JP2008155362A - Electrodeposited diamond tool and manufacturing method for the same - Google Patents

Electrodeposited diamond tool and manufacturing method for the same Download PDF

Info

Publication number
JP2008155362A
JP2008155362A JP2007305873A JP2007305873A JP2008155362A JP 2008155362 A JP2008155362 A JP 2008155362A JP 2007305873 A JP2007305873 A JP 2007305873A JP 2007305873 A JP2007305873 A JP 2007305873A JP 2008155362 A JP2008155362 A JP 2008155362A
Authority
JP
Japan
Prior art keywords
nickel plating
diamond
plating film
electrolytic
electroless nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007305873A
Other languages
Japanese (ja)
Inventor
Yasuo Shimizu
保雄 清水
Makoto Satsumabayashi
真 薩摩林
Masayoshi Minami
正良 南
Ryoji Arai
亮治 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Shinshu University NUC
Original Assignee
Shinko Electric Industries Co Ltd
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd, Shinshu University NUC filed Critical Shinko Electric Industries Co Ltd
Priority to JP2007305873A priority Critical patent/JP2008155362A/en
Publication of JP2008155362A publication Critical patent/JP2008155362A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrodeposited diamond tool that prevents abrasive grains from dropping out and achieves a long service life. <P>SOLUTION: In the electrodeposited diamond tool, a plurality of diamond particles 14 is firmly fixed on a surface of a base material 11 by an electrolytic nickel deposit film 15, and additionally an electroless nickel deposit film 16 is formed over the electrolytic nickel deposit film 15. The electroless nickel deposit film 16 is preferably set to have higher hardness than the electrolytic nickel deposit film 15 by heat treatment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ダイヤモンド粒子の破砕脱落を防止するためのめっきを施した電着ダイヤモンド工具およびその製造方法に関するものである。   The present invention relates to an electrodeposited diamond tool which has been plated to prevent crushing and falling off of diamond particles and a method for manufacturing the same.

電着ダイヤモンド工具は、セラミックスあるいは超硬合金の如き、硬度の高い部品の精密加工に使われている。電着ダイヤモンド工具においては、ダイヤモンド微粒子を一層に均一配置し、これを金属ニッケルで結合した構造となっている。電着ダイヤモンド工具が高価なことから、ダイヤモンド粒子の脱落を防止するため、部品の加工においては、工具に余分な力がかからないようにしている。
従来、電着ダイヤモンド工具の製造法として、基体材料に下地めっきとしてワット浴ニッケルを5〜6μ電着した後、ダイヤモンド砥粒を散布する。しかる後、再びワット浴ニッケルを、埋め込み率70%になるように電着する方法が知られている(非特許文献1)。また、ニッケル膜の砥粒に対する保持力に関しては、埋め込み率30%では脱落が起こり、また埋め込み率50%においても脱落が起こる。脱落を防止するためには、埋め込み率を70%まで高めることが必要とされている(非特許文献2)。
ステンレス鋼基板電着ダイヤモンド砥石の作製と研削性能に およぼす砥粒分布密度の影響 佐藤金司他:表面技術,Vol. 45,p92(1994) 電着ダイヤモンド砥石におけるニッケル膜の単粒に対する保 持力 佐藤金司他:表面技術,Vol.46,p87(1995) しかしながら、細心の注意を払って加工していても、加工の比較的早い段階で、ダイヤモンド粒子の脱落あるいはダイヤモンド粒子の破砕脱落などの現象が起こりやすい。この現象は、研削加工の生産性を阻害する原因となることから、新規技術開発の重要課題である。
Electrodeposited diamond tools are used for precision machining of hard parts such as ceramics or cemented carbide. The electrodeposition diamond tool has a structure in which diamond fine particles are uniformly arranged and bonded with metallic nickel. Since electrodeposited diamond tools are expensive, in order to prevent diamond particles from falling off, no extra force is applied to the tools when machining parts.
Conventionally, as a method for manufacturing an electrodeposited diamond tool, a base material is electrodeposited with 5 to 6 μm of Watt bath nickel as a base plating, and then diamond abrasive grains are dispersed. Thereafter, a method is known in which the Watt bath nickel is again electrodeposited so that the embedding rate is 70% (Non-patent Document 1). As for the holding force of the nickel film on the abrasive grains, dropping occurs when the filling rate is 30%, and dropping occurs when the filling rate is 50%. In order to prevent the dropout, it is necessary to increase the embedding rate to 70% (Non-Patent Document 2).
Effect of abrasive grain distribution density on fabrication and grinding performance of stainless steel substrate electrodeposited diamond wheel Kinji Sato et al .: Surface Technology, Vol. 45, p92 (1994) Holding power against single grain of nickel film in electrodeposited diamond grinding stone Kinji Sato et al .: Surface Technology, Vol.46, p87 (1995) However, even if it is processed with great care, it is a relatively early stage of processing Therefore, phenomena such as diamond particle falling off or diamond particle breaking off are likely to occur. This phenomenon is an important issue for the development of new technologies because it causes the productivity of grinding processes to be hindered.

通常、電着ダイヤモンド工具からのダイヤモンド粒子の脱落を防止するために、埋め込み率を高めれば、露出しているダイヤモンド砥粒の高さが減少し、研削能力が低下する欠点がある。また、ダイヤモンド工具を用いて研削を行う過程で、ダイヤモンド砥粒が破砕されて脱落する不都合がある。ダイヤモンド砥粒が破砕脱落すると、本来持つべき工具の研削寿命が短くなる。一般には、砥粒の破砕脱落を防止するため、研削時の加圧力を減らす、あるいは切り込み量を少なくする等の対応がなされているが、これは研削作業の生産性を低下させることになる。
このように、従来の工具では、砥粒の脱落が研削作業の生産性を低下させている。本発明の課題は、砥粒の脱落を防止し、しかも寿命が長い電着ダイヤモンド工具およびその製造方法を提供することである。
Usually, if the embedding rate is increased in order to prevent the diamond particles from falling off the electrodeposited diamond tool, there is a drawback that the height of the exposed diamond abrasive grains is reduced and the grinding ability is lowered. In addition, there is a disadvantage that diamond abrasive grains are crushed and dropped in the process of grinding using a diamond tool. When diamond abrasive grains are crushed and dropped, the grinding life of a tool that should be originally possessed is shortened. Generally, in order to prevent crushing and dropping of abrasive grains, measures such as reducing the pressing force during grinding or reducing the cutting amount are taken, but this reduces the productivity of the grinding operation.
Thus, in the conventional tool, dropping off of the abrasive grains reduces the productivity of the grinding operation. An object of the present invention is to provide an electrodeposited diamond tool that prevents falling off of abrasive grains and has a long life, and a method for manufacturing the same.

