JP2004268238A - Electrodeposition tool and its manufacturing method - Google Patents

Electrodeposition tool and its manufacturing method Download PDF

Info

Publication number
JP2004268238A
JP2004268238A JP2003065716A JP2003065716A JP2004268238A JP 2004268238 A JP2004268238 A JP 2004268238A JP 2003065716 A JP2003065716 A JP 2003065716A JP 2003065716 A JP2003065716 A JP 2003065716A JP 2004268238 A JP2004268238 A JP 2004268238A
Authority
JP
Japan
Prior art keywords
grinding
abrasive grains
masking
abrasive
base metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003065716A
Other languages
Japanese (ja)
Inventor
Kinya Yokoi
欣也 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Noritake Super Abrasive Co Ltd
Original Assignee
Noritake Co Ltd
Noritake Super Abrasive Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd, Noritake Super Abrasive Co Ltd filed Critical Noritake Co Ltd
Priority to JP2003065716A priority Critical patent/JP2004268238A/en
Publication of JP2004268238A publication Critical patent/JP2004268238A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To further improve the cutting quality of a tool and discharge performance of chips by improving a projecting part forming condition and an electrodeposition condition in an electrodesposition tool for arranging an abrasive grain in projection parts formed on a base metal surface of the electrodeposition tool. <P>SOLUTION: A large number of projection parts 4 are formed on the base metal 2 surface being a grinding surface, and one abrasive grain 5 is fixed by electrodeposition to respective upper surfaces of a large number of these projection parts 4. The height of the projection parts 4 is 0.5 to 4 times the average particle size of the abrasive grain 5, and the area of the upper surfaces of the projection parts 4 is 1.2 to 4 times the average cross-sectional area of the abrasive grain 5. A large chip pocket 8 is formed between the projection part 4 and the projection part 4 by forming the electrodeposition tool forming no plating layer between the projection part 4 and the projection part 4. Projection quantity of the abrasive grain 5 from the base metal 2 surface is increased, and supply of a grinding liquid and discharge of the chips are improved, and grinding resistance is also reduced. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は台金表面に砥粒を単層に電着固定した電着工具およびその製造方法に関する。
【0002】
【従来の技術】
超硬合金、セラミック、ガラス、半導体材料、鋳鉄、鋼など各種材料の研削や研磨などに、電着法により台金表面に砥粒層を形成した電着工具が使用されている。この電着工具は、総型形状、カップ形状、円盤形状などの台金を、ダイヤモンド砥粒、cBN砥粒などの超砥粒を分散させたメッキ液内に浸漬し、台金に超砥粒を電着させて砥粒層を形成したものである。
【0003】
このような電着工具は、砥粒を単層に固着させたものが一般的である。単層構造のものは、砥粒と砥粒の間にメッキ金属が析出することでメッキ金属により砥粒が強固に保持され、かつ砥粒の先端が十分に露出されていることから、切れ味に優れ、高能率研削が可能である。しかしその反面、砥粒の密度が高いために、研削により砥粒の先端部の一部が摩耗してしまうと研削抵抗が著しく上昇して切れ味が大きく低下してしまう。また、切粉の排出性が低く、目詰まりや溶着を引き起こす傾向がある。
【0004】
このような問題に対処して、砥粒密度を低くするために砥粒を台金表面に均一に分散させることが行われている。そのための手段として本発明者は、台金の表面に非マスキング部を有する絶縁物のマスキングを施し、この非マスキング部に砥粒を電着するにあたり、マスキングシートの厚さを電着する砥粒粒径の50〜150%の範囲とし、かつ非マスキング部の孔の内径を砥粒粒径の110〜160%の範囲とする電着砥石の製造方法を発明した(特許文献1参照)。
この方法により製造された電着砥石では、マスキングシートの厚さと非マスキング部の孔の内径を所定の値にすることによって、台金に電着される砥粒が、形成された非マスキング部パターンに対応して1個づつ分散されるようになる。
【0005】
しかし、この製造方法では、仮固定した砥粒を本固定するために、再度メッキ液中にて電気メッキを施し、台金表面に砥粒粒径の30〜70%程度の厚さのメッキ層を析出させている。したがって、メッキ層上面からの砥粒突出高さは砥粒粒径の30〜70%程度しかないことになり、これでは切れ味の向上効果は小さく、また切粉の排出効果の向上もあまり期待できない。この点を改良するものとして、台金から隆起するマウンド部とこのマウンド部上に金属結合層で固着した単一の砥粒とを有する小砥粒層を台金上に所定間隔で複数配列した砥石が提案されている(特許文献2参照)。この砥石によれば、小砥粒層部の砥粒だけが被研削剤に接触するので、切れ味が良く切粉の排出性もよい、とされている。
