JP4777799B2 - タイヤ性能予測方法、タイヤ設計方法及びプログラム - Google Patents

タイヤ性能予測方法、タイヤ設計方法及びプログラム Download PDF

Info

Publication number
JP4777799B2
JP4777799B2 JP2006058585A JP2006058585A JP4777799B2 JP 4777799 B2 JP4777799 B2 JP 4777799B2 JP 2006058585 A JP2006058585 A JP 2006058585A JP 2006058585 A JP2006058585 A JP 2006058585A JP 4777799 B2 JP4777799 B2 JP 4777799B2
Authority
JP
Japan
Prior art keywords
tire
model
sound source
acoustic tube
tread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006058585A
Other languages
English (en)
Other versions
JP2007237752A (ja
Inventor
慶太 弓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006058585A priority Critical patent/JP4777799B2/ja
Publication of JP2007237752A publication Critical patent/JP2007237752A/ja
Application granted granted Critical
Publication of JP4777799B2 publication Critical patent/JP4777799B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C99/00Subject matter not provided for in other groups of this subclass
    • B60C99/006Computer aided tyre design or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、タイヤ性能予測方法、タイヤ設計方法及びプログラムにかかり、特にタイヤ性能として騒音性能を予測するタイヤ性能予測方法、タイヤ設計方法及びプログラムに関するものである。
タイヤ挙動についての解析は、実際に設計・製造したタイヤを計測したり自動車に装着して得た性能試験結果を用いたりしたものから、計算機(コンピュータ)環境の発達に伴って、計算機上でシミュレーションによって実現できるようになってきている。このタイヤ挙動をシミュレーションによって解析する主要な方法としては、有限要素法(FEM)等の数値解析手法が主に用いられている。FEMは、構造体を有限個の要素でモデル化して、コンピュータを用いて構造体の挙動を解析する手法であり、その特徴から構造体を有限個の要素に分割(メッシュ分割または要素分割)して解析している。
ところで、FEMを用いてタイヤ挙動を解析することによりタイヤ性能を予測することが可能であるが、そのタイヤ性能としては、操縦性能、摩耗性能、応力歪性能、及びタイヤパターンノイズ等のタイヤ騒音性能などが知られている。特にタイヤ騒音性能を得るために、タイヤ全体を有限要素モデルで数値モデル化し、FEMによる振動モードの同定や各モード周波数に対するタイヤ周囲の騒音をシミュレートすることが行われている。タイヤ騒音の予測を効率的に行う技術例として、タイヤと路面との間で発生する摩擦エネルギー等を音に変換することによってタイヤの騒音性能を予測する技術(例えば特許文献1参照)や、タイヤのピッチ配列によって生じるタイヤの騒音性能を予測する技術(例えば特許文献2参照)が知られている。
特開2002−90264号公報 特開2003−136926号公報
しかしながら、タイヤモデルは、規模が大きく計算時間が数日となる等、解析のための計算負荷が膨大な量となる。また、上記のような技術はタイヤの構造設計に利用することを前提としており、タイヤのトレッドパターンの設計等のデザインへの適用は困難である。
本発明は、上記の事実を考慮して、複数の陸部からなるパターンを備えたタイヤの騒音性能などのタイヤ性能予測を容易に実行できるタイヤ性能予測方法、タイヤ設計方法及びプログラムを提供することを目的とする。
