JPH10329029A - Electrodepositioning super grain grinding wheel - Google Patents

Electrodepositioning super grain grinding wheel

Info

Publication number
JPH10329029A
JPH10329029A JP17883197A JP17883197A JPH10329029A JP H10329029 A JPH10329029 A JP H10329029A JP 17883197 A JP17883197 A JP 17883197A JP 17883197 A JP17883197 A JP 17883197A JP H10329029 A JPH10329029 A JP H10329029A
Authority
JP
Japan
Prior art keywords
superabrasive
grains
plating
grinding
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17883197A
Other languages
Japanese (ja)
Inventor
Kenji Fukushima
健二 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Diamond Industrial Co Ltd
Original Assignee
Osaka Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Diamond Industrial Co Ltd filed Critical Osaka Diamond Industrial Co Ltd
Priority to JP17883197A priority Critical patent/JPH10329029A/en
Publication of JPH10329029A publication Critical patent/JPH10329029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent super grains on an electrodepositioning super grain grinding wheel from falling and to prolong its life. SOLUTION: This electrodepositioning super grinding grain grinding wheel has large size super grinding grains 4 of 100 μm or more average diameter stuck on the surface of the grinding wheel base metal 1 in a single layer by means of metal plating 2 and small size super grinding grains 5 are stuck in a single layer on the metal plated surface in the gap between the large grain super grinding grains in a single layer, while the protruding ends of the large size super grinding grains 4 and the small size super grinding grains 5 are approximately in a line. The grinding grain rate of the large size super grinding grains 4 stuck on the grinding wheel base metal 1 is 40% to 80% and the average grain diameter of the small size super grinding grains 5 is preferable to be 20% to 50% of the average diameter of the large size super grinding grains 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】フェライト、シリコン、ガラ
ス、セラミックス、金属材料、樹脂、ゴムなどの研削加
工に用いられる、電着超砥粒砥石に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrodeposited superabrasive grindstone used for grinding ferrite, silicon, glass, ceramics, metal materials, resins, rubbers and the like.

【0002】[0002]

【従来の技術】電着超砥粒砥石を製作するに際し、超砥
粒を砥石の台金に固着する方法はメッキ技術を応用した
ものである。台金をメッキ液に浸して陰極とし、その台
金に超砥粒を載せてメッキを行うものである。メッキは
通常ニッケルメッキが用いられ、通電するとニッケルメ
ッキは絶縁体である超砥粒(ダイヤモンド、CBN)を
避けて台金上に析出し、超砥粒の隙間を埋めるように堆
積してゆく。ニッケルメッキの析出厚みが超砥粒の粒径
の50%以上になると、ニッケルメッキは超砥粒をしっ
かりと固定した状態になる。したがって、このニッケル
メッキの析出厚みが超砥粒の粒径の50%を超えた時点
でニッケルメッキを終了し、台金をメッキ液から取り出
せば、超砥粒が一層だけ強固に台金に固着された電着超
砥粒砥石が完成する。この様にして出来上がった電着超
砥粒砥石は、超砥粒を保持する力がレジンボンド、メタ
ルボンド、およびビトリファイドボンドの超砥粒砥石に
比べて大きく、しかも、超砥粒の突出端の高さが高いた
め、チップポケットの容積が大きく、切り粉の排出がス
ムーズで、目ずまりすることが少なく、切れ味が極めて
良好な優れた特性を有する。
2. Description of the Related Art In producing an electrodeposited superabrasive grindstone, a method of fixing superabrasive grains to a base metal of a grindstone employs a plating technique. The base metal is immersed in a plating solution to serve as a cathode, and superabrasive grains are placed on the base metal to perform plating. Normally, nickel plating is used for plating, and when electricity is supplied, nickel plating is deposited on a base metal avoiding superabrasive grains (diamond, CBN), which are insulators, and is deposited so as to fill gaps between the superabrasive grains. When the deposition thickness of the nickel plating becomes 50% or more of the particle diameter of the superabrasive grains, the nickel plating becomes a state in which the superabrasive grains are firmly fixed. Therefore, when the deposition thickness of the nickel plating exceeds 50% of the particle size of the superabrasive grains, the nickel plating is terminated and the superabrasive grains are more firmly fixed to the base metal if the base metal is removed from the plating solution. The finished electrodeposited superabrasive grindstone is completed. The electrodeposited superabrasive grindstone produced in this way has a greater holding force for the superabrasive grains than the resin-bonded, metal-bonded, and vitrified-bonded superabrasive grindstones. Since the height is high, the volume of the chip pocket is large, the chip discharge is smooth, the clogging is small, and the sharpness is excellent.

