JP2010173015A - Nickel-plated film, cutting tool using the nickel-plated film, and method of forming the nickel-plated film - Google Patents

Nickel-plated film, cutting tool using the nickel-plated film, and method of forming the nickel-plated film Download PDF

Info

Publication number
JP2010173015A
JP2010173015A JP2009018340A JP2009018340A JP2010173015A JP 2010173015 A JP2010173015 A JP 2010173015A JP 2009018340 A JP2009018340 A JP 2009018340A JP 2009018340 A JP2009018340 A JP 2009018340A JP 2010173015 A JP2010173015 A JP 2010173015A
Authority
JP
Japan
Prior art keywords
nickel
plated film
abrasive grains
plating film
nickel plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009018340A
Other languages
Japanese (ja)
Inventor
Naoto Oikawa
尚登 及川
Hiroaki Abe
浩明 阿部
Takuma Katase
琢磨 片瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009018340A priority Critical patent/JP2010173015A/en
Publication of JP2010173015A publication Critical patent/JP2010173015A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nickel plated film used as a coupling member for an electrodeposition cutting tool, in particular, with the excellent retention power of abrasive grains, and to provide the cutting tool using such a nickel-plated film and a method of forming the nickel-plated film. <P>SOLUTION: By applying electroplating using a nickel plating solution as a plating liquid with a current density of 1.0-4.0 A/dm<SP>2</SP>to bring an average particle diameter of deposited nickel particles into a range of 0.009-0.5 μm. The cutting tool is constituted so as to have an abrasive grain layer 1 including abrasive grains 3 fixed by the nickel-plated film 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば電着ボンドホイール、電着砥石、電鋳ブレード等の研削工具において砥粒を電着するのに用いるニッケルめっき膜、該ニッケルめっき膜を用いた研削工具、およびニッケルめっき膜の成膜方法に関するものである。   The present invention relates to a nickel plating film used for electrodepositing abrasive grains in a grinding tool such as an electrodeposition bond wheel, an electrodeposition grindstone, and an electroformed blade, a grinding tool using the nickel plating film, and a nickel plating film. The present invention relates to a film forming method.

硬質のセラミックス粒子などを分散させためっき手法による金属膜は、耐摩耗性に優れていることから機械摺動部での摩耗低減下を目的に利用されている。こうした耐摩耗性に優れた効果を応用した製品として知られる電着研削工具などは、セラミックス、超硬合金、各種エレクトロニクス関連の素材での研削、切断などの固定砥粒工具として使われている。   A metal film formed by a plating method in which hard ceramic particles and the like are dispersed is used for the purpose of reducing wear at a machine sliding portion because of its excellent wear resistance. Electrodeposition grinding tools, etc., which are known as products that apply these excellent wear resistance effects, are used as fixed abrasive tools for grinding, cutting, etc. with ceramics, cemented carbide, and various electronics-related materials.

例えば特許文献1〜3には、半導体素子や電子部品の超精密切断加工に用いられる電鋳ブレードが記載されている。すなわち、このような電鋳ブレードは、極薄のニッケルめっき膜によってダイヤモンド砥粒を保持した円板状のものであり、ダイヤモンド砥粒を分散したニッケルめっき溶液中に台金を配置して、ダイヤモンド砥粒を取り込みつつ台金上に電解めっきによってニッケルめっき膜を析出させることにより砥粒層を形成し、所定の厚さになったところで台金から剥離して砥粒の目立てを施したものである。   For example, Patent Documents 1 to 3 describe electroformed blades used for ultraprecision cutting of semiconductor elements and electronic components. In other words, such an electroformed blade is a disc-shaped blade in which diamond abrasive grains are held by an ultra-thin nickel plating film. A base metal is placed in a nickel plating solution in which diamond abrasive grains are dispersed, and diamond Abrasive layer is formed by depositing a nickel plating film on the base metal by electrolytic plating while taking in the abrasive grains. is there.

また、特許文献4には、半導体ウェーハ等の表面をCMP装置のパッドによって研磨する際に、この研磨パッドをコンディショニングするCMPコンディショナとして、コンディショナ本体の表面に、やはりダイヤモンド砥粒をニッケルめっき膜によって固着した砥粒層を形成したものが提案されている。なお、かかる研削工具はこのようなエレクトロニクス関連の素材の加工以外にも、例えばフェライトの加工やレンズの芯取り加工などの精密加工や、あるいは超硬合金製のロールの溝加工などに用いられたりもする。   Further, in Patent Document 4, when polishing the surface of a semiconductor wafer or the like with a pad of a CMP apparatus, as a CMP conditioner for conditioning the polishing pad, diamond abrasive grains are also deposited on the surface of the conditioner body. There has been proposed one in which an abrasive layer fixed by the above is formed. In addition to processing such electronics-related materials, such grinding tools can be used for precision processing such as ferrite processing and lens centering processing, or groove processing of cemented carbide rolls. Also do.