上記目的を達成するため本発明における電着ダイヤモンド工具は、基材の表面に多数のダイヤモンド粒子が電解ニッケル皮膜によって固着され、さらに該電解ニッケル皮膜を覆って無電解ニッケル皮膜が形成されていることを特徴とする。
また、熱処理されて、前記無電解ニッケル皮膜の硬度が前記電解ニッケル皮膜の硬度よりも高くなるように調整されていることを特徴とする。
In order to achieve the above object, the electrodeposited diamond tool according to the present invention has a large number of diamond particles fixed to the surface of a base material by an electrolytic nickel film, and further an electroless nickel film is formed covering the electrolytic nickel film. It is characterized by.
Also, the hardness of the electroless nickel coating is adjusted to be higher than the hardness of the electrolytic nickel coating by heat treatment.

また、前記無電解ニッケルめっき皮膜が、ダイヤモンド粒子との境界において、ダイヤモンド粒子表面上にせり上がっていることを特徴とする。
前記電解ニッケルめっき皮膜と無電解ニッケルめっき皮膜との厚さの比率が9:1であると好適である。
前記電解ニッケルめっき皮膜に代えて電解銅めっき皮膜を形成してもよい。
In addition, the electroless nickel plating film is projected on the surface of the diamond particle at the boundary with the diamond particle.
It is preferable that the thickness ratio of the electrolytic nickel plating film to the electroless nickel plating film is 9: 1.
Instead of the electrolytic nickel plating film, an electrolytic copper plating film may be formed.

また本発明に係る電着ダイヤモンド工具の製造方法は、基材に表面処理を施す工程と、表面処理を施した基材上に、ダイヤモンド粒子が混入した電解ニッケルめっき液を用いて電解ニッケルめっきを施してダイヤモンド粒子を仮付けする工程と、ダイヤモンド粒子を仮付けした電解ニッケルめっき皮膜上にさらに電解ニッケルめっきを施して、ダイヤモンド粒子を基材上に固定する工程と、次いで、前記電解ニッケルめっき皮膜上に無電解ニッケルめっき皮膜を形成する工程とを含むことを特徴とする。   In addition, the method for producing an electrodeposited diamond tool according to the present invention includes a step of subjecting a base material to surface treatment, and electrolytic nickel plating using an electrolytic nickel plating solution in which diamond particles are mixed on the surface-treated base material. Applying the diamond particles temporarily, applying the electrolytic nickel plating on the electrolytic nickel plating film on which the diamond particles are temporarily fixed, and fixing the diamond particles on the substrate, and then the electrolytic nickel plating film And a step of forming an electroless nickel plating film thereon.

前記無電解ニッケルめっき皮膜を形成した工具に熱処理を施して、前記無電解ニッケル皮膜の硬度が前記電解ニッケル皮膜の硬度よりも高くなるようにすると好適である。
また、前記無電解ニッケルめっき工程において、無電解ニッケルめっき皮膜が、ダイヤモンド粒子との境界において、ダイヤモンド粒子表面上にせり上がるようにめっきを施すようにするとよい。
また、前記電解ニッケルめっき皮膜と無電解ニッケルめっき皮膜との厚さの比率が9:1になるようにめっきを施すとよい。
It is preferable to heat-treat the tool on which the electroless nickel plating film is formed so that the hardness of the electroless nickel film is higher than the hardness of the electrolytic nickel film.
In the electroless nickel plating step, the electroless nickel plating film may be plated so as to rise on the diamond particle surface at the boundary with the diamond particles.
The plating may be performed so that the thickness ratio of the electrolytic nickel plating film to the electroless nickel plating film is 9: 1.

本発明によれば、電解ニッケルめっき皮膜と無電解ニッケルめっき皮膜とでダイヤモンド微粒子を強靭に基材上に結合させたものであり、ダイヤモンド砥粒の脱落を防止し、寿命の長い、かつ高い研削性能を持つ電着ダイヤモンド工具を提供できる。   According to the present invention, diamond fine particles are strongly bonded to a substrate with an electrolytic nickel plating film and an electroless nickel plating film, preventing the diamond abrasive grains from falling off, and having a long life and high grinding. We can provide electrodeposition diamond tools with performance.

以下本発明の好適な実施の形態を添付図面に基づいて詳細に説明する。
図1は、ダイヤモンド砥粒を包み込むようにニッケルめっき皮膜を形成した電着ダイヤモンド工具10の構造の説明図である。以下製法とともにその構造を説明する。
11は基材であり、本実施の形態ではSS400材を用いた。基材11の表面上に電解めっきにより、下地ニッケルめっき皮膜12を形成する。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is an explanatory view of the structure of an electrodeposited diamond tool 10 in which a nickel plating film is formed so as to enclose diamond abrasive grains. The structure will be described below together with the production method.
11 is a base material, and SS400 material was used in this Embodiment. A base nickel plating film 12 is formed on the surface of the substrate 11 by electrolytic plating.