【0003】また、電着超砥粒砥石の製造方法は、メッ
キによって超砥粒を台金に固着するものなので、例え
ば、複雑形状の砥石でも台金さえ製作可能であれば、比
較的容易に総型砥石が製作できるのが大きな特長のひと
つである。この特長を活かして、フェライト、サマリュ
ウムコバルト、ネオジウム磁石、セラミックス、ガラ
ス、ゴム等の総型研削用超砥粒砥石はそのほとんどが電
着超砥粒砥石が用いられている。最近では、台金に超砥
粒をメッキにて固着した後、超砥粒の突出端をダイヤモ
ンド砥石で研削して、超砥粒の突出端の高さを揃えるこ
とにより、歯車等を研削加工できる高精度な電着超砥粒
砥石の製造技術も確立している。
[0003] In addition, the method of producing an electrodeposited superabrasive grindstone is to fix superabrasive grains to a base metal by plating. One of the major features is that it can produce a complete whetstone. By taking advantage of this feature, electrodeposited superabrasive grindstones are used for most of the superabrasive grindstones for total pattern grinding of ferrite, samarium cobalt, neodymium magnets, ceramics, glass, rubber, and the like. Recently, after polishing superabrasive grains to a base metal by plating, grinding the protruding ends of the superabrasive grains with a diamond whetstone and aligning the heights of the protruding ends of the superabrasive grains to grind gears etc. We have also established a highly accurate electrodeposition superabrasive grinding wheel manufacturing technology.

【0004】既に述べたように、電着超砥粒砥石は、超
砥粒の突出端の高さが高いため、チップポケットの容積
が大きく、切り粉の排出がスムーズである。レジンボン
ド、メタルボンド、およびビトリファイドボンドなどの
超砥粒砥石では切り粉がスムーズに排出できずに目ずま
りするような材料、例えば、ゴム、樹脂、FRP、およ
び半焼成のセラミック等の研削加工にも十分適用できる
のも大きな特長である。
[0004] As described above, the electrodeposited superabrasive grindstone has a large tip pocket volume due to the high height of the protruding end of the superabrasive grains, and can smoothly discharge chips. Grinding of materials such as resin, metal bond, vitrified bond, etc., which are not able to be discharged smoothly and are clogged with superabrasive grindstones such as rubber, resin, FRP, and semi-fired ceramic It is a great feature that it can be applied to all.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の電着超
砥粒砥石は、レジンボンド、メタルボンド、およびビト
リファイドボンドなどに比べ切れ味が極めて良好である
という特長を有するものの、超砥粒が一層だけ台金表面
に並んだ構造である。特に、粒径が100μm以上の超
砥粒砥石は、比較的研削条件の過酷な、すなわち材料除
去速度の比較的大きな研削加工に適用されることが多
く、研削加工中に発生する切り粉によりメッキが後退し
やすい。メッキが後退すると超砥粒が次々と脱落して、
切れ味が低下し、ついには研削する能力がまったく無く
なるため、電着超砥粒砥石の寿命が短いという問題があ
った。
However, the conventional electrodeposited superabrasive grindstone has the feature that the sharpness is extremely good as compared with resin bond, metal bond, vitrified bond, etc. It is a structure only lined up on the surface of the base metal. In particular, a superabrasive grindstone having a particle diameter of 100 μm or more is often applied to grinding under relatively severe grinding conditions, that is, a relatively high material removal rate, and is plated by cutting powder generated during grinding. But easy to retreat. When the plating recedes, the superabrasive drops off one after another,
There is a problem that the life of the electrodeposited superabrasive grindstone is short because the sharpness is reduced and the ability to grind is completely lost.