上記目的を達成するために、本発明者等は種々検討を加えた結果、音響シミュレーション等の異分野に利用されている「境界要素法」(Boundary Element Method、以下、BEMという。)をタイヤと言う特殊分野に応用することに着目し、検討を試み、具体的に騒音を考慮したタイヤ性能予測方法として確立したものである。具体的には、請求項1の発明のタイヤ性能予測方法は、(a)内部構造を少なくとも含みかつ複数の陸部からなるパターンを備えたタイヤについて変形を与えることが可能なタイヤモデルを定めると共に、該タイヤモデルを用いてタイヤ接地時のタイヤ踏面領域内のトレッド表面とタイヤ接地面とにより形成される空間を表現するためにタイヤ接地時のタイヤ踏面内のトレッド表面形状及びタイヤ接地面を膜要素とみなした音響管モデルを定め、かつ複数音のスペクトルを有する音源モデルを定めると共に、前記音源モデルの前記音響管モデルに対する位置関係及び付与方向を定めるステップ、(b)前記音源モデルで発生した音について前記音響管モデル内における反射を境界要素法により音響解析するステップ、(c)音響評価のための観測点の位置を定め、前記観測点において前記音源モデルのスペクトル変動を求めることによってタイヤの騒音性能を予測するステップ、を含んでいる。
本発明のステップ(a)では、内部構造を少なくとも含みかつ複数の陸部からなるパターンを備えたタイヤについて変形を与えることが可能なタイヤモデルを定める。これと共に、該タイヤモデルを用いてタイヤ接地時のタイヤ踏面領域内のトレッド表面とタイヤ接地面とにより形成される空間を表現するためにタイヤ接地時のタイヤ踏面内のトレッド表面形状及びタイヤ接地面を膜要素とみなした音響管モデルを定める。またこのステップ(a)では、複数音のスペクトルを有する音源モデルを定めると共に、前記音源モデルの前記音響管モデルに対する位置関係及び付与方向を定める。これによりタイヤと路面等のタイヤ接地面とで形成される空間を音響管として扱うことができ、その音響管に音を与えることができる。この音響管における音響解析は次のステップ(b)でなされる。すなわちステップ(b)では、前記音源モデルで発生した音について前記音響管モデル内における反射を境界要素法により音響解析する。これにより音響管において音源による音がどのように振る舞うのかを把握することができる。次のステップ(c)では、音響評価のための観測点の位置を定め、前記観測点において前記音源モデルのスペクトル変動を求めることによってタイヤの騒音性能を予測する。このようにすることで、音響解析を境界要素法を用いて実行し、例えばトレッドパターンと路面との接触によって形成されるタイヤ踏面内空間の音響特性を容易にシミュレートすることができる。
請求項2の発明は、請求項1に記載のタイヤ性能予測方法であって、前記ステップ(a)では、タイヤの踏み込み側及びタイヤの蹴り出し側の少なくとも一方の位置を音源モデルの発生位置に定めることを特徴とする。タイヤに関して音の発生源の多くは、タイヤと路面等のタイヤ接地面との接触部分であると考えられる。このため、例えばトレッドパターンと路面との接触部分近傍のタイヤの踏み込み側及びタイヤの蹴り出し側の少なくとも一方の位置を音源モデルの発生位置にステップ(a)で定めることにより、より実際の使用環境に則したタイヤの音響解析をすることができる。
請求項3の発明は請求項1または請求項2に記載のタイヤ性能予測方法であって、前記ステップ(a)では、前記音響管モデルとして前記タイヤ踏面外のトレッド表面形状を含むことを特徴とする。タイヤと路面等のタイヤ接地面とで形成される空間を音響管として扱う場合、その音響管周囲の物品により音の反射が予測される。タイヤの場合、タイヤ踏面外のトレッドが主に考えられる。そこで、音響管モデルとして前記タイヤ踏面外のトレッド表面形状を含むことにより、タイヤ全体として音響解析をすることができる。
請求項4の発明は請求項1乃至請求項3何れか1項に記載のタイヤ性能予測方法であって、前記音源モデルには、音圧振幅値または粒子速度振幅値を定めることを特徴とする。音源モデルの設定は、音の扱いが容易な音圧振幅値または粒子速度振幅値を定めることが好ましい。
請求項5の発明は請求項1乃至請求項3何れか1項に記載のタイヤ性能予測方法であって、前記音源モデルは、陸部からなるパターンの少なくとも一部に圧力振幅値または粒子速度振幅値を定めたものであることを特徴とする。上述のように、タイヤに関して音の発生源の多くは、タイヤと路面等のタイヤ接地面との接触部分であると考えられるので、新規の位置に音源モデルを設定するのではなく、陸部からなるパターンの少なくとも一部に圧力振幅値または粒子速度振幅値を定めることにより、音源モデルの設定が容易となる。
請求項6の発明は請求項1乃至請求項5何れか1項に記載のタイヤ性能予測方法であって、前記ステップ(b)では、前記音響管モデル内に満たす予め定めた流体の音の伝播に関係する物性状態(音速、密度、減衰)を定めたのちに音響解析することを特徴とする。音は伝播を媒介するものの材料に起因する物理量やその伝播自体を特定するための物理量等の物性状態により、挙動が変化する。このため、ステップ(b)において前記音響管モデル内に満たす予め定めた流体の音の伝播に関係する物性状態(例えば音速、密度及び減衰等の何れか1つの物理量で表される物性状態)を定めたのちに音響解析することによって、実際の音響環境による音響解析を容易に実施することができる。