【0006】
【特許文献1】
特開平5−285846号公報(段落番号0008−0012)
【特許文献2】
特開2001−105327号公報(段落番号0008)
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献2記載の砥石においては、台金から隆起したマウンド部とこのマウンド部の間は切粉の排出経路となるため、硬質な被研削材を研削した場合は、切粉がマウンド部に接触してマウンド部が摩耗し、マウンド部の上面に固着されている砥粒の脱落が発生して工具寿命が短くなるという問題がある。
【0008】
このような問題は、円盤状の回転砥石に限らず、カップ型形状や総型形状の砥石、その他の形状の電着工具全般にいえることである。
本発明が解決すべき課題は、電着工具の台金表面に形成した凸部に砥粒を配設した電着工具において、凸部の形成条件を改良して、凸部の摩耗を軽減し工具の寿命の延長をはかることにある。
【0009】
【課題を解決するための手段】
本発明の電着工具は、研削面とする台金表面に微小粒径の砥粒を含んだ金属結合材からなる円柱状の凸部が多数形成され、これらの凸部のそれぞれの上面に1個の研削用砥粒が電着により固定されており、前記凸部の高さが前記研削用砥粒の平均粒径の0.5〜6倍で、かつ前記凸部の外径が前記研削用砥粒の平均粒径の1.1〜1.5倍であり、凸部と凸部の間にメッキ層が形成されていない電着工具である。
【0010】
上記の電着工具は、所定の孔径で多数の孔を形成したマスキングシートを作成し、このマスキングシートを研削面とする台金表面に貼付して台金表面に多数の孔による非マスキング部を有するマスキングパターンを形成する工程と、前記マスキングパターンを形成した状態で平均粒径が20μm以下の微小砥粒を懸濁させた電解メッキ液中で電気メッキ処理を行って非マスキング部の孔内に前記微小砥粒を含むメッキ金属を析出させて台金表面に前記微小砥粒を含むメッキ金属からなる多数の凸部を形成する工程と、前記マスキングパターンを形成した状態で電気メッキ処理を行って前記多数の凸部のそれぞれの上面に1個の研削用砥粒を電着固定する工程と、を含む製造方法により製造することができる。
【0011】
本発明の電着工具では、台金表面に形成した凸部の上面に研削用砥粒が1個づつ電着固定され、凸部および研削用砥粒はマスキングパターンに従って均一に分散配置され、凸部と凸部の間にはメッキ層が形成されていないので、凸部と凸部の間に大きなチップポケットが形成され、台金表面からの研削用砥粒の突出量も大きく、研削液の供給と切粉の排出が良好となり、研削抵抗も低減する。さらに、凸部は微小粒径の砥粒を含んだ金属結合材により形成されているので、硬質な被研削材を研削したときの凸部への切粉接触に対する耐摩耗性が高く、凸部は摩耗しにくいので、凸部上面に固着された研削用砥粒の脱落を防止でき、工具の寿命も長くなる。
【0012】
台金表面に形成される凸部の高さは、マスキングシートの非マスキング部となる孔の深さ(マスキングシートの厚さ)とこの孔内に凸部形成のために析出させる微小砥粒入りのメッキ金属の析出厚さとによって決まるが(析出厚さは孔の深さよりも研削用砥粒の粒径の50〜150%分だけ低い)、この凸部の高さが研削用砥粒の平均粒径の0.5倍未満であると、チップポケットが小さくなり、研削液の供給と切粉の排出性の向上が期待できず、かつ十分な切り込み深さを得ることができず研削抵抗軽減の効果も期待できない。凸部の高さが研削用砥粒の平均粒径の6倍を超えると、研削研削時に被研削物への切り込み深さが深くなりすぎ、研削用砥粒に加わる衝撃が大きく研削用砥粒が脱落しやすくなる。凸部の高さを研削用砥粒の平均粒径の0.5〜6倍とするためのマスキングシートの必要厚さ(孔の必要深さ)は研削用砥粒の平均粒径の1〜7.5倍となる。
【0013】
円柱状の凸部の外径は、マスキングシートの孔の内径によって決まるが、凸部の外径(マスキングシートの孔径)が研削用砥粒の平均粒径の1.1倍未満であると、研削用砥粒を凸部上面に電気メッキ処理により電着固定する際に研削用砥粒が1個づつ安定して固定しにくくなる。また固定できたとしても、凸部の外径が研削用砥粒の平均粒径の1.1倍未満であると研削用砥粒を固定するための面積が狭くなることから、研削砥粒の保持力が弱く研削加工時に研削用砥粒が脱落しやすくなる。また凸部の外径(マスキングシートの孔径)が研削用砥粒の平均粒径の1.5倍を超えると、研削用砥粒を凸部上面に電気メッキ処理により電着固定する際に固定される研削砥粒が2個以上固定されてしまうなど、均等な分散ができなくなる。そのため、被研削物へ接触する研削用砥粒数が多くなる、あるいはばらつきが大きくなるため、安定した研削ができず、研削抵抗軽減の効果も少ない。
【0014】
ここで、凸部を形成するメッキ金属に含ませる微小粒径の砥粒の平均粒径を20μm以下とすることが望ましい。この微小粒径の砥粒の平均粒径が20μmより大きいと、メッキ浴中での沈降速度が速いため、台金表面に堆積してマスキングパターンの非マスキング部を塞いでしまうことから電気抵抗が高くなり、メッキ焼けが発生するなど、安定したメッキ析出ができず、凸部を形成することができなくなる。この凸部形成用のメッキ金属に含ませる砥粒としては、ダイヤモンド砥粒、cBN砥粒、SiC砥粒、Si砥粒、Al砥粒を用いることができる。
【0015】
また、隣り合う凸部の中心間隔を、使用する研削用砥粒の平均粒径の1.5〜3.5倍とするのが望ましい。凸部の中心間隔が研削用砥粒の平均粒径の1.5倍未満であると、被研削物に接触する砥粒数が多くなり、砥粒の切り込み深さが浅くなることから、研削抵抗の低減効果が小さくなる。凸部の中心間隔が研削用砥粒の平均粒径の3.5倍を超えると、砥粒数が少なすぎるため研削時の個々の砥粒に加わる衝撃が大きくなり、砥粒が脱落しやすくなる。
【0016】
本発明の電着工具の製造方法は、微小粒径の砥粒を含んだメッキ金属により台金表面に形成した凸部の上面に砥粒を電着固定する点と、凸部と凸部の間にメッキ層を形成しない点を除いて、前述の特開平5−285846号公報に記載の製造方法に準じた製造方法を採用することができる。ただし、研削用砥粒を電着固定する方法は異なり、本発明の製造方法においては、マスキングパターンを形成した状態で微小砥粒を懸濁させた電解メッキ液中で電気メッキ処理を行って非マスキング部の孔内に微小砥粒を含むメッキ金属を析出させて台金表面に微小砥粒を含むメッキ金属からなる凸部を形成した後、そのままメッキ液中にて砥粒を台金表面に散布して非マスキング部の孔内に砥粒を1個づつ入れ込み、電気メッキ処理により砥粒を仮固定した後、余分な砥粒を除去し、マスキングパターンを形成した状態のままで電気メッキ処理により研削用砥粒を本固定する。この後マスキングパターンを除去することにより、凸部と凸部の間にはメッキ層が形成されておらず、凸部の上面に研削用砥粒が固着された研削作用面が形成される。
【0017】
【発明の実施の形態】
図1は本発明を回転円板砥石に適用した実施形態における砥粒の配置状態を模式的に示す図であり、(a)は砥石の外観を示す斜視図、(b)は砥粒の配置を示す部分平面図、(c)は砥粒の配置を示す部分断面図である。
【0018】
砥石1は、円板状の台金2の外周面に砥粒層3が形成された砥石である。砥粒層3は、微小粒径の砥粒を含んだメッキ金属により台金表面に形成された多数の凸部4の上面にそれぞれ1個の研削用の砥粒5をメッキ金属層7(仮固定のためのメッキ金属層6を含む)により電着して形成されている。これにより、台金2表面からの砥粒5の突出高さは凸部4の高さ分だけ高くなり、さらに凸部4どうしの間に大きなチップポケットが形成されて、研削液の供給と切粉の排出性が向上し、研削抵抗が低減する。また切粉の排出により、切粉は凸部4に接触するが、凸部4は微小粒径の硬質の砥粒を含んだメッキ金属により形成されているので耐摩耗性が高く、寿命も長くなる。