【0006】この超砥粒の脱落を防止する技術として、
例えば、公開特許公報、特開平6−114739号で
は、平均粒径50μm以上の超砥粒を単層にメッキで固
定した後、更に平均粒径5μm以下の硬質粒子を含むメ
ッキで覆う技術が開示されているが、これでも切り粉に
よるメッキの後退が速く、超砥粒の脱落を防止するには
十分でなかった。
As a technique for preventing the superabrasive grains from falling off,
For example, Japanese Patent Laid-Open Publication No. Hei 6-114739 discloses a technique in which superabrasive grains having an average particle diameter of 50 μm or more are fixed to a single layer by plating, and then covered with plating containing hard particles having an average particle diameter of 5 μm or less. However, even with this, the retreat of the plating by the cutting powder was fast, and it was not enough to prevent the superabrasive grains from falling off.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の問題点
を解決するためになされたものである。すなわち、超砥
粒を保持しているメッキの後退を防止して、超砥粒を脱
落しないようにし、電着超砥粒砥石の寿命を長くするも
のである。その特徴とするところは、平均粒径100μ
m以上の大粒超砥粒が砥石台金表面にメッキにて一層に
固着され、さらにその一層に固着された大粒超砥粒の隙
間のメッキ表面部分に、小粒超砥粒がメッキにて一層に
固着され、大粒超砥粒と小粒超砥粒の突出端が概略揃っ
ていることである。砥石台金表面に固着される大粒超砥
粒の砥粒率は40%以上80%以下であり、かつ、小粒
超砥粒の平均粒径は、大粒超砥粒の平均粒径の20%以
上50%以下であることが好ましく、メッキの全体厚み
は、大粒超砥粒の80%以下であることがより好まし
い。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems. That is, the retreat of the plating holding the superabrasive grains is prevented, the superabrasive grains are prevented from falling off, and the life of the electrodeposited superabrasive grindstone is extended. The feature is that the average particle size is 100μ
The super-abrasive grains of m or more are fixed to the surface of the grindstone base by plating, and the super-abrasive grains of the small grains are further plated by plating on the plating surface portion of the gap between the large super-abrasive grains fixed to that layer. That is, the protruding ends of the large superabrasive grains and the small superabrasive grains are substantially aligned. The abrasive ratio of the large superabrasive particles fixed to the surface of the grindstone base is 40% or more and 80% or less, and the average particle size of the small superabrasive particles is 20% or more of the average particle size of the large superabrasive particles. The plating thickness is preferably 50% or less, and the total thickness of the plating is more preferably 80% or less of the large superabrasive grains.

【0008】主として研削加工に寄与するのは、大粒超
砥粒である。したがって、大粒超砥粒の砥粒率は少なく
とも40%必要である。しかし、砥粒率が80%を超え
ると小粒超砥粒を固着するスペースが減少し好ましくな
い。研削条件および工作物によって変化するが、大粒超
砥粒の砥粒率はおよそ70%で最も良好な結果が得られ
る。
[0008] Large super-abrasive grains mainly contribute to the grinding process. Therefore, the abrasive ratio of large superabrasives needs to be at least 40%. However, if the abrasive grain ratio exceeds 80%, the space for adhering small superabrasive grains decreases, which is not preferable. Although varying depending on the grinding conditions and the workpiece, the best result is obtained when the abrasive ratio of large superabrasives is about 70%.

【0009】大粒超砥粒は、粒径の約50%の厚みのメ
ッキで固着される。次に固着される小粒超砥粒はその突
出端は大粒超砥粒の突出端とほぼ同一であることが切り
粉によるメッキの後退防止に最も有効なので、小粒超砥
粒の平均粒径は大粒超砥粒の平均粒径の20%から50
%であることが好ましい。より好ましくは、40%から
50%の範囲である。
The large superabrasive grains are fixed by plating having a thickness of about 50% of the grain size. Since the most prominent edge of the small superabrasive grain to be fixed is almost the same as the protruding end of the large superabrasive grain, which is most effective in preventing the retreat of the plating due to the cutting powder, the average grain size of the small superabrasive grain is 20% to 50% of the average particle size of super abrasive
%. More preferably, it is in the range of 40% to 50%.

