long life can be easily manufactured, and the industrial applicability is great.

1a,1b,10a,10b,10c,10d:電着砥石、2:砥石台金、3:砥粒層形成面、4:砥粒、4a:第一の砥粒、4b:第二の砥粒、5:めっき層、5a:第一のめっき層、5b:第二のめっき層、6:砥粒層、6a:第一の砥粒層、6b:第二の砥粒層、7:接着剤。 1a, 1b, 10a, 10b, 10c, 10d: Electrodeposition grindstone, 2: Whetstone base metal, 3: Abrasive layer forming surface, 4: Abrasive grain, 4a: First abrasive grain, 4b: Second abrasive grain 5: Plating layer, 5a: First plating layer, 5b: Second plating layer, 6: Abrasive layer, 6a: First abrasive layer, 6b: Second abrasive layer, 7: Adhesive .

Claims (5)

砥石台金と、前記砥石台金の砥粒層形成面に形成された砥粒層とを有する電着砥石であって、
前記砥粒層は、前記砥粒層形成面に、単層状に配置された第一の砥粒が、前記第一の砥粒の平均粒径の5〜75%の厚さの第一のめっき層によって前記砥粒層形成面に固着されてなる第一の砥粒層と、
前記第一のめっき層から露出する前記第一の砥粒の形成する間隙に単層状に配置された、前記第一の砥粒よりも平均粒径の小さい第二の砥粒が、前記第一の砥粒を完全に覆う厚さの第二のめっき層によって前記第一の砥粒層に固着されてなる第二の砥粒層とを有する電着砥石。
An electrodeposition grindstone having a grindstone base and an abrasive layer formed on the abrasive layer forming surface of the grindstone base,
The abrasive layer is a first plating in which the first abrasive grains arranged in a single layer on the abrasive layer forming surface have a thickness of 5 to 75% of the average grain diameter of the first abrasive grains. A first abrasive layer fixed to the abrasive layer forming surface by a layer;
The second abrasive grains, which are arranged in a single layer in the gap formed by the first abrasive grains exposed from the first plating layer, have a smaller average particle diameter than the first abrasive grains, An electrodeposition grindstone having a second abrasive grain layer fixed to the first abrasive grain layer by a second plating layer having a thickness that completely covers the abrasive grains.
砥石台金の砥粒層形成面に砥粒層の形成された電着砥石の製造方法であって、
前記砥粒層形成面に、第一の砥粒を単層状に配置し、前記第一の砥粒の平均粒径の5〜75%の厚さの第一のめっき層を形成することによって、前記第一の砥粒を固着させ、第一の砥粒層を形成する第一工程と、
前記第一のめっき層から露出する前記第一の砥粒の形成する間隙に、前記第一の砥粒よりも平均粒径の小さい第二の砥粒を単層状に配置し、前記第一の砥粒を完全に覆う厚さの第二のめっき層を形成することよって、前記第二の砥粒を固着させ、第二の砥粒層を形成する第二工程とを有する電着砥石の製造方法。
A method for producing an electrodeposition grindstone in which an abrasive layer is formed on an abrasive layer forming surface of a grindstone base metal,
By arranging the first abrasive grains in a single layer on the abrasive layer forming surface and forming a first plating layer having a thickness of 5 to 75% of the average grain diameter of the first abrasive grains, A first step of fixing the first abrasive grains to form a first abrasive grain layer;
In the gap formed by the first abrasive grains exposed from the first plating layer, second abrasive grains having an average particle size smaller than the first abrasive grains are arranged in a single layer, and the first Production of an electrodeposition grindstone having a second step of fixing the second abrasive grains and forming a second abrasive grain layer by forming a second plating layer having a thickness that completely covers the abrasive grains Method.
前記砥粒層における前記第二の砥粒の密度を、前記第一の砥粒及び前記第二の砥粒の平均粒径の差によって制御する請求項2に記載の電着砥石の製造方法。   The method for producing an electrodeposited grindstone according to claim 2, wherein the density of the second abrasive grains in the abrasive grain layer is controlled by a difference in average particle diameter between the first abrasive grains and the second abrasive grains. 前記砥粒層における前記第二の砥粒の突き出し高さを、前記第一の砥粒を固着させる第一のめっき層の厚さによって制御する請求項2又は3に記載の電着砥石の製造方法。   The electrodeposition grindstone manufacturing method according to claim 2 or 3, wherein the protrusion height of the second abrasive grain in the abrasive grain layer is controlled by the thickness of the first plating layer that fixes the first abrasive grain. Method. 前記砥粒層における前記第二の砥粒の保持力を、前記第一の砥粒を固着させる第一のめっき層の厚さによって制御する請求項2又は3に記載の電着砥石の製造方法。   The method for producing an electrodeposited grindstone according to claim 2 or 3, wherein the holding power of the second abrasive grain in the abrasive grain layer is controlled by the thickness of the first plating layer that fixes the first abrasive grain. .
JP2010117681A 2010-05-21 2010-05-21 Electrodeposition whetstone and method for manufacturing the same Active JP5567900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010117681A JP5567900B2 (en) 2010-05-21 2010-05-21 Electrodeposition whetstone and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010117681A JP5567900B2 (en) 2010-05-21 2010-05-21 Electrodeposition whetstone and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2011245561A JP2011245561A (en) 2011-12-08
JP5567900B2 true JP5567900B2 (en) 2014-08-06