【0019】
砥粒5は平均粒径が約220μmのダイヤモンド砥粒である。凸部4は円柱状で、高さHは約450μm(砥粒5の平均粒径の約2.05倍)、外径Dは約250μm(砥粒5の平均粒径の約1.14倍)であり、凸部4の中心間隔Lは約500μm(砥粒平均粒径の約2.27倍)である。凸部4を形成するメッキ金属中の微小砥粒は、平均粒径5μmのダイヤモンド砥粒である。
【0020】
図2は図1に示す砥石1の砥粒層3の形成方法の説明図である。
まず、図2(a)に示すように、深さ660μmの多数の孔で非マスキング部13が形成されるように転写紙11上に熱硬化性樹脂インクにより印刷してマスキング部12を形成し、これを常温で乾燥する。ついで、マスキング部12の上面(インク上面)にプラスチックフィルム14を貼り付け、マスキングシート10を作製する。非マスキング部13である孔の内径は約250μm、非マスキング部13どうしの中心間隔は約500μmであり、非マスキング部13の平面的な配置は角度60度づつずらした千鳥状配置である。
【0021】
つぎに、マスキングシート10を水に浸漬し、転写紙11を剥がし取り、台金2の外周面に貼り付ける。なお、台金2の側面2aおよび取付孔2b(図1(a)参照)には孔のない通常のメッキ用マスキングテープでマスキングする。この後、120℃の雰囲気中で1時間程度、熱硬化性インクを乾燥硬化させて、プラスチックフィルム14を剥ぎ取ることにより、多数の孔が非マスキング部13となるマスキングパターンが台金2表面に形成される。
【0022】
つぎに、マスキングパターンを形成した状態で、台金2表面にメッキ前処理を行い、その後平均粒径が5μmのダイヤモンド砥粒をメッキ液1リットルあたり5gの割合で混合懸濁させたメッキ液中にて、電流密度約1.2A/dmの電流を約30時間流して、非マスキング13の内部に高さ約450μmの微小ダイヤモンド砥粒を含んだメッキ金属層15を析出させる。このメッキ金属層15が図1(c)に示す台金2表面の凸部4となる。
【0023】
ついで、メッキ液中に研削用砥粒を散布し、メッキ液に振動を与えて1つ1つの非マスキング部13内のメッキ金属層15上に砥粒5を1個づつ入れ込み、その後メッキ液中に電流密度約0.3A/dmの電流を約8時間流し、研削用砥粒の平均粒径の10〜15%の厚さのメッキ金属層6を析出させて、砥粒5をメッキ金属層15上面に仮固定する(図2(c)参照)。その後、余分な砥粒5aを除去し、再度メッキ液中に電流密度約0.5A/dmの電流を約6時間流し、砥粒5がその粒径の60〜70%がメッキ金属層7に沈み込む程度に調整し、砥粒5を本固定する(図2(d)参照)。
【0024】
この後、台金2の側面2aと取付孔2bのマスキングテープを剥がし、全体を溶剤に浸漬してマスキング部12を剥離除去することにより、台金2表面の凸部4上面に砥粒5が固着され、凸部4どうしの間にはメッキ層が形成されていない空間(チップポケット)8を有する砥粒層3が形成され(図2(e)参照)、図1(a)に示す回転円板砥石1が得られる。
【0025】
本発明の効果を確認するために、上記実施形態の回転円板砥石(発明品)と、上記実施形態と同じ台金と砥粒およびメッキ液を用いて特許文献1に記載の方法により製造した回転円板砥石(比較品)を使用して研削試験を行った。
〔試験条件〕
研削機械:平面研削盤
被研削材:超硬合金G2
砥石周速度:1700m/min
切り込み量:20μm/パス
テーブル送り速度:10m/min
研削方式:プランジカット
研削液:ソリュブルタイプ
【0026】
図3は試験結果を示す図であり、(a)は研削量と消費電力の関係を示す図、(b)は研削量と研削後の被研削材の面粗さの関係を示す図、(c)は研削量と砥石半径方向の摩耗量の関係を示す図である。
【0027】
同図(a)に示すように、消費電力に関しては、比較品はメッキ層上面からの砥粒の突出高さが低いので、切れ味と切粉の排出が不十分で、消費電力は高い値を示している。これに対し発明品は、研削用砥粒が凸部の上面に固着されているので台金表面からの砥粒の突出高さが高く、かつチップポケットが大きいので、研削液の供給と切粉の排出性が向上し、研削抵抗が低減して、低い消費電力を示している。発明品の平均消費電力は比較品の平均消費電力に比較して約39%低い。
【0028】
同図(b)に示すように、研削後の被研削材の面粗さに関しては、発明品は、砥粒の突出高さが高く、かつ切り刃間隔が大きいことから切り込み深さが大きくなり、このため被研削材の面粗さは比較品よりも僅かに大きくなっている。ただし、実用面で問題となる面粗さではない。
同図(c)に示すように、砥石半径方向の摩耗量に関しては、発明品は比較品とほぼ同等の値を示した。
【0029】
さらに、台金表面に形成する凸部に微小砥粒を含ませたことの効果を確認するために、凸部に微小砥粒を含まない砥石を製造して研削試験を行った。被研削材としては、切粉の接触によりメッキ金属を摩耗させやすいものを使用した。
〔試験条件〕
研削機械:平面研削盤
被研削材:常圧焼結窒化珪素
砥石周速度:1800m/min
切り込み量:20μm/パス
テーブル送り速度:20m/min
研削液:ノリタケクールSA−02(商品名)
【0030】
試験結果は、比較品の砥石は発明品の砥石に比較して寿命は約46%短かった。これは比較品の砥石の場合、凸部に微小砥粒を含まないので耐摩耗性が低く、研削時に凸部と凸部の間を通過する切粉が凸部に接触したときに凸部が摩耗することで凸部上面の研削用砥粒が不安定な固定状態となり、まだ使用できる状態においても研削用砥粒が脱落してしまうためである。これに対し発明品の砥石では、切粉接触による凸部の摩耗が少ないので、研削用砥粒の安定固着状態が持続され、研削用砥粒を有効使用することができ、寿命も長くなる。
【0031】
【発明の効果】
研削面とする台金表面に微小粒径の砥粒を含んだ金属結合材からなる円柱状の凸部が多数形成され、これらの凸部のそれぞれの上面に1個の研削用砥粒が電着により固定されており、前記凸部の高さが前記研削用砥粒の平均粒径の0.5〜6倍で、かつ前記凸部の外径が前記研削用砥粒の平均粒径の1.1〜1.5倍であり、凸部と凸部の間にメッキ層が形成されていない電着工具とすることにより、凸部と凸部の間に大きなチップポケットが形成され、台金表面からの砥粒の突出量も大きくなって、研削液の供給と切粉の排出が良好となり、研削抵抗も低減する。さらに、凸部の切粉に対する耐摩耗性が向上し、工具の長寿命化をはかることができる。
【図面の簡単な説明】
【図1】本発明を回転円板砥石に適用した実施形態における砥粒の配置状態を模式的に示す図である。
【図2】図1に示す砥石の砥粒層の形成方法の説明図である。
【図3】研削試験結果を示す図である。
【符号の説明】
1 砥石
2 台金
2a 台金の側面
2b 台金の取付孔
3 砥粒層
4 凸部
5 砥粒
5a 砥粒
6,7,15 メッキ金属層
8 空間(チップポケット)
10 マスキングシート
11 転写紙
12 マスキング部
13 非マスキング部
14 プラスチックフィルム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrodeposition tool in which abrasive grains are electrodeposited and fixed on a surface of a base metal in a single layer, and a method of manufacturing the same.
[0002]
[Prior art]