【0010】メッキ全体の厚みは、切り粉の排出に必要
なチップポケットを確保する事を考慮しなければならな
いので、大粒超砥粒の80%以下であることが好まし
い。
[0010] The thickness of the entire plating is preferably 80% or less of the large superabrasive grains, since it is necessary to consider the securing of the chip pocket necessary for discharging the cutting powder.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態については、
実施例の項で説明する。
BEST MODE FOR CARRYING OUT THE INVENTION
This will be described in the section of Examples.

【0012】[0012]

【実施例】【Example】

(実施例1)外径Φ200mm、幅20mmのストレー
ト型(1A1型)の電着超砥粒砥石を製作して、研削テ
ストにより本発明の効果を確認した。
(Example 1) A straight type (1A1 type) electrodeposited superabrasive grindstone having an outer diameter of 200 mm and a width of 20 mm was manufactured, and the effect of the present invention was confirmed by a grinding test.

【0013】まず、粒度#80(粒径180μm)のダ
イヤモンド砥粒をニッケルメッキにより鋼製台金に一層
に固着した。ここでニッケルメッキの析出厚みは約90
μmであり、ダイヤモンド砥粒の突出端の高さはニッケ
ルメッキの表面から約90μmである。
First, diamond abrasive grains having a grain size of # 80 (having a grain size of 180 μm) were fixed to a steel base metal by nickel plating. Here, the deposition thickness of nickel plating is about 90
μm, and the height of the protruding end of the diamond abrasive is about 90 μm from the surface of the nickel plating.

【0014】更に、そのニッケルメッキの表面に粒度#
200(粒径80μm)のダイヤモンド砥粒をニッケル
メッキにより一層に固着し、本発明の電着超砥粒砥石を
製作した。ここでニッケルメッキの析出厚みは約40μ
mであり、ダイヤモンド砥粒の突出端の高さは、ニッケ
ルメッキの表面から約40μmである。
Further, a grain size #
200 (diameter: 80 μm) diamond abrasive grains were fixed to one layer by nickel plating to produce an electrodeposited superabrasive grinding wheel of the present invention. Here, the deposition thickness of nickel plating is about 40μ.
m, and the height of the protruding end of the diamond abrasive is about 40 μm from the surface of the nickel plating.

【0015】次に、実施例1の電着超砥粒砥石の性能を
確認するため、従来の粒度#80(粒径180μm)の
ダイヤモンド砥粒をニッケルメッキにより鋼製台金に一
層に固着した、単層の電着超砥粒砥石(比較例1)との
比較実験を行った。その実験の詳細を以下に示す。 実施例1の粒度 #80+#200 比較例1の粒度 #80 工作物 ソーダガラス 機械 グラインディングセンタ(VKC
55) 砥石周速度 60m/sec 切り込み量 1mm 送り速度 3m/min 研削液 JIS W2 2%水溶液
Next, in order to confirm the performance of the electrodeposited superabrasive grain of Example 1, conventional diamond abrasive grains having a grain size of # 80 (having a grain size of 180 μm) were fixed to a steel base metal by nickel plating. A comparative experiment was performed with a single-layer electrodeposited superabrasive grindstone (Comparative Example 1). The details of the experiment are shown below. Grain size of Example 1 # 80 + # 200 Grain size of Comparative Example 1 # 80 Workpiece Soda glass Machine Grinding center (VKC
55) Grinding wheel peripheral speed 60m / sec Cutting depth 1mm Feeding speed 3m / min Grinding fluid JIS W2 2% aqueous solution

【0013】実験の結果、実施例1の電着超砥粒砥石の
寿命は、比較例1に比べ約30%向上した。そして、研
削抵抗および表面粗さは、比較例1と同等であった。
As a result of the experiment, the life of the electrodeposited superabrasive grindstone of Example 1 was improved by about 30% as compared with Comparative Example 1. Then, the grinding resistance and the surface roughness were equivalent to Comparative Example 1.

