JPH03146663A - Production of diamond-coated sintered hard alloy member - Google Patents

Production of diamond-coated sintered hard alloy member

Info

Publication number
JPH03146663A
JPH03146663A JP28309989A JP28309989A JPH03146663A JP H03146663 A JPH03146663 A JP H03146663A JP 28309989 A JP28309989 A JP 28309989A JP 28309989 A JP28309989 A JP 28309989A JP H03146663 A JPH03146663 A JP H03146663A
Authority
JP
Japan
Prior art keywords
diamond
cemented carbide
coated
phase
tungsten carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28309989A
Other languages
Japanese (ja)
Other versions
JP2554941B2 (en
Inventor
Hiroyuki Suetsugu
末次 博幸
Michifumi Nika
通文 丹花
Yoshikazu Kondo
近藤 嘉一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP1283099A priority Critical patent/JP2554941B2/en
Publication of JPH03146663A publication Critical patent/JPH03146663A/en
Application granted granted Critical
Publication of JP2554941B2 publication Critical patent/JP2554941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the adhesive strength of a coating layer by providing ruggedness to the surface of a base material composed of WC-base sintered hard alloy by means of electrolytic etching and then coating the above surface with diamond by a vapor phase synthetic method. CONSTITUTION:A base material composed of WC-base sintered hard alloy is used as an anode and electrolytic etching is performed by a wet process, by which ruggedness is formed on the surface of the WC layer of the base material. Subsequently, the above surface is coated with diamond by a vapor phase synthesis method. By this method, a diamond-coated sintered bard alloy member in which diamond nucleation density is increased and adhesion area is enlarged and, further, superior adhesive strength is provided owing to anchor effect can be obtained. This member is useful for tools, etc.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、炭化タングステン基超硬合金基体とダイヤモ
ンド被覆層との密着力の優れたダイヤモンド被覆炭化タ
ングステン基超硬合金部材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a diamond-coated tungsten carbide-based cemented carbide member having excellent adhesion between a tungsten carbide-based cemented carbide substrate and a diamond coating layer.

[従来の技術] 近年、気相合成によるダイヤモンドの合成法が開発され
て以来、超硬合金基体表面をダイヤモンドで被覆したダ
イヤモンド被覆超硬合金工具等の開発が精力的に進めら
れている。しかしこの場合、超硬合金基体とダイヤモン
ド被覆層との密着力の向上が重要課題であるが、いまだ
十分満足できる密着力が得られていないのが現状である
。基体との密着力を向上させる方法として例えば特開昭
63−14869公報或は特開平1−201475公報
等の方法が提案されている。特開昭63−14869公
報に記載の方法は、超硬合金基体表面をダイヤモンド砥
石で研削することにより超硬合金表面のコバルト相を優
先的に研削して炭化タングステン相よりも凹とする方法
である。この方法によりダイヤモンドの核発生を促進さ
せ密着力を向上させることができる。しかし、ダイヤモ
ンド砥石で研削を行う方法は、超硬合金は極めて研削性
が悪いため時間と労力を要する作業である。
[Prior Art] Since the development of a diamond synthesis method by vapor phase synthesis in recent years, the development of diamond-coated cemented carbide tools, etc., in which the surface of a cemented carbide base is coated with diamond, has been actively pursued. However, in this case, an important issue is to improve the adhesion between the cemented carbide substrate and the diamond coating layer, but the current situation is that a sufficiently satisfactory adhesion has not yet been achieved. As a method for improving the adhesion to the substrate, methods such as those disclosed in Japanese Patent Application Laid-Open No. 63-14869 and Japanese Patent Application Laid-Open No. 1-201475 have been proposed. The method described in JP-A-63-14869 is a method in which the surface of a cemented carbide substrate is ground with a diamond grindstone to preferentially grind the cobalt phase on the surface of the cemented carbide to make it more concave than the tungsten carbide phase. be. This method can promote diamond nucleation and improve adhesion. However, grinding with a diamond grindstone requires time and effort because cemented carbide has extremely poor grindability.