さらに、下地ニッケルめっき皮膜12上に、ダイヤモンド粒子14が混入した電解ニッケルめっき液を用いて電解ニッケルめっきを施して、ダイヤモンド粒子14を仮付けする。
このダイヤモンド粒子14は、ニッケルめっき液中に多量に混入させ(例えば、めっき液40mLにダイヤモンド砥粒を160g混入)、スラリー状となったニッケルめっき液中に工具を浸漬し、工具を回転させながら電解ニッケルめっきを行う。工具を回転させることによって、ダイヤモンド粒子14が工具表面に衝突し、析出するニッケルめっき皮膜13により工具表面に付着し、仮付けされる。
Furthermore, electrolytic nickel plating is performed on the underlying nickel plating film 12 using an electrolytic nickel plating solution mixed with diamond particles 14 to temporarily attach the diamond particles 14.
The diamond particles 14 are mixed in a large amount in the nickel plating solution (for example, 160 g of diamond abrasive grains are mixed in 40 mL of the plating solution), and the tool is immersed in the nickel plating solution in a slurry state, while rotating the tool. Perform electrolytic nickel plating. By rotating the tool, the diamond particles 14 collide with the tool surface, adhere to the tool surface by the deposited nickel plating film 13, and are temporarily attached.

次いで、上記ダイヤモンド粒子14を仮付けした電解ニッケルめっき皮膜13上にさらに電解ニッケルめっきを施して、析出する電解ニッケルめっき皮膜15によりダイヤモンド粒子14を基材11上に固定する。これら電解ニッケルめっき皮膜12、13、15により、ダイヤモンド粒子14が60%ほど埋められるようにするとよい。   Next, electrolytic nickel plating is further performed on the electrolytic nickel plating film 13 on which the diamond particles 14 are temporarily attached, and the diamond particles 14 are fixed on the substrate 11 by the electrolytic nickel plating film 15 to be deposited. These electrolytic nickel plating films 12, 13, and 15 are preferably filled with diamond particles 14 by about 60%.

次いで、電解ニッケルめっき皮膜15上に無電解ニッケルめっきを施し、無電解ニッケルめっき皮膜16を形成する。電解ニッケルめっき皮膜12、13、15と無電解ニッケルめっき皮膜16とでダイヤモンド粒子14が70%ほど埋められるようにするとよい。
無電解ニッケルめっき皮膜16を厚付けすることで、無電解ニッケルめっき皮膜16を、ダイヤモンド粒子14との境界において、ダイヤモンド粒子14表面上に爪状にせり上がらせることができる。このせり上がり部17によって、ダイヤモンド粒子14が強固に固定され、脱落を極力防止でき、寿命を延ばすことができ、またそれだけ研削性能を向上させることができる。
Next, electroless nickel plating is performed on the electrolytic nickel plating film 15 to form an electroless nickel plating film 16. About 70% of the diamond particles 14 may be filled with the electrolytic nickel plating films 12, 13, 15 and the electroless nickel plating film 16.
By thickening the electroless nickel plating film 16, the electroless nickel plating film 16 can be raised in a nail shape on the surface of the diamond particles 14 at the boundary with the diamond particles 14. The raised portion 17 firmly fixes the diamond particles 14, can prevent the drop off as much as possible, can extend the life, and can improve the grinding performance accordingly.

上記のようにして電着ダイヤモンド工具10が得られるが、さらに好適には、上記電着ダイヤモンド工具10に真空中で熱処理を施すとよい。
この熱処理により、電解ニッケルめっき皮膜12、13、15は比較的に硬度が低くなり、柔らかさが増す。一方、無電解ニッケルめっき皮膜16は逆に硬度が高くなる。これにより、研削中、被研削物からの強い衝撃は柔らかい電解ニッケルめっき皮膜12、13、15によって受け止められるのでダイヤモンド粒子14の破砕が防止され、一方、硬度の高い無電解ニッケル皮膜16によってダイヤモンド粒子14が強固に保持されるから、ダイヤモンド粒子14の脱落が防止される。
Although the electrodeposited diamond tool 10 is obtained as described above, it is more preferable to heat-treat the electrodeposited diamond tool 10 in a vacuum.
By this heat treatment, the electrolytic nickel plating films 12, 13, and 15 have relatively low hardness and softness. On the other hand, the electroless nickel plating film 16 has a high hardness. Thereby, during grinding, a strong impact from an object to be ground is received by the soft electrolytic nickel plating films 12, 13 and 15, so that the diamond particles 14 are prevented from being crushed, while the electroless nickel film 16 having a high hardness prevents the diamond particles from being broken. Since 14 is firmly held, the diamond particles 14 are prevented from falling off.

具体的には、後記する表2に示すように、2層めっき試料においては、上層の無電解ニッケルめっき皮膜16の硬さが、めっき後ではHV445であったものが、熱処理によって、HV682まで硬くなっている。下層では、熱処理によって電解ニッケルめっき皮膜15の硬さが、めっき後でHV477であったものが、HV444に低下している。これによって研削加工時の負荷加重に対応できる柔軟な皮膜構造が得られるが、このことが、研削性能の向上に寄与しているものと考えられる。   Specifically, as shown in Table 2 to be described later, in the two-layer plating sample, the hardness of the upper electroless nickel plating film 16 was HV445 after plating, but became hard to HV682 by heat treatment. It has become. In the lower layer, the hardness of the electrolytic nickel plating film 15 that has been HV477 after plating is lowered to HV444 by heat treatment. This provides a flexible film structure that can handle the load load during grinding, which is considered to contribute to the improvement of grinding performance.

電解ニッケルめっき皮膜12、13、15と無電解ニッケルめっき皮膜16との厚さの比率は、8.5:1.5〜9.5:0.5が好適であり、最適には9:1であった。硬い無電解ニッケルめっき皮膜16が厚すぎると全体的に脆くなるからである。薄すぎると強度が低下し、ダイヤモンド粒子14が脱落する。
なお、電解ニッケルめっき皮膜12、13、15に代えて、柔らかい金属である電解銅めっき皮膜を形成しても同様の効果(ダイヤモンド粒子14の破砕、脱落防止)が得られた。
The ratio of the thicknesses of the electrolytic nickel plating films 12, 13, 15 and the electroless nickel plating film 16 is preferably 8.5: 1.5 to 9.5: 0.5, and optimally 9: 1. Met. This is because if the hard electroless nickel plating film 16 is too thick, the whole becomes brittle. If it is too thin, the strength decreases and the diamond particles 14 fall off.
In addition, it replaced with the electrolytic nickel plating film | membrane 12,13,15, and the same effect (crushing of diamond particle | grains 14 and prevention of omission) was acquired even if it formed the electrolytic copper plating film | membrane which is a soft metal.

以下、本発明の実施例を詳細に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   Examples of the present invention will be described in detail below, but the scope of the present invention is not limited to these examples.

実施例1
1)基材11として、SS400材を用いた。基材11表面を#800の耐水研磨紙を用いて研磨した後、脱脂・塩酸酸洗いを行った。まず、下地ニッケルめっきを行い、下地ニッケルめっき皮膜12を形成した。
めっき浴として、
スルファミン酸ニッケル 600g/L
ホウ酸 40g/L
ピット防止剤 4mL/L
を用い、電流密度 3A/dm、電解時間 10分の条件でめっきした。
Example 1
1) SS400 material was used as the base material 11. The surface of the substrate 11 was polished with # 800 water-resistant polishing paper, and then degreased and pickled with hydrochloric acid. First, base nickel plating was performed to form a base nickel plating film 12.
As a plating bath
Nickel sulfamate 600g / L
Boric acid 40g / L
Pit inhibitor 4mL / L
Was used under the conditions of a current density of 3 A / dm 2 and an electrolysis time of 10 minutes.

2)ダイヤモンド砥粒として、東名ダイヤモンド工業(株)製の粒径150から200μmを使用した。めっき浴中にダイヤモンド粒子をスラリー状に懸濁させた状態で、電流を流し、仮付けニッケルめっき皮膜13を形成して、ダイヤモンド粒子の仮付けめっきを行った。めっき浴として
スルファミン酸ニッケル 600g/L
ホウ酸 40g/L
ピット防止剤 3mL/L
を用い、電流密度 5A/dm、電解時間 10分の条件でめっきした。
なお、ダイヤモンド砥粒160gを、めっき液40mLに混入させ、濃厚分散させたスラリー状のめっき液を用い、工具を回転させながら電解めっきを行った。
2) As the diamond abrasive grains, a particle diameter of 150 to 200 μm manufactured by Tomei Diamond Industrial Co., Ltd. was used. With the diamond particles suspended in the plating bath in a slurry state, an electric current was applied to form a temporary nickel plating film 13 to perform temporary plating of the diamond particles. As a plating bath, nickel sulfamate 600g / L
Boric acid 40g / L
Pit preventive agent 3mL / L
, And a current density of 5 A / dm 2 and an electrolysis time of 10 minutes.
In addition, 160 g of diamond abrasive grains were mixed in 40 mL of the plating solution, and electrolytic plating was performed while rotating the tool using a slurry-like plating solution that was concentrated and dispersed.

3)次に埋め込み率が50%になるように本めっきを行い、電解ニッケルめっき皮膜15を形成した。めっき浴として
スルファミン酸ニッケル 600g/L
ホウ酸 40g/L
ピット防止剤 3mL/L
光沢剤 NSF-E 10mL/L
を用い、電流密度 3A/dm、電解時間 70分の条件でめっきした。
3) Next, main plating was performed so that the embedding rate was 50%, and an electrolytic nickel plating film 15 was formed. As a plating bath, nickel sulfamate 600g / L
Boric acid 40g / L
Pit preventive agent 3mL / L
Brightener NSF-E 10mL / L
Was used under the conditions of a current density of 3 A / dm 2 and an electrolysis time of 70 minutes.

4)電解ニッケルめっきにおいては、電解中に水素ガスが発生するので、めっき膜にピットが発生する。良質のめっき膜を得るためには、ピット防止剤の選択が重要である。本実施例では、ピット防止剤として、ピットレスS(日本化学産業株式会社製)を用いた。
また本めっきにおいては、めっき膜の成長に伴って凹凸が激しくなる。平坦なめっき膜を得るためには、光沢剤の選択が重要である。本実施例では、光沢剤としてNSF-E(日本化学産業株式会社製)を用いた。
4) In electrolytic nickel plating, since hydrogen gas is generated during electrolysis, pits are generated in the plating film. In order to obtain a high-quality plating film, selection of a pit inhibitor is important. In this example, pitless S (manufactured by Nippon Chemical Industry Co., Ltd.) was used as a pit inhibitor.
Moreover, in this plating, unevenness becomes severe as the plating film grows. In order to obtain a flat plating film, selection of a brightener is important. In this example, NSF-E (manufactured by Nippon Chemical Industry Co., Ltd.) was used as a brightener.

5)次に、電解ニッケルめっき皮膜15上に、無電解ニッケルめっきを施し、無電解ニッケルめっき皮膜16を形成した。電解ニッケルめっきは、一旦めっき浴から引き上げると、不活性な皮膜に覆われ、この皮膜上に再びめっきをつけても、皮膜間の密着力が弱いので、すぐに剥離してしまう。そこで次の選択的活性化液に浸漬して選択的活性化処理を行ってから、無電解ニッケルめっきを施した。
選択的活性化液
15%塩酸 1L
ラウリル硫酸ナトリウム 0.25g/L
温度 室温
時間 5分
5) Next, electroless nickel plating was performed on the electrolytic nickel plating film 15 to form an electroless nickel plating film 16. Once the electrolytic nickel plating is lifted from the plating bath, it is covered with an inactive film, and even if plating is applied again to this film, the adhesion between the films is weak and the film is peeled off immediately. Then, after immersing in the following selective activation liquid and performing the selective activation process, electroless nickel plating was performed.
Selective activation solution 15% hydrochloric acid 1L
Sodium lauryl sulfate 0.25g / L
Temperature Room temperature Time 5 minutes

6)上記活性化処理後、ただちに無電解ニッケルめっきを次の条件で行った。
エコニックNSX(上村工業株式会社製)
温度 85℃
時間 1時間
ダイヤモンド砥粒のエッヂ部に析出した無電解ニッケルめっき皮膜のSEM像を図2に示す。無電解ニッケルめっき皮膜16を厚付けすることで、無電解ニッケルめっき皮膜16を、ダイヤモンド粒子14との境界において、ダイヤモンド粒子14表面上に爪状にせり上がらせることができる。このせり上がり部17(図2(a)において、白い点状の部位)によって、あたかも、ダイヤモンド宝石を、指輪の台座に固定する爪のような形で、ダイヤモンド砥粒を包み込んでいる。無電解ニッケルめっきの析出状態を図2(a)に示す。従来知られているダイヤモンド電着工具に比べて、砥粒が脱落しにくい構造になっており、工具としての研削性能が改善されている。
6) Immediately after the activation treatment, electroless nickel plating was performed under the following conditions.
Econic NSX (manufactured by Uemura Kogyo Co., Ltd.)
Temperature 85 ° C
Time 1 hour FIG. 2 shows an SEM image of the electroless nickel plating film deposited on the edge of the diamond abrasive. By thickening the electroless nickel plating film 16, the electroless nickel plating film 16 can be raised in a nail shape on the surface of the diamond particles 14 at the boundary with the diamond particles 14. The raised portion 17 (the white dot-like portion in FIG. 2A) wraps the diamond abrasive grains in the form of a nail that fixes the diamond jewel to the base of the ring. The deposition state of electroless nickel plating is shown in FIG. Compared to the conventionally known diamond electrodeposition tool, the structure is such that the abrasive grains are less likely to fall off, and the grinding performance as a tool is improved.

実施例2
電解ニッケルめっき皮膜15上に、速やかにしかも強固に無電解ニッケルめっき皮膜16を析出させることを目的として、ストライクニッケルめっき工程を取り入れた。ストライクニッケルめっき浴として
塩化ニッケル 240g/L
塩酸 125mL/L
を用い、電流密度 8A/dm2、電解時間 1分の条件で、下地電解ニッケルめっき皮膜15の表面の活性化を行った。次に次の条件で無電解ニッケルめっきを行った。
エコニックNSX(上村工業株式会社製)
温度 85℃
時間 1時間
Example 2
For the purpose of depositing the electroless nickel plating film 16 quickly and firmly on the electrolytic nickel plating film 15, a strike nickel plating process was incorporated. Nickel chloride 240g / L as strike nickel plating bath
Hydrochloric acid 125mL / L
The surface of the base electrolytic nickel plating film 15 was activated under the conditions of a current density of 8 A / dm 2 and an electrolysis time of 1 minute. Next, electroless nickel plating was performed under the following conditions.
Econic NSX (manufactured by Uemura Kogyo Co., Ltd.)
Temperature 85 ° C
1 hour

ストライクニッケルめっき工程においては、下地の電解ニッケルめっき皮膜15の表面が活性化されたのはもちろんであるが、同時にダイヤモンド砥粒をも、活性化しているように考えられる。すなわち、ストライクニッケルめっきの析出反応においては、水素ガスの発生を伴うが、この発生期の水素が、ダイヤモンド砥粒表面に存在する有機物皮膜を、破壊除去しているものと考えられる。ダイヤモンド砥粒表面が活性化された効果で、図2(b)に示すように、無電解ニッケルめっき皮膜16のせり上がり部17が、ダイヤモンド砥粒周辺部全体に析出している。   In the strike nickel plating process, it is considered that the surface of the underlying electrolytic nickel plating film 15 is activated, but at the same time, the diamond abrasive grains are also activated. That is, the deposition reaction of strike nickel plating is accompanied by the generation of hydrogen gas, and it is considered that the hydrogen in this generation stage destroys and removes the organic film existing on the diamond abrasive grain surface. Due to the effect of activating the surface of the diamond abrasive grains, as shown in FIG. 2B, the rising portion 17 of the electroless nickel plating film 16 is deposited on the entire periphery of the diamond abrasive grains.

実施例3
電着ダイヤモンド工具においては、電着したニッケル膜に、電着歪みが残っている。電着ダイヤモンド工具の研削性能を向上させる目的で、熱処理を行った。熱処理は、真空中で、100℃、200℃、300℃および400℃の各温度で1時間行った。熱処理した試料について、研削性能を試験した。
電着ダイヤモンド工具の研削性能は、日章電機株式会社製スクラッチテスタMMS-2491を用いて調査した。負荷30N、5mm往復、乾式の条件で、各々の試作工具を用いて、被研削材としてアルミナセラミック片(3x4x12mm,1000Hv)を水平に往復研削した。垂直方向変位および研削抵抗を測定することで、研削性能を評価した。結果を図3に示す。図3において、符号31は、実施例2で得られた工具、符号32は、実施例3における100℃で熱処理した工具の研削性能を示す。なお横軸は時間(min)である。
Example 3
In an electrodeposited diamond tool, electrodeposition strain remains in the electrodeposited nickel film. Heat treatment was performed for the purpose of improving the grinding performance of the electrodeposited diamond tool. The heat treatment was performed in vacuum at 100 ° C., 200 ° C., 300 ° C., and 400 ° C. for 1 hour. The heat-treated sample was tested for grinding performance.
The grinding performance of the electrodeposited diamond tool was investigated using a scratch tester MMS-2491 manufactured by Nissho Electric Co., Ltd. An alumina ceramic piece (3x4x12mm, 1000Hv) was horizontally reciprocated as a material to be ground using each prototype tool under a load of 30N, 5mm reciprocating, and dry conditions. Grinding performance was evaluated by measuring vertical displacement and grinding resistance. The results are shown in FIG. In FIG. 3, the code | symbol 31 shows the grinding performance of the tool obtained in Example 2, and the code | symbol 32 shows the tool heat-processed in Example 3 at 100 degreeC. The horizontal axis represents time (min).

100℃で熱処理した試料は、めっきのままの試料に比べて、研削性能が約18%向上している。電着歪みが除去されたことにより、研削性能が向上したものと考えられる。一方200℃、300℃および400℃で熱処理した試料では、逆に研削性能が低下した。これは、表1に示すように、熱処理によって電解ニッケル皮膜15が軟かくなったため、研削時の圧下力を支えきれなくなったためと考えられる。なお、200℃以上の熱処理では研削性能は未処理より低下しているが、これは本件実施例で示した浴組成の電解ニッケルめっきを使用した場合の例であり、異なる浴組成のニッケルめっき浴を使用した場合においては、異なる最適熱処理温度が存在することは明らかである。   The sample heat-treated at 100 ° C. has improved grinding performance by about 18% compared to the sample as plated. It is considered that the grinding performance was improved by removing the electrodeposition distortion. On the other hand, in the samples heat-treated at 200 ° C., 300 ° C., and 400 ° C., the grinding performance decreased. As shown in Table 1, this is probably because the electrolytic nickel film 15 was softened by the heat treatment, and thus the rolling force during grinding could not be supported. In addition, although the grinding performance is lower than that of the untreated in the heat treatment at 200 ° C. or higher, this is an example when the electrolytic nickel plating having the bath composition shown in this example is used, and the nickel plating bath having a different bath composition. Obviously, there is a different optimum heat treatment temperature when using.

電解ニッケルめっきで作製した工具を用いて、熱処理温度及び処理時間が、皮膜の硬さに及ぼす影響を調査した。結果を表1に示す。   Using a tool produced by electrolytic nickel plating, the effect of heat treatment temperature and treatment time on the hardness of the coating was investigated. The results are shown in Table 1.

また熱処理した工具の研削性能を試験した。結果を図4に示す。図4において、41は実施例1で得られた工具、符号42は実施例3で100℃、1時間熱処理した工具、符号43は実施例3で100℃、10時間熱処理した工具を示す。1時間の熱処理により、研削性能は約13%向上した。その後10時間まで、熱処理を行ったが、研削性能は1時間処理のものとほとんど同じであった。     The grinding performance of the heat-treated tool was also tested. The results are shown in FIG. In FIG. 4, reference numeral 41 denotes a tool obtained in Example 1, reference numeral 42 denotes a tool heat-treated at 100 ° C. for 1 hour in Example 3, and reference numeral 43 denotes a tool heat-treated at 100 ° C. in Example 3 for 10 hours. The grinding performance improved by about 13% after the heat treatment for 1 hour. Thereafter, heat treatment was performed for up to 10 hours, but the grinding performance was almost the same as that of the one-hour treatment.

次に実施例3で示した工具について、真空中で、100℃ 1時間の熱処理を行った後、皮膜の硬さを試験した。結果を表2に示す。     Next, the tool shown in Example 3 was heat-treated at 100 ° C. for 1 hour in a vacuum, and then the hardness of the coating was tested. The results are shown in Table 2.

次に、下地の電解ニッケルめっき皮膜15の厚さと、上層の無電解ニッケルめっき皮膜16の厚さの比が、電着ダイヤモンド工具の性能に及ぼす効果について実験した。下層の電解ニッケルめっき皮膜15の厚さ9に対して、上層の無電解ニッケルめっき皮膜16の厚さを1とした試料1、および下層の電解ニッケルめっき皮膜15の厚さ9に対して、上層の無電解ニッケルめっき皮膜16の厚さを4.5とした試料2について実験した。試料には、実施例3の、アルゴン雰囲気中で、100℃で1時間の熱処理を施したものを用いた。図4に研削性能試験結果を示す。図4において、符号51は試料1を、符号52は試料2を示す。上層の無電解ニッケルめっき皮膜16は、熱処理によって硬くなり、HV682になる。ダイヤモンド砥粒は、硬い無電解ニッケルめっき皮膜16によって強固に保持され、研削中に脱落しにくくなる。しかしながら硬い無電解ニッケルめっき皮膜16が厚くなる、すなわち下地の柔らかい電解ニッケルめっき皮膜15が薄くなると、研削中の負荷加重に耐えられずに、ダイヤモンド砥粒が破砕される。これらの結果から、電解ニッケルめっき皮膜:90μm、無電解ニッケルめっき皮膜:10μmの工具を100℃で1時間熱処理した工具が、最も優れた性能を示した。   Next, an experiment was conducted on the effect of the ratio of the thickness of the underlying electrolytic nickel plating film 15 and the thickness of the upper electroless nickel plating film 16 on the performance of the electrodeposited diamond tool. Sample 1 in which the thickness of the upper electroless nickel plating film 16 is 1 with respect to the thickness 9 of the lower electrolytic nickel plating film 15, and the upper layer with respect to the thickness 9 of the lower electrolytic nickel plating film 15 An experiment was conducted on Sample 2 in which the thickness of the electroless nickel plating film 16 was 4.5. The sample used in Example 3 was heat-treated at 100 ° C. for 1 hour in an argon atmosphere. FIG. 4 shows the results of the grinding performance test. In FIG. 4, reference numeral 51 indicates the sample 1 and reference numeral 52 indicates the sample 2. The upper electroless nickel plating film 16 becomes hard by heat treatment and becomes HV682. The diamond abrasive grains are firmly held by the hard electroless nickel plating film 16 and are difficult to fall off during grinding. However, when the hard electroless nickel plating film 16 is thick, that is, when the underlying soft electrolytic nickel plating film 15 is thin, the diamond abrasive grains are crushed without being able to withstand the load applied during grinding. From these results, a tool obtained by heat-treating a tool having an electrolytic nickel plating film: 90 μm and an electroless nickel plating film: 10 μm at 100 ° C. for 1 hour showed the most excellent performance.

ダイヤモンド砥粒を包み込むように無電解ニッケルめっきを施こした構造の、模式図である。It is a schematic diagram of the structure which gave electroless nickel plating so that a diamond abrasive grain might be wrapped. (a)ダイヤモンド砥粒のエッヂ部に析出した無電解ニッケルめっき皮膜のSEM像である。 (b)ダイヤモンド砥粒のエッジ部全体に析出した無電解ニッケルめっき皮膜のSEM像である。(a) SEM image of electroless nickel plating film deposited on the edge of diamond abrasive grains. (b) SEM image of electroless nickel plating film deposited on the entire edge of diamond abrasive grains. 2層めっき後熱処理した工具の研削性能を示す図である。It is a figure which shows the grinding performance of the tool heat-processed after 2 layer plating. 熱処理した電着工具の研削性能を示す図である。It is a figure which shows the grinding performance of the heat-treated electrodeposition tool. めっき厚の比率が研削性能に及ぼす影響を示す図である。It is a figure which shows the influence which the ratio of plating thickness has on grinding performance.

符号の説明Explanation of symbols

11 基材
12 下地ニッケルめっき皮膜
13 仮付けニッケルめっき皮膜
14 ダイヤモンド砥粒
15 電解ニッケルめっき皮膜
16 無電解ニッケルめっき皮膜
17 せり上がり部
DESCRIPTION OF SYMBOLS 11 Base material 12 Base nickel plating film 13 Temporary nickel plating film 14 Diamond abrasive grain 15 Electrolytic nickel plating film 16 Electroless nickel plating film 17 Raised part

Claims (9)

基材の表面に多数のダイヤモンド粒子が電解ニッケル皮膜によって固着され、さらに該電解ニッケル皮膜を覆って無電解ニッケル皮膜が形成されていることを特徴とする電着ダイヤモンド工具。   An electrodeposited diamond tool characterized in that a large number of diamond particles are fixed to the surface of a base material by an electrolytic nickel coating, and an electroless nickel coating is formed covering the electrolytic nickel coating. 熱処理されて、前記無電解ニッケル皮膜の硬度が前記電解ニッケル皮膜の硬度よりも高くなるように調整されていることを特徴とする請求項1記載の電着ダイヤモンド工具。   2. The electrodeposited diamond tool according to claim 1, wherein the electrodeposited diamond tool is adjusted by heat treatment so that the hardness of the electroless nickel coating is higher than the hardness of the electrolytic nickel coating. 前記無電解ニッケルめっき皮膜が、ダイヤモンド粒子との境界において、ダイヤモンド粒子表面上にせり上がっていることを特徴とする請求項1または2記載の電着ダイヤモンド工具。   The electrodeposited diamond tool according to claim 1 or 2, wherein the electroless nickel plating film rises on the surface of the diamond particle at the boundary with the diamond particle. 前記電解ニッケルめっき皮膜と無電解ニッケルめっき皮膜との厚さの比率が9:1であることを特徴とする請求項1〜3いずれか1項記載の電着ダイヤモンド工具。   The electrodeposition diamond tool according to any one of claims 1 to 3, wherein the ratio of the thickness of the electrolytic nickel plating film to the electroless nickel plating film is 9: 1. 前記電解ニッケルめっき皮膜に代えて電解銅めっき皮膜が形成されていることを特徴とする請求項1〜4いずれか1項記載の電着ダイヤモンド工具。   The electrodeposited diamond tool according to any one of claims 1 to 4, wherein an electrolytic copper plating film is formed in place of the electrolytic nickel plating film. 基材に表面処理を施す工程と、
表面処理を施した基材上に、ダイヤモンド粒子が混入した電解ニッケルめっき液を用いて電解ニッケルめっきを施してダイヤモンド粒子を仮付けする工程と、
ダイヤモンド粒子を仮付けした電解ニッケルめっき皮膜上にさらに電解ニッケルめっきを施して、ダイヤモンド粒子を基材上に固定する工程と、
次いで、前記電解ニッケルめっき皮膜上に無電解ニッケルめっき皮膜を形成する工程とを含むことを特徴とする電着ダイヤモンド工具の製造方法。
Applying a surface treatment to the substrate;
A step of temporarily attaching diamond particles by performing electrolytic nickel plating using an electrolytic nickel plating solution mixed with diamond particles on a surface-treated substrate;
Applying electrolytic nickel plating on the electrolytic nickel plating film on which the diamond particles are temporarily attached, and fixing the diamond particles on the substrate;
Then, the process of forming an electroless nickel plating film | membrane on the said electrolytic nickel plating film | membrane, The manufacturing method of the electrodeposition diamond tool characterized by the above-mentioned.
前記無電解ニッケルめっき皮膜を形成した工具に熱処理を施して、前記無電解ニッケル皮膜の硬度が前記電解ニッケル皮膜の硬度よりも高くなるようにすることを特徴とする請求項6記載の電着ダイヤモンド工具の製造方法。   The electrodeposited diamond according to claim 6, wherein the tool on which the electroless nickel plating film is formed is heat-treated so that the hardness of the electroless nickel film is higher than the hardness of the electrolytic nickel film. Tool manufacturing method. 前記無電解ニッケルめっき工程において、無電解ニッケルめっき皮膜が、ダイヤモンド粒子との境界において、ダイヤモンド粒子表面上にせり上がるようにめっきを施すことを特徴とする請求項6または7記載の電着ダイヤモンド工具の製造方法。   The electrodeposited diamond tool according to claim 6 or 7, wherein in the electroless nickel plating step, the electroless nickel plating film is plated so as to rise on the surface of the diamond particles at the boundary with the diamond particles. Manufacturing method. 前記電解ニッケルめっき皮膜と無電解ニッケルめっき皮膜との厚さが9:1になるようにめっきを施すことを特徴とする請求項6〜8いずれか1項記載の電着ダイヤモンド工具の製造方法。   The method for producing an electrodeposited diamond tool according to any one of claims 6 to 8, wherein plating is performed so that a thickness of the electrolytic nickel plating film and the electroless nickel plating film is 9: 1.
JP2007305873A 2006-12-01 2007-11-27 Electrodeposited diamond tool and manufacturing method for the same Pending JP2008155362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305873A JP2008155362A (en) 2006-12-01 2007-11-27 Electrodeposited diamond tool and manufacturing method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006357019 2006-12-01
JP2007305873A JP2008155362A (en) 2006-12-01 2007-11-27 Electrodeposited diamond tool and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2008155362A true JP2008155362A (en) 2008-07-10

Family

ID=39656839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305873A Pending JP2008155362A (en) 2006-12-01 2007-11-27 Electrodeposited diamond tool and manufacturing method for the same

Country Status (1)