Family

ID=45411455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010117681A Active JP5567900B2 (en) 2010-05-21 2010-05-21 Electrodeposition whetstone and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5567900B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7162910B2 (en) 2020-11-10 2022-10-31 株式会社東京ダイヤモンド工具製作所 Electroplated grindstone and manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290057U (en) * 1988-12-29 1990-07-17
JP3134469B2 (en) * 1992-03-31 2001-02-13 三菱マテリアル株式会社 Electroplated whetstone and method of manufacturing the same
JPH10329029A (en) * 1997-05-30 1998-12-15 Osaka Diamond Ind Co Ltd Electrodepositioning super grain grinding wheel
JP4354482B2 (en) * 2006-12-26 2009-10-28 株式会社ノリタケスーパーアブレーシブ Truing tool

Also Published As

Publication number Publication date
JP2011245561A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
KR101091030B1 (en) Method for producing pad conditioner having reduced friction
JP3829092B2 (en) Conditioner for polishing pad and method for producing the same
JP5295868B2 (en) Dresser for polishing cloth and method for producing the same
JP4657318B2 (en) Milling tools
IL189314A (en) Tool with sintered body polishing surface and method of manufacturing the same
JP4779580B2 (en) Electroformed thin blade whetstone
KR101144981B1 (en) Cmp pad conditioner and method for producing the same
JP5567900B2 (en) Electrodeposition whetstone and method for manufacturing the same
KR20150060915A (en) Wire tool with abrasive grains
KR101342744B1 (en) Edging wheel for grinding edge of glass substrate and method of manufacturing of the same
TWI602650B (en) Retaining ring for chemical mechanical polishing
TWI383860B (en) Modular dresser
JP2006218577A (en) Dresser for polishing cloth
WO2013065551A1 (en) Rotary dresser and manufacturing method therefor
WO2017098764A1 (en) Super-abrasive grinding wheel
KR101177558B1 (en) Cmp pad conditioner and method for manufacturing
JP5566189B2 (en) Thin blade
TWI332684B (en) Polishing pad having a surface texture
TWI735795B (en) Polishing pad dresser and chemical mechanical planarization method
KR102525302B1 (en) Core drill for grinding glass film and method of manufacturing the drill
JP2010115768A (en) Cbn grinding wheel
CN110871407A (en) Polishing pad dresser and method for chemical mechanical planarization
TWI768692B (en) Chemical mechanical polishing pad dresser and method of making the same
JP4896114B2 (en) Electrodeposition tool manufacturing method
TWI469207B (en) Chemical mechanical grinding dresser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140620

R150 Certificate of patent or registration of utility model

Ref document number: 5567900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150