請求項7の発明は請求項1乃至請求項6何れか1項に記載のタイヤ性能予測方法であって、前記ステップ(c)におけるタイヤの騒音性能の予測結果が予め定めた要求値を満たすまで前記ステップ(a)のタイヤモデル及び音響管モデルを修正した後にステップ(b)及び(c)を繰り返すステップ(d)をさらに含むことを特徴とする。音響解析結果が得られると、その音響解析結果が予め予想した要求値を許容できるか否かの評価が可能である。この要求値を許容できない場合には、タイヤモデルを修正して要求値を満たすようにすることが好ましい。そこで、前記ステップ(c)におけるタイヤの騒音性能の予測結果が予め定めた要求値を満たすまで前記ステップ(a)のタイヤモデル及び音響管モデルを修正した後にステップ(b)及び(c)を繰り返すステップ(d)をさらに含むようにする。これによって、タイヤモデル及び音響管モデルを予め定めた要求値を満たすように修正することができる。
次に、上述のタイヤ性能予測方法を利用して、より効率的にタイヤ設計をすることができる。詳細には、請求項8の発明のタイヤ設計方法は、コンピュータによってタイヤを設計するために、(a)内部構造を少なくとも含みかつ複数の陸部からなるパターンを備えたタイヤについて変形を与えることが可能なタイヤモデルを定めると共に、該タイヤモデルを用いてタイヤ接地時のタイヤ踏面領域内のトレッド表面とタイヤ接地面とにより形成される空間を表現するためにタイヤ接地時のタイヤ踏面内のトレッド表面形状及びタイヤ接地面を膜要素とみなした音響管モデルを定め、かつ複数音のスペクトルを有する音源モデルを定めると共に、前記音源モデルの前記音響管モデルに対する位置関係及び付与方向を定めるステップ、(b)前記音源モデルで発生した音について前記音響管モデル内における反射を境界要素法により音響解析するステップ、(c)音響評価のための観測点の位置を定め、前記観測点において前記音源モデルのスペクトル変動を求めることによってタイヤの騒音性能を予測するステップ、(d)前記ステップ(c)におけるタイヤの騒音性能の予測結果が予め定めた要求値を満たすまで前記ステップ(a)のタイヤモデル及び音響管モデルを修正した後にステップ(b)及び(c)を繰り返すステップ、(e)前記ステップ(d)において要求値を満たすタイヤモデルに基づいてタイヤ設計するステップ、を含むことを特徴とする。
また、コンピュータによってタイヤ性能を予測する場合、次のプログラムをコンピュータによって実行させることにより、容易かつ簡便にタイヤ性能を予測させることができる。詳細には、請求項9の発明は、(a)内部構造を少なくとも含みかつ複数の陸部からなるパターンを備えたタイヤについて変形を与えることが可能なタイヤモデルを定めると共に、該タイヤモデルを用いてタイヤ接地時のタイヤ踏面領域内のトレッド表面とタイヤ接地面とにより形成される空間を表現するためにタイヤ接地時のタイヤ踏面内のトレッド表面形状及びタイヤ接地面を膜要素とみなした音響管モデルを定め、かつ複数音のスペクトルを有する音源モデルを定めると共に、前記音源モデルの前記音響管モデルに対する位置関係及び付与方向を定めるステップ、(b)前記音源モデルで発生した音について前記音響管モデル内における反射を境界要素法により音響解析するステップ、(c)音響評価のための観測点の位置を定め、前記観測点において前記音源モデルのスペクトル変動を求めることによってタイヤの騒音性能を予測するステップ、を含むことを特徴とする。
以上説明したように本発明によれば、タイヤと路面等のタイヤ接地面とで形成される空間を音響管として扱いかつその音響管に音を与えて、音響管における音響解析を境界要素法により実施するので、タイヤ性能特に音響性能について例えばトレッドパターンと路面との接触によって形成されるタイヤ踏面内空間の音響特性を容易に予測することができる、という効果がある。
以下、図面を参照して本発明の実施の形態を詳細に説明する。本実施の形態は空気入りタイヤの性能予測に本発明を適用したものである。
図1には本発明のタイヤ騒音性能を考慮してタイヤの性能予測を実施するためのパーソナルコンピュータの概略が示されている。このパーソナルコンピュータは、データ等を入力するためのキーボード10、予め記憶された処理プログラムに従ってタイヤの性能を予測するコンピュータ本体12、及びコンピュータ本体12の演算結果等を表示するCRT14から構成されている。
なお、コンピュータ本体12には、記録媒体としてのフレキシブルディスク(FD)が挿抜可能なフレキシブルディスクユニット(FDU)を備えている。なお、後述する処理ルーチン等は、FDUを用いてフレキシブルディスクFDに対して読み書き可能である。従って、後述する処理ルーチンは、予めFDに記録しておき、FDUを介してFDに記録された処理プログラムを実行してもよい。また、コンピュータ本体12にハードディスク装置等の大容量記憶装置(図示省略)を接続し、FDに記録された処理プログラムを大容量記憶装置(図示省略)へ格納(インストール)して実行するようにしてもよい。また、記録媒体としては、CDやDVD等の光ディスクや、MD,MO等の光磁気ディスクがあり、これらを用いるときには、上記FDUに代えてまたはさらにCD−ROM装置、CD−RAM装置、DVD−ROM装置、DVD−RAM装置、MD装置、MO装置等を用いればよい。
先ず、タイヤ性能予測評価をするにあたって、タイヤに接するタイヤ接地面として平坦な路面を対象としてタイヤ騒音性能を予測する処理の概要を説明する。なお、本発明は平坦な路面に限定されるものではなく、悪路でもよく、またタイヤが最初に接触するものとして流体としてもよい。この流体は、水などの液体や雪などのせん断応力を有する流体、そして土などを含む圃場を含むものである。