Electrodeposition tools having an abrasive layer formed on a base metal surface by an electrodeposition method are used for grinding and polishing of various materials such as cemented carbide, ceramic, glass, semiconductor materials, cast iron, and steel. This electrodeposition tool immerses a base metal in the form of a mold, a cup, a disk, etc., in a plating solution in which superabrasive grains such as diamond abrasive grains and cBN abrasive grains are dispersed. Is electrodeposited to form an abrasive layer.
[0003]
Such electrodeposition tools generally have abrasive grains fixed to a single layer. In the case of single layer structure, the plating metal precipitates between the abrasive grains and the plated metal holds the abrasive grains firmly and the tip of the abrasive grains is sufficiently exposed, so the sharpness is sharp. Excellent, high efficiency grinding is possible. However, on the other hand, because the density of the abrasive grains is high, if a part of the tip of the abrasive grains is worn by grinding, the grinding resistance is significantly increased and sharpness is greatly reduced. In addition, the swarf has low dischargeability, and tends to cause clogging and welding.
[0004]
In order to cope with such a problem, the abrasive grains are uniformly dispersed on the surface of the base metal in order to reduce the abrasive grain density. As means for that purpose, the present inventor has performed an insulating mask having a non-masking portion on the surface of a base metal, and, when electrodepositing the abrasive on the non-masking portion, using an abrasive for electrodepositing the thickness of a masking sheet. We have invented a method for producing an electrodeposited whetstone in which the particle size is in the range of 50 to 150% and the inner diameter of the hole in the non-masking portion is in the range of 110 to 160% of the abrasive particle size (see Patent Document 1).
In the electrodeposited whetstone manufactured by this method, by setting the thickness of the masking sheet and the inner diameter of the hole of the non-masking portion to predetermined values, the abrasive grains electrodeposited on the base metal can be used to form the formed non-masking portion pattern. Are distributed one by one.
[0005]
However, in this manufacturing method, in order to permanently fix the temporarily fixed abrasive grains, electroplating is performed again in a plating solution, and a plating layer having a thickness of about 30 to 70% of the abrasive grain diameter is formed on the base metal surface. Is precipitated. Therefore, the projection height of the abrasive grains from the upper surface of the plating layer is only about 30 to 70% of the grain size of the abrasive grains, and thus the effect of improving sharpness is small, and the effect of discharging chips is not expected to be much improved. . In order to improve this point, a plurality of small abrasive layers having a mound part protruding from the base metal and a single abrasive grain fixed on the mound part with a metal bonding layer are arranged at predetermined intervals on the base metal. A grindstone has been proposed (see Patent Document 2). According to this whetstone, only the abrasive grains in the small abrasive layer portion come into contact with the abrasive, so that the sharpness is good and the cutting powder is easily discharged.