【0016】(実施例2)実施例1と同様に、外径Φ2
00mm、幅20mmのストレート型(1A1型)の電
着超砥粒砥石を製作して、研削テストにより本発明の効
果を確認した。
(Embodiment 2) As in Embodiment 1, the outer diameter Φ2
A straight type (1A1 type) electrodeposited superabrasive grindstone having a thickness of 00 mm and a width of 20 mm was manufactured, and the effect of the present invention was confirmed by a grinding test.

【0017】まず、粒度#60(粒径250μm)のダ
イヤモンド砥粒をニッケルメッキにより鋼製台金に一層
に固着した。ここでニッケルメッキの析出厚みは約13
0μmであり、ダイヤモンド砥粒の突出端の高さは、ニ
ッケルメッキの表面から約120μmである。
First, diamond abrasive grains having a grain size of # 60 (having a grain size of 250 μm) were further fixed to a steel base metal by nickel plating. Here, the deposition thickness of nickel plating is about 13
0 μm, and the height of the protruding end of the diamond abrasive is about 120 μm from the surface of the nickel plating.

【0018】更に、そのニッケルメッキの表面に粒度#
120(粒径120μm)のダイヤモンド砥粒をニッケ
ルメッキにより一層に固着し、本発明の電着超砥粒砥石
を製作した。ここでニッケルメッキの析出厚みは約60
μmであり、ダイヤモンド砥粒の突出端の高さは、ニッ
ケルメッキの表面から約60μmである。
Further, the surface of the nickel plating has a grain size of #
120 (diameter: 120 μm) diamond abrasive grains were fixed to one layer by nickel plating to produce an electrodeposited superabrasive grinding wheel of the present invention. Here, the deposition thickness of nickel plating is about 60
μm, and the height of the protruding end of the diamond abrasive is about 60 μm from the surface of the nickel plating.

【0019】次に、実施例2の電着超砥粒砥石の性能を
確認するため、従来の粒度#60(粒径250μm)の
ダイヤモンド砥粒をニッケルメッキにより鋼製台金に一
層に固着した、単層の電着超砥粒砥石(比較例2)との
比較実験を行った。その実験の詳細を以下に示す。 実施例2の粒度 #60+#120 比較例2の粒度 #60 工作物 ソーダガラス 機械 グラインディングセンタ(VKC
55) 砥石周速度 60m/sec 切り込み量 1mm 送り速度 5m/min 研削液 JIS W2 2%水溶液
Next, in order to confirm the performance of the electrodeposited superabrasive grindstone of Example 2, conventional diamond abrasive grains having a grain size of # 60 (having a grain size of 250 μm) were fixed to a steel base metal by nickel plating. A comparative experiment was performed with a single-layer electrodeposited superabrasive grindstone (Comparative Example 2). The details of the experiment are shown below. Grain size of Example 2 # 60 + # 120 Grain size of Comparative Example 2 # 60 Workpiece Soda glass Machine Grinding center (VKC
55) Grinding wheel peripheral speed 60m / sec Cutting depth 1mm Feeding speed 5m / min Grinding fluid JIS W2 2% aqueous solution

【0020】実験の結果、実施例2の電着超砥粒砥石の
寿命は、比較例2に比べ約40%向上した。そして、研
削抵抗および表面粗さは、比較例2と同等であった。
As a result of the experiment, the life of the electrodeposited superabrasive grindstone of Example 2 was improved by about 40% as compared with Comparative Example 2. The grinding resistance and the surface roughness were equivalent to those of Comparative Example 2.

