JP2554941B2 - Method for producing diamond-coated cemented carbide member - Google Patents

Method for producing diamond-coated cemented carbide member

Info

Publication number
JP2554941B2
JP2554941B2 JP1283099A JP28309989A JP2554941B2 JP 2554941 B2 JP2554941 B2 JP 2554941B2 JP 1283099 A JP1283099 A JP 1283099A JP 28309989 A JP28309989 A JP 28309989A JP 2554941 B2 JP2554941 B2 JP 2554941B2
Authority
JP
Japan
Prior art keywords
cemented carbide
diamond
phase
carbide substrate
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1283099A
Other languages
Japanese (ja)
Other versions
JPH03146663A (en
Inventor
博幸 末次
通文 丹花
嘉一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP1283099A priority Critical patent/JP2554941B2/en
Publication of JPH03146663A publication Critical patent/JPH03146663A/en
Application granted granted Critical
Publication of JP2554941B2 publication Critical patent/JP2554941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭化タングステン基超硬合金基体とダイヤ
モンド被覆層との密着力の優れたダイヤモンド被覆炭化
タングステン基超硬合金部材の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a diamond-coated tungsten carbide-based cemented carbide member having excellent adhesion between a tungsten carbide-based cemented carbide substrate and a diamond coating layer.

[従来の技術] 近年、気相合成によるダイヤモンドの合成法が開発さ
れて以来、超硬合金基体表面をダイヤモンドで被覆した
ダイヤモンド被覆超硬合金工具等の開発が精力的に進め
られている。しかしこの場合、超硬合金基体表面とダイ
ヤモンド被覆層とを密着力の向上が重要課題であるが、
いまだ十分満足できる密着力が得られていないのが現状
である。基体との密着力を向上させる方法として例えば
特開昭63−14869公報或は特開平1−201475公報等の方
法が提案されている。特開昭63−14869公報に記載の方
法は、超硬合金基体表面をダイヤモンド砥石で研削する
ことにより超硬合金表面のコバルト相を優先的に研削し
て炭化タングステン相よりも凹とする方法である。この
方法によりダイヤモンドの核発生を促進させ密着力を向
上させることができる。しかし、ダイヤモンド砥石で研
削を行う方法は、超硬合金は極めて研削性が悪いため時
間と労力を要する作業である。特に三次元的に複雑な形
状をしている切削工具等の超硬合金基体の研削を行うこ
とは非常に困難であり、超硬合金基体表面に均一微細な
傷を付けることは極めて困難である。また特開平1−20
1475公報に記載の方法は超硬合金基体表面のコバルト相
を酸により選択的にエッチング除去することにより、ダ
イヤモンドの結晶核が発生し難いコバルト相を選択的に
除去して超硬合金基体表面に凹凸を付ける方法である。
この方法によりダイヤモンドの核発生密度、接着表面積
が増大し、密着力を向上させることができる。しかし酸
処理による方法では、コバルト相をエッチング除去する
ことはできても、炭化タングステン相表面をエッチング
して微細な凹凸を付けることは困難であり、強固な密着
力を得ることはできない。また長時間エッチングをし炭
化タングステン相表面に傷を付けようとするとコバルト
相が必要以上にエッチング除去され、超硬合金基体表面
付近の結合相が不足となり、炭化タングステン相の結合
力が低下し炭化タングステン粒子の脱落或は超硬合金基
体自体の強度の低下が生じる等の問題点がある。
[Prior Art] In recent years, since a method for synthesizing diamond by vapor phase synthesis has been developed, development of a diamond-coated cemented carbide tool in which the surface of a cemented carbide substrate is coated with diamond has been vigorously pursued. However, in this case, improving the adhesion between the cemented carbide substrate surface and the diamond coating layer is an important issue,
The current situation is that we have not yet obtained satisfactory adhesion. As a method for improving the adhesion to the substrate, for example, the methods disclosed in JP-A-63-14869 or JP-A-1-201475 have been proposed. The method described in JP-A-63-14869 is a method in which the cobalt phase on the cemented carbide surface is preferentially ground by grinding the cemented carbide substrate surface with a diamond grindstone to make it concave than the tungsten carbide phase. is there. By this method, the nucleation of diamond can be promoted and the adhesion can be improved. However, the method of grinding with a diamond grindstone requires time and labor because cemented carbide has extremely poor grindability. In particular, it is very difficult to grind a cemented carbide substrate such as a cutting tool having a three-dimensionally complicated shape, and it is extremely difficult to make uniform fine scratches on the surface of the cemented carbide substrate. . In addition, JP-A 1-20
The method described in the 1475 publication selectively removes the cobalt phase on the surface of the cemented carbide substrate by etching with an acid to selectively remove the cobalt phase on which the diamond crystal nuclei are less likely to occur to form a cemented carbide substrate surface. It is a method of making unevenness.
By this method, the nucleation density of diamond and the adhesion surface area are increased, and the adhesion can be improved. However, with the method using acid treatment, although the cobalt phase can be removed by etching, it is difficult to etch the surface of the tungsten carbide phase to form fine irregularities, and a strong adhesion cannot be obtained. Also, if the surface of the tungsten carbide phase is damaged by etching for a long time, the cobalt phase is etched and removed more than necessary, the binder phase near the surface of the cemented carbide substrate becomes insufficient, and the bonding strength of the tungsten carbide phase decreases and There is a problem in that the tungsten particles fall off or the strength of the cemented carbide substrate itself decreases.