[0006]
[Patent Document 1]
JP-A-5-285846 (paragraph number 0008-0012)
[Patent Document 2]
JP 2001-105327 A (Paragraph No. 0008)
[0007]
[Problems to be solved by the invention]
However, in the grinding wheel described in Patent Document 2 described above, since a chip discharge path is provided between the mound portion raised from the base metal and the mound portion, when a hard material to be ground is ground, the chip is There is a problem that the mound part is worn by contact with the part, the abrasive particles fixed on the upper surface of the mound part fall off, and the tool life is shortened.
[0008]
Such a problem is not limited to a disk-shaped rotary grindstone, but can be applied to cup-shaped and all-shaped grindstones, and other general electrodeposited tools.
The problem to be solved by the present invention is to improve the conditions for forming a convex portion in an electrodeposited tool in which abrasive grains are disposed on a convex portion formed on the surface of a base metal of the electrodeposited tool, and reduce wear of the convex portion. The purpose is to extend the life of the tool.
[0009]
[Means for Solving the Problems]
In the electrodeposition tool of the present invention, a large number of columnar protrusions made of a metal binder containing fine abrasive particles are formed on the surface of a base metal serving as a grinding surface, and one of these protrusions is formed on the upper surface of each of these protrusions. The abrasive grains for grinding are fixed by electrodeposition, the height of the projections is 0.5 to 6 times the average particle diameter of the abrasive grains for grinding, and the outer diameter of the projections is The electrodeposited tool has an average particle size of 1.1 to 1.5 times the abrasive grain for use, and has no plating layer formed between the convex portions.
[0010]
The above electrodeposition tool creates a masking sheet having a large number of holes with a predetermined hole diameter, and affixes the masking sheet to a base metal surface having a ground surface to form a non-masking portion with a large number of holes on the base metal surface. A step of forming a masking pattern having an electroplating process in an electrolytic plating solution in which fine abrasive grains having an average particle diameter of 20 μm or less are suspended in a state in which the masking pattern is formed, to form holes in the non-masking portion. A step of depositing the plating metal containing the fine abrasive grains to form a large number of projections made of the plating metal containing the fine abrasive grains on the base metal surface, and performing an electroplating process with the masking pattern formed. A step of electrodepositing and fixing one abrasive grain on the upper surface of each of the plurality of projections.
[0011]
In the electrodeposition tool of the present invention, the abrasive grains for grinding are fixed one by one on the upper surface of the convex part formed on the base metal surface, and the convex parts and the abrasive grains for grinding are uniformly dispersed and arranged according to the masking pattern. Since the plating layer is not formed between the convex portion and the convex portion, a large chip pocket is formed between the convex portion and the convex portion, the projection amount of the abrasive for grinding from the base metal surface is large, and the Good supply and chip evacuation and reduced grinding resistance. Further, since the convex portion is formed of a metal binder containing abrasive grains having a small particle size, the abrasive portion has high wear resistance against chip contact with the convex portion when grinding a hard material to be ground, and the convex portion Is hard to wear, so that the abrasive grains fixed to the upper surface of the convex portion can be prevented from falling off, and the life of the tool is prolonged.
[0012]
The height of the protrusions formed on the surface of the base metal is determined by the depth of the holes (thickness of the masking sheet), which is the non-masking portion of the masking sheet, and the fine abrasive grains deposited in the holes to form the protrusions. (Deposited thickness is smaller than the depth of the hole by 50 to 150% of the grain size of the abrasive grains for grinding), but the height of the projections is the average of the abrasive grains for grinding. If the particle size is less than 0.5 times, the chip pocket becomes small, and it is not possible to expect improvement of the supply of the grinding fluid and the discharge of the chips, and it is not possible to obtain a sufficient depth of cut so that the grinding resistance is reduced. No effect can be expected. If the height of the projections exceeds six times the average particle size of the abrasive grains for grinding, the depth of cut into the workpiece during grinding is too deep, and the impact on the abrasive grains for grinding is large. Easily fall off. The required thickness of the masking sheet (the required depth of the holes) for setting the height of the projections to 0.5 to 6 times the average particle diameter of the abrasive grains for grinding is 1 to 10 times the average particle diameter of the abrasive grains for grinding. It becomes 7.5 times.
[0013]
The outer diameter of the cylindrical projection is determined by the inner diameter of the hole in the masking sheet. If the outer diameter of the projection (the hole diameter of the masking sheet) is less than 1.1 times the average particle diameter of the abrasive grains for grinding, When the abrasive grains for grinding are electrodeposited on the upper surface of the convex portion by electroplating, it becomes difficult to stably fix the abrasive grains one by one. Also, even if it can be fixed, if the outer diameter of the convex portion is less than 1.1 times the average particle size of the abrasive grains for grinding, the area for fixing the abrasive grains for grinding is reduced, so that The holding power is weak, and the abrasive grains for grinding tend to fall off during grinding. When the outer diameter of the convex portion (the hole diameter of the masking sheet) exceeds 1.5 times the average particle size of the abrasive grains for grinding, the abrasive grains for grinding are fixed to the upper surface of the convex portion by electrodeposition by electroplating. For example, two or more ground abrasive grains are fixed, and uniform dispersion cannot be performed. For this reason, the number of abrasive grains for grinding that comes into contact with the object to be ground increases or the dispersion increases, so that stable grinding cannot be performed and the effect of reducing grinding resistance is small.
[0014]
Here, it is desirable that the average grain size of the abrasive grains having a small grain size to be contained in the plating metal forming the projections is 20 μm or less. If the average grain size of the fine grains is larger than 20 μm, the sedimentation speed in the plating bath is high, and the abrasive grains are deposited on the surface of the base metal and block the non-masking portions of the masking pattern. As a result, the plating cannot be stably deposited due to, for example, burning of the plating, and it becomes impossible to form the projections. As abrasive grains contained in the plating metal for forming the convex portions, diamond abrasive grains, cBN abrasive grains, SiC abrasive grains, Si 3 N 4 abrasive grains, and Al 2 O 3 abrasive grains can be used.