図2は、タイヤ性能予測評価プログラムの処理ルーチンを示すものである。この処理では、タイヤ性能を予測し、その予測結果からタイヤ性能を評価するものである。実際の音響特性の計測を行い、それを用いて数値演算によりタイヤ騒音性能の予測値を求める。数値演算は、FEMによるモデル化、そして路面とタイヤを連成し、膜モデルの音響管モデルを作成して、その音響管モデルについて境界要素法により音響特性を求めて予測値を得る。
具体的には、図2のステップ100において、評価するタイヤの設計案(タイヤ形状、構造、材料、パターンの変更など)を定める。このステップ100では、内部構造を少なくとも含みかつ複数の陸部からなるパターンを備えたタイヤを採用し、特にパターンすなわちトレッドの表面形状を少なくとも表現できる設計案を採用する。
次のステップ102では、タイヤ設計案を数値解析上のモデルに落とし込むため、タイヤモデルを作成する。このタイヤモデルの作成は、本実施の形態では数値解析手法として有限要素法(FEM)を用いるものとする。従って、上記ステップ102で作成するタイヤモデルは、有限要素法(FEM)に対応した要素分割、例えばメッシュ分割によって複数の要素に分割され、タイヤを数値的・解析的手法に基づいて作成されたコンピュータプログラムヘのインプットデータ形式に数値化したものをいう。この要素分割とはタイヤ、及び路面等の対象物を小さな幾つかの(有限の)小部分に分割することをいう。この小部分ごとに計算を行い全ての小部分について計算した後、全部の小部分を足し合わせることにより全体の応答を得ることができる。なお、数値解析手法には差分法や有限体積法を用いても良い。
上記ステップ102のタイヤモデルの作成では、タイヤ断面のモデルを作成した後に、パターンをモデル化する。詳細には、まず、タイヤ径方向断面のモデルすなわちタイヤ断面データを作成する。このタイヤ断面データは、タイヤ外形をレーザー形状測定器等で計測し値を採取する。また、本実施の形態ではタイヤ内部の構造は特には不要であるが、タイヤ内部の構造を含めた詳細な解析をする場合は、設計図面および実際のタイヤ断面データ等から正確なデータを採取してもよい。ここでは、タイヤ全体をモデル化する場合を説明する。例えば、タイヤ断面内のゴム、補強材(ベルト、プライ等、鉄・有機繊維等でできた補強コードをシート状に束ねたもの)をそれぞれ有限要素法のモデル化手法に応じてモデル化する(図3(A)参照)。次に、2次元データであるタイヤ断面データ(タイヤ径方向断面のモデル)を周方向に一周分展開し、タイヤの3次元(3D)モデルを作成する(図3(B)、(C)参照)。次に、パターンをモデル化する。このパターンのモデル化は、「パターンの一部または全部を別個にモデル化し、上記タイヤモデルにトレッド部分として貼りつける」こと、「タイヤ断面データを周方向に展開する際にリブ・ラグ成分を考慮してパターンを作成する」ことの何れかで行うことができる。以上のモデル化は、FEMによるタイヤのモデル化を利用することができる。
上記のようにしてタイヤモデルを作成した後には、ステップ104へ進み、音響管モデルを作成する。この音響管モデルは、路面であるタイヤ接地面にタイヤが接地したことにより形成されるタイヤ外部の気体や流体が満たされる管状の空間をモデル化することである。音響管モデルの作成は、タイヤの一部(または全部)および接地面を分割し、モデル化する。詳細には、路面であるタイヤ接地面にタイヤが接地したことにより形成される空間として、トレッドの表面形状を有限要素法で用いられる要素の中でも特に膜要素でモデル化する。また、路面であるタイヤ接地面は単純に膜であるものとして膜要素でモデル化する。この場合、トレッドの溝(タイヤパターン溝)の表面形状以外についてはモデル化する必要がないため、複数の音響管を組み合わせた膜モデルとなる。図4には、音響管モデルの斜視図を示した。図4では、路面であるタイヤ接地面にタイヤが接地したことにより形成される空間のみをモデル化したものを示したが、本発明はこれに限定されるものではなく、タイヤのトレッドの表面形状を全て膜として扱いモデル化してもよい。
このようにして、音響管モデルの作成が終了すると、次のステップ106において、音源モデルを作成する。音源モデルは、実際のタイヤで発生し得る音のスペクトルまたはスペクトル分布をモデル化したものであり、一種のエネルギーモデルとして作成する。次のステップ108では、作成された音源モデルの入力値を定義する。音源モデルは、実際のタイヤで発生し得る音のスペクトルまたはスペクトル分布であるので、これらの値を定義する。例えば、入力値の一例としては、周波数毎に音圧振幅値(圧力振幅値)または粒子速度振幅値を定義する。なお、これらの値は実際のスピーカー(拡声装置)から発生された音を直接測定した値を用いてもよく、任意の周波数軸上にスペクトルとして作成したものを用いてもよい。