[発明が解決しようとする課題] 本発明は、前記課題を解決すべくなされたもので、そ
の目的は、実用的な密着力を有するダイヤモンド被覆炭
化タングステン基超硬合金部材を経済的に製造する方法
を提供することにある。
[Problems to be Solved by the Invention] The present invention has been made to solve the above problems, and an object thereof is to economically produce a diamond-coated tungsten carbide-based cemented carbide member having practical adhesion. To provide a method.

[課題を解決するための手段] 一般に炭化タングステン基超硬合金基体表面において
は結合相よりも炭化タングステン相の面積占有率が高
く、従って炭化タングステン相表面での密着力を向上さ
せることが、ダイヤモンド被覆層と超硬合金基体との密
着力の向上に大きく寄与するという知見を得て、前記目
的を達成するため更に鋭意研究を進めたところ、炭化タ
ングステン基超硬合金基体を陽極とし湿式で電解エッチ
ングを行うと、炭化タングステン相表面がエッチングさ
れて微細な凹凸が形成され、ダイヤモンドの核形成が促
進され接着面積が増大するとともにアンカー効果により
密着力を大きく向上させることができるという知見を得
て本発明をなすに至った。このとき結合相であるコバル
トやニッケル等はエッチングされにくいため、炭化タン
グステン相が脱落及び超硬合金自体の強度低下を引き起
こすことはない。
[Means for Solving the Problems] Generally, the area occupancy of the tungsten carbide phase is higher than that of the binder phase on the surface of the tungsten carbide based cemented carbide substrate. We obtained the knowledge that it greatly contributes to the improvement of the adhesion between the coating layer and the cemented carbide substrate, and conducted further diligent research to achieve the above-mentioned object. When the etching is performed, the tungsten carbide phase surface is etched to form fine irregularities, the nucleation of diamond is promoted, the adhesion area is increased, and the finding that the adhesion can be greatly improved by the anchor effect is obtained. The present invention has been completed. At this time, since the binding phase, such as cobalt and nickel, is hard to be etched, the tungsten carbide phase does not drop out and the strength of the cemented carbide itself does not decrease.

電解エッチング処理に用いる溶液としては、例えば水
酸化ナトリウム、水酸化ナトリウム及び塩化ナトリウ
ム、水酸化ナトリウム及び燐酸ナトリウム或は水酸化カ
リウム及びフェリシアン化カリウム等の水溶液中で超硬
合金基体を陽極とし、ステンレス或はグラファイトを陰
極として0.1〜10A/dm2の電流密度で電解エッチングする
方法等が挙げられる。
The solution used for electrolytic etching treatment is, for example, an aqueous solution of sodium hydroxide, sodium hydroxide and sodium chloride, sodium hydroxide and sodium phosphate, or potassium hydroxide and potassium ferricyanide. Examples include a method in which graphite is used as a cathode and electrolytic etching is performed at a current density of 0.1 to 10 A / dm 2 .