【0021】[0021]

【発明の効果】以上述べたように、本発明の電着超砥粒
砥石は従来の単層のものに比べ、超砥粒を保持している
メッキの後退を防止する効果が大きいので、超砥粒を脱
落が少なく、電着超砥粒砥石の寿命を長くするのに大変
有効である。特に、硬脆材料の研削加工においてその大
きな効果が得られる。
As described above, the electrodeposited superabrasive grindstone of the present invention has a greater effect of preventing the retreating of the plating holding the superabrasive grains than the conventional single-layer grindstone. It is very effective for prolonging the life of the electrodeposited superabrasive grindstone with less abrasive particles falling off. In particular, the great effect is obtained in the grinding of hard and brittle materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の電着超砥粒砥石の超砥粒層を示す拡
大断面模式図である。
FIG. 1 is an enlarged schematic sectional view showing a superabrasive layer of an electrodeposited superabrasive grindstone of Example 1.

【図2】別の実施例の総型電着超砥粒砥石を示す断面模
式図である。
FIG. 2 is a schematic cross-sectional view showing a full-type electrodeposited superabrasive grindstone of another embodiment.

【図3】別の実施例の切断用または溝入れ用電着超砥粒
砥石を示す断面模式図である。
FIG. 3 is a schematic cross-sectional view showing an electrodeposited superabrasive grindstone for cutting or grooving according to another embodiment.

【図4】別の実施例の総型電着超砥粒砥石を示す断面模
式図である。
FIG. 4 is a schematic sectional view showing a full-type electrodeposited superabrasive grindstone of another embodiment.

【符号の説明】[Explanation of symbols]

1 砥石台金 2 メッキ 3 メッキ 4 大粒超砥粒 5 小粒超砥粒 6、 9、12 砥石台金 7、10、13 大粒超砥粒 8、11、14 小粒超砥粒 DESCRIPTION OF SYMBOLS 1 Whetstone base metal 2 Plating 3 Plating 4 Large grain superabrasive grain 5 Small grain superabrasive grain 6, 9, 12 Wheelstone base metal 7, 10, 13 Large grain superabrasive grain 8, 11, 14 Small grain superabrasive grain

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】超砥粒を砥石台金表面にメッキにて固着し
てなる電着超砥粒砥石において、平均粒径100μm以
上の大粒超砥粒が砥石台金表面にメッキにて一層に固着
され、さらにその一層に固着された大粒超砥粒の隙間の
メッキ表面部分に、小粒超砥粒がメッキにて一層に固着
され、大粒超砥粒と小粒超砥粒の突出端が概略揃ってい
ることを特徴とする電着超砥粒砥石。
1. An electroplated superabrasive grindstone having superabrasive grains fixed to the surface of a grindstone base by plating, wherein large superabrasive grains having an average particle size of 100 μm or more are further plated on the grindstone base metal by plating. Small-grain superabrasives are fixed to the plating surface portion of the gap between the large-grain superabrasives that are fixed and further fixed on one layer by plating, and the protruding ends of the large-grain superabrasives and the small-grain superabrasives are approximately aligned. An electrodeposited superabrasive grinding wheel.
【請求項2】砥石台金表面に固着される大粒超砥粒の砥
粒率は40%以上80%以下であり、かつ、小粒超砥粒
の平均粒径は、大粒超砥粒の平均粒径の20%以上50
%以下であることを特徴とする特許請求の範囲第1項に
記載の電着超砥粒砥石。
2. The method according to claim 1, wherein the abrasive ratio of the large superabrasive particles fixed to the surface of the grinding wheel base is 40% or more and 80% or less, and the average particle size of the small superabrasive particles is the average particle size of the large superabrasive particles. 20% or more of the diameter 50
%. The electrodeposited superabrasive stone according to claim 1, wherein the amount is not more than%.
【請求項3】メッキの全体厚みは、大粒超砥粒の平均粒
径の80%以下であり、硬脆材料の研削加工に用いるこ
とを特徴とする特許請求の範囲第1項および第2項に記
載の電着超砥粒砥石。
3. The method according to claim 1, wherein the total thickness of the plating is not more than 80% of the average particle diameter of the large superabrasive grains, and the plating is used for grinding hard and brittle materials. 2. An electrodeposited superabrasive grindstone as described in 1. above.
JP17883197A 1997-05-30 1997-05-30 Electrodepositioning super grain grinding wheel Pending JPH10329029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17883197A JPH10329029A (en) 1997-05-30 1997-05-30 Electrodepositioning super grain grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17883197A JPH10329029A (en) 1997-05-30 1997-05-30 Electrodepositioning super grain grinding wheel