このステップ108では、音源モデルの位置(発音位置)を定めることもできる。実際のタイヤで発生する音は、タイヤが外部の物品に接触するとき、例えば路面や流体に接触するときが挙げられる。また、風きり音等のように気体がタイヤに接触または通過するときに生じる共鳴音等も想定される。この場合、特に発生音としては、タイヤと路面等のタイヤ接地面との接触部分の影響が大きいことが想定される。このため、例えばトレッドパターンと路面との接触部分近傍のタイヤの踏み込み側及びタイヤの蹴り出し側の少なくとも一方の位置を音源モデルの発生位置を定めることにより、より実際の使用環境に則したタイヤの音響解析をすることができる。なお、音源モデルの発生位置を定めた後にその伝播方向をさらに定めても良い。
次のステップ110では、境界条件の設定がなされる。まず、音響管モデルに気体または流体の流入・流出に関する境界条件を与える。ここでは、解析を定常状態で行うため、タイヤモデルが静止した状態において音が伝播する音響管モデルを考える。すなわち、音響管モデル内における気体や流体の挙動を表す物性状態を設定する。この物性状態としては、例えば音響管モデル内を伝播する音の空気等の気体や水等の流体である媒体の物性がある。その物性として伝播する音速、密度、減衰を表すパラメータがある。
また、音響管モデル内を伝播する音は、音響管モデルの境界を反射して伝播されるものもある。このため、タイヤ材料や路面状態に起因する音の反射率を決定するパラメータを音響管モデルの部位毎に定めても良い。例えば、上記ステップ104では、音響管モデルとして、路面を膜として扱いモデル化したが、路面について路面モデルを作成し、これと共に音の挙動に関する路面状態の入力をすることで、境界条件を設定してもよい。また、音響管モデルのタイヤモデル側についてタイヤ材料の入力をすることで、境界条件を設定してもよい。
なお、タイヤモデルの一部は路面に接触することになるので、タイヤモデルにおけるトレッドの表面形状の少なくとも一部を含む音響管モデルに解析上の境界条件を与えて音の挙動をシミュレートすることができる。例えば、上記ステップ106で作成し入力値を定義した音源モデルについて、特定の音源モデルではなく、上記のステップ108の境界条件として、トレッドパターンモデルの一部の要素若しくは全要素に個々の圧力振幅値または粒子速度振幅値を定義するようにしてもよい。
次のステップ112では、ステップ110までに作成されたり設定されたりした数値モデルをもとに、境界要素法による数値計算を行う。このステップ112では、音響管モデルにおいて反射して伝播する音の計算を境界要素法で行う音響特性解析を実施する。このステップ112における境界要素法による音響特性解析の結果を評価するために、次のステップ114において観測点を設定する。この観測点は、音響管モデル、タイヤモデル、タイヤ接地面(路面)、及び音源モデルとは異なる位置に設定する。図5には、観測点56、音響管モデル50、タイヤモデル52、タイヤ接地面(路面)58、及び音源モデル54の位置関係の一例を示した。
次のステップ116では、上記ステップ114で設定した観測点56における音響特性解析結果の物理量を結果として出力すると共に、その物理量を評価する。この音響特性解析結果の物理量は、観測点56における音のスペクトルやスペクトル分布が一例として挙げられ、具体的な値としては周波数毎の音圧振幅値や粒子速度振幅値がある。また、物理量の評価は、観測点56における音のスペクトルやスペクトル分布が、騒音性能として許容できる予め定めた要求値の物理量(またはそれ以下の所定の許容範囲)であるか否かを判定することにより実行できる。観測点56における音のスペクトル(分布)が要求値以下の物理量であるとき予測性能が良好、要求値を超えるとき予測性能が不良であると評価する。
なお、ステップ116で観測点56における音響特性解析結果の物理量を結果として出力する場合、各物理量の分布として表示させることができる。その表示の一例は、カラーコンター図、等分布線図、ベクトル図、変形状態などがある。この場合、表示に基づいてオペレータがキーボード等から入力した値を評価値としてもよい。すなわち予測結果の評価は、予測結果の出力値や出力値の分布を用いて、予め定めた許容値や許容特性を各出力値や出力値の分布にどの程度適合するかを数値的に表現することによって、評価値を定めることができる。
次に、ステップ118では、上記予測結果の評価から、予測性能が良好であるか否かを判断する。このステップ118の判断は、キーボードによる入力によってなされてもよくまた、上記評価値から判断するようにしてもよい。
予測性能の評価の結果、目標性能に対して不十分であるときは、ステップ118で否定され、ステップ120において設計案を変更(修正)してステップ102へ戻りこれまでの処理をやり直す。一方、性能が十分であるときは、ステップ118で肯定され、ステップ122において上記ステップ102のタイヤモデルを基にして作成された音響管モデルのトレッドの表面形状をパターンデザインとして決定する。次のステップ124では、上記ステップ122で決定したパターンデザインによる設計案のタイヤを製造し、その製造したタイヤについて次のステップ126において性能評価を行う。この性能評価の結果が満足できない性能であるときは、ステップ128で否定され、ステップ120へ戻る。一方、ステップ126の性能評価の結果が満足のいく性能(良好な性能)であるときは、ステップ128で肯定され、次のステップ130において、上記ステップ100またはステップ120で修正した設計案を良好な性能のものとして採用し、本ルーチンを終了する。ステップ130の設計案の採用は、その設計案が良好な性能であることを出力(表示したり、印刷したり)すると共に、その設計案のデータを記憶する。