特開2002−187071号公報JP 2002-187071 A 特開2003−225867号公報JP 2003-225867 A 特開2005−288614号公報JP 2005-288614 A 特開2004−66409号公報JP 2004-66409 A

ところで、一般的にこのような研削工具では、加工によって摩耗した砥粒が脱落するとともにこの砥粒を保持した結合材も摩耗することにより新たな砥粒が発刃するといった、いわゆる自生発刃作用によって鋭い切れ味を維持するようにしている。しかしながら、このような自生発刃において、例えば高硬度で摩耗しにくいダイヤモンド砥粒に対して結合材の摩耗の進行が著しいと、砥粒が鋭い切れ味をもったまま結合材ごと脱落してしまって工具寿命が短期に潰えてしまうことになる。   By the way, in general, in such a grinding tool, a so-called self-sharpening action in which abrasive grains worn by processing fall off and new abrasive grains are sputtered by wearing the binding material holding the abrasive grains. To maintain a sharp sharpness. However, in such a self-generated blade, for example, when the progress of wear of the binding material is significant with respect to diamond abrasive grains that are hard and difficult to wear, the abrasive grains fall off together with the sharpness and sharpness. The tool life will be crushed in a short time.

特に、このように摩耗しやすい結合材では砥粒層の形状維持が難しく、例えば特許文献1〜3に記載されたような電鋳ブレードでは、刃先のエッジをシャープに保つことが困難となって、切断した半導体素子にバリが発生したりするおそれがある。また、特許文献4に記載されたCMPコンディショナにおいて結合材の摩耗により砥粒が脱落すると、これがCMP装置で研磨される半導体ウェーハの表面を傷付けて、いわゆるスクラッチを生じるため、脱落が生じるよりも早い段階でコンディショナを交換しなければならず、工具寿命は一層短縮されることになる。   In particular, it is difficult to maintain the shape of the abrasive layer with such a binder that easily wears. For example, with an electroformed blade as described in Patent Documents 1 to 3, it is difficult to keep the edge of the cutting edge sharp. There is a risk that burrs may occur in the cut semiconductor element. Further, in the CMP conditioner described in Patent Document 4, if abrasive grains fall off due to wear of the binding material, this damages the surface of the semiconductor wafer to be polished by the CMP apparatus and causes so-called scratches, so that the dropout occurs. The conditioner must be changed at an early stage, and the tool life is further shortened.

本発明は、このような背景の下になされたもので、特に上述のような電着研削工具の結合材として用いて砥粒の保持力に優れたニッケルめっき膜を提供し、合わせてかかるニッケルめっき膜を用いた研削工具、およびかかるニッケルめっき膜の成膜方法を提供することを目的としている。   The present invention has been made under such a background. In particular, the present invention provides a nickel plating film excellent in holding power of abrasive grains as a binder for an electrodeposition grinding tool as described above. It aims at providing the grinding tool using a plating film, and the film-forming method of this nickel plating film.

ここで、本発明の発明者は、このようなニッケルめっき膜について鋭意研究を重ねた結果、上述のような工具寿命を伸ばすためには電析後のニッケル粒子を緻密にし、粒子径を小さくすることがダイヤモンドなどの砥粒を高い保持力で固定することが必要であるとの知見を得るに至った。すなわち、電解めっきによって析出したニッケル粒子の粒子径が小さければ、ダイヤモンド等の砥粒を隙間無くより大きな接触面積で接して強固に保持することができるとともに、ニッケル粒子同士も互いに密に接して結合材を形成するため、結合材の摩耗を抑制することができるのである。   Here, the inventors of the present invention have made extensive studies on such nickel plating films. As a result, in order to extend the tool life as described above, the nickel particles after electrodeposition are made dense and the particle diameter is reduced. This has led to the finding that it is necessary to fix abrasive grains such as diamond with a high holding force. In other words, if the particle diameter of nickel particles deposited by electrolytic plating is small, the abrasive grains such as diamond can be held firmly with a larger contact area without gaps, and the nickel particles are in close contact with each other and bonded together. Since the material is formed, wear of the binding material can be suppressed.

そこで、本発明のニッケルめっき膜は、このような知見に基づいてなされたもので、電解めっきにより析出したニッケル粒子の平均粒径が0.009〜0.5μmの範囲であることを特徴とするニッケルめっき膜であり、また本発明の研削工具は、このようなニッケルめっき膜により砥粒を固着した砥粒層を有することを特徴とするニッケルめっき膜を用いた研削工具である。   Therefore, the nickel plating film of the present invention is made based on such knowledge, and the average particle diameter of nickel particles deposited by electrolytic plating is in the range of 0.009 to 0.5 μm. It is a nickel plating film, and the grinding tool of the present invention is a grinding tool using a nickel plating film characterized by having an abrasive layer to which abrasive grains are fixed by such a nickel plating film.