特に三次元的に複雑な形状をしている切削工具等の超硬
合金基体の研削を行うことは非常に困難であり、超硬合
金基体表面に均一微細な傷を付けることは極めて困難で
ある。また特開平1−201475公報に記載の方法は
超硬合金基体表面のコバルト相を酸により選択的にエツ
チング除去することにより、ダイヤモンドの結晶核が発
生し難いコバルト相を選択的に除去して超硬合金基体表
面に凹凸を付ける方法である。この方法によりダイヤモ
ンドの核発生密度、接着表面積が増大し、密着力を向上
させることができる。しかし酸処理による方法では、コ
バルト相をエツチング除去することはできても、炭化タ
ングステン相表面をエツチングして微細な凹凸を付ける
ことは困難であり、強固な密着力を得ることはできない
。また長時間エツチングをし炭化タングステン相表面に
傷を付けようとするとコバルト相が必要以上にエツチン
グ除去され、超硬合金基体表面付近の結合相が不足とな
り、炭化タングステン相の結合力が低下し炭化タングス
テン粒子の脱落酸は超硬合金基体自体の強度の低下が生
じる等の問題点がある。
In particular, it is extremely difficult to grind cemented carbide substrates such as cutting tools that have a three-dimensionally complex shape, and it is extremely difficult to create uniform fine scratches on the surface of the cemented carbide substrate. . Furthermore, the method described in JP-A-1-201475 selectively etches and removes the cobalt phase on the surface of the cemented carbide substrate using acid, thereby selectively removing the cobalt phase in which diamond crystal nuclei are difficult to form. This is a method of creating irregularities on the surface of a hard metal substrate. This method increases the diamond nucleation density and adhesion surface area, making it possible to improve adhesion. However, with the acid treatment method, although the cobalt phase can be etched away, it is difficult to etch the surface of the tungsten carbide phase to form fine irregularities, and strong adhesion cannot be obtained. In addition, if you try to scratch the surface of the tungsten carbide phase by etching for a long time, the cobalt phase will be removed by etching more than necessary, resulting in a lack of binder phase near the surface of the cemented carbide base, which will reduce the bonding strength of the tungsten carbide phase and cause it to become carbonized. The falling acid from the tungsten particles poses problems such as a decrease in the strength of the cemented carbide base itself.

[発明が解決しようとする課題] 本発明は、前記課題を解決すべくなされたもので、その
目的は、実用的な密着力を有するダイヤモンド被覆炭化
タングステン基超硬合金部材を経済的に製造する方法を
提供することにある。
[Problems to be Solved by the Invention] The present invention has been made to solve the above-mentioned problems, and its purpose is to economically produce a diamond-coated tungsten carbide-based cemented carbide member having practical adhesive strength. The purpose is to provide a method.

[課題を解決するための手段] 一般に炭化タングステン基超硬合金基体表面においては
結合相よりも炭化タングステン相の面積占有率が高く、
従って炭化タングステン相表面での密着力を向上させる
ことが、ダイヤモンド被覆層と超硬合金基体との密着力
の向上に大きく寄与するという知見を得て、前記目的を
達成するため更に鋭意研究を進めたところ、炭化タング
ステン基超硬合金基体を陽極とし湿式で電解エツチング
を行うと、炭化タングステン相表面がエツチングされて
微細な凹凸が形成され、ダイヤモンドの核形成が促進さ
れ接着面積が増大するとともにアンカー効果により密着
力を大きく向上させることができるという知見を得て本
発明をなすに至った。
[Means for solving the problem] Generally, on the surface of a tungsten carbide-based cemented carbide substrate, the area occupation rate of the tungsten carbide phase is higher than that of the binder phase.
Therefore, we obtained the knowledge that improving the adhesion force on the surface of the tungsten carbide phase greatly contributes to improving the adhesion force between the diamond coating layer and the cemented carbide substrate, and we are conducting further research to achieve the above objective. However, when wet electrolytic etching is performed using a tungsten carbide-based cemented carbide substrate as an anode, the surface of the tungsten carbide phase is etched, forming fine irregularities, promoting diamond nucleation, increasing the bonding area, and forming an anchor. The present invention was made based on the knowledge that the adhesion force can be greatly improved by this effect.