[0015]
Further, it is desirable that the center interval between the adjacent convex portions is 1.5 to 3.5 times the average particle size of the abrasive grains to be used. If the center spacing of the projections is less than 1.5 times the average grain size of the abrasive grains for grinding, the number of abrasive grains in contact with the workpiece is increased and the cutting depth of the abrasive grains is reduced, so that the grinding is performed. The effect of reducing the resistance is reduced. If the distance between the centers of the protrusions exceeds 3.5 times the average particle size of the abrasive grains for grinding, the number of abrasive grains is too small, so the impact applied to each abrasive grain during grinding increases, and the abrasive grains are likely to fall off. Become.
[0016]
The method for producing an electrodeposition tool of the present invention includes the steps of electrodepositing the abrasive grains on the upper surface of the convex portion formed on the surface of the base metal by plating metal containing the abrasive particles having a small particle diameter, and the method of forming the convex portion and the convex portion. A manufacturing method according to the manufacturing method described in the above-mentioned JP-A-5-285846 can be employed except that no plating layer is formed therebetween. However, the method of electrodepositing and fixing the abrasive grains for grinding is different, and in the production method of the present invention, the electroplating treatment is performed in an electrolytic plating solution in which fine abrasive grains are suspended in a state where a masking pattern is formed. After depositing the plating metal containing the fine abrasive grains in the holes of the masking portion and forming the projections made of the plating metal containing the fine abrasive grains on the base metal surface, the abrasive grains are directly applied to the base metal surface in the plating solution. Spray and insert abrasive grains one by one into the holes of the non-masking area, temporarily fix the abrasive grains by electroplating, remove excess abrasive grains, and perform electroplating with the masking pattern formed To permanently fix the abrasive grains for grinding. Thereafter, by removing the masking pattern, a plating layer is not formed between the convex portions, and a grinding surface on which abrasive grains are fixed is formed on the upper surface of the convex portion.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
FIGS. 1A and 1B are diagrams schematically showing an arrangement state of abrasive grains in an embodiment in which the present invention is applied to a rotating disk grindstone. FIG. 1A is a perspective view showing an appearance of the grindstone, and FIG. And (c) is a partial sectional view showing the arrangement of abrasive grains.
[0018]
The grindstone 1 is a grindstone in which an abrasive grain layer 3 is formed on an outer peripheral surface of a disk-shaped base metal 2. The abrasive grain layer 3 is formed by plating one abrasive grain 5 on the upper surface of a large number of protrusions 4 formed on the surface of the base metal with a plating metal containing abrasive grains having a small particle diameter. (Including a plating metal layer 6 for fixing). As a result, the protruding height of the abrasive grains 5 from the surface of the base metal 2 is increased by the height of the projections 4, and a large chip pocket is formed between the projections 4. The powder discharge property is improved, and the grinding resistance is reduced. In addition, when the chips are discharged, the chips come into contact with the projections 4. Since the projections 4 are formed of a plated metal containing hard abrasive grains having a small particle diameter, the wear resistance is high and the life is long. Become.
[0019]
The abrasive grains 5 are diamond abrasive grains having an average particle size of about 220 μm. The convex portion 4 has a columnar shape, the height H is about 450 μm (about 2.05 times the average particle size of the abrasive grains 5), and the outer diameter D is about 250 μm (about 1.14 times the average particle size of the abrasive grains 5). ), And the center distance L between the protrusions 4 is about 500 μm (about 2.27 times the average grain diameter of the abrasive grains). The fine abrasive grains in the plated metal forming the projections 4 are diamond abrasive grains having an average particle size of 5 μm.
[0020]
FIG. 2 is an explanatory diagram of a method for forming the abrasive grain layer 3 of the grindstone 1 shown in FIG.
First, as shown in FIG. 2A, the masking portion 12 is formed by printing with a thermosetting resin ink on the transfer paper 11 so that the non-masking portion 13 is formed by a large number of holes having a depth of 660 μm. This is dried at room temperature. Next, a plastic film 14 is attached to the upper surface (the upper surface of the ink) of the masking section 12 to produce the masking sheet 10. The inner diameter of the hole which is the non-masking portion 13 is about 250 μm, the center interval between the non-masking portions 13 is about 500 μm, and the planar arrangement of the non-masking portion 13 is a staggered arrangement shifted by an angle of 60 degrees.
[0021]
Next, the masking sheet 10 is immersed in water, the transfer paper 11 is peeled off, and attached to the outer peripheral surface of the base metal 2. The side surface 2a and the mounting holes 2b (see FIG. 1A) of the base metal 2 are masked with a normal plating masking tape having no holes. Thereafter, the thermosetting ink is dried and cured in an atmosphere at 120 ° C. for about 1 hour, and the plastic film 14 is peeled off, so that a masking pattern in which a large number of holes become non-masking portions 13 is formed on the surface of the base metal 2. It is formed.
[0022]
Next, in a state where the masking pattern is formed, a pretreatment for plating is performed on the surface of the base metal 2, and thereafter, a diamond abrasive having an average particle diameter of 5 μm is mixed and suspended at a ratio of 5 g per liter of the plating solution. Then, a current having a current density of about 1.2 A / dm 2 is passed for about 30 hours to deposit a plated metal layer 15 containing fine diamond abrasive grains having a height of about 450 μm inside the non-masking 13. This plated metal layer 15 becomes the projection 4 on the surface of the base metal 2 shown in FIG.
[0023]
Next, abrasive grains for grinding are scattered in the plating solution, and the plating solution is vibrated to put the abrasive grains 5 one by one on the plating metal layer 15 in each of the non-masking portions 13. A current having a current density of about 0.3 A / dm 2 is flowed for about 8 hours to deposit a plating metal layer 6 having a thickness of 10 to 15% of the average grain size of the abrasive grains for grinding. Temporarily fixed to the upper surface of the layer 15 (see FIG. 2C). Thereafter, excess abrasive grains 5a are removed, and a current having a current density of about 0.5 A / dm 2 is again passed through the plating solution for about 6 hours. And the abrasive grains 5 are permanently fixed (see FIG. 2D).