すなわち、上記構成のニッケルめっき膜では、このように電解めっきにより析出したニッケル粒子の平均粒径を0.009〜0.5μmの範囲と緻密なものとすることにより、ニッケル粒子同士を密に接合させてめっき膜自体を高硬度に形成することができる。そして、このようなニッケルめっき膜によって砥粒を固着した研削工具では、こうしてめっき膜自体が高硬度であってその摩耗が抑制されるとともに、砥粒とニッケル粒子も密に接するためにその接触面積を大きく確保することができ、砥粒保持力が高くて砥粒の脱落が少ない砥粒層を形成することができる。   That is, in the nickel plating film having the above-described structure, the nickel particles are densely joined to each other by making the average particle diameter of the nickel particles deposited by electrolytic plating as dense as 0.009 to 0.5 μm. Thus, the plating film itself can be formed with high hardness. In such a grinding tool in which the abrasive grains are fixed by the nickel plating film, the plating film itself has high hardness and its wear is suppressed, and since the abrasive grains and the nickel particles are in close contact, the contact area Can be secured, and an abrasive layer having high abrasive grain retention and less abrasive grains can be formed.

ここで、上記ニッケルめっき膜においてニッケル粒子の平均粒径が0.5μmを上回るほど大きいと、このようにニッケル粒子同士を密に接合させたり、砥粒との接触面積を十分に確保したりすることができず、すなわちめっき膜の摩耗や砥粒の脱落を抑制することができない。また、この平均粒径は、上記範囲内では小さい方が望ましいのであるが、0.009μmを下回るほど小さくなりすぎると、電解めっきによるニッケル粒子の電析速度が遅くなりすぎて成膜に著しい時間を要する上、特に研削砥石として砥粒を固着しようとしても成膜中に砥粒が動いたりして析出したニッケル粒子との間に隙間が生じ、却って保持力が損なわれたり、必要な数の砥粒を固着することができなくなったりするおそれがある。   Here, when the average particle diameter of the nickel particles is larger than 0.5 μm in the nickel plating film, the nickel particles are closely bonded as described above, or a sufficient contact area with the abrasive grains is ensured. In other words, it is impossible to suppress wear of the plating film and dropping off of the abrasive grains. In addition, it is desirable that the average particle size is smaller within the above range. However, if the average particle size is too small to be less than 0.009 μm, the electrodeposition rate of nickel particles by electroplating becomes too slow, and a significant time is required for film formation. In particular, even when trying to fix the abrasive grains as a grinding wheel, the abrasive grains move during the film formation, and a gap is formed between the deposited nickel particles, and the holding power is impaired. There is a possibility that the abrasive grains cannot be fixed.

また、このようなニッケルめっき膜を形成するための本発明のニッケルめっき膜の成膜方法は、めっき液としてニッケルめっき溶液を用いて電流密度1.0〜4.0A/dmで電解めっきすることを特徴とする。 Moreover, the film-forming method of the nickel plating film of the present invention for forming such a nickel plating film is electrolytic plating at a current density of 1.0 to 4.0 A / dm 2 using a nickel plating solution as a plating solution. It is characterized by that.

すなわち、このように小さな電流密度で徐々にニッケル粒子を析出させつつ電解めっきを行うことにより、上述のような平均粒径の小さい緻密なニッケル粒子を得ることができる。この点、例えば特許文献1〜3では電解めっきの際の電流密度は5.0〜7.0A/dmであり、特許文献4では30A/dmであって、このような大きな電流密度では緻密なニッケル粒子を析出させることはできない。その一方で、電流密度が小さすぎると、やはり電析速度が遅くなりすぎて成膜時間を要したり、研削砥石における砥粒層として機能を却って損なったりするおそれがある。 That is, by performing electrolytic plating while gradually depositing nickel particles at such a small current density, dense nickel particles having a small average particle diameter as described above can be obtained. In this regard, for example, in Patent Documents 1 to 3, the current density at the time of electrolytic plating is 5.0 to 7.0 A / dm 2 , and in Patent Document 4 is 30 A / dm 2 , and such a large current density is Dense nickel particles cannot be deposited. On the other hand, if the current density is too small, the electrodeposition rate is too slow, requiring film formation time, or the function as an abrasive layer in the grinding wheel may be lost.

以上説明したように、本発明によれば、硬質のニッケルめっき膜を得ることができ、特に研削砥石における砥粒層の結合材として砥粒を強固に保持するとともに自身の強度や耐摩耗性も大幅に向上することができる。このため、電鋳ブレードなどにおける刃先形状の維持やCMPコンディショナにおける砥粒の脱落防止などを図って、高精度で効率的な加工が可能な長寿命の研削工具を提供することが可能となる。   As described above, according to the present invention, a hard nickel plating film can be obtained, and in particular, the abrasive grains are firmly held as a binder of the abrasive layer in the grinding wheel, and the strength and wear resistance are also improved. It can be greatly improved. For this reason, it is possible to provide a long-life grinding tool capable of high-precision and efficient machining by maintaining the shape of the cutting edge in an electroformed blade or the like, and preventing abrasive grains from falling off in a CMP conditioner. .

本発明のニッケルめっき膜の一実施形態を用いた砥粒層を有する研削工具の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the grinding tool which has an abrasive grain layer using one Embodiment of the nickel plating film of this invention. 本発明のニッケルめっき膜の成膜方法を説明する図である。It is a figure explaining the film-forming method of the nickel plating film of this invention. 本発明の実施例(電流密度2.0A/dmの実施例2)によって成膜されたニッケルめっき膜の組織を示す図である。It is a figure which shows the structure | tissue of the nickel plating film formed into a film by the Example (Example 2 of current density 2.0A / dm2) of this invention.

図1に示すように、本発明の一実施形態の研削工具における砥粒層1は、本発明の一実施形態のニッケルめっき膜2にダイヤモンド等の砥粒3を分散して固着したものであり、砥粒3以外に例えばAlやSiC、ZrO、Si等の硬質のセラミックス粒子がフィラー4として充填されていてもよい。このような砥粒層1は、当該研削工具が上述したCMPコンディショナなどの台金(基体)を有するものであるときには、該台金上に形成されたまま使用され、また研削工具が台金無しの電鋳ブレードなどであるときには、台金上に所定の厚さになるまで形成した後、台金から剥離して使用される。 As shown in FIG. 1, the abrasive grain layer 1 in the grinding tool of one embodiment of the present invention is obtained by dispersing and fixing abrasive grains 3 such as diamond on the nickel plating film 2 of one embodiment of the present invention. In addition to the abrasive grains 3, hard ceramic particles such as Al 2 O 3 , SiC, ZrO 2 , and Si 3 N 4 may be filled as the filler 4. When the grinding tool has a base metal (substrate) such as the above-described CMP conditioner, the abrasive layer 1 is used as it is formed on the base metal, and the grinding tool is used as the base metal. In the case of an electroformed blade with no blade, it is formed on the base metal until it has a predetermined thickness, and is then peeled off from the base metal.

このような砥粒層1は、図2に示すように、めっき槽11内に、非導電性の台座12を介して上記台金13をめっき槽11底部に水平に配置して電源の陰極に接続するとともに、その上方には電源の陽極に接続された陽極板14を台金13と平行に配置し、このめっき槽11に、上記砥粒3と、必要に応じてフィラー4とが分散されたニッケルめっき液Mを保持して台金13および陽極板14を浸漬し、ニッケルめっき液Mを攪拌しつつ上記電源によって通電することにより、上記砥粒3やフィラー4を取り込みつつ台金13上に電解めっきによってニッケル粒子を析出させて上記ニッケルめっき膜2を成膜して形成される。   As shown in FIG. 2, such an abrasive grain layer 1 is disposed in the plating tank 11 through the non-conductive pedestal 12 so that the base metal 13 is horizontally disposed on the bottom of the plating tank 11 and serves as a cathode of the power source. At the same time, an anode plate 14 connected to the anode of the power source is disposed in parallel with the base metal 13, and the abrasive grains 3 and, if necessary, the filler 4 are dispersed in the plating tank 11. By holding the nickel plating solution M and immersing the base metal 13 and the anode plate 14 and energizing the nickel plating solution M with the power supply while stirring, the above-mentioned abrasive grains 3 and filler 4 are taken in on the base metal 13. The nickel plating film 2 is formed by depositing nickel particles by electrolytic plating.

そして、このように電解めっきを施す際の電流密度が、上記実施形態のニッケルめっき膜2を形成するときの本発明の成膜方法の一実施形態では1.0〜4.0A/dmとされており、さらにこうして成膜された本実施形態の上記ニッケルめっき膜2では、電解めっきにより析出したニッケル粒子の平均粒径が、図3に示すように0.009〜0.5μmの範囲とされている。 And in this embodiment of the film-forming method of this invention when forming the nickel plating film 2 of the said embodiment, the current density at the time of performing electrolytic plating in this way is 1.0-4.0 A / dm < 2 >. Further, in the nickel plating film 2 of the present embodiment formed in this way, the average particle diameter of nickel particles deposited by electrolytic plating is in the range of 0.009 to 0.5 μm as shown in FIG. Has been.

このように構成されたニッケルめっき膜2においては、こうして析出したニッケル粒子の平均粒径を0.009〜0.5μmと緻密なものとすることにより、ニッケル粒子同士を密に接合させて該ニッケルめっき膜2を高硬度に形成することができる。このため、かかるニッケルめっき膜2によって砥粒3を保持した砥粒層1においては、そのニッケルめっき膜2の摩耗を抑制することができるとともに、析出したニッケル粒子が砥粒3よりも極めて小さな平均粒径となるため、ニッケル粒子を砥粒3とも密に接合させることができてその接触面積を大きく確保することができ、これらにより砥粒層1自体の摩耗も抑制するとともに、砥粒3の機械的な保持力を向上させて脱落も抑制、防止し、研削比等の高い長寿命の砥粒層1を得ることが可能となる。   In the nickel plating film 2 configured as described above, the nickel particles thus precipitated are densely bonded to each other by making the average particle diameter of the nickel particles as dense as 0.009 to 0.5 μm. The plating film 2 can be formed with high hardness. For this reason, in the abrasive grain layer 1 in which the abrasive grains 3 are held by the nickel plating film 2, the wear of the nickel plating film 2 can be suppressed, and the precipitated nickel particles have an extremely smaller average than the abrasive grains 3. Because of the particle size, the nickel particles can be tightly bonded to the abrasive grains 3 and a large contact area can be secured, thereby suppressing the wear of the abrasive grain layer 1 itself and It is possible to improve the mechanical holding force to suppress and prevent dropping, and to obtain a long-life abrasive layer 1 having a high grinding ratio and the like.

従って、このような砥粒層1を備えた研削工具にあっては、これが電鋳ブレードである場合には、特に刃先形状(エッジ)を長期に亙ってシャープに保つことができて、切断した半導体素子等にバリが発生したりするのを防ぐことができ、高精度で高品位の切断加工を図ることができる。また、研削工具がCMPコンディショナである場合は、上述のように砥粒の脱落が防がれることにより、CMP装置で研磨される半導体ウェーハの表面にスクラッチが生じるのを防ぐことができる。さらに、これら電鋳ブレードやCMPコンディショナ以外の研削工具でも、砥粒層1の摩耗を抑えることにより長寿命の研削工具を提供することが可能となる。   Therefore, in a grinding tool provided with such an abrasive grain layer 1, when this is an electroformed blade, the cutting edge shape (edge) can be kept sharp over a long period of time, and cutting As a result, it is possible to prevent burrs from being generated in the semiconductor element or the like, and to achieve high-precision and high-quality cutting. Further, when the grinding tool is a CMP conditioner, it is possible to prevent scratches from occurring on the surface of the semiconductor wafer polished by the CMP apparatus by preventing the abrasive grains from falling off as described above. Furthermore, even with grinding tools other than these electroformed blades and CMP conditioners, it is possible to provide a long-life grinding tool by suppressing the wear of the abrasive grain layer 1.

ここで、上記ニッケルめっき膜2において、析出したニッケル粒子の平均粒径が0.5μmよりも大きくなると、上述のようにニッケル粒子同士やニッケル粒子と砥粒3とを密に接合させることができなくなって隙間が大きくなり、砥粒層1の摩耗や砥粒3の脱落を十分に抑制することができなくなるおそれがある。その一方で、0.009μmを下回るほど小さな平均粒径のニッケル粒子を析出させようとすると、必要な膜厚のニッケルめっき膜2を成膜するのに多大な時間を要することになる。   Here, in the said nickel plating film 2, when the average particle diameter of the deposited nickel particle becomes larger than 0.5 micrometer, nickel particles or nickel particles and the abrasive grain 3 can be closely joined as mentioned above. There is a possibility that the gap becomes larger and the wear of the abrasive grain layer 1 and the dropping of the abrasive grain 3 cannot be sufficiently suppressed. On the other hand, if nickel particles having an average particle diameter that is smaller than 0.009 μm are deposited, it takes a long time to form the nickel plating film 2 having a required film thickness.

また、特に上記実施形態の研削砥石のように、このニッケルめっき膜2によって砥粒3を固着して砥粒層1を形成するときには、こうして成膜に要する時間が長くなることにより、ニッケルめっき膜2によって台金に付着した砥粒3が、ニッケルめっき膜2が成長する間にずれ動いたりして、析出したニッケル粒子との間に隙間を生じてしまうおそれもある。そして、このように砥粒3とニッケル粒子との間に隙間が生じると、砥粒3の保持力が却って損なわれたり、砥粒3を保持できずに砥粒層1において必要な数の砥粒3を固着することができなって、研削比等の研削性能を低下させるおそれがある。   Further, particularly when the abrasive grains 3 are fixed by the nickel plating film 2 to form the abrasive grain layer 1 as in the grinding wheel of the above-described embodiment, the time required for the film formation is thus increased. The abrasive grains 3 adhered to the base metal by 2 may shift while the nickel plating film 2 grows, and a gap may be formed between the deposited nickel particles. And when a clearance gap arises between the abrasive grain 3 and the nickel particle in this way, the holding force of the abrasive grain 3 will be impaired and the abrasive grain 3 cannot be held but the required number of abrasive grains in the abrasive layer 1 There is a possibility that the grains 3 can be fixed and the grinding performance such as the grinding ratio is lowered.

さらに、本実施形態の成膜方法でも、電解めっきの際の電流密度が1.0A/dmを下回ると、析出するニッケル粒子の平均粒径が0.009μmを下回るようになる一方、電流密度が4.0A/dmを上回ると平均粒径が0.5μmよりも大きくなり、上記と同様の問題が生じるおそれがある。なお、これらの範囲内であれば、ニッケル粒子の平均粒径と電解めっきの際の電流密度は、いずれも小さい方が望ましい。 Furthermore, even in the film forming method of the present embodiment, when the current density at the time of electrolytic plating is less than 1.0 A / dm 2 , the average particle diameter of the deposited nickel particles becomes less than 0.009 μm, while the current density If it exceeds 4.0 A / dm 2 , the average particle size becomes larger than 0.5 μm, and the same problem as described above may occur. In addition, if it is in these ranges, the one where the average particle diameter of nickel particle | grains and the current density in the case of electroplating are both smaller is desirable.

また、本実施形態では本発明のニッケルめっき膜およびその成膜方法を、砥粒3を分散した研削工具の砥粒層1を形成するのに適用する場合について説明したが、ニッケルめっき膜自体が高硬度で耐摩耗性が高いことを利用して、砥粒3を含まない耐摩耗性のニッケルめっき被膜として、種々の部材の被覆に用いることも可能である。   Moreover, although this embodiment demonstrated the case where the nickel plating film of this invention and its film-forming method were applied to form the abrasive grain layer 1 of the grinding tool which disperse | distributed the abrasive grain 3, nickel plating film itself has been demonstrated. Utilizing the high hardness and high wear resistance, the wear-resistant nickel plating film not containing the abrasive grains 3 can be used for coating various members.

次に、本発明の実施例を挙げて本発明の効果について実証する。本実施例では、電解めっきの際の電流密度を1.0〜4.0A/dmの範囲で1.0A/dmずつ変えて、平均粒径0.009μm〜0.5μmの範囲のニッケル粒子を析出させた4種の研削工具を製造した。これらを実施例1〜4として、電流密度、ニッケル粒子径、およびその平均粒径とともに表1に示す。 Next, the effect of the present invention will be demonstrated with examples of the present invention. In this example, the current density during electrolytic plating was changed by 1.0 A / dm 2 in the range of 1.0 to 4.0 A / dm 2 , and nickel having an average particle size of 0.009 μm to 0.5 μm. Four types of grinding tools on which particles were deposited were produced. These are shown in Table 1 as Examples 1 to 4 together with the current density, nickel particle diameter, and average particle diameter.

また、これに対する比較例1〜4として、電流密度が1.0A/dm未満および4.0A/dmより大きい範囲で、平均粒径0.009μm未満および0.5μmよりも大きい範囲の4種の研削工具を製造した。これらを比較例1〜4として同じく表1に示す。そして、これら実施例1〜4および比較例1〜4の研削工具によって研削試験を行い、その研削比を測定した。その結果も、表1に合わせて示す。 Further, as Comparative Examples 1 to 4, 4 in the range where the current density is less than 1.0 A / dm 2 and greater than 4.0 A / dm 2 and the average particle size is less than 0.009 μm and greater than 0.5 μm. A kind of grinding tool was manufactured. These are also shown in Table 1 as Comparative Examples 1 to 4. And the grinding test was done with the grinding tool of these Examples 1-4 and Comparative Examples 1-4, and the grinding ratio was measured. The results are also shown in Table 1.

なお、これら実施例1〜4および比較例1〜4においては、粒度#400のダイヤモンド砥粒と粒度#2000のAlフィラーとを分散したスルファミン酸ニッケルめっき溶液Mを図2に示したようにめっき槽11に保持し、これに光沢剤、ホウ酸、界面活性剤を加えてそのpHを3〜4に調整し、それぞれ表1に示した電流密度で電解めっきを行って、鉄製の台金上に砥粒層を形成した。 In Examples 1 to 4 and Comparative Examples 1 to 4, a nickel sulfamate plating solution M in which diamond abrasive grains having a particle size # 400 and Al 2 O 3 filler having a particle size # 2000 are dispersed is shown in FIG. So that the pH is adjusted to 3 to 4 by adding a brightener, boric acid, and a surfactant, and electrolytic plating is performed at the current densities shown in Table 1, respectively. An abrasive layer was formed on the base metal.

また、こうして形成された砥粒層は実施例1〜4および比較例1〜4ともに、外径200mm、内径50.8mm、厚さ7mmの円環状のものである。なお、該砥粒層におけるダイヤモンド砥粒の含有率は、比較例1を除いて約20vol%、Alフィラーの含有率は約10vol%であった。さらに、研削試験の条件は、レシプロ研削加工様式によるもので、被削材はガラス、湿式研削で、研削工具の周速1500m/min、送り速度5m/min、切込み深さは0.01mmである。 Moreover, the abrasive grain layer thus formed is an annular one having an outer diameter of 200 mm, an inner diameter of 50.8 mm, and a thickness of 7 mm in each of Examples 1 to 4 and Comparative Examples 1 to 4. Incidentally, the content of the diamond abrasive grains in the abrasive grain layer is about 20 vol% with the exception of Comparative Example 1, the content of Al 2 O 3 filler was about 10 vol%. Furthermore, the conditions of the grinding test are according to the reciprocating grinding method, the work material is glass, wet grinding, the peripheral speed of the grinding tool is 1500 m / min, the feed speed is 5 m / min, and the cutting depth is 0.01 mm. .

Figure 2010173015
Figure 2010173015

この表1の結果より、電流密度が1.0A/dm以上で範囲でニッケル粒子の平均粒径が0.009μm以上の範囲では、電流密度および平均粒径が小さくなるほど研削比が向上しており、特に実施例1〜4では比較例2〜4に比べて優れた結果が得られていることが分かる。 From the results of Table 1, when the current density is 1.0 A / dm 2 or more and the average particle diameter of the nickel particles is 0.009 μm or more, the grinding ratio is improved as the current density and the average particle diameter are decreased. In particular, in Examples 1 to 4, it can be seen that superior results are obtained as compared with Comparative Examples 2 to 4.

また、これら実施例1〜4のなかでも同様に、電流密度および平均粒径がそれぞれ、1.0A/dm以上で0.009μm以上であっても、4.0A/dm以下で0.500μm以下の実施例4よりは3.0A/dm以下で0.100μm以下の実施例3の方が、またこの実施例3よりも2.0A/dm以下で0.050μm以下の実施例2の方が、さらにこの実施例2よりも1.0A/dmで0.100μm以下の実施例1の方が、研削比が高いことが分かる。 Further, similarly Among these Examples 1 to 4, the current density and the average particle size of each even 0.009μm or more 1.0A / dm 2 or more, 4.0A / dm 2 or less 0. Example 3 of 3.0 A / dm 2 or less and 0.100 μm or less than Example 4 of 500 μm or less, and Example of 2.0 A / dm 2 or less and 0.050 μm or less than Example 3 It can be seen that the grinding ratio of Example 2 is 1.0 A / dm 2 and 0.100 μm or less is higher than that of Example 2.

ただし、この実施例1よりも電流密度および平均粒径ともに小さい比較例1になると、逆に研削比は実施例1〜4よりも著しく低下している。ここで、比較例1の砥粒層におけるダイヤモンド砥粒の含有率は10vol%、Alフィラーの含有率は5vol%であって実施例1〜4および比較例2〜4よりも少ないことが分かった。これは、この比較例1のように電流密度が小さすぎると、上述のようにニッケル粒子の電析速度が遅くなってダイヤモンド砥粒やフィラーを固定する機能が弱まり、砥粒層に研削工具として必要な所定の砥粒数を確保することができなくなったためと考えられ、これによって研削比が低下したものと考察される。 However, in Comparative Example 1 in which both the current density and the average particle diameter are smaller than those in Example 1, the grinding ratio is significantly lower than those in Examples 1 to 4. Here, the content rate of the diamond abrasive grains in the abrasive layer of Comparative Example 1 is 10 vol%, and the content rate of the Al 2 O 3 filler is 5 vol%, which is less than those in Examples 1 to 4 and Comparative Examples 2 to 4. I understood. This is because if the current density is too small as in Comparative Example 1, the electrodeposition rate of nickel particles is slowed as described above, and the function of fixing diamond abrasive grains and fillers is weakened, and the abrasive layer is used as a grinding tool. This is considered to be because it was impossible to secure the required number of abrasive grains, and it was considered that this reduced the grinding ratio.

1 砥粒層
2 ニッケルめっき膜
3 砥粒
4 フィラー
M ニッケルめっき溶液
DESCRIPTION OF SYMBOLS 1 Abrasive grain layer 2 Nickel plating film 3 Abrasive grain 4 Filler M Nickel plating solution

Claims (3)

電解めっきにより析出したニッケル粒子の平均粒径が0.009〜0.5μmの範囲であることを特徴とするニッケルめっき膜。   A nickel plating film, wherein an average particle diameter of nickel particles deposited by electrolytic plating is in a range of 0.009 to 0.5 μm. 請求項1に記載のニッケルめっき膜により砥粒を固着した砥粒層を有することを特徴とするニッケルめっき膜を用いた研削工具。   A grinding tool using a nickel plating film, comprising an abrasive layer in which abrasive grains are fixed by the nickel plating film according to claim 1. 請求項1に記載のニッケルめっき膜の成膜方法であって、めっき液としてニッケルめっき溶液を用いて電流密度1.0〜4.0A/dmで電解めっきすることを特徴とするニッケルめっき膜の成膜方法。 The nickel plating film forming method according to claim 1, wherein the electroplating is performed at a current density of 1.0 to 4.0 A / dm 2 using a nickel plating solution as a plating solution. The film forming method.
JP2009018340A 2009-01-29 2009-01-29 Nickel-plated film, cutting tool using the nickel-plated film, and method of forming the nickel-plated film Withdrawn JP2010173015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009018340A JP2010173015A (en) 2009-01-29 2009-01-29 Nickel-plated film, cutting tool using the nickel-plated film, and method of forming the nickel-plated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018340A JP2010173015A (en) 2009-01-29 2009-01-29 Nickel-plated film, cutting tool using the nickel-plated film, and method of forming the nickel-plated film

Publications (1)

Publication Number Publication Date
JP2010173015A true JP2010173015A (en) 2010-08-12

Family

ID=42704454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018340A Withdrawn JP2010173015A (en) 2009-01-29 2009-01-29 Nickel-plated film, cutting tool using the nickel-plated film, and method of forming the nickel-plated film

Country Status (1)

Country Link
JP (1) JP2010173015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141862A (en) * 2015-02-04 2016-08-08 国立大学法人信州大学 Production method of plated composite material
CN106757218A (en) * 2016-11-30 2017-05-31 华侨大学 A kind of hand-operated tools segmentation electro-plating method based on screen layer mechanical removal equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141862A (en) * 2015-02-04 2016-08-08 国立大学法人信州大学 Production method of plated composite material
CN106757218A (en) * 2016-11-30 2017-05-31 华侨大学 A kind of hand-operated tools segmentation electro-plating method based on screen layer mechanical removal equipment
CN106757218B (en) * 2016-11-30 2018-05-25 华侨大学 A kind of hand-operated tools segmentation electro-plating method based on shielded layer mechanical removal equipment

Similar Documents

Publication Publication Date Title
TWI503213B (en) Method and jig assembly for manufacturing outer blade cutting wheel
TWI286963B (en) Dresser for polishing cloth and method for manufacturing thereof
JPS6080562A (en) Electrodeposited grinding wheel
KR101720228B1 (en) Cemented Carbide Base Outer Blade Cutting Wheel and Making Method
JP4779580B2 (en) Electroformed thin blade whetstone
EP2612728A2 (en) Dressing and manufacture of outer blade cutting wheel
JP2522278B2 (en) Electroformed thin blade grindstone
JPWO2016067857A1 (en) Abrasive material and method for producing abrasive material
JP2010179438A (en) Cutting blade, method for manufacturing the same, and intermediate
TW201733741A (en) Super-abrasive wheel
JP2010173015A (en) Nickel-plated film, cutting tool using the nickel-plated film, and method of forming the nickel-plated film
KR101237195B1 (en) Grinding method for the glass of mobile phone
JP2006082187A (en) Thin blade grinding wheel
JP2009006409A (en) Thin edge grinding wheel
JP4470559B2 (en) Ultra-thin blade and manufacturing method thereof
JP5478209B2 (en) Polishing tool and method for manufacturing polishing tool
JP2002326166A (en) Electrodeposition thin blade grinding wheel, and method for manufacturing the same
JPH08309666A (en) Electrodeposition grinding wheel and manufacture thereof
JP2009078321A (en) Electroplated tool and method of manufacturing the same
JP6650222B2 (en) Cutting blade and manufacturing method thereof
JP2022165654A (en) electroformed blade
JP4494590B2 (en) Thin blade blade manufacturing method
JP2015037833A (en) Hard alloy baseplate outer periphery cutting blade and production method thereof
JP4419652B2 (en) Grinding wheel and method for manufacturing the same
JP2002187071A (en) Electrotype thin-blade grindstone

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120403