Publications (1)

Publication Number Publication Date
JPH10329029A true JPH10329029A (en) 1998-12-15

Family

ID=16055437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17883197A Pending JPH10329029A (en) 1997-05-30 1997-05-30 Electrodepositioning super grain grinding wheel

Country Status (1)

Country Link
JP (1) JPH10329029A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679962B2 (en) 1999-05-24 2004-01-20 Bando Chemical Industries, Ltd. Method for fabricating power transmission belt including grinding with specified grinding wheel
US6764382B2 (en) 1999-05-24 2004-07-20 Bando Chemical Industries, Ltd Power transmission belt and method for fabricating the same
JP2011245561A (en) * 2010-05-21 2011-12-08 Ngk Insulators Ltd Electroplated grinding wheel and method for producing the same
JP2019011208A (en) * 2017-06-29 2019-01-24 日本電気硝子株式会社 Method for producing glass resin laminate
WO2022102173A1 (en) * 2020-11-10 2022-05-19 株式会社東京ダイヤモンド工具製作所 Electrodeposition grinding wheel and method for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679962B2 (en) 1999-05-24 2004-01-20 Bando Chemical Industries, Ltd. Method for fabricating power transmission belt including grinding with specified grinding wheel
US6764382B2 (en) 1999-05-24 2004-07-20 Bando Chemical Industries, Ltd Power transmission belt and method for fabricating the same
JP2011245561A (en) * 2010-05-21 2011-12-08 Ngk Insulators Ltd Electroplated grinding wheel and method for producing the same
JP2019011208A (en) * 2017-06-29 2019-01-24 日本電気硝子株式会社 Method for producing glass resin laminate
WO2022102173A1 (en) * 2020-11-10 2022-05-19 株式会社東京ダイヤモンド工具製作所 Electrodeposition grinding wheel and method for producing same
JP2022076650A (en) * 2020-11-10 2022-05-20 株式会社東京ダイヤモンド工具製作所 Electro-deposition grindstone and manufacturing method

Similar Documents

Publication Publication Date Title
KR100293863B1 (en) Super abrasive tool and its manufacturing method
JP4508514B2 (en) CMP conditioner and method of manufacturing the same
JP2896657B2 (en) Dresser and manufacturing method thereof
US6200360B1 (en) Abrasive tool and the method of producing the same
JP2004319951A (en) EDGE POLISHED NITRIDE SEMICONDUCTOR SUBSTRATE, EDGE POLISHED GaN FREE-STANDING SUBSTRATE, AND EDGE PROCESSING METHOD OF NITRIDE SEMICONDUCTOR SUBSTRATE
KR100486429B1 (en) Ultra abrasive grain wheel f0r mirror finish
JPH10118938A (en) Super abrasive grain grinding wheel
JPH10329029A (en) Electrodepositioning super grain grinding wheel
JP3050379B2 (en) Diamond wrap surface plate
JP4354482B2 (en) Truing tool
JP2000024934A (en) Super abrasive grain grinding wheel for mirror finished surface
JP2006218577A (en) Dresser for polishing cloth
JPH1058331A (en) Super abrasive grain wheel for lapping
JP3086670B2 (en) Super abrasive whetstone
JP3202191B2 (en) Super abrasive whetstone
JP3134469B2 (en) Electroplated whetstone and method of manufacturing the same
JP2000084856A (en) Super abrasive grinding wheel for mirror finishing provided with super abrasive layer through elastic body
JP2004268238A (en) Electrodeposition tool and its manufacturing method
JP3128079B2 (en) Electroplated tool and manufacturing method thereof
JP4419652B2 (en) Grinding wheel and method for manufacturing the same
JP4169612B2 (en) Electrodeposition tool manufacturing method
JP3006458B2 (en) Inner circumference grinding wheel
JPH1199474A (en) Super-abrasive grinding wheel for mirror finish
JPH11198052A (en) Grinding tool
JP2002187071A (en) Electrotype thin-blade grindstone