このように、本実施の形態では、音響解析として境界要素法用い、特にトレッドパターンと路面との接触によって形成されるタイヤ踏面内空間の音響特性をシミュレートし、実用的かつ簡便にタイヤのトレッドパターンが本質的に有する騒音放射特性を評価することができ、容易に低騒音タイヤを提供することができる。
本実施の形態では、境界要素法で音の反射を計算しているので、周波数空間で計算しているので、FEMに比べ短時間で音響解析が可能となる。また、タイヤが発生する音の実験では、全ての音(間接音、直接音、その中でもパターンノイズ、気柱管共鳴音、空洞共鳴音等々)が、混在して観測されるため、どの要因の音が、そのタイヤの騒音性能に影響を与えているかの寄与分離が難しかった。ところが、本実施の形態では、気柱管共鳴音に対する、そのパターンの感度を一義的に算出することができるので、タイヤのトレッドパターン等のパターン開発において、それぞれの要因分離ができたパターン設計に、貢献することができる。
次に、本発明の実施例を詳細に説明する。タイヤの規格は、タイヤが生産又は使用される地域に有効な産業規格によって決められている。例えば、アメリカ合衆国では "The Tire and Rim Association Inc. の Year Book" で、欧州では"The European Tire and Rim Technical Organization の Standards Manual"で、日本では日本自動車タイヤ協会の"JATMA Year Book"にて規定されている。
このタイヤをもとに性能予測のためのモデル化を行った後にタイヤモデルの性能予測を行い、予測結果、実測結果を合わせて示した。
本実施例としてモデル化・試作したタイヤは、タイヤサイズは195/65R15である。
図6には、実際に製造されたタイヤについて、タイヤ音響特性を測定する測定装置60を示した。測定装置60は、タイヤ68を取り付けるための鉄製の治具66を備え、タイヤ68の一方側に音源であるスピーカ62を設置する。また、治具66には収音するためのマイクロフォン64が取り付けられている。これらのスピーカ62及びマイクロフォン64は、コントローラ70に接続されている。このコントローラ70は、スピーカ62から音を発生させる信号を出力すると共に、マイクロフォン64で収音した音声信号を入力し、音響特性を計算するものである。この測定装置60において、まずタイヤ68を鉄製の治具66に押し付けて、スピーカ62からホワイトノイズを発生させる。この状態で、治具66に設けられたマイクロホン64により、踏面内溝部の音圧を測定する。
図7には、図6の測定装置で測定された踏面内溝部の音響特性と、同一形状のタイヤ設計案から作成されたタイヤモデル(音響管モデル)について図2に示すシミュレーションで得られた音響特性解析の予測結果との周波数特性を示した。図7から理解されるように、より高い精度でタイヤパターンの音響特性をシミュレートできた。
また、次の表1には、FEMのみで音響特性解析を計算した結果を比較例とし、上記実施形態によるBEMをも用いた音響特性解析を計算した結果を実施例として、その計算時間について、本比較例を100として指数表記した結果を示した。
Figure 0004777799
表1から理解されるように、本実施の形態による音響特性解析が短時間で処理可能である、という良好な結果を得た。このことから本性能予測は設計案の性能予測に有効であり、設計・製造・性能評価のタイヤ開発サイクルの一部を数値解析で置き換えることが可能である。これを活用することによって、タイヤ開発の効率化を行なえることが理解される。
本発明の実施の形態にかかる、タイヤ性能予測方法を実施するためのパーソナルコンピュータの概略図である。 本実施の形態にかかり、タイヤ性能評価にあたって、タイヤ性能を予測するプログラムの処理の流れを示すフローチャートである。 タイヤモデルを示し、(A)はタイヤ径方向断面モデル(B)はタイヤの3次元モデルを示し、(C)はパターンをモデル化したイメージを示す斜視図である。 音響管モデルを示す斜視図である。 観測点の位置関係についての説明図である。 実施例における、実際に製造されたタイヤの音響特性を測定する測定装置を示す線図である。 実際に測定装置で測定した踏面内溝部の音響特性と、実施形態のシミュレーションで得られた予測結果の音響特性解析の予測結果を示す特性図である。
符号の説明
10 キーボード
12 コンピュータ本体
14 CRT
FD フレキシブルディスク(記録媒体)

Claims (9)

  1. 次の各ステップを含むタイヤ性能予測方法。
    (a)内部構造を少なくとも含みかつ複数の陸部からなるパターンを備えたタイヤについて変形を与えることが可能なタイヤモデルを定めると共に、該タイヤモデルを用いてタイヤ接地時のタイヤ踏面領域内のトレッド表面とタイヤ接地面とにより形成される空間を表現するためにタイヤ接地時のタイヤ踏面内のトレッド表面形状及びタイヤ接地面を膜要素とみなした音響管モデルを定め、かつ複数音のスペクトルを有する音源モデルを定めると共に、前記音源モデルの前記音響管モデルに対する位置関係及び付与方向を定めるステップ。