[0024]
Thereafter, the masking tape on the side surface 2a and the mounting hole 2b of the base metal 2 is peeled off, and the whole is immersed in a solvent to peel off and remove the masking portion 12, so that the abrasive grains 5 are formed on the upper surface of the projection 4 on the surface of the base metal 2. The abrasive layer 3 having a space (chip pocket) 8 in which the plating layer is not formed between the convex portions 4 is fixed (see FIG. 2E), and the rotation shown in FIG. A disc wheel 1 is obtained.
[0025]
In order to confirm the effect of the present invention, the rotary disk grindstone (invention) of the above embodiment, and the same base metal, abrasive grains and plating solution as those of the above embodiment were manufactured by the method described in Patent Document 1. A grinding test was performed using a rotating disk grindstone (comparative product).
〔Test condition〕
Grinding machine: Surface grinder Grinding material: Cemented carbide G2
Wheel speed: 1700m / min
Depth of cut: 20 μm / feed speed of pass table: 10 m / min
Grinding method: Plunge cut Grinding fluid: Soluble type [0026]
3A and 3B are diagrams showing test results, wherein FIG. 3A is a diagram showing the relationship between the amount of grinding and power consumption, FIG. 3B is a diagram showing the relationship between the amount of grinding and the surface roughness of the workpiece after grinding, c) is a diagram showing the relationship between the amount of grinding and the amount of wear in the grinding wheel radial direction.
[0027]
As shown in FIG. 3A, regarding the power consumption, the comparative product has a low protruding height of the abrasive grains from the upper surface of the plating layer. Is shown. On the other hand, in the present invention, since the abrasive grains for grinding are fixed to the upper surface of the projection, the height of the abrasive grains protruding from the surface of the base metal is high, and the chip pocket is large. This improves the discharge performance of the steel, reduces the grinding resistance, and shows low power consumption. The average power consumption of the invention product is about 39% lower than the average power consumption of the comparison product.
[0028]
As shown in FIG. 3B, the surface roughness of the material to be ground after the grinding is greater in the invention because the projection height of the abrasive grains is high and the interval between the cutting edges is large. Therefore, the surface roughness of the material to be ground is slightly larger than that of the comparative product. However, the surface roughness is not a problem in practical use.
As shown in FIG. 3C, the invention product showed almost the same value as the comparative product with respect to the wear amount in the grindstone radial direction.
[0029]
Further, in order to confirm the effect of including the fine abrasive grains in the convex portion formed on the base metal surface, a grinding stone was manufactured without including the fine abrasive particles in the convex portion, and a grinding test was performed. As the material to be ground, a material that easily wears the plated metal due to the contact of the swarf was used.
〔Test condition〕
Grinding machine: Surface grinder Grinding material: Normal pressure sintered silicon nitride grinding wheel Peripheral speed: 1800 m / min
Cutting depth: 20 μm / pass table feed speed: 20 m / min
Grinding fluid: Noritake Cool SA-02 (trade name)
[0030]
The test results showed that the life of the comparative wheel was about 46% shorter than that of the inventive wheel. This is because, in the case of the comparative whetstone, the abrasion resistance is low because the projections do not contain fine abrasive grains, and when the chips passing between the projections come into contact with the projections during grinding, the projections This is because the abrasive grains on the upper surface of the convex portion are in an unstable fixed state due to the abrasion, and the abrasive grains for grinding fall off even in a state where they can still be used. On the other hand, in the whetstone of the present invention, the abrasion of the convex portion due to the contact of the cutting chips is small, so that the stable fixed state of the abrasive grains for grinding is maintained, the abrasive grains for grinding can be used effectively, and the life is prolonged.
[0031]
【The invention's effect】
A large number of cylindrical projections made of a metal binder containing fine abrasive grains are formed on the surface of the base metal serving as a grinding surface, and one grinding abrasive is provided on the upper surface of each of these projections. The height of the convex portion is 0.5 to 6 times the average particle size of the abrasive grains for grinding, and the outer diameter of the convex portion is the average particle size of the abrasive particles for grinding. By using an electrodeposition tool that is 1.1 to 1.5 times and has no plating layer formed between the projections, a large chip pocket is formed between the projections, The protrusion amount of the abrasive grains from the gold surface is also increased, so that the supply of the grinding fluid and the discharge of the cutting chips are improved, and the grinding resistance is reduced. Further, the abrasion resistance of the protruding portion against cutting chips is improved, and the life of the tool can be extended.
[Brief description of the drawings]
FIG. 1 is a view schematically showing an arrangement state of abrasive grains in an embodiment in which the present invention is applied to a rotating disk grindstone.
FIG. 2 is an explanatory view of a method for forming an abrasive layer of the grindstone shown in FIG.
