JP2016141862A - Production method of plated composite material - Google Patents

Production method of plated composite material Download PDF

Info

Publication number
JP2016141862A
JP2016141862A JP2015020018A JP2015020018A JP2016141862A JP 2016141862 A JP2016141862 A JP 2016141862A JP 2015020018 A JP2015020018 A JP 2015020018A JP 2015020018 A JP2015020018 A JP 2015020018A JP 2016141862 A JP2016141862 A JP 2016141862A
Authority
JP
Japan
Prior art keywords
plating
cathode
composite material
potential
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015020018A
Other languages
Japanese (ja)
Other versions
JP6537130B2 (en
Inventor
新井 進
Susumu Arai
進 新井
美代加 植田
Miyoka Ueda
美代加 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2015020018A priority Critical patent/JP6537130B2/en
Publication of JP2016141862A publication Critical patent/JP2016141862A/en
Application granted granted Critical
Publication of JP6537130B2 publication Critical patent/JP6537130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a plated composite material capable of surely filling gaps between adjacent dispersion particles by plating.SOLUTION: The production method of the plated composite material is configured to: arrange an anode 12 in an upper position in a vertical direction in a plating tank 10, and arrange a cathode 14 in a lower position in the vertical direction, such that they face each other; make dispersion particles which are dispersed in a plating liquid precipitate to the cathode 14 gradually and make the dispersion particles stacked on the cathode 14; and then crystallize 14a a plating metal on the cathode 14, thereby producing the plated composite material containing the dispersion particles in a plating matrix. When the plating 14a is crystallized on the cathode 14, the potential of the cathode 14 is set to a potential in which hydrogen is not generated by a potential regulation method, and then the plating is crystallized 14a.SELECTED DRAWING: Figure 1

Description

本発明は、ダイヤモンド粒子等の分散粒子をめっきマトリックス中に含むめっき複合材料の製造方法に関する。   The present invention relates to a method for producing a plating composite material containing dispersed particles such as diamond particles in a plating matrix.

CPU等のきわめて放熱量の大きな半導体素子を搭載した電子装置では、ヒートシンクやヒートスプレッダーといった放熱部品を用いて、半導体素子から発生する熱量を効率的に放散させている。これらの放熱部品の素材には、熱伝導性に優れる銅やアルミニウムが使用される。
本発明者は、めっき金属中にカーボン繊維、カーボンナノチューブ、ダイヤモンド粒子等の分散粒子を分散させて取り込む複合めっきについて研究している。これらの複合めっきのうち、ダイヤモンド粒子をめっき金属中に分散させた複合材料は、きわめて熱伝導性に優れることから、ヒートシンクやヒートスプレッダー等の放熱部品として効果的に利用することができる。ダイヤモンドの熱伝導率900(W/mK)は、銅の熱伝導率398(W/mK)の約3倍であり、めっき金属中にダイヤモンド粒子を均一に分散させることにより、好適な複合材料となる。
In an electronic device equipped with a semiconductor element having a very large heat dissipation amount, such as a CPU, a heat dissipation component such as a heat sink or a heat spreader is used to efficiently dissipate heat generated from the semiconductor element. Copper and aluminum which are excellent in heat conductivity are used for the material of these heat dissipation parts.
The inventor has been studying composite plating in which dispersed particles such as carbon fibers, carbon nanotubes, and diamond particles are dispersed in a plating metal. Among these composite platings, a composite material in which diamond particles are dispersed in a plated metal is extremely excellent in thermal conductivity, and can be effectively used as a heat dissipation component such as a heat sink or a heat spreader. The thermal conductivity of diamond 900 (W / mK) is about 3 times the thermal conductivity of copper 398 (W / mK), and by dispersing diamond particles uniformly in the plated metal, Become.

特許文献1にはめっき金属中にダイヤモンド粒子を含む複合材料が開示されている。この複合めっき材料はめっき皮膜の厚さ方向にダイヤモンド粒子の共析量が漸次変化する傾斜機能材料として形成したもので、ダイヤモンド粒子の共析量を傾斜組成とすることにより、めっき皮膜の放熱性を向上させ、基材との密着性を向上させることを可能としている。このめっき複合材料は、めっき液の撹拌速度を細かく調節して製造している。   Patent Document 1 discloses a composite material containing diamond particles in a plated metal. This composite plating material is formed as a functionally graded material in which the eutectoid amount of diamond particles gradually changes in the thickness direction of the plating film. This makes it possible to improve the adhesion to the substrate. This plating composite material is manufactured by finely adjusting the stirring speed of the plating solution.

特許第5006993号公報Japanese Patent No. 5006993

めっき金属中にダイヤモンド粒子を分散させた複合材料を得る方法として、めっき液の撹拌速度を調節してめっきする方法(特許文献1)は、種々変化するめっき条件に合わせて撹拌速度を的確に設定することが難しいという問題がある。
本発明者は、ダイヤモンド粒子を分散させためっき複合材料を得る方法として、ダイヤモンド粒子を含むめっき液中に、陽極と陰極とを鉛直方向の上位置と下位置に水平に対向させて配置し、陰極上にダイヤモンド粒子を徐々に沈降させて堆積させながらめっきする方法を検討している。
As a method of obtaining a composite material in which diamond particles are dispersed in a plating metal, a method of plating by adjusting the stirring speed of a plating solution (Patent Document 1) is set appropriately according to various changing plating conditions. There is a problem that it is difficult to do.
As a method of obtaining a plating composite material in which diamond particles are dispersed, the present inventor arranges the anode and the cathode in the plating solution containing diamond particles so as to be horizontally opposed to the upper and lower positions in the vertical direction, We are investigating a method of plating while gradually depositing and depositing diamond particles on the cathode.

電極(陰極)上にダイヤモンド粒子を堆積させながらめっき複合材料を形成するには、堆積したダイヤモンド粒子間の隙間をめっき金属で充填しながらめっきする必要がある。ダイヤモンド粒子に限らず、シリカ粒子、カーボン繊維、カーボンナノチューブといった無機物や、樹脂粒子等の有機物を電極上に堆積させながらめっき複合材料を形成するには、的確にめっき条件を設定しないと、分散粒子の間の隙間部分がめっきによって完全に充填されず、複合材料中にボイド(空隙)が生じたりして、複合材料に求められる強度や熱伝導率といった所要の特性が得られないという問題がある。   In order to form a plating composite material while depositing diamond particles on an electrode (cathode), it is necessary to perform plating while filling the gaps between the deposited diamond particles with a plating metal. In order to form a plating composite material while depositing not only diamond particles but also inorganic substances such as silica particles, carbon fibers and carbon nanotubes, and organic substances such as resin particles on the electrode, the dispersed particles must be set unless the plating conditions are precisely set. The gaps between the layers are not completely filled by plating, and voids (voids) are generated in the composite material, so that the required properties such as strength and thermal conductivity required for the composite material cannot be obtained. .

本発明は、めっき複合材料を作製する際の課題を解決すべくなされたものであり、めっき複合材料中にボイドを生じさせずに、分散粒子間の隙間がめっきにより確実に充填されためっき複合材料を得ることができるめっき複合材料の製造方法を提供することを目的とする。   The present invention has been made to solve the problems in producing a plating composite material. A plating composite in which gaps between dispersed particles are reliably filled by plating without causing voids in the plating composite material. It aims at providing the manufacturing method of the plating composite material which can obtain material.