    (b)前記音源モデルで発生した音について前記音響管モデル内における反射を境界要素法により音響解析するステップ。
    (c)音響評価のための観測点の位置を定め、前記観測点において前記音源モデルのスペクトル変動を求めることによってタイヤの騒音性能を予測するステップ。
  2. 前記ステップ(a)では、タイヤの踏み込み側及びタイヤの蹴り出し側の少なくとも一方の位置を音源モデルの発生位置に定めることを特徴とする請求項1に記載のタイヤ性能予測方法。
  3. 前記ステップ(a)では、前記音響管モデルとして前記タイヤ踏面外のトレッド表面形状を含むことを特徴とする請求項1または請求項2に記載のタイヤ性能予測方法。
  4. 前記音源モデルには、音圧振幅値または粒子速度振幅値を定めることを特徴とする請求項1乃至請求項3何れか1項に記載のタイヤ性能予測方法。
  5. 前記音源モデルは、陸部からなるパターンの少なくとも一部に圧力振幅値または粒子速度振幅値を定めたものであることを特徴とする請求項1乃至請求項3何れか1項に記載のタイヤ性能予測方法。
  6. 前記ステップ(b)では、前記音響管モデル内に満たす予め定めた流体の音の伝播に関係する物性状態を定めたのちに音響解析することを特徴とする請求項1乃至請求項5何れか1項に記載のタイヤ性能予測方法。
  7. 前記ステップ(c)におけるタイヤの騒音性能の予測結果が予め定めた要求値を満たすまで前記ステップ(a)のタイヤモデル及び音響管モデルを修正した後にステップ(b)及び(c)を繰り返すステップ(d)をさらに含むことを特徴とする請求項1乃至請求項6何れか1項に記載のタイヤ性能予測方法。
  8. コンピュータによってタイヤを設計するために、次の各ステップを含むことを特徴とするタイヤ設計方法。
    (a)内部構造を少なくとも含みかつ複数の陸部からなるパターンを備えたタイヤについて変形を与えることが可能なタイヤモデルを定めると共に、該タイヤモデルを用いてタイヤ接地時のタイヤ踏面領域内のトレッド表面とタイヤ接地面とにより形成される空間を表現するためにタイヤ接地時のタイヤ踏面内のトレッド表面形状及びタイヤ接地面を膜要素とみなした音響管モデルを定め、かつ複数音のスペクトルを有する音源モデルを定めると共に、前記音源モデルの前記音響管モデルに対する位置関係及び付与方向を定めるステップ。
    (b)前記音源モデルで発生した音について前記音響管モデル内における反射を境界要素法により音響解析するステップ。
    (c)音響評価のための観測点の位置を定め、前記観測点において前記音源モデルのスペクトル変動を求めることによってタイヤの騒音性能を予測するステップ。
    (d)前記ステップ(c)におけるタイヤの騒音性能の予測結果が予め定めた要求値を満たすまで前記ステップ(a)のタイヤモデル及び音響管モデルを修正した後にステップ(b)及び(c)を繰り返すステップ。
    (e)前記ステップ(d)において要求値を満たすタイヤモデルに基づいてタイヤ設計するステップ。
  9. コンピュータによってタイヤ性能を予測するために、次の各ステップを含むことを特徴とするタイヤ性能予測プログラム。
    (a)内部構造を少なくとも含みかつ複数の陸部からなるパターンを備えたタイヤについて変形を与えることが可能なタイヤモデルを定めると共に、該タイヤモデルを用いてタイヤ接地時のタイヤ踏面領域内のトレッド表面とタイヤ接地面とにより形成される空間を表現するためにタイヤ接地時のタイヤ踏面内のトレッド表面形状及びタイヤ接地面を膜要素とみなした音響管モデルを定め、かつ複数音のスペクトルを有する音源モデルを定めると共に、前記音源モデルの前記音響管モデルに対する位置関係及び付与方向を定めるステップ。
    (b)前記音源モデルで発生した音について前記音響管モデル内における反射を境界要素法により音響解析するステップ。
    (c)音響評価のための観測点の位置を定め、前記観測点において前記音源モデルのスペクトル変動を求めることによってタイヤの騒音性能を予測するステップ。
JP2006058585A 2006-03-03 2006-03-03 タイヤ性能予測方法、タイヤ設計方法及びプログラム Expired - Fee Related JP4777799B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006058585A JP4777799B2 (ja) 2006-03-03 2006-03-03 タイヤ性能予測方法、タイヤ設計方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006058585A JP4777799B2 (ja) 2006-03-03 2006-03-03 タイヤ性能予測方法、タイヤ設計方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2007237752A JP2007237752A (ja) 2007-09-20