Country Link
JP (1) JP2008155362A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089177A (en) * 2008-10-06 2010-04-22 Mitsubishi Heavy Ind Ltd Superabrasive grain tool
WO2011096432A1 (en) * 2010-02-04 2011-08-11 日本精機宝石工業株式会社 Heat sink material
JP2014113668A (en) * 2012-12-11 2014-06-26 Noritake Co Ltd Wire tool and wire tool manufacturing method
JP2016141862A (en) * 2015-02-04 2016-08-08 国立大学法人信州大学 Production method of plated composite material
KR20180129231A (en) * 2017-05-25 2018-12-05 강식성 Electroplated diamond endmill tool
JP2019199636A (en) * 2018-05-15 2019-11-21 帝国イオン株式会社 Wear resistant coating film, wear resistance member and method for manufacturing wear resistant coating film
US11931861B2 (en) 2018-12-24 2024-03-19 Samsung Electronics Co., Ltd. Wafer grinding wheel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221977A (en) * 1987-03-10 1988-09-14 Mitsubishi Heavy Ind Ltd Electrodeposited grindstone
JPH05138537A (en) * 1991-11-13 1993-06-01 Mitsubishi Materials Corp Electrodeposit grinding wheel and manufacture thereof
JPH06114739A (en) * 1992-10-09 1994-04-26 Mitsubishi Materials Corp Electrodeposition grinding wheel
JP2000198076A (en) * 1999-01-08 2000-07-18 Mitsubishi Materials Corp Electrodeposited grinding wheel
JP2002178266A (en) * 2000-12-12 2002-06-25 Toyoda Mach Works Ltd Monolayer metal bond grinding wheel and its manufacturing method
JP2004358640A (en) * 2003-06-09 2004-12-24 Goei Seisakusho:Kk Method for manufacturing electroplated tool and electroplated tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221977A (en) * 1987-03-10 1988-09-14 Mitsubishi Heavy Ind Ltd Electrodeposited grindstone
JPH05138537A (en) * 1991-11-13 1993-06-01 Mitsubishi Materials Corp Electrodeposit grinding wheel and manufacture thereof
JPH06114739A (en) * 1992-10-09 1994-04-26 Mitsubishi Materials Corp Electrodeposition grinding wheel
JP2000198076A (en) * 1999-01-08 2000-07-18 Mitsubishi Materials Corp Electrodeposited grinding wheel
JP2002178266A (en) * 2000-12-12 2002-06-25 Toyoda Mach Works Ltd Monolayer metal bond grinding wheel and its manufacturing method
JP2004358640A (en) * 2003-06-09 2004-12-24 Goei Seisakusho:Kk Method for manufacturing electroplated tool and electroplated tool

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089177A (en) * 2008-10-06 2010-04-22 Mitsubishi Heavy Ind Ltd Superabrasive grain tool
WO2011096432A1 (en) * 2010-02-04 2011-08-11 日本精機宝石工業株式会社 Heat sink material
JP5006993B2 (en) * 2010-02-04 2012-08-22 日本精機宝石工業株式会社 Heat dissipation material
JP2014113668A (en) * 2012-12-11 2014-06-26 Noritake Co Ltd Wire tool and wire tool manufacturing method
JP2016141862A (en) * 2015-02-04 2016-08-08 国立大学法人信州大学 Production method of plated composite material
KR20180129231A (en) * 2017-05-25 2018-12-05 강식성 Electroplated diamond endmill tool
KR101973854B1 (en) * 2017-05-25 2019-04-29 강식성 Electroplated diamond endmill tool
JP2019199636A (en) * 2018-05-15 2019-11-21 帝国イオン株式会社 Wear resistant coating film, wear resistance member and method for manufacturing wear resistant coating film
JP7138855B2 (en) 2018-05-15 2022-09-20 帝国イオン株式会社 Wear-resistant coating, wear-resistant member, and method for producing wear-resistant coating
US11931861B2 (en) 2018-12-24 2024-03-19 Samsung Electronics Co., Ltd. Wafer grinding wheel

Similar Documents

Publication Publication Date Title
JP2008155362A (en) Electrodeposited diamond tool and manufacturing method for the same
CN109030148B (en) Preparation method of iron-based alloy powder EBSD detection sample
WO1998016347A1 (en) Semiconductor substrate polishing pad dresser, method of manufacturing the same, and chemicomechanical polishing method using the same dresser
JP2001252873A (en) Tool for polishing dressing, and method of manufacturing the same
JPH06114739A (en) Electrodeposition grinding wheel
JP2007528299A (en) Insulation pad conditioner and method of use
CN108796564B (en) High-hardness wear-resistant corrosion-resistant Ni-Mo alloy/diamond composite coating and preparation method thereof
JP2013123771A (en) Cmp pad conditioner, and method for manufacturing the same
JP7281502B2 (en) Polishing pad dresser and manufacturing method thereof
US20120222362A1 (en) Surface-modified polycrystalline diamond and processing method thereof
JPS63199870A (en) Diamond coated sintered hard tool material
CN102528166A (en) Grinding type fretsaw
JP2010089177A (en) Superabrasive grain tool
CN115106936A (en) Diamond dressing disc and preparation method thereof
JP5123628B2 (en) Electrodeposition tool manufacturing method
JP2000127046A (en) Electrodeposition dresser for polishing by polisher
KR101826428B1 (en) Method for manufacturing grinding tool with aluminium diamond grinder
JP2000153463A (en) Manufacture of electrodeposition tool
JP5082114B2 (en) Manufacturing method of carrier for holding object to be polished
JP2009196057A (en) Thin-bladed whetstone and its manufacturing method
KR101313024B1 (en) Wire cutting tool using carbon fiber and method of fabricating the same
JP2005028525A (en) Super abrasive grain grinding wheel
KR20140095205A (en) Wire cutting tool comprising different kind of abrasive particles, and method of fabricating the same
JP2010173015A (en) Nickel-plated film, cutting tool using the nickel-plated film, and method of forming the nickel-plated film
JP5082115B2 (en) Carrier for holding object to be polished and method for manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20100601

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Effective date: 20100531

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Effective date: 20101012

Free format text: JAPANESE INTERMEDIATE CODE: A02