このとき結合相であるコバルトやニッケル等はエツチン
グされに(いため、炭化タングステン相が脱落及び超硬
合金自体の強度低下を引き起こすことはない。
At this time, cobalt, nickel, etc., which are the binder phases, are not etched (therefore, the tungsten carbide phase does not fall off and the strength of the cemented carbide itself does not decrease).

電解エツチング処理に用いる溶液としては、例えば水酸
化ナトリウム、水酸化ナトリウム及び塩化ナトリウム、
水酸化ナトリウム及び燐酸ナトリウム或は水酸化カリウ
ム及びフェリシアン化カリウム等の水溶液中で超硬合金
基体を陽極とし、ステンレス或はグラファイトを陰極と
してQ、1〜10A/dm2の電流密度で電解エツチン
グする方法等が挙げられる。
Examples of solutions used in electrolytic etching include sodium hydroxide, sodium hydroxide, and sodium chloride.
A method of electrolytic etching in an aqueous solution of sodium hydroxide and sodium phosphate, potassium hydroxide and potassium ferricyanide, etc. using a cemented carbide substrate as an anode and stainless steel or graphite as a cathode at a current density of Q, 1 to 10 A/dm2, etc. can be mentioned.

この電解エツチング処理に先だって、超硬合金基体表面
をアセトン或はトリクレン等の有機溶剤により脱脂、或
はアルカリ或は酸水溶液中で超硬合金基体を陰極として
陰極脱脂を施しても構わない。
Prior to this electrolytic etching treatment, the surface of the cemented carbide substrate may be degreased with an organic solvent such as acetone or trichlene, or cathodic degreasing may be performed in an aqueous alkali or acid solution using the cemented carbide substrate as a cathode.

本発明では、ダイヤモンドの気相合成法として公知の物
理蒸着法(PVD)或は化学蒸着法(CVD)等の任意
の方法を適用することができる。
In the present invention, any known method such as physical vapor deposition (PVD) or chemical vapor deposition (CVD) can be applied as a diamond vapor phase synthesis method.

[作用コ 炭化タングステン基超硬合金基体を陽極とし湿式で電解
エツチングを施すと、超硬合金基体表面の大部分を占め
る炭化タングステン相表面に凹凸を形成することができ
るので、ダイヤモンドの核発生密度が増大し接着面積が
増大し、かつアンカー効果により密着力の優れたダイヤ
モンド被覆炭化タングステン基超硬合金を得ることがで
きる。しかもこのとき結合相はエツチングされないから
炭化タングステン相の脱落及び超硬合金自体の強度低下
をまねくことがない。しかも基体を陽極とした湿式の電
解エツチングにより凹凸を形成するから、経済的に大量
の超硬合金基体を処理することができる。
[Operation] When wet electrolytic etching is performed using a tungsten carbide-based cemented carbide substrate as an anode, it is possible to form irregularities on the surface of the tungsten carbide phase that occupies most of the surface of the cemented carbide substrate, thereby reducing the diamond nucleation density. It is possible to obtain a diamond-coated tungsten carbide-based cemented carbide which has an increased adhesion area and excellent adhesion due to the anchor effect. Moreover, since the binder phase is not etched at this time, the tungsten carbide phase does not fall off and the strength of the cemented carbide itself does not decrease. Furthermore, since the irregularities are formed by wet electrolytic etching using the substrate as an anode, a large amount of cemented carbide substrates can be processed economically.

[実施例] 以下に、本発明を実施例により説明する。[Example] The present invention will be explained below using examples.

実施例1 まず粒径1〜2μmそして平均粒径1.5μmの炭化タ
ングステン粒子にコバルト含有率が4及び7重量%並び
にニッケル含有率が7重量%となるようにコバルト或は
ニッケル粉を配合した後、焼結して形状が25mmX 
8mmX 4mmの3種類の炭化タングステン基超硬合
金基体を用意した。
Example 1 First, cobalt or nickel powder was blended with tungsten carbide particles having a particle size of 1 to 2 μm and an average particle size of 1.5 μm so that the cobalt content was 4 and 7% by weight and the nickel content was 7% by weight. After that, it is sintered to a shape of 25mm
Three types of tungsten carbide-based cemented carbide substrates measuring 8 mm x 4 mm were prepared.

そして25 mmX 8 mmからなる面を研磨した後
、粒径1μmのダイヤモンドペーストを用いてラッピン
グを施した。
After polishing the surface of 25 mm x 8 mm, lapping was performed using diamond paste with a particle size of 1 μm.

続いて、以下の手順に従って超硬合金基体表面を処理し
た。
Subsequently, the surface of the cemented carbide substrate was treated according to the following procedure.

(1)  アセトン中で洗浄。(1) Wash in acetone.

(2)2重量%の水酸化ナトリウム及び2重量%の燐酸
ナトリウムからなる水溶液中で超硬合金基体を陰極とし
、5US304の板を陽極として、70℃において電流
密度3 A’/ dm2で10秒間陰極脱脂。
(2) In an aqueous solution consisting of 2% by weight of sodium hydroxide and 2% by weight of sodium phosphate, the cemented carbide substrate was used as a cathode and a 5US304 plate was used as an anode, at 70°C for 10 seconds at a current density of 3 A'/dm2. Cathode degreasing.

(3)2重量%の水酸化ナトリウム及び2重量%の燐酸
ナトリウムからなる水溶液中で超硬合金基体を陽極とし
、SUS 304の板を陰極として、70℃において電
流密度3A / d m2で10秒間電解エツチング。
(3) In an aqueous solution consisting of 2% by weight of sodium hydroxide and 2% by weight of sodium phosphate, the cemented carbide substrate was used as an anode and a SUS 304 plate was used as a cathode at 70°C for 10 seconds at a current density of 3A/d m2. Electrolytic etching.

(4)水洗。(4) Washing with water.

以上のごとく処理した超硬合金基体を、走査型電子顕微
鏡(日本電子■製JSM−840A)により観察したと
ころ、コバルト相が炭化タングステン相よりも凹となり
、炭化タングステン相は化学エツチングを受は表面に微
細な凹凸が形成されていた。その後、これらの超硬合金
基体表面にマイクロ波プラズマCVD法によりダイヤモ
ンド被覆層を形成した。
When the cemented carbide substrate treated as described above was observed using a scanning electron microscope (JSM-840A manufactured by JEOL Ltd.), the cobalt phase was more concave than the tungsten carbide phase, and the tungsten carbide phase was not easily etched on the surface due to chemical etching. Fine irregularities were formed on the surface. Thereafter, a diamond coating layer was formed on the surface of these cemented carbide substrates by microwave plasma CVD.

マイクロ波プラズマCVD条件として、まずマイクロ波
(2,45GHz)電力900W、水素ガス供給量99
0SCCM、メタンガス供給量53CCM。
Microwave plasma CVD conditions include microwave (2.45 GHz) power of 900 W, hydrogen gas supply amount of 99.
0SCCM, methane gas supply amount 53CCM.

反応圧力40TORRそして基体温度750℃で2時間
CVD処理した後、メタンガス供給量を1103CCに
変更して更に4時間CVD処理を施した。
After CVD treatment was performed for 2 hours at a reaction pressure of 40 TORR and a substrate temperature of 750° C., the methane gas supply amount was changed to 1103 CC and CVD treatment was performed for an additional 4 hours.

その結果、全ての超硬合金基体表面に結晶の形の明瞭な
立方晶ダイヤモンドからなる膜厚が4μmのダイヤモン
ドの被覆層が形成されていた。
As a result, a diamond coating layer with a thickness of 4 μm consisting of cubic diamond with a clear crystal shape was formed on the surface of all the cemented carbide substrates.

このようにして得られたダイヤモンド被覆超硬合金部材
の超硬合金基体とダイヤモンド被覆層との密着強度を、
スクラッチ試験法及びテープ剥離試験法により評価した
。スクラッチ試験法は先端が半径0.2mmのダイヤモ
ンドでできた圧子に荷重をかけダイヤモンド被覆超硬合
金部材表面を引つかき、ダイヤモンド被覆層が剥離した
ときの荷重を臨界強度として密着力の評価を行い、そし
てテープ剥離試験法はセロハンテープにチバン■製)を
用いて、テープをダイヤモンド被覆超硬合金部材表面に
はりつけ、このテープを剥すことにより剥離したダイヤ
モンド被覆層の面積の割合で密着力の評価を行った。
The adhesion strength between the cemented carbide base and the diamond coating layer of the diamond-coated cemented carbide member thus obtained is as follows:
Evaluation was performed using a scratch test method and a tape peel test method. In the scratch test method, a load is applied to an indenter made of diamond with a radius of 0.2 mm at the tip, and the surface of the diamond-coated cemented carbide member is scratched.The adhesion force is evaluated using the load at which the diamond coating layer peels off as the critical strength. The tape peeling test method uses cellophane tape (manufactured by Chiban ■) to attach the tape to the surface of the diamond-coated cemented carbide member, and when the tape is peeled off, the adhesion strength is measured as the percentage of the area of the diamond coating layer that is peeled off. We conducted an evaluation.

その結果、スクラッチ試験においては、コバルト含有率
4重量%の超硬合金基体表面にダイヤモンドを被覆した
被覆部材では3.0kg、コバルト含有率7重量%の被
覆部材は3.5 kg 、ニッケル含有率7重量%の被
覆部材は3.0kgの強度であった。そしてテープ剥離
試験では全ての超硬合金部材が0%で全く剥離せず極め
て高い密着力が得られた。
As a result, in the scratch test, a coated member with diamond coating on the surface of a cemented carbide base with a cobalt content of 4% by weight weighed 3.0 kg, a coated member with a cobalt content of 7% by weight weighed 3.5 kg, and a coated member with a nickel content of 7% by weight. The 7% by weight coated member had a strength of 3.0 kg. In the tape peeling test, all the cemented carbide members were 0%, with no peeling at all, and extremely high adhesion was obtained.

比較例1 実施例1で用いた炭化タングステン基超硬合金基体と同
様にして焼結した炭化タングステン基超硬合金基体を用
意し、粒径1μmのダイヤモンドペーストを用いてラッ
ピングした。これらの超硬合金基体をアセトン中で洗浄
した後、表面に実施例1と同様にしてマイクロ波プラズ
マCVD法により膜厚が4μmのダイヤモンド被覆層を
形成した。
Comparative Example 1 A tungsten carbide-based cemented carbide substrate sintered in the same manner as the tungsten carbide-based cemented carbide substrate used in Example 1 was prepared and lapped using a diamond paste with a particle size of 1 μm. After cleaning these cemented carbide substrates in acetone, a diamond coating layer having a thickness of 4 μm was formed on the surface by the microwave plasma CVD method in the same manner as in Example 1.

超硬合金基体とダイヤモンド被覆層との密着力を評価し
た結果、コバルト含有率4重量%の被覆部材においては
、チェンバーから取り出した時点でダイヤモンド被覆層
が剥離していた。コバルト含有率7重量%の被覆部材は
スクラッチ試験では0.1kg、テープ剥離試験では1
00%剥離した。
As a result of evaluating the adhesion between the cemented carbide substrate and the diamond coating layer, it was found that in the coated member with a cobalt content of 4% by weight, the diamond coating layer was peeled off when taken out from the chamber. A coated member with a cobalt content of 7% by weight weighed 0.1 kg in the scratch test and 1 kg in the tape peel test.
00% peeled off.

ニッケル含有率7重量%の被覆部材はスクラッチ試験で
は0.1kg、テープ剥離試験では100%剥離した。
A coated member with a nickel content of 7% by weight was peeled off by 0.1 kg in the scratch test and 100% in the tape peel test.

比較例2 実施例1で用いた炭化タングステン基超硬合金基体と同
様にして焼結した炭化タングステン基超硬合金基体を用
意し、粒径1μmのダイヤモンドペーストを用いてラッ
ピングした。これらの超硬合金基体を王水中に30分間
浸漬して表面をエツチング処理し、水洗後乾燥させた。
Comparative Example 2 A tungsten carbide-based cemented carbide substrate sintered in the same manner as the tungsten carbide-based cemented carbide substrate used in Example 1 was prepared, and lapped with diamond paste having a particle size of 1 μm. The surfaces of these cemented carbide substrates were etched by immersing them in aqua regia for 30 minutes, washed with water, and then dried.

これらの超硬合金基体の表面及び断面を走査型電子顕微
鏡で観察したところ、硬質分散相の炭化タングステン相
表面には、わずかながら凹凸の傷が付いていたが、結合
相であるコバルト或はニッケル相が超硬合金基体表面か
ら30〜40μmまでエツチングされており、基体の角
部では炭化タングステン相が脱落していた。
When the surface and cross-section of these cemented carbide substrates were observed using a scanning electron microscope, the surface of the hard dispersed tungsten carbide phase was found to have slight scratches, but the cobalt or nickel bonding phase was found to be slightly uneven. The phase was etched to a depth of 30 to 40 μm from the surface of the cemented carbide substrate, and the tungsten carbide phase had fallen off at the corners of the substrate.

これらの超硬合金基体表面に、実施例1と同様にしてマ
イクロ波プラズマCVD法により膜厚が4μmのダイヤ
モンド被覆層を形成した。
A diamond coating layer having a thickness of 4 μm was formed on the surface of these cemented carbide substrates by the microwave plasma CVD method in the same manner as in Example 1.

超硬合金基体とダイヤモンド被覆層との密着力を評価し
た結果、コバルト含有率4重量%の被覆部材においては
、スクラッチ試験では1.0kgを示し、そしてテープ
剥離試験では80%剥離した。
As a result of evaluating the adhesion between the cemented carbide substrate and the diamond coating layer, the coated member with a cobalt content of 4% by weight showed 1.0 kg in the scratch test and 80% peeling in the tape peeling test.

コバルト含有率7重量%の被覆部材はスクラッチ試験で
は0 、5 kg 、テープ剥離試験では90%剥離し
た。ニッケル含有率7重量%の被覆部材はスクラッチ試
験で0.5kg、テープ剥離試験では100%剥離した
A coated member with a cobalt content of 7% by weight was peeled off by 0.5 kg in a scratch test and by 90% in a tape peel test. A coated member with a nickel content of 7% by weight was peeled off by 0.5 kg in a scratch test and 100% in a tape peel test.

比較例3 実施例1で用いた炭化タングステン基超硬合金基体と同
様にして焼結した炭化タングステン基超硬合金基体を用
意し、粒径1μmのダイヤモンドペーストを用いてラッ
ピングした。これらの超硬合金基体を200メツシユの
粒度のダイヤモンド砥石にて研削加工した後、実施例1
と同様にしてマイクロ波プラズマCVD法により膜厚が
4μmのダイヤモンド被覆層を形成した。
Comparative Example 3 A tungsten carbide-based cemented carbide substrate sintered in the same manner as the tungsten carbide-based cemented carbide substrate used in Example 1 was prepared and lapped using a diamond paste with a particle size of 1 μm. After grinding these cemented carbide substrates using a diamond grindstone with a grain size of 200 mesh, Example 1
A diamond coating layer having a thickness of 4 μm was formed by the microwave plasma CVD method in the same manner as above.

超硬合金基体とダイヤモンド被覆層との密着力を評価し
た結果、コバルト含有率4重量%の被覆部材においては
、スクラッチ試験では0.5kgを示し、そしてテープ
剥離試験では100%剥離した。コバルト含有率7重量
%の被覆部材においてはスクラッチ試験では1.Okg
、テープ剥離試験では90%剥離した。またニッケル含
有率7重量%の被覆部材においては、スクラッチ試験で
は1.0kgを示し、テープ剥離試験では80%剥離し
た。
As a result of evaluating the adhesion between the cemented carbide substrate and the diamond coating layer, the coated member with a cobalt content of 4% by weight showed 0.5 kg in the scratch test and 100% peeling in the tape peel test. In a scratch test, a coated member with a cobalt content of 7% by weight was 1. Okg
In the tape peel test, 90% peeling was achieved. Further, in the case of a coated member having a nickel content of 7% by weight, the scratch test showed 1.0 kg, and the tape peeling test showed 80% peeling.

以上の実施例及び比較例から、炭化タングステン基超硬
合金基体表面の結合相であるコバルト相或はニッケル相
を除去することにより超硬合金基体とダイヤモンド被覆
層との密着力を改良することができるが、硬質分散相で
ある炭化タングステン相をエツチングし表面に凹凸を付
けることにより更に改良できることが判る。
From the above examples and comparative examples, it is possible to improve the adhesion between the cemented carbide substrate and the diamond coating layer by removing the cobalt phase or nickel phase, which is the binder phase on the surface of the tungsten carbide-based cemented carbide substrate. However, it is clear that further improvements can be made by etching the tungsten carbide phase, which is a hard dispersed phase, and making the surface rough.

[発明の効果コ 以上説明したように本発明によれば、複雑な形状をした
炭化タングステン基超硬合金基体表面にも均一で密着力
の優れたダイヤモンド被覆層を形成することができ、工
具等として有用なダイヤモンド被覆超硬合金部材を安価
にまた容易に量産することができる。即ち本発明の方法
は、ダイヤモンド被覆超硬合金部材を製作するのに適す
る産業上有用な製造方法である。
[Effects of the Invention] As explained above, according to the present invention, it is possible to form a diamond coating layer that is uniform and has excellent adhesion even on the surface of a tungsten carbide-based cemented carbide substrate having a complicated shape. Diamond-coated cemented carbide members useful as diamond-coated cemented carbide members can be mass-produced at low cost and easily. That is, the method of the present invention is an industrially useful manufacturing method suitable for manufacturing diamond-coated cemented carbide members.

Claims (1)

【特許請求の範囲】[Claims]  炭化タングステン基超硬合金基体表面に気相合成法に
よりダイヤモンドを被覆するに際して、予め超硬合金基
体を陽極とし湿式で電解エッチングを行い、硬質分散相
である炭化タングステン相表面に凹凸を付けた後、気相
合成法によりダイヤモンドを被覆することを特徴とする
ダイヤモンド被覆超硬合金部材の製造方法。
When coating the surface of a tungsten carbide-based cemented carbide substrate with diamond by vapor phase synthesis, wet electrolytic etching is performed in advance using the cemented carbide substrate as an anode to create irregularities on the surface of the tungsten carbide phase, which is a hard dispersed phase. , a method for manufacturing a diamond-coated cemented carbide member, characterized in that diamond is coated by a vapor phase synthesis method.
JP1283099A 1989-11-01 1989-11-01 Method for producing diamond-coated cemented carbide member Expired - Lifetime JP2554941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1283099A JP2554941B2 (en) 1989-11-01 1989-11-01 Method for producing diamond-coated cemented carbide member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1283099A JP2554941B2 (en) 1989-11-01 1989-11-01 Method for producing diamond-coated cemented carbide member

Publications (2)

Publication Number Publication Date
JPH03146663A true JPH03146663A (en) 1991-06-21
JP2554941B2 JP2554941B2 (en) 1996-11-20

Family

ID=17661205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1283099A Expired - Lifetime JP2554941B2 (en) 1989-11-01 1989-11-01 Method for producing diamond-coated cemented carbide member

Country Status (1)

Country Link
JP (1) JP2554941B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013852A1 (en) * 1992-12-08 1994-06-23 Osaka Diamond Industrial Co., Ltd. Superhard film-coated material and method of producing the same
US6110240A (en) * 1996-05-31 2000-08-29 Ngk Spark Plug Co., Ltd. Superhard article with diamond coat and method of manufacturing same
US6387502B1 (en) 1998-09-04 2002-05-14 Ngk Spark Plug Co., Ltd. Diamond-coated hard metal member
AT15415U1 (en) * 2016-07-18 2017-08-15 Ceratizit Austria Gmbh Method for producing a cemented carbide product and cemented carbide product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028927A (en) 2003-07-09 2005-02-03 Nifco Inc Box device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199870A (en) * 1987-02-16 1988-08-18 Showa Denko Kk Diamond coated sintered hard tool material
JPH01197391A (en) * 1988-02-01 1989-08-09 Idemitsu Petrochem Co Ltd Method for synthesizing diamond
JPH02217398A (en) * 1989-02-17 1990-08-30 Idemitsu Petrochem Co Ltd Covering method by thin film of diamonds
JPH03107460A (en) * 1989-09-22 1991-05-07 Showa Denko Kk Method for coating with diamond film by vapor phase

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199870A (en) * 1987-02-16 1988-08-18 Showa Denko Kk Diamond coated sintered hard tool material
JPH01197391A (en) * 1988-02-01 1989-08-09 Idemitsu Petrochem Co Ltd Method for synthesizing diamond
JPH02217398A (en) * 1989-02-17 1990-08-30 Idemitsu Petrochem Co Ltd Covering method by thin film of diamonds
JPH03107460A (en) * 1989-09-22 1991-05-07 Showa Denko Kk Method for coating with diamond film by vapor phase

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013852A1 (en) * 1992-12-08 1994-06-23 Osaka Diamond Industrial Co., Ltd. Superhard film-coated material and method of producing the same
US5955212A (en) * 1992-12-08 1999-09-21 Osaka Diamond Industrial Co., Ltd. Superhard film-coated member and method of manufacturing the same
US6110240A (en) * 1996-05-31 2000-08-29 Ngk Spark Plug Co., Ltd. Superhard article with diamond coat and method of manufacturing same
US6387502B1 (en) 1998-09-04 2002-05-14 Ngk Spark Plug Co., Ltd. Diamond-coated hard metal member
AT15415U1 (en) * 2016-07-18 2017-08-15 Ceratizit Austria Gmbh Method for producing a cemented carbide product and cemented carbide product

Also Published As

Publication number Publication date
JP2554941B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
EP0445305B1 (en) Vapor deposited diamond synthesizing method on electrochemically treated substrate
RU2111846C1 (en) Diamond-plated tool and method of its manufacture
US5713133A (en) Methods of preparing cemented metal carbide substrates for deposition of adherent diamond coatings and products made therefrom
KR19990036281A (en) Processing method of cemented carbide substrate for accommodating CD diamond film
WO2018113088A1 (en) Workpiece with titanium diboride-diamond composite coating and preparation method therefor
JP3299139B2 (en) Method for producing a diamond-coated composite
KR100193546B1 (en) Ultra hard membrane coating member and manufacturing method thereof
JPH0892742A (en) Matrix composite and method of performing surface preparation thereof
JP2008155362A (en) Electrodeposited diamond tool and manufacturing method for the same
JPH03146663A (en) Production of diamond-coated sintered hard alloy member
JPS6353269A (en) Cutting tool tip made of diamond coated tungsten carbide-base sintered hard alloy
JPS63199870A (en) Diamond coated sintered hard tool material
JPH0892741A (en) Surface treatment of sintered hard alloy for deposition with diamond
JPS63100182A (en) Cutting tool tip made of diamond-coated tungsten carbide-based sintered hard alloy
US20110223332A1 (en) Method for depositing cubic boron nitride thin film
JP2001293603A (en) Cutting tool coated with vapor phase synthetic diamond
JPH04157157A (en) Production of artificial diamond coated material
JP3353239B2 (en) Method for producing diamond-coated member
JPS6267174A (en) Production of hard carbon film coated sintered hard alloy
JP2554941C (en)
JP2794601B2 (en) Surface treatment of cemented carbide substrate for diamond deposition
JP2003247006A (en) Super hard film coated member and its manufacturing method
JP3260157B2 (en) Method for producing diamond-coated member
JP2844934B2 (en) Manufacturing method of gas-phase synthetic diamond coated cutting tool
JPH03146664A (en) Production of diamond-coated tungsten carbide-base sintered hard alloy member

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 14