本発明に係るめっき複合材料の製造方法は、めっき槽内の鉛直方向の上位置に陽極、下位置に陰極を、互いに対向させて配置し、めっき液中に分散させた分散粒子を前記陰極に向け徐々に沈降させ、陰極上に堆積させるとともに、陰極上にめっき金属を析出させることにより、めっきマトリックス中に前記分散粒子が含まれためっき複合材料を作製する方法であって、前記陰極上にめっきを析出させる際に、電位規制法により前記陰極の電位を水素が発生しない電位に設定してめっきを析出させることを特徴とする。   In the method for producing a plating composite material according to the present invention, an anode is disposed at an upper position in a vertical direction in a plating tank, a cathode is disposed at a lower position, and the dispersed particles dispersed in a plating solution are disposed on the cathode. A plating composite material in which the dispersed particles are contained in a plating matrix by depositing on the cathode and depositing a plating metal on the cathode. When depositing the plating, the plating is performed by setting the potential of the cathode to a potential at which hydrogen is not generated by a potential regulating method.

めっき複合材料に含まれる分散粒子とは、めっきマトリックス中に含まれる粒子であり、ダイヤモンド粒子やシリカ、カーボン繊維、カーボンナノチューブ等の無機物からなるもの、樹脂粒子のような有機物からなる。分散粒子は、球状や立方体、直方体状のものに限らず、繊維状のもの、細片状のもの、管状のもの等の種々の形態を含む。また、めっきマトリックス中に含まれる分散粒子の大きさや形状は均一であるとは限らない。   The dispersed particles contained in the plating composite material are particles contained in the plating matrix, and are made of an inorganic substance such as diamond particles, silica, carbon fibers, carbon nanotubes, or the like, or an organic substance such as resin particles. The dispersed particles are not limited to a spherical shape, a cubic shape, and a rectangular parallelepiped shape, but include various forms such as a fibrous shape, a strip shape, and a tubular shape. In addition, the size and shape of the dispersed particles contained in the plating matrix are not always uniform.

本発明方法においては、電位規制法により陰極上にめっきを析出させてめっき複合材料を作製する。電位規制法によるめっきは、めっき時に、電極の電位を特定の電位に規制(保持)してめっきする方法である。電位規制法によるめっき方法によれば、陰極の電位を電極から水素が発生しない電位に設定してめっきすることが可能であり、陰極の電位をめっき時に水素が発生しない電位に規制することにより、めっき時に水素が発生してめっき金属にボイドが生じたり、発生した水素によって分散粒子が浮き上がったりすることを防止し、隣り合った分散粒子の間の隙間がめっき金属により確実に充填される。   In the method of the present invention, a plating composite material is produced by depositing plating on the cathode by the potential regulating method. Plating by the potential regulating method is a method of plating by regulating (holding) the potential of the electrode to a specific potential at the time of plating. According to the plating method by the potential regulation method, it is possible to perform plating by setting the cathode potential to a potential at which hydrogen is not generated from the electrode, and by regulating the cathode potential to a potential at which hydrogen is not generated during plating, Hydrogen is generated during plating and voids are generated in the plated metal, and the dispersed particles are prevented from floating due to the generated hydrogen, and the gap between adjacent dispersed particles is reliably filled with the plated metal.

電位規制法によるめっきでは、とくにめっきの種類が限定されるものではなく、銅めっき、銀めっき、金めっき、ニッケルめっき、スズめっき等のめっきが可能である。ただし、電位規制法によるめっき方法により水素を発生させずにめっきするには、水素の還元電位よりも正側において析出可能となるように、めっきの種類や、使用するめっき液、使用する電極等のめっき条件を選択する必要がある。   In the plating by the potential regulation method, the type of plating is not particularly limited, and plating such as copper plating, silver plating, gold plating, nickel plating, tin plating, and the like is possible. However, when plating without generating hydrogen by the plating method based on the potential regulation method, the type of plating, the plating solution used, the electrode used, etc. should be able to deposit on the positive side of the reduction potential of hydrogen. It is necessary to select the plating conditions.

前述したように分散粒子には種々の材質、大きさ、形状の粒子を使用することができるが、ダイヤモンド粒子は電気的、化学的に安定的な粒子であることから、めっき液中に容易に分散させることができ、ダイヤモンド粒子を分散させためっき複合材料を容易に得ることができる。
また、銅からなるめっきマトリックス中にダイヤモンド粒子を含むめっき複合材料は、銅よりも優れた熱伝導率を備える点で好適に利用することができる。とくに、粒径(粒子の平均の大きさ)が45μm以上のダイヤモンド粒子を使用しためっき複合材料は、ダイヤモンド粒子とめっきマトリックス金属との密着性が良好であり、複合材料中にボイド(空隙)がないことから、銅材の数倍の熱伝導率を備える複合材料として得ることができ、熱放散材料等として好適に利用することができる。
As described above, particles of various materials, sizes, and shapes can be used for the dispersed particles. However, since diamond particles are electrically and chemically stable particles, they can be easily added to the plating solution. A plating composite material in which diamond particles can be dispersed can be easily obtained.
Moreover, the plating composite material which contains a diamond particle in the plating matrix which consists of copper can be utilized suitably by the point provided with the thermal conductivity superior to copper. In particular, a plating composite material using diamond particles having a particle size (average particle size) of 45 μm or more has good adhesion between the diamond particles and the plating matrix metal, and voids (voids) are present in the composite material. Therefore, it can be obtained as a composite material having a thermal conductivity several times that of a copper material, and can be suitably used as a heat dissipation material.

本発明に係るめっき複合材料の製造方法は、めっきにより複合材料を形成するから、めっきを形成した基材(電極)からめっき複合材料を外し、めっき複合材料として利用することも可能であるし、銅板等の基材上にめっき複合材料を形成し、基材を含めてめっき複合材料とすることもできる。めっき法により複合材料を形成できることから、熱放散性にすぐれた材料(部品)を製造することも容易である。   Since the manufacturing method of the plating composite material according to the present invention forms a composite material by plating, it is possible to remove the plating composite material from the base material (electrode) on which the plating is formed, and use it as a plating composite material. It is also possible to form a plating composite material on a base material such as a copper plate, and to form a plating composite material including the base material. Since a composite material can be formed by a plating method, it is easy to manufacture a material (part) having excellent heat dissipation.

本発明に係るめっき複合材料の製造方法によれば、めっきマトリックス中に含まれる分散粒子の間の隙間がめっき金属により充填され、ボイドが残留しない複合材料として確実に得ることができ、熱放散用等として好適に利用することができる。   According to the method for producing a plated composite material according to the present invention, a gap between dispersed particles contained in a plating matrix is filled with a plated metal, and can be reliably obtained as a composite material with no voids remaining, for heat dissipation. Etc. can be suitably used.

めっき装置の構成例を示す説明図である。It is explanatory drawing which shows the structural example of a plating apparatus. 陰極にめっき金属が析出される様子を示す説明図である。It is explanatory drawing which shows a mode that a plating metal deposits on a cathode. 粒径が異なるダイヤモンド粒子のSEM画像である。It is a SEM image of the diamond particle from which a particle size differs. 電位規制法により得られた銅−ダイヤモンド複合材料の表面のSEM像である。It is a SEM image of the surface of the copper-diamond composite material obtained by the potential regulating method. 電流規制法により得られた銅−ダイヤモンド複合材料の表面のSEM像である。It is a SEM image of the surface of the copper-diamond composite material obtained by the current regulation method. 電流規制法により銅−ダイヤモンド複合材料を作製した際の陰極電位の変化を示すグラフである。It is a graph which shows the change of the cathode potential at the time of producing a copper-diamond composite material by the current regulation method. 電位規制法により作製した銅−ダイヤモンド複合材料について熱伝導率を測定した結果を示すグラフである。It is a graph which shows the result of having measured thermal conductivity about the copper-diamond composite material produced by the electric potential regulation method. 電流規制法により作製した銅−ダイヤモンド複合材料について熱伝導率を測定した結果を示すグラフである。It is a graph which shows the result of having measured thermal conductivity about the copper-diamond composite material produced by the electric current regulation method.

図1は本発明に係るめっき複合材料の製造方法を適用する場合のめっき装置の構成例を示す。図1は、めっき槽10に陽極12と陰極14とを配置し、陽極12と陰極14とを電源に接続した構成を示す。陽極12と陰極14は、めっき液を収容するめっき槽10の槽内に、鉛直方向の上位置に陽極12、下位置に陰極14とし、それぞれ電極面を水平方向として、互いに電極面を対向させて配置する。   FIG. 1 shows a configuration example of a plating apparatus in the case of applying a method for producing a plating composite material according to the present invention. FIG. 1 shows a configuration in which an anode 12 and a cathode 14 are arranged in a plating tank 10 and the anode 12 and the cathode 14 are connected to a power source. The anode 12 and the cathode 14 are provided in the tank of the plating tank 10 containing the plating solution, with the anode 12 at the upper position in the vertical direction and the cathode 14 at the lower position, with the electrode surfaces facing each other in the horizontal direction. Arrange.

図1のめっき装置では、陽極12として、平板状の導体を側面方向から見てL字形に折曲した形態のものを使用している。陽極12のL字形に折曲した面を、陰極14の対向面と同一形状とし、陰極14の電極面と平行に対向させて配置する。
陰極14の電極面の向きを水平方向としているのは、めっき液中に分散させた分散粒子が重力により陰極14上に沈降して、堆積するようにするためである。陽極12は陰極14に対向配置するから、陽極12の面方向も水平方向になる。
複合めっき材料として、銅−ダイヤモンド複合材料を作製する際には、ダイヤモンド粒子を分散させためっき液を使用してめっきすればよい。
In the plating apparatus of FIG. 1, the anode 12 uses a flat conductor bent in an L shape when viewed from the side. The surface of the anode 12 bent in an L shape is the same shape as the facing surface of the cathode 14 and is disposed so as to face the electrode surface of the cathode 14 in parallel.
The reason why the direction of the electrode surface of the cathode 14 is horizontal is that the dispersed particles dispersed in the plating solution settle on the cathode 14 due to gravity and are deposited. Since the anode 12 is disposed opposite to the cathode 14, the surface direction of the anode 12 is also horizontal.
When producing a copper-diamond composite material as a composite plating material, plating may be performed using a plating solution in which diamond particles are dispersed.

図1において、陰極14は導体板(たとえば銅板)をL字形に折曲して電極としている。陽極12に対向配置する陰極14の折曲片14aに連結する延出片14bをめっき槽10の上方に延出させ、電源のマイナス側と延出片14とを接続する。図示例では、延出片14bの表面にめっきされないように、めっき槽10に浸漬される延出片14bの表面をマスキングテープ14cで被覆している。   In FIG. 1, a cathode 14 is formed by bending a conductor plate (for example, a copper plate) into an L shape. An extension piece 14 b connected to the bent piece 14 a of the cathode 14 disposed opposite to the anode 12 is extended above the plating tank 10, and the minus side of the power source is connected to the extension piece 14. In the illustrated example, the surface of the extended piece 14b immersed in the plating tank 10 is covered with a masking tape 14c so that the surface of the extended piece 14b is not plated.

本発明に係るめっき複合材料の製造方法において、めっき装置における陽極と陰極の配置は図1に示す構成に限定されるものではない。ただし、めっき時に分散粒子を陰極上に沈降させ、陰極上に徐々に分散粒子を堆積させながらめっきするから、めっき槽内で陽極と陰極とを対向させ、めっき槽内の上位置に陽極を下位置に陰極を配置して、陰極上に分散粒子を堆積させるようにしてめっきする。   In the method for producing a plating composite material according to the present invention, the arrangement of the anode and the cathode in the plating apparatus is not limited to the configuration shown in FIG. However, since the dispersed particles settle on the cathode during plating and plating is performed while gradually depositing the dispersed particles on the cathode, the anode and the cathode face each other in the plating tank, and the anode is placed at the upper position in the plating tank. Placing the cathode in place and depositing the dispersed particles on the cathode.

図1に示すめっき装置を用いてめっき複合材料を作製するめっき操作は、分散粒子(ダイヤモンド粒子)を混合しためっき液をめっき槽10に収容し、めっき液を撹拌してめっき液中で分散粒子を均一に分散させた後、陽極12と陰極14との間に電流を通じることによって行う。
分散粒子(ダイヤモンド粒子)が均一に分散されためっき複合材料を得るには、めっき液中で分散粒子が均一に分散されている必要がある。ダイヤモンド粒子のような、電気的にも化学的にも安定な分散粒子を用いれば、めっき液を撹拌することにより、分散粒子が相互に凝集せず、好適に分散粒子を分散させることができる。
A plating operation for producing a plating composite material using the plating apparatus shown in FIG. 1 is performed by storing a plating solution mixed with dispersed particles (diamond particles) in a plating tank 10, stirring the plating solution, and dispersing particles in the plating solution. Is uniformly dispersed, and then a current is passed between the anode 12 and the cathode 14.
In order to obtain a plating composite material in which dispersed particles (diamond particles) are uniformly dispersed, the dispersed particles need to be uniformly dispersed in the plating solution. If dispersed particles that are both electrically and chemically stable, such as diamond particles, are used, the dispersed particles do not aggregate with each other by stirring the plating solution, and the dispersed particles can be suitably dispersed.

めっき液の撹拌を停止すると、めっき液中の分散粒子は重力の作用により徐々に沈降を開始し、陰極14上に堆積し始める。
図2は、陰極14上に分散粒子20が堆積しはじめ、陰極14上にめっき金属22が析出する様子を説明的に示したものである。
図2(a)は、陰極14上に分散粒子20が沈降して、分散粒子20が一層(一段)堆積し、陰極14上にめっき金属(銅めっき)22が析出しはじめた状態である。めっき金属22は、陰極14の表面から、分散粒子20の隙間を埋めるように析出する。めっき金属は、分散粒子が絶縁体であっても導体であっても、分散粒子の隙間を埋めるように析出させることが可能である。ただし、分散粒子がシリカ等の絶縁体の場合の方が、導体の場合よりも容易に分散粒子の隙間を埋めるようにめっき金属を析出させることができる。分散粒子が導体の場合は、めっき液やめっき条件を調整してめっき金属を析出させる必要がある。
When the stirring of the plating solution is stopped, the dispersed particles in the plating solution start to gradually settle due to the action of gravity and start to deposit on the cathode 14.
FIG. 2 illustrates the manner in which the dispersed particles 20 start to be deposited on the cathode 14 and the plating metal 22 is deposited on the cathode 14.
FIG. 2A shows a state in which the dispersed particles 20 are settled on the cathode 14, the dispersed particles 20 are deposited one layer (one step), and the plating metal (copper plating) 22 starts to be deposited on the cathode 14. The plated metal 22 is deposited from the surface of the cathode 14 so as to fill the gaps of the dispersed particles 20. The plated metal can be deposited so as to fill the gaps between the dispersed particles regardless of whether the dispersed particles are an insulator or a conductor. However, when the dispersed particles are an insulator such as silica, the plated metal can be deposited so as to fill the gaps between the dispersed particles more easily than when the dispersed particles are used. When the dispersed particles are conductors, it is necessary to adjust the plating solution and plating conditions to deposit the plating metal.

図2(a)は、陰極14に沈降した分散粒子20が陰極14に接触する部位の近傍がめっきされた状態、図2(b)は、一段目の分散粒子20の1/2程度の高さまでめっきが進んだ状態、図2(c)は、さらにめっきが進み、一段目の分散粒子20の全体が隠れるまでめっきが進んだ状態を示す。
このように分散粒子20が堆積した状態で、分散粒子20の隙間を埋めるようにめっき金属22が析出するということは、めっきが析出する導体領域の面積についてみると、めっきの進行状態によって、導体領域が広がったり、狭まったりすることを意味する。一般的なめっきでは、めっき対象物は平板体のように平面上に単にめっきが析出するのみで、めっき対象となる導体領域の面積が大きく変動することはない。したがって、このようにめっき対象の導体領域の大きさが変動するような場合には、分散粒子20の隙間が確実にめっきにより充填されるようにめっき条件を設定してめっきする必要がある。
FIG. 2A shows a state in which the dispersed particles 20 settled on the cathode 14 are plated in the vicinity of the portion in contact with the cathode 14, and FIG. 2B shows a height about 1/2 that of the dispersed particles 20 in the first stage. FIG. 2 (c) shows a state in which the plating has further progressed and the plating has progressed until the entire dispersed particles 20 in the first stage are hidden.
In this state where the dispersed particles 20 are deposited, the plating metal 22 is deposited so as to fill in the gaps of the dispersed particles 20. When the area of the conductor region where plating is deposited is considered, It means that the area expands or narrows. In general plating, an object to be plated is merely deposited on a flat surface like a flat body, and the area of the conductor region to be plated does not vary greatly. Therefore, when the size of the conductor region to be plated varies as described above, it is necessary to set the plating conditions so that the gaps of the dispersed particles 20 are reliably filled by plating.

図2では、説明上、分散粒子20を同一径の球体として描いているが、分散粒子20は実際には大きさや形状にばらつきがあることがふつうである。したがって、陰極14上に分散粒子20が沈降する場合も、整然と分散粒子20が整列して沈降するものではなく、また、一段ずつ積み重なるるようにして堆積するとは限らず、堆積形態もさまざまである。このように、陰極14上に堆積する分散粒子20は、仮に、粒子径をそろえるようにした場合でも、きわめて多様な形態で堆積するから、めっき途中でめっき対象の導体領域の面積が変動することは避けられない。   In FIG. 2, for the sake of explanation, the dispersed particles 20 are drawn as spheres having the same diameter, but the dispersed particles 20 usually have variations in size and shape. Therefore, even when the dispersed particles 20 settle on the cathode 14, the dispersed particles 20 are not ordered and settled, and are not necessarily deposited so as to be stacked one by one, and there are various deposition forms. . As described above, even if the dispersed particles 20 deposited on the cathode 14 are deposited in various forms even when the particle diameters are made uniform, the area of the conductor region to be plated varies during plating. Is inevitable.

電解めっきにおいては、電流規制法によるめっきが一般的に採用されている。電流規制法は、陽極と陰極とに流す電流を一定としてめっきする方法である。電流規制法が一般的に採用されているのは、製造現場では、めっき対象物のめっき領域がめっきの進行とともに大きく変動するようなめっきを施す例がほとんどないこと、電流規制法は効率的なめっきが可能で安定しためっきができることによる。   In electrolytic plating, plating by the current regulation method is generally adopted. The current regulation method is a method of plating with a constant current flowing through the anode and the cathode. The current regulation method is generally adopted in manufacturing sites because there are almost no examples of plating in which the plating area of the object to be plated varies greatly with the progress of plating, and the current regulation method is efficient. This is because plating is possible and stable plating is possible.

しかしながら、電流規制法を、図2に示すような、めっきの進行とともにめっき領域が大きく変動するめっき処理に適用すると、めっき領域が変動することによって、めっき領域(導体領域)に作用する電流値が大きく変動する。すなわち、めっき電流が作用する導体領域の面積が小さくなると導体領域に集中的に電流が作用し、導体領域の面積が広がると導体領域に作用する電流が緩やかになる。電解めっきでは、めっき中にめっき液から水素が発生することがあり、とくにめっき領域に電流が集中して作用すると、水素が発生しやすくなり、発生した水素が分散粒子20を浮き上がらせるように作用し、めっき金属22にボイドを発生させるという問題が生じる。   However, when the current regulation method is applied to a plating process in which the plating region greatly varies with the progress of plating as shown in FIG. 2, the current value acting on the plating region (conductor region) is changed due to the variation of the plating region. It fluctuates greatly. That is, when the area of the conductor region on which the plating current acts becomes small, the current acts intensively on the conductor region, and when the area of the conductor region increases, the current acting on the conductor region becomes gentle. In electroplating, hydrogen may be generated from the plating solution during plating. In particular, when current concentrates and acts on the plating region, hydrogen tends to be generated, and the generated hydrogen acts to lift the dispersed particles 20. However, the problem of generating voids in the plated metal 22 arises.

めっき時に、めっき複合材料中にボイド(空隙)が発生すると、めっき後の複合材料の内部に空隙が残り、たとえば、銅−ダイヤモンド複合材料では、ダイヤモンド粒子と銅との間に空隙が残ったりすることにより、十分な熱伝導率が得られなかったり、所要の強度が得られなかったりするという問題が生じる。   When voids (voids) occur in the plated composite material during plating, voids remain inside the composite material after plating. For example, in a copper-diamond composite material, voids remain between diamond particles and copper. As a result, there arises a problem that sufficient thermal conductivity cannot be obtained or required strength cannot be obtained.

本発明に係るめっき複合材料の製造方法は、電解めっきを施す際に水素が発生することを抑制し、めっき複合材料中にボイドが生じることを防止し、電流効率を向上させることを可能にするため、電位規制法によるめっきを利用してめっき複合材料を製造することを特徴とする。
電位規制法は、水素が発生する陰極の電位を、めっき時に一定の電位に規制して(一定の電位に保持して)めっきする方法である。この電位規制法によるめっき方法を利用すると、めっき時にめっき対象領域(導体領域)の面積が大きく変動する場合でも、陰極から水素を発生させずに確実にめっきすることができる。電位規制法により陰極の電位を規制することにより、めっき時に水素が発生することを防止することができ、複合材料中にボイドが発生することを防止し、まためっき時の電流効率を向上させることができる。
The method for producing a plated composite material according to the present invention suppresses the generation of hydrogen when performing electrolytic plating, prevents the formation of voids in the plated composite material, and improves the current efficiency. Therefore, the present invention is characterized in that a plating composite material is manufactured using plating by a potential regulation method.
The potential regulation method is a method in which the potential of the cathode from which hydrogen is generated is regulated to a constant potential during plating (maintained at a constant potential) for plating. When the plating method based on this potential regulation method is used, even when the area of the plating target region (conductor region) varies greatly during plating, it is possible to reliably perform plating without generating hydrogen from the cathode. By regulating the potential of the cathode using the potential regulation method, hydrogen can be prevented from being generated during plating, voids can be prevented from being generated in the composite material, and current efficiency during plating can be improved. Can do.

本発明に係るめっき複合材料の製造方法を適用した例として、銅−ダイヤモンド複合材料をめっきにより製造した例について説明する。以下では、電流規制法と電位規制法により、銅−ダイヤモンド複合材料を作製した例について対比しながら説明する。   As an example to which the method for producing a plated composite material according to the present invention is applied, an example in which a copper-diamond composite material is produced by plating will be described. Below, it demonstrates, contrasting about the example which produced the copper-diamond composite material by the electric current control method and the electric potential control method.

(めっき浴)
めっき浴には、電流規制法と電位規制法とも共通に、下記のめっき浴を使用した。
CuSO4・5H2O 0.85M
H2SO4 0.55M
ダイヤモンド粒子 平均粒子径 10、25、45、195、230μm
めっき浴は、溶液にダイヤモンド粒子を加えてダイヤモンド粒子を懸濁させたものである。ダイヤモンド粒子の粒径による熱伝導率の差異を調べるため、平均粒子径が異なる(10、25、45、195、230μm)ダイヤモンド粒子を加えためっき浴をそれぞれ調製して使用した。
めっき液は、100mLビーカーを用いて、100mLのめっき液中に表1の分量のダイヤモンド粒子を混合・撹拌した後、めっき槽に注いで使用した。実施例で使用したダイヤモンド粒子の添加量は、めっき槽の底面(底面積:3.5cm×7cm)にダイヤモンド粒子を充填率64%で2層積み上げる量に相当する。
(Plating bath)
As the plating bath, the following plating baths were used in common for both the current regulation method and the potential regulation method.
CuSO 4・ 5H 2 O 0.85M
H 2 SO 4 0.55M
Diamond particles Average particle size 10, 25, 45, 195, 230 μm
The plating bath is obtained by adding diamond particles to a solution and suspending the diamond particles. In order to investigate the difference in thermal conductivity depending on the particle size of diamond particles, plating baths to which diamond particles having different average particle sizes (10, 25, 45, 195, 230 μm) were added were prepared and used.
The plating solution was mixed and stirred in a 100 mL plating solution using a 100 mL beaker, and then poured into a plating tank for use. The amount of diamond particles used in the examples corresponds to the amount of diamond particles stacked in two layers at a filling rate of 64% on the bottom surface (bottom area: 3.5 cm × 7 cm) of the plating tank.

図3にめっき液に加えたダイヤモンド粒子(粒径:10、25、45、195、230μm)のSEM像を示す。ダイヤモンド粒子は比較的大きなダイヤモンド粒子を破砕して分粒したものである。粒径が195μm、230μmのものは角がとれた形態で球体に近い形状となっている。   FIG. 3 shows SEM images of diamond particles (particle size: 10, 25, 45, 195, 230 μm) added to the plating solution. Diamond particles are obtained by crushing and sizing relatively large diamond particles. Those having a particle size of 195 μm and 230 μm are rounded and have a shape close to a sphere.

(めっき条件)
A. 電位規制法
陰極電位 −0.2V (vs.SCE)
陰極 純銅(めっき面積15cm2
陽極 含リン銅
浴温 25℃
めっき厚 1mm
B. 電流規制法
電流値 0.075A
陰極 純銅(めっき面積15cm2
陽極 含リン銅
浴温 25℃
めっき厚 1mm
(Plating conditions)
A. Potential regulation method Cathodic potential -0.2V (vs.SCE)
Cathode pure copper (plating area 15cm 2 )
Anode Phosphorus copper Bath temperature 25 ° C
Plating thickness 1mm
B. Current Regulation Law Current value 0.075A
Cathode pure copper (plating area 15cm 2 )
Anode Phosphorus copper Bath temperature 25 ° C
Plating thickness 1mm

なお、電位規制法により陰極から水素を発生させないようにするには、水素を発生させない基準電極として定められているSHE(Standard Hydrogen Electrode)に対し、陰極を正側の電位に設定する必要がある。
SCEとSHEとは、SCE=0.2412V vs SHEという関係にあるから、上記の陰極電位−0.2V(vs.SCE)という設定条件、すなわち、陰極電位をSCEに対して−0.2Vに設定しためっき条件は、陰極電位を、SHEに対し+0.0412Vとしたこと、すなわちSHEに対し正側に設定し、陰極で水素が発生しない条件としたことを意味する。
In order to prevent hydrogen from being generated from the cathode by the potential regulation method, it is necessary to set the cathode to a positive potential with respect to SHE (Standard Hydrogen Electrode), which is defined as a reference electrode that does not generate hydrogen. .
Since SCE and SHE have a relationship of SCE = 0.2042V vs SHE, the above-mentioned setting condition of cathode potential −0.2V (vs. SCE), that is, plating with cathode potential set to −0.2V with respect to SCE The condition means that the cathode potential is set to +0.0412 V with respect to SHE, that is, the cathode is set to the positive side with respect to SHE, and hydrogen is not generated at the cathode.

(めっき操作)
電位規制法により銅−ダイヤモンド複合材料を作製する場合は、図1に示すように、鉛直方向の上下位置に陽極12と陰極14とを配置し、めっき槽10にダイヤモンド粒子を懸濁しためっき液を入れ、まず、めっき液を攪拌してめっき液中でダイヤモンド粒子を均一に分散させた後、めっき液の攪拌を停止し、陽極12と陰極とを電源に接続し、陰極14の電位を−0.2V(vs.SCE)とするめっき条件を保持しながら、陽極12と陰極14とに電流を通じてめっきした。電位規制法によるめっきでは、陰極電位を所定電位に設定してめっきするため、実際には、陽極12と陰極14の他に、基準電位となる電極をめっき槽に設置してめっきする。
(Plating operation)
When producing a copper-diamond composite material by the potential regulation method, as shown in FIG. 1, a plating solution in which an anode 12 and a cathode 14 are arranged at vertical positions in the vertical direction and diamond particles are suspended in the plating tank 10. First, after the plating solution is stirred to uniformly disperse the diamond particles in the plating solution, stirring of the plating solution is stopped, the anode 12 and the cathode are connected to a power source, and the potential of the cathode 14 is- While maintaining the plating condition of 0.2 V (vs. SCE), the anode 12 and the cathode 14 were plated through current. In plating by the potential regulating method, plating is performed with the cathode potential set to a predetermined potential. Actually, in addition to the anode 12 and the cathode 14, an electrode serving as a reference potential is placed in a plating tank for plating.

表2に、電位規制法により陰極14上に銅−ダイヤモンド複合材料を形成した実験でのめっき厚と通電量を示す。なお、電位規制法では、めっき厚を通電量(電流[A]×時間[s])によって制御する、したがって、めっき時間は定まらない。
Table 2 shows the plating thickness and energization amount in an experiment in which a copper-diamond composite material was formed on the cathode 14 by the potential regulation method. In the potential regulation method, the plating thickness is controlled by the energization amount (current [A] × time [s]). Therefore, the plating time is not determined.

表3に、上記実験における電流効率と、得られた複合材料に含まれるダイヤモンド粒子の含有率(体積%)を示す。電流効率は、次式により求めた。電流効率=(得られためっき膜の膜厚/理論膜厚)×100%
Table 3 shows the current efficiency in the above experiment and the content (volume%) of diamond particles contained in the obtained composite material. The current efficiency was obtained by the following formula. Current efficiency = (thickness of the obtained plating film / theoretical film thickness) x 100%

図4は、上述した電位規制法により得られた銅−ダイヤモンド複合材料の表面のSEM像である。SEM像に、銅−ダイヤモンド複合材料中に含有されたダイヤモンド粒子の形態が見えている。また、ダイヤモンド粒子の間に銅が充填され、ダイヤモンド粒子と銅が複合化された材料となっていることがわかる。   FIG. 4 is an SEM image of the surface of the copper-diamond composite material obtained by the above-described potential regulating method. The SEM image shows the morphology of the diamond particles contained in the copper-diamond composite material. It can also be seen that the diamond particles are filled with copper, resulting in a composite material of diamond particles and copper.

電流規制法によりめっきする場合は、電位規制法による場合と同様に、めっき槽10にダイヤモンド粒子を混合しためっき液を入れ、めっき液を攪拌してめっき液中でダイヤモンド粒子を均一に分散させた後、めっき液の攪拌を停止し、陽極12と陰極とを電源に接続し、電流値を0.075Aとしてめっきした。
表4に電流規制法により銅−ダイヤモンド複合材料を作製した場合のめっき厚とめっき時間を示す。
When plating by the current regulation method, as in the case of the potential regulation method, a plating solution in which diamond particles are mixed is put into the plating tank 10, and the plating solution is stirred to uniformly disperse the diamond particles in the plating solution. Thereafter, stirring of the plating solution was stopped, the anode 12 and the cathode were connected to a power source, and plating was performed at a current value of 0.075A.
Table 4 shows the plating thickness and plating time when a copper-diamond composite material was produced by the current regulation method.

表5に、上記表4に示す銅−ダイヤモンド複合材料を得たときの電流効率と、複合材料に含まれるダイヤモンド粒子の含有率(体積%)を示す。電流効率は、電流規制法による場合と同様に求めた。
Table 5 shows the current efficiency when obtaining the copper-diamond composite material shown in Table 4 above, and the content (volume%) of diamond particles contained in the composite material. The current efficiency was obtained in the same manner as in the current regulation method.

表3の電位規制法による場合と、表5の電流規制法によるめっき結果を比較すると、電位規制法によるめっきでは、電流効率が略100%に近く、電流規制法によるめっきと比較して、電流効率の点で大幅に改善されることがわかる。電流規制法による場合に電流効率が劣化する原因は、めっきの際に水素が発生するためである。電位規制法による場合は、陰極電位を水素が発生しない電位に設定しているから、原理的にも電流効率は100%となる。電位規制法による実験結果は、めっき時にほとんど水素が発生していないことを裏付けている。   Comparing the results of the potential regulation method in Table 3 and the plating results by the current regulation method in Table 5, the current efficiency is nearly 100% in the plating by the potential regulation method, and the current efficiency compared to the plating by the current regulation method. It can be seen that the efficiency is greatly improved. The reason why the current efficiency is degraded in the current regulation method is that hydrogen is generated during plating. In the case of the potential regulation method, since the cathode potential is set to a potential at which hydrogen is not generated, the current efficiency is 100% in principle. The experimental results by the potential regulation method confirm that almost no hydrogen is generated during plating.

図5は、上述した電流規制法により得られた銅−ダイヤモンド複合材料の表面のSEM像である。この銅−ダイヤモンド複合材料のSEM像にも、複合材料中に含有されたダイヤモンド粒子の形態が見えている。図4に示した電位規制法による銅−ダイヤモンド複合材料と比較すると、ダイヤモンド粒子間を充填する銅の緻密性が若干、劣るように見える。   FIG. 5 is an SEM image of the surface of the copper-diamond composite material obtained by the current regulation method described above. Also in the SEM image of this copper-diamond composite material, the form of diamond particles contained in the composite material is visible. Compared with the copper-diamond composite material by the potential regulation method shown in FIG. 4, the denseness of the copper filling between the diamond particles seems to be slightly inferior.

図6は、電流規制法により銅−ダイヤモンド複合材料を作製した場合に、めっき中に水素が発生することを実験的に検知した例を示す。この実験は、ダイヤモンド粒子の粒径を10μm、電流密度を0.5Adm-2とし、めっき時間(経過時間)による陰極の電位の変化を調べたものである。陽極と陰極の配置等は上述した実験における配置と同一である。   FIG. 6 shows an example of experimentally detecting that hydrogen is generated during plating when a copper-diamond composite material is produced by the current regulation method. In this experiment, the change in the cathode potential with the plating time (elapsed time) was examined with the diamond particle size of 10 μm and the current density of 0.5 Adm−2. The arrangement of the anode and the cathode is the same as that in the experiment described above.

図6の縦軸は、電極SCEに対する陰極の電位を示す。
図6に示す測定結果は、めっき開始から30分程度経過したところで、陰極の電位が急激にマイナス側に変化したことを示す。実験では、この陰極電位が急激にマイナス側に変化した時点で水素ガスの発生を検知した。
すなわち、電流規制法によるめっきにおいては、水素発生を抑制することができる電位よりも陰極電位がマイナス側になると水素が発生することを示す。図6は、また、電極SCEに対して陰極が-2Vよりもプラス側であれば、めっき中に水素が発生しないことも示している。
The vertical axis in FIG. 6 indicates the potential of the cathode with respect to the electrode SCE.
The measurement results shown in FIG. 6 indicate that the cathode potential has suddenly changed to the negative side after about 30 minutes have elapsed since the start of plating. In the experiment, the generation of hydrogen gas was detected when the cathode potential suddenly changed to the negative side.
That is, in plating by the current regulation method, hydrogen is generated when the cathode potential is on the minus side with respect to the potential at which hydrogen generation can be suppressed. FIG. 6 also shows that no hydrogen is generated during plating if the cathode is on the positive side of −2 V with respect to the electrode SCE.

(熱伝導率試験)
図7は、電位規制法により作製した上記の銅−ダイヤモンド複合材料のサンプルについて熱伝導率を測定した結果、図8は、電流規制法により作製した銅−ダイヤモンド複合材料のサンプルについて熱伝導率を測定した結果を示す。図7、8では、複合材の熱伝導率を示す理論式(Hasselman-Johnson)と実測値とを合わせて示した。また、純銅についての値を示した。
ハッセルマン−ジョンソンの理論式は次式で与えられる。
(Thermal conductivity test)
FIG. 7 shows the result of measuring the thermal conductivity of the copper-diamond composite material sample prepared by the potential regulating method. FIG. 8 shows the thermal conductivity of the copper-diamond composite material sample produced by the current regulating method. The measurement results are shown. 7 and 8, the theoretical formula (Hasselman-Johnson) indicating the thermal conductivity of the composite material and the measured values are shown together. Moreover, the value about pure copper was shown.
The Hasselman-Johnson theoretical formula is given by:

上式で、k:銅−ダイヤモンド複合材の熱伝導率(W/mK)、k:銅の熱伝導率(W/mK)、k:ダイヤモンドの熱伝導率(W/mK)、V:ダイヤモンド粒子の体積分率、α:ダイヤモンド粒子の半径(m)、h:ダイヤモンドと銅との界面熱伝達率(W/m2K)である。k=398、k=900、h=88577882.1である。 In the above equation, k: Copper - thermal conductivity of the diamond composite material (W / mK), k m : thermal conductivity of copper (W / mK), k d : thermal conductivity of diamond (W / mK), V d : volume fraction of diamond particles, α: radius (m) of diamond particles, h c : interfacial heat transfer coefficient between diamond and copper (W / m 2 K). k m = 398, k d = 900, h c = 88577882.1.

熱伝導率の測定はJIS R 1611に記載されたフラッシュ法に準拠し、キセノンフラッシュ熱特性評価装置(ブルカー・エイエックスエス株式会社製、製品名LFA 447 Nanoflash)を用いて、陰極から剥離した銅−ダイヤモンド複合材料について熱拡散率を測定することで行った。
熱伝導率は、λ=α×c×ρに従って求めた。λ:銅−ダイヤモンド複合材料の熱伝導率(W/mK)、α:銅−ダイヤモンド複合材料の熱拡散率(m2/s)、c:銅−ダイヤモンド複合材料の比熱容量(J/kg・K)、ρ:銅−ダイヤモンド複合材料のかさ密度(kg/m3)である。なお、銅−ダイヤモンド複合材の比熱容量cは、銅の比熱容量CCuを0.386kJ/kg・K、ダイヤモンドの比熱容量Cを0.53kJ/kg・Kとし、c=CCuCu+Cによって算出され、銅−ダイヤモンド複合材料のかさ密度ρは、ρ=ρCuCu+ρによって算出される。なお、VCuは銅−ダイヤモンド複合材料中の銅の体積分率、Vはダイヤモンドの体積分率、ρCuは銅のかさ密度、ρはダイヤモンドのかさ密度である。
The thermal conductivity was measured according to the flash method described in JIS R 1611. Copper was peeled from the cathode using a xenon flash thermal characteristic evaluation device (product name LFA 447 Nanoflash) manufactured by Bruker AXS Co., Ltd. -It was performed by measuring the thermal diffusivity of the diamond composite material.
The thermal conductivity was determined according to λ = α × c × ρ. λ: thermal conductivity of copper-diamond composite material (W / mK), α: thermal diffusivity of copper-diamond composite material (m 2 / s), c: specific heat capacity of copper-diamond composite material (J / kg · K), ρ: Bulk density (kg / m 3 ) of copper-diamond composite material. The specific heat capacity c of the copper-diamond composite material is such that the specific heat capacity C Cu of copper is 0.386 kJ / kg · K, the specific heat capacity C d of diamond is 0.53 kJ / kg · K, and c = C Cu V Cu + C d Calculated by V d , the bulk density ρ of the copper-diamond composite material is calculated by ρ = ρ Cu V Cu + ρ d V d . V Cu is the volume fraction of copper in the copper-diamond composite material, V d is the volume fraction of diamond, ρ Cu is the bulk density of copper, and ρ d is the bulk density of diamond.

図7、8に示す銅−ダイヤモンド複合材料の熱伝導率の測定結果は、銅とダイヤモンド粒子とを複合化することにより、銅の熱伝導率を上回る熱伝導率が得られること、とくに粒径45μm以上のダイヤモンド粒子を使用することにより、銅−ダイヤモンド複合材料の熱伝導率が銅の熱伝導率を大きく上回ることを示している。
また、電位規制法による場合(図7)と電流規制法(図8)による場合とを比較すると、電位規制法による複合材料は、電流規制法によるものよりも理論式に近い値が得られていることがわかる。すなわち、電位規制法を利用してめっきすることにより、めっき中に水素が発生させずにめっきすることができ、隣り合ったダイヤモンド粒子の間が緻密に銅(めっき銅)によって充填され、複合材料中にボイドが残留せずにめっきされることで、より理論式に近い値が得られたものと考えられる。
The measurement results of the thermal conductivity of the copper-diamond composite material shown in FIGS. 7 and 8 show that the thermal conductivity exceeding the thermal conductivity of copper can be obtained by combining copper and diamond particles. By using diamond particles of 45 μm or more, it is shown that the thermal conductivity of the copper-diamond composite material greatly exceeds the thermal conductivity of copper.
Further, comparing the case of the potential regulation method (FIG. 7) and the case of the current regulation method (FIG. 8), the composite material by the potential regulation method has a value closer to the theoretical formula than that by the current regulation method. I understand that. That is, by plating using the potential regulation method, it is possible to perform plating without generating hydrogen during plating, and the space between adjacent diamond particles is densely filled with copper (plated copper). It is considered that a value closer to the theoretical formula was obtained by plating without voids remaining inside.

上述した実験結果は、めっき方法を利用して銅−ダイヤモンド複合材料を作製する際に電位規制法がダイヤモンド粒子間を銅によって確実に充填しながら複合材料を形成する上できわめて有効であることを示す。とくに、陰極上にダイヤモンド粒子を徐々に沈降させて堆積させながらめっきする際には、ダイヤモンド粒子が複合材料中に入り込むことにより、めっきが析出する面積が刻々と変化すること、めっき中に水素が発生するとダイヤモンド粒子を浮き上がらせるように作用し、めっき中にボイドが発生しやすくなるという問題に対して、電位規制法によるめっき方法はきわめて有効である。電位規制法は、めっきを析出させる面積が変動しても、電極電位を規制するのみでめっきするから、めっき面積の変動にはなんら左右されないからである。また、めっき中に水素を発生させないことから、水素によってダイヤモンド粒子が浮き上がるといったこともない。   The experimental results described above show that the potential regulation method is extremely effective in forming a composite material while reliably filling the space between diamond particles with copper when a copper-diamond composite material is produced using a plating method. Show. In particular, when plating while gradually depositing and depositing diamond particles on the cathode, the diamond particles enter the composite material, and the area where the plating is deposited changes every moment. When this occurs, the plating method based on the potential regulation method is extremely effective for the problem that diamond particles are lifted and voids are likely to occur during plating. This is because in the potential regulation method, even if the area where the plating is deposited fluctuates, plating is performed only by regulating the electrode potential. Further, since hydrogen is not generated during plating, the diamond particles are not lifted by hydrogen.

なお、上記実施例では、銅−ダイヤモンド複合材料をめっきにより作製する例について説明したが、本発明方法は銅−ダイヤモンド複合材料に限らず、ニッケル−ダイヤモンド複合材料のような銅以外のめっき金属との組み合わせについても適用することができる。
本発明においては、電位規制法を利用して、めっき中に水素を発生させずにめっきするから、めっき条件としては、水素の還元電位(0V vs.SHE=−0.2412V vs. SCE)よりも正側の電位で析出可能な金属であればめっきすることができる。たとえば、硫酸銅浴からの銅の析出電位は+0.06V vs. SCEであり水素の発生を抑えるめっきが可能である。これに対し、たとえば、無光沢ワット浴からのニッケルの析出電位は−0.8V vs. SCEであり、電位規制法を用いても水素の発生を抑えてめっきすることができない。このように、本発明方法を適用する場合は、めっき浴や使用する電極材料を適宜選択して適用する必要がある。
In addition, although the said Example demonstrated the example which produces copper-diamond composite material by plating, this invention method is not restricted to copper-diamond composite material, and plating metals other than copper, such as nickel-diamond composite material, This can also be applied to the combination.
In the present invention, plating is performed without generating hydrogen during plating using the potential regulation method, so the plating condition is more than the reduction potential of hydrogen (0 V vs. SHE = −0.2412 V vs. SCE). Any metal that can be deposited at the positive potential can be plated. For example, the deposition potential of copper from a copper sulfate bath is +0.06 V vs. SCE, and plating that suppresses the generation of hydrogen is possible. On the other hand, for example, the deposition potential of nickel from the matte watt bath is -0.8 V vs. SCE, and even if the potential regulation method is used, the generation of hydrogen cannot be suppressed and plating cannot be performed. Thus, when applying the method of this invention, it is necessary to select and apply a plating bath and the electrode material to be used suitably.

また、上記実施例ではマトリックス金属に含有する分散粒子としてダイヤモンド粒子を使用する例について説明したが、マトリックス金属に含有させる分散粒子として、ダイヤモンド粒子以外の、シリカ、カーボン繊維、カーボンナノチューブ等の無機物や、樹脂粒子等の有機物を対象とすることができる。   Further, in the above embodiment, the example in which the diamond particles are used as the dispersed particles contained in the matrix metal has been described. However, as the dispersed particles contained in the matrix metal, inorganic substances such as silica, carbon fibers, and carbon nanotubes other than diamond particles, Organic substances such as resin particles can be targeted.

10 めっき槽
12 陽極
14 陰極
14a 折曲片
14b 延出片
14c マスキングテープ
20 分散粒子
22 めっき金属


DESCRIPTION OF SYMBOLS 10 Plating tank 12 Anode 14 Cathode 14a Bending piece 14b Extension piece 14c Masking tape 20 Dispersed particle 22 Plating metal


Claims (5)

めっき槽内の鉛直方向の上位置に陽極、下位置に陰極を、互いに対向させて配置し、
めっき液中に分散させた分散粒子を前記陰極に向け徐々に沈降させ、陰極上に堆積させるとともに、陰極上にめっき金属を析出させることにより、めっきマトリックス中に前記分散粒子が含まれためっき複合材料を作製する方法であって、
前記陰極上にめっきを析出させる際に、電位規制法により前記陰極の電位を水素が発生しない電位に設定してめっきを析出させることを特徴とするめっき複合材料の製造方法。
Arrange the anode at the upper position in the vertical direction in the plating tank and the cathode at the lower position, facing each other.
A plating composite in which the dispersed particles are contained in a plating matrix by allowing the dispersed particles dispersed in a plating solution to gradually settle toward the cathode and depositing on the cathode and depositing a plating metal on the cathode. A method of making a material,
A method for producing a plating composite material, wherein when depositing plating on the cathode, the plating is deposited by setting the potential of the cathode to a potential at which hydrogen is not generated by a potential regulating method.
前記電位規制法によるめっきにおいては、水素の還元電位よりも正側において析出可能なめっきを施すめっき条件とすることを特徴とする請求項1記載のめっき複合材料の製造方法。   2. The method for producing a plating composite material according to claim 1, wherein the plating by the potential regulating method is performed under plating conditions for performing plating that can be deposited on the positive side of the reduction potential of hydrogen. 前記分散粒子としてダイヤモンド粒子を使用することを特徴とする請求項1または2記載のめっき複合材料の製造方法。   The method for producing a plated composite material according to claim 1, wherein diamond particles are used as the dispersed particles. 前記めっきとして、銅めっきを施すことを特徴とする請求項3記載のめっき複合材料の製造方法。   The method for producing a plated composite material according to claim 3, wherein copper plating is performed as the plating. 前記ダイヤモンド粒子として、粒径45μm以上の粒子を使用することを特徴とする請求項4記載のめっき複合材料の製造方法。
The method for producing a plated composite material according to claim 4, wherein particles having a particle diameter of 45 µm or more are used as the diamond particles.
JP2015020018A 2015-02-04 2015-02-04 Method of manufacturing plated composite material Active JP6537130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015020018A JP6537130B2 (en) 2015-02-04 2015-02-04 Method of manufacturing plated composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015020018A JP6537130B2 (en) 2015-02-04 2015-02-04 Method of manufacturing plated composite material

Publications (2)

Publication Number Publication Date
JP2016141862A true JP2016141862A (en) 2016-08-08
JP6537130B2 JP6537130B2 (en) 2019-07-03

Family

ID=56569814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015020018A Active JP6537130B2 (en) 2015-02-04 2015-02-04 Method of manufacturing plated composite material

Country Status (1)

Country Link
JP (1) JP6537130B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017007235T5 (en) 2017-03-13 2019-12-12 Omron Corporation Process for forming a plating

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160898A (en) * 1984-08-31 1986-03-28 Nisshin Steel Co Ltd Production of copper plated steel sheet for multi-wound pipe
JPH0448099A (en) * 1990-06-14 1992-02-18 Ebara Yuujiraito Kk Formation of locally deposited film
JP2002334851A (en) * 2001-05-07 2002-11-22 Hitachi Ltd Method of manufacturing semiconductor integrated circuit device, and semiconductor manufacturing apparatus
JP2005314780A (en) * 2004-04-30 2005-11-10 Toto Ltd METHOD FOR FORMING Ti-Ni ALLOY FILM
JP2008155362A (en) * 2006-12-01 2008-07-10 Shinshu Univ Electrodeposited diamond tool and manufacturing method for the same
JP2009293068A (en) * 2008-06-03 2009-12-17 Fujifilm Corp Method for forming compound plating film, and manufacturing method of inkjet recording head
JP2010173015A (en) * 2009-01-29 2010-08-12 Mitsubishi Materials Corp Nickel-plated film, cutting tool using the nickel-plated film, and method of forming the nickel-plated film
WO2011096432A1 (en) * 2010-02-04 2011-08-11 日本精機宝石工業株式会社 Heat sink material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160898A (en) * 1984-08-31 1986-03-28 Nisshin Steel Co Ltd Production of copper plated steel sheet for multi-wound pipe
JPH0448099A (en) * 1990-06-14 1992-02-18 Ebara Yuujiraito Kk Formation of locally deposited film
JP2002334851A (en) * 2001-05-07 2002-11-22 Hitachi Ltd Method of manufacturing semiconductor integrated circuit device, and semiconductor manufacturing apparatus
JP2005314780A (en) * 2004-04-30 2005-11-10 Toto Ltd METHOD FOR FORMING Ti-Ni ALLOY FILM
JP2008155362A (en) * 2006-12-01 2008-07-10 Shinshu Univ Electrodeposited diamond tool and manufacturing method for the same
JP2009293068A (en) * 2008-06-03 2009-12-17 Fujifilm Corp Method for forming compound plating film, and manufacturing method of inkjet recording head
JP2010173015A (en) * 2009-01-29 2010-08-12 Mitsubishi Materials Corp Nickel-plated film, cutting tool using the nickel-plated film, and method of forming the nickel-plated film
WO2011096432A1 (en) * 2010-02-04 2011-08-11 日本精機宝石工業株式会社 Heat sink material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017007235T5 (en) 2017-03-13 2019-12-12 Omron Corporation Process for forming a plating

Also Published As

Publication number Publication date
JP6537130B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
Alizadeh et al. Characterization of Ni-Cu matrix, Al2O3 reinforced nano-composite coatings prepared by electrodeposition
Eslami et al. Effect of electrodeposition conditions on the properties of Cu–Si3N4 composite coatings
Bakhit The influence of electrolyte composition on the properties of Ni–Co alloy coatings reinforced by SiC nano-particles
Wang et al. A study on the electrocodeposition processes and properties of Ni–SiC nanocomposite coatings
JP6381230B2 (en) Copper-diamond composite material and method for producing the same
WO2007029395A1 (en) Nanocarbon/aluminum composite material, process for producing the same, and plating liquid for use in said process
Parhizkar et al. Electrochemical deposition of Ni–TiN nanocomposite coatings and the effect of sodium dodecyl sulphate surfactant on the coating properties
Hagio et al. Electrodeposition of nano-diamond/copper composite platings: Improved interfacial adhesion between diamond and copper via formation of silicon carbide on diamond surface
US3884772A (en) Method for producing a heat exchanger element
Xu et al. Preparation of copper coated tungsten powders by intermittent electrodeposition
JP5342976B2 (en) Granules and method for producing the same
Pradhan et al. Pulse reverse electrodeposition of Cu-SiC nanocomposite coating: Effects of surfactants and deposition parameters
JP2017186673A (en) High strength, high conductivity electroformed copper alloy and method of making
Khorashadizade et al. Effect of electrodeposition parameters on the microstructure and properties of Cu-TiO2 nanocomposite coating
Huang et al. Fabrication and evaluation of electroplated Ni–diamond and Ni–B–diamond milling tools with a high density of diamond particles
Tripathi et al. Microstructure and properties of electrochemically deposited Ni-Fe/Si3N4 nanocomposites from a DMF bath
Dietrich et al. Ultrasound technique as a tool for high-rate incorporation of Al 2 O 3 in NiCo layers
Maharana et al. Evolution and structure-property correlation of CTAB assisted high hardness electrodeposited Cu-ZrO2 nano-cone arrays
Owen et al. Growth mechanism of one dimensional tin nanostructures by electrodeposition
Lee et al. Properties of nanocrystalline CuAg foil prepared via electrodeposition
Srikomol et al. Electrochemical codeposition and heat treatment of nickel-titanium alloy layers
Singh et al. Electrolytic preparation of Ni-B 4 C composite coating and its characterization
Qin et al. The high concentration and uniform distribution of diamond particles in Ni‐diamond composite coatings by sediment co‐deposition
JP2016141862A (en) Production method of plated composite material
Rezende et al. A review of corrosion resistance nanocomposite coatings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190531

R150 Certificate of patent or registration of utility model

Ref document number: 6537130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250