この電解エッチング処理に先だって、超硬合金基体表
面をアセトン或はトリクレン等の有機溶剤により脱脂、
或はアルカリ或は酸水溶液中で超硬合金基体を陰極とし
て陰極脱脂を施しても構わない。
Prior to this electrolytic etching treatment, the surface of the cemented carbide substrate is degreased with an organic solvent such as acetone or trichlene,
Alternatively, cathodic degreasing may be performed using a cemented carbide substrate as a cathode in an aqueous alkali or acid solution.

本発明では、ダイヤモンドの気相合成法として公知の
物理蒸着法(PVD)或は化学蒸着法(CVD)等の任意の方
法を適用することができる。
In the present invention, any method such as physical vapor deposition (PVD) or chemical vapor deposition (CVD) known as a vapor phase synthesis method of diamond can be applied.

[作用] 炭化タングステン基超硬合金基体を陽極とし湿式で電
解エッチングを施すと、超硬合金基体表面の大部分を占
める炭化タングステン相表面に凹凸を形成することがで
きるので、ダイヤモンドの核発生密度が増大し接着面積
が増大し、かつアンカー効果により密着力の優れたダイ
ヤモンド被覆炭化タングステン基超硬合金を得ることが
できる。しかもこのとき結合相はエッチングされないか
ら炭化タングステン相の脱落及び超硬合金自体の強度低
下をまねくことがない。しかも基体を陽極とした湿式の
電解エッチングにより凹凸を形成するから、経済的に大
量の超硬合金基体を処理することができる。
[Function] When the tungsten carbide-based cemented carbide substrate is used as an anode and subjected to wet electrolytic etching, irregularities can be formed on the surface of the tungsten carbide phase that occupies most of the surface of the cemented carbide substrate. It is possible to obtain a diamond-coated tungsten carbide-based cemented carbide having an increased adhesiveness and an increased adhesion area and an excellent adhesion due to the anchor effect. Moreover, at this time, since the binder phase is not etched, the tungsten carbide phase does not drop out and the strength of the cemented carbide itself does not decrease. Moreover, since unevenness is formed by wet electrolytic etching using the substrate as an anode, a large amount of cemented carbide substrate can be economically processed.

[実施例] 以下に、本発明を実施例により説明する。[Examples] Hereinafter, the present invention will be described with reference to Examples.

実施例1 まず粒径1〜2μmそして平均粒径1.5μmの炭化タ
ングステン粒子にコバルト含有率が4及び7重量%並び
にニッケル含有率が7重量%となるようにコバルト或は
ニッケル粉を配合した後、焼結して形状が25mm×8mm×4
mmの3種類の炭化タングステン基超硬合金基体を用意し
た。
Example 1 First, tungsten carbide particles having a particle size of 1 to 2 μm and an average particle size of 1.5 μm were mixed with cobalt or nickel powder so that the cobalt content was 4 and 7% by weight and the nickel content was 7% by weight. , Sintered and the shape is 25mm × 8mm × 4
Three types of tungsten carbide based cemented carbide substrates of mm were prepared.

そして25mm×8mmからなる面を研磨した後、粒径1μ
mのダイヤモンドペーストを用いてラッピングを施し
た。
And after polishing the surface consisting of 25mm x 8mm, the grain size is 1μ
Lapping was performed using m diamond paste.

続いて、以下の手順に従って超硬合金基体表面を処理
した。
Subsequently, the surface of the cemented carbide substrate was treated according to the following procedure.

(1) アセトン中で洗浄。(1) Wash in acetone.

(2) 2重量%の水酸化ナトリウム及び2重量%の燐
酸ナトリウムからなる水溶液中で超硬合金基体を陰極と
し、SUS304の板を陽極として、70℃において電流密度3A
/dm2で10秒間陰極脱脂。
(2) Cemented carbide substrate as cathode, SUS304 plate as anode in aqueous solution consisting of 2 wt% sodium hydroxide and 2 wt% sodium phosphate, current density 3A at 70 ℃
Cathode degreasing with / dm 2 for 10 seconds.

(3) 2重量%の水酸化ナトリウム及び2重量%の燐
酸ナトリウムからなる水溶液中で超硬合金基体を陰極と
し、SUS304の板を陰極として、70℃において電流密度3A
/dm2で10秒間電解エッチング。
(3) Current density 3A at 70 ° C at 70 ° C with a cemented carbide substrate as the cathode and a SUS304 plate as the cathode in an aqueous solution consisting of 2% by weight sodium hydroxide and 2% by weight sodium phosphate.
Electrolytic etching with / dm 2 for 10 seconds.

(4) 水洗。(4) Washing with water.

以上のごとく処理した超硬合金基体を、走査型電子顕
微鏡(日本電子(株)製JSM−840A)により観察したと
ころ、コバルト相が炭化タングステン相よりも凹とな
り、炭化タングステン相は化学エッチングを受け表面に
微細な凹凸が形成されていた。その後、これらの超硬合
金基体表面にマイクロ波プラズマCVD法によりダイヤモ
ンド被覆層を形成した。
When the cemented carbide substrate treated as described above was observed with a scanning electron microscope (JSM-840A manufactured by JEOL Ltd.), the cobalt phase became concave than the tungsten carbide phase, and the tungsten carbide phase was chemically etched. Fine irregularities were formed on the surface. Then, a diamond coating layer was formed on the surface of these cemented carbide substrates by the microwave plasma CVD method.

マイクロ波プラズマCVD条件として、まずマイクロ波
(2.45GHz)電力900W、水素ガス供給量990SCCM、メタン
ガス供給量5SCCM、反応圧力40TORRそして基体温度750℃
で2時間CVD処理した後、メタンガス供給量を10SCCMに
変更して更に4時間CVD処理を施した。
As microwave plasma CVD conditions, microwave (2.45 GHz) power 900 W, hydrogen gas supply amount 990 SCCM, methane gas supply amount 5 SCCM, reaction pressure 40 TORR and substrate temperature 750 ° C.
After the CVD treatment for 2 hours, the supply amount of methane gas was changed to 10 SCCM and the CVD treatment was further performed for 4 hours.

その結果、全ての超硬合金基体表面に結晶の形の明瞭
な立方晶ダイヤモンドからなる膜厚が4μmのダイヤモ
ンドの被覆層が形成されていた。
As a result, a diamond coating layer having a film thickness of 4 μm and formed of cubic crystal diamond having a clear crystal shape was formed on the surfaces of all the cemented carbide substrates.

このようにして得られたダイヤモンド被覆超硬合金部
材の超硬合金基体とダイヤモンド被覆層との密着強度
を、スクラッチ試験法及びテープ剥離試験法により評価
した。スクラッチ試験法は先端が半径0.2mmのダイヤモ
ンドでできた圧子に荷重をかけダイヤモンド被覆超硬合
金部材表面を引っかき、ダイヤモンド被覆層が剥離した
ときの荷重を臨界強度として密着力の評価を行い、そし
てテープ剥離試験法はセロハンテープ(ニチバン(株)
製)を用いて、テープをダイヤモンド被覆超硬合金部材
表面にはりつけ、このテープを剥すことにより剥離した
ダイヤモンド被覆層の面積の割合で密着力の評価を行っ
た。
The adhesion strength between the cemented carbide substrate and the diamond coating layer of the diamond-coated cemented carbide member thus obtained was evaluated by the scratch test method and the tape peeling test method. The scratch test method applies a load to an indenter made of diamond with a radius of 0.2 mm to scratch the surface of the diamond-coated cemented carbide member, and evaluates the adhesion force with the load when the diamond coating layer peels off as the critical strength, and Tape peeling test method is cellophane tape (Nichiban Co., Ltd.)
Tape) was attached to the surface of the diamond-coated cemented carbide member by using a tape, and the tape was peeled off to evaluate the adhesive strength by the ratio of the area of the diamond-coated layer peeled off.

その結果、スクラッチ試験においては、コバルト含有
率4重量%の超硬合金基体表面にダイヤモンドを被覆し
た被覆部材では3.0kg、コバルト含有率7重量%の被覆
部材は3.5kg、ニッケル含有率7重量%の被覆部材は3.0
kgの強度であった。そしてテープ剥離試験では全ての超
硬合金部材が0%で全く剥離せず極めて高い密着力が得
られた。
As a result, in the scratch test, 3.0 kg was obtained for the coated member in which the surface of the cemented carbide substrate having a cobalt content of 4 wt% was coated with diamond, 3.5 kg for the coated member having a cobalt content of 7 wt%, and 7 wt% for the nickel content. The covering material is 3.0
The strength was kg. In the tape peeling test, all the cemented carbide members were 0% and did not peel at all, and extremely high adhesion was obtained.

比較例1 実施例1で用いた炭化タングステン基超硬合金基体と
同様にして焼結した炭化タングステン基超硬合金基体を
用意し、粒径1μmのダイヤモンドペーストを用いてラ
ッピングした。これらの超硬合金基体をアセトン中で洗
浄した後、表面に実施例1と同様にしてマイクロ波プラ
ズマCVD法により膜厚が4μmのダイヤモンド被覆層を
形成した。
Comparative Example 1 A tungsten carbide based cemented carbide substrate that was sintered in the same manner as the tungsten carbide based cemented carbide substrate used in Example 1 was prepared and lapped with a diamond paste having a particle size of 1 μm. After washing these cemented carbide substrates in acetone, a diamond coating layer having a thickness of 4 μm was formed on the surface by the microwave plasma CVD method in the same manner as in Example 1.

超硬合金基体とダイヤモンド被覆層との密着力を評価
した結果、コバルト含有率4重量%の被覆部材において
は、チェンバーから取り出した時点でダイヤモンド被覆
層が剥離していた。コバルト含有率7重量%の被覆部材
はスクラッチ試験では0.1kg、テープ剥離試験では100%
剥離した。ニッケル含有率7重量%の被覆部材はスクラ
ッチ試験では0.1kg、テープ剥離試験では100%剥離し
た。
As a result of evaluating the adhesion between the cemented carbide substrate and the diamond coating layer, in the coating member having a cobalt content of 4% by weight, the diamond coating layer was peeled off when taken out from the chamber. Coated material with a cobalt content of 7% by weight is 0.1 kg in the scratch test and 100% in the tape peeling test.
Peeled off. The coated member having a nickel content of 7% by weight was 0.1 kg in the scratch test and 100% in the tape peeling test.

比較例2 実施例1で用いた炭化タングステン基超硬合金基体と
同様にして焼結した炭化タングステン基超硬合金基体を
用意し、粒径1μmのダイヤモンドペーストを用いてラ
ッピングした。これらの超硬合金基体を30分間浸漬して
表面をエッチング処理し、水洗後乾燥させた。これらの
超硬合金基体の表面及び断面を走査型電子顕微鏡で観察
したところ、硬質分散相の炭化タングステン相表面に
は、わずかながら凹凸の傷が付いていたが、結合相であ
るコバルト或はニッケル相が超硬合金基体表面から30〜
40μmまでエッチングされており、基体の角部では炭化
タングステン相が脱落していた。
Comparative Example 2 A tungsten carbide-based cemented carbide substrate that was sintered in the same manner as the tungsten carbide-based cemented carbide substrate used in Example 1 was prepared and lapped with a diamond paste having a particle size of 1 μm. These cemented carbide substrates were immersed for 30 minutes to etch the surface, washed with water and dried. When the surface and cross section of these cemented carbide substrates were observed with a scanning electron microscope, the surface of the tungsten carbide phase of the hard dispersed phase was slightly uneven, but the surface of the cemented carbide substrate had a slight unevenness. Phase is 30 ~ from cemented carbide substrate surface
It was etched to 40 μm, and the tungsten carbide phase had fallen off at the corners of the substrate.

これらの超硬合金基体表面に、実施例1と同様にして
マイクロ波プラズマCVD法により膜厚が4μmのダイヤ
モンド被覆層を形成した。
A diamond coating layer having a thickness of 4 μm was formed on the surface of these cemented carbide substrates by the microwave plasma CVD method in the same manner as in Example 1.

超硬合金基体とダイヤモンド被覆層との密着力を評価
した結果、コバルト含有率4重量%の被覆部材において
は、スクラッチ試験では0.1kgを示し、そしてテープ剥
離試験では80%剥離した。コバルト含有率7重量%の被
覆部材はスクラッチ試験では0.5kg、テープ剥離試験で
は90%剥離した。ニッケル含有率7重量%の被覆部材は
スクラッチ試験で0.5kg、テープ剥離試験では100%剥離
した。
As a result of evaluating the adhesion between the cemented carbide substrate and the diamond coating layer, the coating member having a cobalt content of 4% by weight showed 0.1 kg in the scratch test and 80% in the tape peeling test. The coated member having a cobalt content of 7% by weight peeled 0.5 kg in the scratch test and 90% peeled in the tape peeling test. The coated member having a nickel content of 7% by weight was 0.5 kg in the scratch test and 100% in the tape peel test.

比較例3 実施例1で用いた炭化タングステン基超硬合金基体と
同様にして焼結した炭化タングステン基超硬合金基体を
用意し、粒径1μmのダイヤモンドペーストを用いてラ
ッピングした。これらの超硬合金基体を200メッシュの
粒度のダイヤモンド砥石にて研削加工した後、実施例1
と同様にしてマイクロ波プラズマCVD法により膜厚が4
μmのダイヤモンド被覆層を形成した。
Comparative Example 3 A tungsten carbide-based cemented carbide substrate that was sintered in the same manner as the tungsten carbide-based cemented carbide substrate used in Example 1 was prepared and lapped with a diamond paste having a particle size of 1 μm. Example 1 was performed after grinding these cemented carbide substrates with a diamond grindstone having a grain size of 200 mesh.
The film thickness is 4 by the microwave plasma CVD method in the same manner as
A μm diamond coating layer was formed.

超硬合金基体とダイヤモンド被覆層との密着力を評価
した結果、コバルト含有率4重量%の被覆部材において
は、スクラッチ試験では0.5kgを示し、そしてテープ剥
離試験では100%剥離した。コバルト含有率7重量%の
被覆部材においてはスクラッチ試験では1.0kg、テープ
剥離試験では90%剥離した。またニッケル含有率7重量
%の被覆部材においては、スクラッチ試験では1.0kgを
示し、テープ剥離試験では80%剥離した。
As a result of evaluating the adhesion between the cemented carbide substrate and the diamond coating layer, a coating member having a cobalt content of 4% by weight showed 0.5 kg in the scratch test and 100% peeling in the tape peeling test. The coated member having a cobalt content of 7% by weight was 1.0 kg in the scratch test and 90% in the tape peel test. The coated member having a nickel content of 7% by weight showed 1.0 kg in the scratch test and 80% in the tape peel test.

以上の実施例及び比較例から、炭化タングステン基超
硬合金基体表面の結合相であるコバルト相或はニッケル
相を除去することにより超硬合金基体とダイヤモンド被
覆層との密着力を改良することができるが、硬質分散相
である炭化タングステン相をエッチングし表面に凹凸を
付けることにより更に改良できることが判る。
From the above examples and comparative examples, it is possible to improve the adhesion between the cemented carbide substrate and the diamond coating layer by removing the cobalt phase or the nickel phase which is the binding phase on the surface of the tungsten carbide based cemented carbide substrate. However, it can be seen that it can be further improved by etching the tungsten carbide phase which is a hard dispersed phase to make the surface uneven.

[発明の効果] 以上説明したように本発明によれば、複雑な形状をし
た炭化タングステン基超硬合金基体表面にも均一で密着
力の優れたダイヤモンド被覆層を形成することができ、
工具等として有用なダイヤモンド被覆超硬合金部材を安
価にまた容易に量産することができる。即ち本発明の方
法は、ダイヤモンド被覆超硬合金部材を製作するのに適
する産業上有用な製造方法である。
[Effects of the Invention] As described above, according to the present invention, it is possible to form a diamond coating layer having uniform and excellent adhesion even on a surface of a tungsten carbide based cemented carbide substrate having a complicated shape,
A diamond-coated cemented carbide member useful as a tool or the like can be mass-produced inexpensively and easily. That is, the method of the present invention is an industrially useful manufacturing method suitable for manufacturing a diamond-coated cemented carbide member.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C30B 29/04 7202−4G C30B 29/04 Q Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C30B 29/04 7202-4G C30B 29/04 Q

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭化タングステン基超硬合金基体表面に気
相合成法によりダイヤモンドを被覆するに際して、予め
超硬合金基体を陽極とし湿式で電解エッチングを行い、
硬質分散相である炭化タングステン相表面に凹凸を付け
た後、気相合成法によりダイヤモンドを被覆することを
特徴とするダイヤモンド被覆超硬合金部材の製造方法。
1. When coating the surface of a tungsten carbide based cemented carbide substrate with diamond by a vapor phase synthesis method, wet etching is carried out in advance using the cemented carbide substrate as an anode.
A method for producing a diamond-coated cemented carbide member, characterized in that a surface of a tungsten carbide phase, which is a hard dispersed phase, is made uneven, and then diamond is coated by a vapor phase synthesis method.
JP1283099A 1989-11-01 1989-11-01 Method for producing diamond-coated cemented carbide member Expired - Lifetime JP2554941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1283099A JP2554941B2 (en) 1989-11-01 1989-11-01 Method for producing diamond-coated cemented carbide member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1283099A JP2554941B2 (en) 1989-11-01 1989-11-01 Method for producing diamond-coated cemented carbide member

Publications (2)

Publication Number Publication Date
JPH03146663A JPH03146663A (en) 1991-06-21
JP2554941B2 true JP2554941B2 (en) 1996-11-20

Family

ID=17661205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1283099A Expired - Lifetime JP2554941B2 (en) 1989-11-01 1989-11-01 Method for producing diamond-coated cemented carbide member

Country Status (1)

Country Link
JP (1) JP2554941B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7066436B2 (en) 2003-07-09 2006-06-27 Nifco Inc. Box device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69330052T2 (en) * 1992-12-08 2001-11-15 Osaka Diamond Ind ULTRA-HARD FILM-COVERED MATERIAL AND THEIR PRODUCTION
JPH10310494A (en) * 1996-05-31 1998-11-24 Ngk Spark Plug Co Ltd Production of cemented carbide member with diamond coating film
EP0984077A3 (en) 1998-09-04 2003-08-13 Ngk Spark Plug Co., Ltd Diamond-coated hard metal member
AT15415U1 (en) * 2016-07-18 2017-08-15 Ceratizit Austria Gmbh Method for producing a cemented carbide product and cemented carbide product

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199870A (en) * 1987-02-16 1988-08-18 Showa Denko Kk Diamond coated sintered hard tool material
JPH01197391A (en) * 1988-02-01 1989-08-09 Idemitsu Petrochem Co Ltd Method for synthesizing diamond
JP2720384B2 (en) * 1989-02-17 1998-03-04 日本特殊陶業株式会社 Coating method with diamond thin film
JP2766686B2 (en) * 1989-09-22 1998-06-18 昭和電工株式会社 Coating method of vapor phase diamond film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7066436B2 (en) 2003-07-09 2006-06-27 Nifco Inc. Box device

Also Published As

Publication number Publication date
JPH03146663A (en) 1991-06-21

Similar Documents

Publication Publication Date Title
EP0445305B1 (en) Vapor deposited diamond synthesizing method on electrochemically treated substrate
US5713133A (en) Methods of preparing cemented metal carbide substrates for deposition of adherent diamond coatings and products made therefrom
US5650059A (en) Method of making cemented carbide substrate
WO1997007264A9 (en) Treatment of cemented carbide substrate to receive cvd diamond film
JP3299139B2 (en) Method for producing a diamond-coated composite
US4381227A (en) Process for the manufacture of abrasive-coated tools
KR100193546B1 (en) Ultra hard membrane coating member and manufacturing method thereof
JPH0892742A (en) Matrix composite and method of performing surface preparation thereof
JP2554941B2 (en) Method for producing diamond-coated cemented carbide member
CN106929818A (en) A kind of process that diamond coatings are grown based on impregnated diamond in-situ deposition
JPS6353269A (en) Cutting tool tip made of diamond coated tungsten carbide-base sintered hard alloy
JPS63199870A (en) Diamond coated sintered hard tool material
JPS63100182A (en) Cutting tool tip made of diamond-coated tungsten carbide-based sintered hard alloy
JPH0892741A (en) Surface treatment of sintered hard alloy for deposition with diamond
US20110223332A1 (en) Method for depositing cubic boron nitride thin film
JP2001293603A (en) Cutting tool coated with vapor phase synthetic diamond
JPS6267174A (en) Production of hard carbon film coated sintered hard alloy
JP3353239B2 (en) Method for producing diamond-coated member
JP2722724B2 (en) Method of coating diamond film
JP2554941C (en)
JP2734157B2 (en) Manufacturing method of diamond coated tungsten carbide based cemented carbide cutting tool
JP2003247006A (en) Super hard film coated member and its manufacturing method
JP2794601B2 (en) Surface treatment of cemented carbide substrate for diamond deposition
JPH09295224A (en) Method for coating super hard tool with diamond film
JP3199127B2 (en) Diamond-containing composite coated member and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 14