FIG. 3 is a diagram showing a grinding test result.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Whetstone 2 Base metal 2a Side face 2b of base metal Mounting hole 3 of base metal 3 Abrasive layer 4 Convex part 5 Abrasive grains 5a Abrasive grains 6, 7, 15 Plating metal layer 8 Space (chip pocket)
DESCRIPTION OF SYMBOLS 10 Masking sheet 11 Transfer paper 12 Masking part 13 Non-masking part 14 Plastic film

Claims (6)

研削面とする台金表面に微小粒径の砥粒を含んだ金属結合材からなる円柱状の凸部が多数形成され、これらの凸部のそれぞれの上面に1個の研削用砥粒が電着により固定されており、前記凸部の高さが前記研削用砥粒の平均粒径の0.5〜6倍で、かつ前記凸部の外径が前記研削用砥粒の平均粒径の1.1〜1.5倍であり、凸部と凸部の間にメッキ層が形成されていないことを特徴とする電着工具。A large number of cylindrical projections made of a metal binder containing fine abrasive grains are formed on the surface of the base metal serving as a grinding surface, and one grinding abrasive is provided on the upper surface of each of these projections. The height of the convex portion is 0.5 to 6 times the average particle size of the abrasive grains for grinding, and the outer diameter of the convex portion is the average particle size of the abrasive particles for grinding. An electroplated tool having a ratio of 1.1 to 1.5 times, wherein no plating layer is formed between the convex portions. 前記凸部に含まれる微小粒径の砥粒の平均粒径が20μm以下である請求項1記載の電着工具。The electrodeposited tool according to claim 1, wherein the average grain size of the abrasive grains having a small grain size contained in the projections is 20 µm or less. 前記凸部と凸部の中心間隔が前記凸部の外径の1.5〜3.5倍である請求項1または2記載の電着工具。The electrodeposition tool according to claim 1, wherein a center distance between the protrusions is 1.5 to 3.5 times an outer diameter of the protrusion. 所定の孔径で多数の孔を形成したマスキングシートを作成し、このマスキングシートを研削面とする台金表面に貼付して台金表面に多数の孔による非マスキング部を有するマスキングパターンを形成する工程と、前記マスキングパターンを形成した状態で平均粒径が20μm以下の微小砥粒を懸濁させた電解メッキ液中で電気メッキ処理を行って非マスキング部の孔内に前記微小砥粒を含むメッキ金属を析出させて台金表面に前記微小砥粒を含むメッキ金属からなる多数の凸部を形成する工程と、前記マスキングパターンを形成した状態で電気メッキ処理を行って前記多数の凸部のそれぞれの上面に1個の研削用砥粒を電着固定する工程と、を含むことを特徴とする電着工具の製造方法。A step of forming a masking sheet having a large number of holes with a predetermined hole diameter and affixing the masking sheet to a base metal surface having a ground surface to form a masking pattern having a non-masking portion with a large number of holes on the base metal surface. Electroplating is performed in an electrolytic plating solution in which micro-abrasive particles having an average particle diameter of 20 μm or less are suspended in a state where the masking pattern is formed, and plating including the micro-abrasive particles in the holes of the non-masking portion A step of depositing a metal to form a number of projections made of a plating metal including the fine abrasive grains on the base metal surface, and performing an electroplating process in a state where the masking pattern is formed, and forming each of the plurality of projections. Electrodepositing one abrasive grain for grinding on the upper surface of the electrodeposition tool. 前記マスキングシートの孔の内径を前記研削用砥粒の平均粒径の1.1〜1.5倍とし、前記マスキングシートの厚さを前記研削用砥粒の平均粒径の1〜7.5倍とする請求項4記載の電着工具の製造方法。The inside diameter of the holes in the masking sheet is 1.1 to 1.5 times the average particle size of the abrasive grains for grinding, and the thickness of the masking sheet is 1 to 7.5 times the average particle size of the abrasive grains for grinding. The method for manufacturing an electrodeposited tool according to claim 4, wherein the number is doubled. 前記マスキングシートの孔の中心間隔を前記孔の内径の1.5〜3.5倍とする請求項4または5記載の電着工具の製造方法。The method for manufacturing an electrodeposited tool according to claim 4 or 5, wherein a center interval between holes of the masking sheet is set to 1.5 to 3.5 times an inner diameter of the hole.
JP2003065716A 2003-03-11 2003-03-11 Electrodeposition tool and its manufacturing method Pending JP2004268238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003065716A JP2004268238A (en) 2003-03-11 2003-03-11 Electrodeposition tool and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003065716A JP2004268238A (en) 2003-03-11 2003-03-11 Electrodeposition tool and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004268238A true JP2004268238A (en) 2004-09-30

Family

ID=33126659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003065716A Pending JP2004268238A (en) 2003-03-11 2003-03-11 Electrodeposition tool and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004268238A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100908273B1 (en) * 2007-09-20 2009-07-20 새솔다이아몬드공업 주식회사 Method of Making Diamond Grinding Tool
JP2010120131A (en) * 2008-11-20 2010-06-03 Noritake Super Abrasive Co Ltd Electro-deposition tool and method for manufacturing electro-deposition tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100908273B1 (en) * 2007-09-20 2009-07-20 새솔다이아몬드공업 주식회사 Method of Making Diamond Grinding Tool
JP2010120131A (en) * 2008-11-20 2010-06-03 Noritake Super Abrasive Co Ltd Electro-deposition tool and method for manufacturing electro-deposition tool

Similar Documents

Publication Publication Date Title
JP3782108B2 (en) Superabrasive electrodeposited cutting blade and its manufacturing method
KR100293863B1 (en) Super abrasive tool and its manufacturing method
US7527050B2 (en) Method for fabricating multi-layer, hub-less blade
JP2002326165A (en) Super-abrasive grain tool, and method for manufacturing the same
WO2007120224A2 (en) Electroplated abrasive tools, methods, and molds
JP2003511255A (en) Conditioner for polishing pad and method of manufacturing the same
JPWO2002022310A1 (en) Super abrasive wheel for mirror finishing
JP2000343436A (en) Grinding wheel and manufacture thereof
JP2006082187A (en) Thin blade grinding wheel
JP2004268238A (en) Electrodeposition tool and its manufacturing method
JPH09225827A (en) Dresser and manufacture thereof
JPH10329029A (en) Electrodepositioning super grain grinding wheel
JP2002326166A (en) Electrodeposition thin blade grinding wheel, and method for manufacturing the same
JP3086670B2 (en) Super abrasive whetstone
JP3134469B2 (en) Electroplated whetstone and method of manufacturing the same
JP4470559B2 (en) Ultra-thin blade and manufacturing method thereof
JP3128079B2 (en) Electroplated tool and manufacturing method thereof
JP3202191B2 (en) Super abrasive whetstone
JP4169612B2 (en) Electrodeposition tool manufacturing method
JP2001315062A (en) Electrodeposition grinding wheel and its manufacturing method
JP2000084831A (en) Dressing device, polishing device using it, and cmp device
JP3006458B2 (en) Inner circumference grinding wheel
JP4419652B2 (en) Grinding wheel and method for manufacturing the same
JPH05285846A (en) Manufacture of electrodeposition grinding wheel
JP4017215B2 (en) Electrodeposition whetstone and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213