JP4777799B2 true JP4777799B2 (ja) 2011-09-21

Family

ID=38583720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006058585A Expired - Fee Related JP4777799B2 (ja) 2006-03-03 2006-03-03 タイヤ性能予測方法、タイヤ設計方法及びプログラム

Country Status (1)

Country Link
JP (1) JP4777799B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4976025B2 (ja) * 2006-03-03 2012-07-18 株式会社ブリヂストン タイヤ性能予測方法、タイヤ設計方法及びプログラム
JP5255520B2 (ja) 2009-05-28 2013-08-07 株式会社ブリヂストン 空気入りタイヤ
JP5421895B2 (ja) * 2010-12-24 2014-02-19 名古屋電機工業株式会社 タイヤ判定装置、タイヤ判定方法およびタイヤ判定プログラム
CN110929457B (zh) * 2019-11-15 2023-04-21 东南大学 一种有水路面行车偶极子源噪声的数值预测方法

Also Published As

Publication number Publication date
JP2007237752A (ja) 2007-09-20

Similar Documents

Publication Publication Date Title
JP4976025B2 (ja) タイヤ性能予測方法、タイヤ設計方法及びプログラム
JP2005186900A (ja) タイヤのシミュレーション方法
US6564625B1 (en) Method of designing a tire, method of designing a vulcanizing mold for a tire, method of making a vulcanizing mold for a tire, method of manufacturing a pneumatic tire, and recording medium with tire designing program recorded thereon
JP2003118328A (ja) タイヤの転がり抵抗予測方法
JP4777799B2 (ja) タイヤ性能予測方法、タイヤ設計方法及びプログラム
JP2010036850A (ja) タイヤ放射音解析方法、タイヤ放射音解析装置、及びタイヤ放射音解析プログラム
JP5064669B2 (ja) タイヤとホイールの組立体の挙動シミュレーション方法及びタイヤの挙動シミュレーション方法
JP2009190427A (ja) タイヤのシミュレーション方法
JP5284686B2 (ja) タイヤモデル作成方法、タイヤモデル作成装置、及びタイヤモデル作成プログラム
JP2010237023A (ja) タイヤ摩耗のシミュレーション方法、装置、及びプログラム
JP4486420B2 (ja) タイヤ経時変化予測方法、装置、プログラム及び媒体
JP2006111168A (ja) タイヤ性能予測方法、タイヤシミュレーション方法、タイヤ性能予測プログラム及び記録媒体
JP5538942B2 (ja) 放射音予測方法
Choi Influence of the cavity mode on tire surface vibration
JP4557630B2 (ja) タイヤの挙動シミュレーション方法
JP2006051840A (ja) タイヤ性能予測方法、圃場シミュレーション方法、タイヤ設計方法、記録媒体及びタイヤ性能予測プログラム
JP2003200722A (ja) タイヤのシミュレーション方法
Mohammadi et al. Introducing a procedure for predicting and reducing tire/road noise using a fast-computing hybrid model
JP2000352549A (ja) タイヤ排水シミュレーション方法
JP2004042831A (ja) タイヤの雪上走行シミュレーション方法
JP5705425B2 (ja) タイヤ性能シミュレーション方法、タイヤ性能シミュレーション装置、及びタイヤ性能シミュレーションプログラム
JP5122790B2 (ja) 車両走行体性能予測方法、装置及びプログラム
JP2007045363A (ja) タイヤモデル作成方法、タイヤモデル作成装置、及びタイヤモデル作成プログラム
JP5584004B2 (ja) タイヤ性能予測方法及びタイヤ性能予測装置
JP2006062554A (ja) タイヤのビード部分の解析モデル、タイヤモデル、車体モデル、タイヤのビード部分の解析方法、タイヤの挙動シミュレーション方法、タイヤの挙動解析プログラム及びタイヤの挙動解析プログラムを記録した記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees