JP4770028B2 - ポリシリコン評価装置及び薄膜トランジスタ製造システム - Google Patents

ポリシリコン評価装置及び薄膜トランジスタ製造システム Download PDF

Info

Publication number
JP4770028B2
JP4770028B2 JP2001012106A JP2001012106A JP4770028B2 JP 4770028 B2 JP4770028 B2 JP 4770028B2 JP 2001012106 A JP2001012106 A JP 2001012106A JP 2001012106 A JP2001012106 A JP 2001012106A JP 4770028 B2 JP4770028 B2 JP 4770028B2
Authority
JP
Japan
Prior art keywords
polysilicon film
camera
value
ultraviolet light
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001012106A
Other languages
English (en)
Other versions
JP2002217108A (ja
Inventor
裕之 和田
暢彦 梅津
幸一 田附
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001012106A priority Critical patent/JP4770028B2/ja
Publication of JP2002217108A publication Critical patent/JP2002217108A/ja
Application granted granted Critical
Publication of JP4770028B2 publication Critical patent/JP4770028B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、低温多結晶化プロセスによって形成されたポリシリコン評価装置及び方法並びに薄膜トランジスタ製造システム及び方法に関するものである。
【0002】
【従来の技術】
近年、チャネル層にポリシリコン膜を用いた薄膜トランジスタの実用化が進められている。チャネル層にポリシリコンを用いた場合、薄膜トランジスタの電界移動度が非常に高くなるため、例えば液晶ディスプレイ等の駆動回路として用いた場合には、ディスプレイの高精彩化、高速化、小型化等を実現することができるようになる。
【0003】
また、エキシマレーザアニール装置を用いてアモルファスシリコンを熱処理してポリシリコン膜を形成する、いわゆる低温多結晶化プロセスも近年開発が進んでいる。このような低温多結晶プロセスを薄膜トランジスタの製造プロセスに適用することによって、ガラス基板への熱損傷が低くなり、耐熱性の大面積で安価なガラス基板を用いることができる。
【0004】
ところで、低温多結晶プロセスにおいて用いられるエキシマレーザアニール装置は、その出力パワーが不安定であるため、形成されるポリシリコンのグレーンサイズが大きく変動する。そのため、エキシマレーザアニール装置を用いて形成されたポリシリコン膜は、常に良好なグレーンサイズとはならず、例えば、シリコン結晶が微結晶化してしまういわゆる線状不良となったり、十分大きなグレーンサイズが得られない、いわゆる書き込み不良となったりしてしまうという問題点があった。
【0005】
そのため、一般に、このようなエキシマレーザアニール装置を用いてアニール処理を行う場合には、ポリシリコン膜へ与えられたエネルギー情報を、エキシマレーザアニール装置にフィードバックして、最適なレーザのエネルギ密度に設定する処理が行われる。
【0006】
しかしながら、ポリシリコン膜を評価するには、従来、分光エリプソや走査型電子顕微鏡等を用いて表面画像を撮像し、その表面画像を目視して結晶の状態を判断するといった感覚的な方法しかなく、非接触で客観的に判断することができなかった。
【0007】
そこで本出願人は、低温多結晶化プロセスを用いて形成したポリシリコン膜の状態を客観的且つ自動的に評価して、その情報に基づきレーザアニール装置から出射されるレーザのエネルギ密度の最適化を図る薄膜トランジスタ製造システムを、特願2000−005994号、特願2000−005995号、特願2000−005996号で提案している。
【0008】
本出願人は、アモルファスシリコン膜に対してエキシマレーザアニール処理を行いポリシリコン膜を形成したときに膜表面の空間構造に直線性や周期性が現れ、アモルファスシリコンに与えるエネルギ密度に応じてその直線性や周期性の構造が変化することを見いだした。上記各出願では、このような特性を利用し、ポリシリコン膜の表面画像を紫外光で撮像し、その撮像画像からポリシリコン膜の表面の空間構造の周期性を自己相関関数を利用して数値化し、この数値に基づき形成されたポリシリコン膜の状態を評価し、その評価結果をエキシマレーザのエネルギ密度の設定にフィードバックするようにした薄膜トランジスタの製造システムを提案している。
【0009】
【発明が解決しようとする課題】
ところで、ポリシリコン膜の表面画像を紫外光で撮像して、ポリシリコン膜の表面の空間構造の周期性を自己相関関数を利用して数値化した場合、その撮像画像の明るさに応じて、その数値値が変動してしまう。例えば、CCDへの露光量不足の場合や露光量がオーバーした場合などは、その撮像画像自体のコントラストが少なくなり、凹凸の状態を認識できず、その数値が変動してしまう。そのため、ポリシリコン膜表面の空間構造の周期性の評価結果に対して、再現性を保つことが困難であった。
【0010】
本発明は、このような実情を鑑みてなされたものであり、低温多結晶化プロセスで形成されたポリシリコン膜の表面の空間構造を紫外光で撮像し、その撮像画像から自己相関関数を用いて数値化して膜の状態を評価する際に、評価結果の再現性を確保することができるポリシリコン評価装置及び方法並びに薄膜トランジスタ製造システム及び方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明にかかるポリシリコン評価装置は、基板上にアモルファスシリコン膜を成膜し、成膜したアモルファスシリコン膜に対してエキシマレーザアニール処理することによって形成されたポリシリコン膜を評価するポリシリコン評価装置であって、上記ポリシリコン膜に対して集光した紫外光レーザを照射し、その反射光を検出する光学系と、上記光学系により検出された上記反射光を撮像する紫外光に対して高感度化されたカメラと、上記紫外光に対して高感度化されたカメラにより撮像された上記ポリシリコン膜の撮像画像の自己相関関数のサイドピーク値に対する極大ピーク値の比(AC値)を算出して、ポリシリコン膜の表面空間構造の周期性を評価し、この評価に基づいて上記ポリシリコン膜の結晶状態を評価する評価手段と、上記紫外光に対して高感度化されたカメラに入射する上記反射光の光量を検出する光量検出手段と、上記紫外光に対して高感度化されたカメラに入射される反射光の光量を、上記ポリシリコン膜の撮像画像の自己相関関数のサイドピーク値に対する極大ピーク値の比(AC値)が一定となる範囲内に制御する制御手段とを備えることを特徴とする。
【0012】
このポリシリコン評価装置では、レーザアニール処理により生成したポリシリコン膜を紫外光を用いた撮像部で撮像し、その撮像画像に基づきポリシリコン膜の表面空間構造の直線性及び/又は周期性を評価する。その際に、撮像部に入射する上記反射光の光量を検出し、検出された上記光量に応じて撮像部に入射される反射光の光量を、所定の範囲内に制御する。
【0013】
本発明にかかるポリシリコン評価方法では、基板上にアモルファスシリコン膜を成膜し、成膜したアモルファスシリコン膜に対してエキシマレーザアニール処理することによって形成されたポリシリコン膜を評価するポリシリコン評価方法であって、上記ポリシリコン膜に対して集光した紫外光レーザを照射し、その反射光を検出し、検出した上記反射光を紫外光に対して高感度化されたカメラで撮像し、上記紫外光に対して高感度化されたカメラにより撮像された上記ポリシリコン膜の撮像画像の自己相関関数のサイドピーク値に対する極大ピーク値の比(AC値)を算出して、ポリシリコン膜の表面空間構造の周期性を評価し、この周期性に基づいてポリシリコン膜の結晶状態を評価し、上記紫外光に対して高感度化されたカメラに入射する上記反射光の光量を検出し、上記紫外光に対して高感度化されたカメラに入射される反射光の光量を、上記ポリシリコン膜の撮像画像の自己相関関数のサイドピーク値に対する極大ピーク値の比(AC値)が一定となる範囲内に制御することを特徴とする。
【0014】
このポリシリコン評価方法では、レーザアニール処理により生成したポリシリコン膜を紫外光を用いた撮像部で撮像し、その撮像画像に基づきポリシリコン膜の表面空間構造の直線性及び/又は周期性を評価する。その際に、撮像部に入射する上記反射光の光量を検出し、検出された上記光量に応じて撮像部に入射される反射光の光量を、所定の範囲内に制御する。
【0015】
薄膜トランジスタ製造システムは、基板上にアモルファスシリコン膜を成膜する成膜装置と、アモルファスシリコン膜に対してエキシマレーザアニール処理することによってチャネル層となるポリシリコン膜を生成するエキシマレーザアニール装置と、上記ポリシリコン膜に対して集光した紫外光レーザを照射し、その反射光を検出する光学系と、上記光学系により検出された上記反射光を撮像する紫外光に対して高感度化されたカメラと、上記紫外光に対して高感度化されたカメラにより撮像された上記ポリシリコン膜の撮像画像の自己相関関数のサイドピーク値に対する極大ピーク値の比(AC値)を算出して、ポリシリコン膜の表面空間構造の周期性を評価し、この評価に基づいて上記ポリシリコン膜の結晶状態を評価する評価手段と、上記紫外光に対して高感度化されたカメラに入射する上記反射光の光量を検出する光量検出手段と、上記紫外光に対して高感度化されたカメラに入射される反射光の光量を、上記ポリシリコン膜の撮像画像の自己相関関数のサイドピーク値に対する極大ピーク値の比(AC値)が一定となる範囲内に制御する制御手段とを有するポリシリコン検査装置とを備えることを特徴とする。
【0016】
この薄膜トランジスタ製造システムでは、レーザアニール処理により生成したポリシリコン膜を紫外光を用いた撮像部で撮像し、その撮像画像に基づきポリシリコン膜の表面空間構造の直線性及び/又は周期性を評価して、薄膜トランジスタを製造する。この評価の際に、撮像部に入射する上記反射光の光量を検出し、検出された上記光量に応じて撮像部に入射される反射光の光量を、所定の範囲内に制御する。
【0017】
薄膜トランジスタ製造方法はエキシマレーザアニール装置によってアモルファスシリコン膜に対してアニール処理することによってチャネル層となるポリシリコン膜を生成するポリシリコン膜生成工程を有し、薄膜トランジスタを製造する薄膜トランジスタ製造方法であって、基板上にアモルファスシリコン膜を成膜し、上記アモルファスシリコン膜に対して、エキシマレーザアニール処理を行ってポリシリコン膜を形成し、上記ポリシリコン膜に対して集光した紫外光レーザを照射し、その反射光を検出し、検出した上記反射光を紫外光に対して高感度化されたカメラで撮像し、上記紫外光に対して高感度化されたカメラにより撮像された、上記ポリシリコン膜の撮像画像の自己相関関数のサイドピーク値に対する極大ピーク値の比(AC値)を算出して、ポリシリコン膜の表面空間構造の周期性を評価し、この周期性に基づいてポリシリコン膜の結晶状態を評価し、上記紫外光に対して高感度化されたカメラに入射する上記反射光の光量を検出し、紫外光に対して高感度化されたカメラに入射される反射光の光量を、上記ポリシリコン膜の撮像画像の自己相関関数のサイドピーク値に対する極大ピーク値の比(AC値)が一定となる範囲内に制御することを特徴とする。
【0018】
この薄膜トランジスタ製造方法では、レーザアニール処理により生成したポリシリコン膜を紫外光を用いた撮像部で撮像し、その撮像画像に基づきポリシリコン膜の表面空間構造の直線性及び/又は周期性を評価して、薄膜トランジスタを製造する。この評価の際に、撮像部に入射する上記反射光の光量を検出し、検出された上記光量に応じて撮像部に入射される反射光の光量を、所定の範囲内に制御する。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態として、本発明を適用したポリシリコン膜の評価装置並びに評価方法について説明する。
【0020】
本発明の実施の形態として以下説明を行うポリシリコン膜の評価装置は、例えば、ボトムゲート構造を有する薄膜トランジスタ(ボトムゲート型TFT)の製造工程中に形成されるポリシリコン膜の検査に用いられる。ボトムゲート型TFTは、例えばガラス基板上に、ゲート電極、ゲート絶縁膜、ポリシリコン膜(チャネル層)が下層から順に積層された構成とされた薄膜トランジスタである。すなわち、ボトムゲート型TFTは、チャネル層となるポリシリコン膜とガラス基板との間に、ゲート電極が形成されている構成のTFTである。なお、ここでは、ボトムゲート型TFTを評価する評価装置を例にとって説明をするが、本発明はこのようなボトムゲート型TFTに限らず、ガラス基板上にポリシリコン膜(チャネル層)が形成された後、その上層にゲート電極を設けたいわゆるトップゲート型TFTに適用することも可能である。
【0021】
ボトムゲート型TFTの構造
まず、ボトムゲート型TFTの具体的な構成例について図1を用いて説明する。
【0022】
ボトムゲート型TFT1は、図1に示すように、0.7mm厚のガラス基板2上に、ゲート電極3、第1のゲート絶縁膜4、第2のゲート絶縁膜5、ポリシリコン膜6、ストッパ7、第1の層間絶縁膜8、第2の層間絶縁膜9、配線10、平坦化膜11、透明導電膜12が積層されて構成されている。
【0023】
ゲート電極3は、ガラス基板2上に100〜200nmのモリブデン(Mo)が成膜された後、異方性エッチングによりパターニングされて形成されている。
【0024】
第1のゲート絶縁膜4は、例えば膜厚が50nmの窒化シリコン(SiN)からなり、窒化シリコン(SiN)が、このゲート電極3が形成されたガラス基板2上に積層されて形成されている。
【0025】
第2のゲート絶縁膜5は、例えば膜厚が200nmの二酸化シリコン(SiO)からなり、この二酸化シリコン(SiO)が、第1のゲート絶縁膜5上に積層されて形成されている。
【0026】
ポリシリコン膜6は、例えば膜厚が30〜80nmのポリシリコン(p−Si)からなる。このポリシリコン膜6は、第2のゲート絶縁膜5上に積層されて形成されている。このポリシリコン膜6は、当該ボトムゲート型TFT1のチャネル層として機能する。このポリシリコン膜6は、例えば、LPCVD法等によって30〜80nmのアモルファスシリコン(a−Si)が成膜された後、このアモルファスシリコンに対してアニール処理を行うことにより多結晶化され形成される。ポリシリコン膜6の多結晶化工程においては、紫外線レーザであるエキシマレーザを用いたレーザアニール処理が用いられる。このエキシマレーザアニール処理は、その照射面が線状とされたパルスのレーザビームを出射し、パルスビームの照射領域を移動させながら、アモルファスシリコンをポリシリコンに多結晶化させるものである。レーザビームは、その照射面の形状が、例えば長手方向の長さが20cm、短辺方向の長さが400μmとされ、パルスの周波数が300Hzとされている。エキシマレーザアニール処理を行う際のレーザビームの走査方向は、線状レーザの照射面の長手方向と直交する方向(すなわち、短辺方向)に行われる。
【0027】
そして、このポリシリコン膜6は、エキシマレーザアニールによって多結晶化されたのち、ソース/ドレイン領域を形成するために、不純物がイオンドーピングされる。このイオンドーピングは、ゲート電極3上の部分のポリシリコン膜6に不純物が注入されないように、このゲート電極3に対応する位置にストッパ7が形成された後に行われる。このストッパ7は、例えば膜厚200nmの二酸化シリコン(SiO)からなり、ゲート電極3を形成したときに用いたマスク等を用いて形成されている。
【0028】
第1の層間絶縁膜8は、例えば膜厚が300nmの窒化シリコン(SiN)からなり、この窒化シリコン(SiN)が、ポリシリコン膜6上に積層されて形成されている。
【0029】
第2の層間絶縁膜9は、例えば膜厚が150nmの二酸化シリコン(SiO)からなり、この二酸化シリコン(SiO)が、第1の層間絶縁膜8上に積層されて形成されている。
【0030】
配線10は、ポリシリコン膜6のソース/ドレイン領域を接続するためのコンタクトホールが、第1の層間絶縁膜8及び第2の層間絶縁膜9のソース/ドレイン領域に対応する位置に開口された後、アルミニウム(Al)及びチタン(Ti)を成膜し、エッチングによってパターニングして形成されている。この配線10は、ポリシリコン膜6上に形成された各トランジスタのソース/ドレイン領域を接続して、基板上の所定の回路パターンを形成する。
【0031】
平坦化膜11は、当該ボトムゲート型TFT1の表面を平坦化するための膜で、配線10が形成されたのち成膜され、その膜厚が2〜3μmとされている。
【0032】
透明導電膜12は、例えば、ITO等からなる透明導電材料からなり、配線10と当該ボトムゲート型TFT1の外部に存在する外部素子や外部配線とを接続するための導電線である。この透明導電膜12は、コンタクトホールが平坦化膜11に開口された後に、平坦化膜11上に形成される。
【0033】
以上のようなボトムゲート型TFT1では、チャネル層にポリシリコンを用いているため、チャネル層の電界移動度が非常に高くなる。そのため、例えば液晶ディスプレイ等の駆動回路として用いた場合には、ディスプレイの高精細化、高速化、小型化等を実現することができる。また、以上のようなボトムゲート型TFT1では、エキシマレーザアニールを用いてアモルファスシリコンを熱処理することによってポリシリコン膜6を形成する、いわゆる低温多結晶化プロセスが用いられている。そのため、多結晶化プロセスでのガラス基板2への熱損傷が少なくなり、大面積で安価なガラス基板を用いることが可能となる。
【0034】
ポリシリコン膜の検査の必要性
ところで、ポリシリコン膜6の電界移動度を決定する重要な要素は、ポリシリコンのグレーンサイズであるといわれている。そのグレーンサイズは、エキシマレーザアニール処理時においてポリシリコン膜6に与えられるエネルギーに大きく依存する。そのため、エキシマレーザアニール処理時におけるレーザのエネルギ密度の制御やその安定化が、完成したボトムゲート型TFT1の特性や歩留まりに大きく影響することとなる。
【0035】
しかしながら、エキシマレーザアニール処理において用いられるエキシマレーザアニール装置は、出射するレーザのエネルギ密度の出力変動が比較的大きい。そのため、エキシマレーザアニール装置を用いてエキシマレーザアニールを行った場合、良好なグレーンサイズを得られるエネルギーの許容範囲(ポリシリコン膜6の製造マージン)に対して、ポリシリコン膜6に与えるエネルギーの変動が大きくなってしまい、ポリシリコン膜6を安定的に製造することが難しい。
【0036】
したがって、同一の条件でエキシマレーザアニールを行った場合でも、ポリシリコン膜6のグレーンサイズが大きく変動し、例えばレーザのエネルギが大きくなりすぎた場合には、シリコン結晶が微結晶化してしまい、また、レーザのエネルギが小さくなりすぎた場合には、十分大きなグレーンサイズが得られない為に、いづれも十分な電界移動度が得られなくなってしまい不良となってしまう。
【0037】
しかしながら、上述したようにエキシマレーザアニール装置は、出射するレーザのエネルギ密度の出力変動が比較的大きい。したがって、ポリシリコン膜6のグレーンサイズが良好なサイズとなるように、そのレーザのエネルギ密度を制御することは難しい。
【0038】
そこで、一般に、このようなエキシマレーザアニール装置を用いてアニール処理を行う場合には、例えば、図2に示すようなポリシリコン膜6の多結晶化工程が終了した段階で、その最表面に形成されているポリシリコン膜6の結晶の状態を全数検査したり、或いは、製品を無作為に抜き取って結晶の状態を検査したりして、製造した製品がこの段階で不良品であるか否かを判断したり、また、エキシマレーザアニール装置へポリシリコン膜6へ与えられたエネルギー情報をフィードバックしてレーザのエネルギ密度の設定が行われる。
【0039】
ポリシリコン膜評価装置は、例えば、このようなポリシリコン膜6の多結晶化工程が終了した段階で、形成したポリシリコン膜6の評価を行い、製造した製品がこの段階で不良品であるか否かを判断したり、また、エキシマレーザアニール装置へ情報をフィードバックしてレーザエネルギーの設定を行ったりする際に用いるものである。
【0040】
ポリシリコン膜の評価原理と評価手法
(1) まず、上述したエキシマレーザアニールにより形成されたポリシリコン膜の評価原理について説明する。
【0041】
上述したように製造した薄膜トランジスタの移動度は、ポリシリコンのグレーンサイズが大きく影響する。充分な移動度を得るためには、ポリシリコンのグレーンサイズは、大きい方が望ましい。
【0042】
ポリシリコン膜のグレーンサイズは、エキシマレーザアニールで与えられたエネルギーに大きく依存する。ポリシリコン膜のグレーンサイズは、図3に示すように、与えられたエネルギーが増大するとそれに伴い増大するが、ある所定のエネルギー(図中Lの位置:このときのエネルギーを許容最低エネルギーLとする。)以上となるとグレーンサイズが十分大きくなり、その後変化が少なくなり安定化する。さらにエネルギーを増大させていくと、ある位置(図中Hの位置。このときのエネルギーを許容最高エネルギーHとする)から、グレーンサイズの変化が大きくなり、そして、ある臨界点を境としてポリシリコンが微結晶粒となってしまう。
【0043】
したがって、通常、エキシマレーザアニールを行う場合には、図3で示したグレーンサイズが十分大きくなった許容最低エネルギーLから、微結晶粒となる手前の許容最高エネルギーHの範囲となるように、照射するレーザのエネルギ密度を制御することによって、充分な大きさのグレーンサイズを得るようにする。そして、このような範囲のエネルギーを与えるレーザ光をアモルファスシリコン膜に照射することによって、完成した薄膜トランジスタの移動度を十分大きくすることが可能となる。
【0044】
(2) 次に、レーザのエネルギ密度を最適値としてエキシマレーザアニールを行ったときのポリシリコン膜の膜表面の画像と、最適値よりも少ないエネルギ密度としたときのポリシリコン膜の膜表面の画像と、最適値よりも大きいエネルギ密度としたときのポリシリコン膜の膜表面の画像とを比較する。図4に、それぞれの場合の画像を示す。図4(A)が最適値よりも少ないエネルギ密度としたときのポリシリコン膜の膜表面の画像を示す図で、図4(B)が最適値のエネルギ密度としたときのポリシリコン膜の膜表面の画像を示す図で、図4(C)が最適値よりも大きいエネルギ密度としたときのポリシリコン膜の膜表面の画像を示す図である。なお、図4に示す各画像は、紫外線光を用いた顕微鏡装置により撮像した画像であるが、この顕微鏡装置についての詳細は後述する。
【0045】
図4において、エキシマレーザアニールのレーザの走査方向は、図中X方向となっている。なお、アモルファスシリコン膜には、上述したように、照射面が線状とされたレーザビームが照射され、その走査方向は、レーザビームの照射面形状の長手方向に直交する方向である。
【0046】
ここで、エキシマレーザアニール時におけるエネルギ密度を最適値としたときの図4(B)の画像と、図4(A)及び図4(C)に示すそれ以外の画像とを比較すると、以下のような特徴が現れている。
【0047】
まず、エネルギ密度を最適値としたときのポリシリコン膜の表面画像(図4(B))は、エネルギ密度が最適とされていないポリシリコン膜の表面画像(図4(A)及び図4(C))と比較して、直線性が現れた画像となっている。具体的には、レーザの走査方向(図4中X方向)に対して、直線性が現れた画像となっている。すなわち、エネルギ密度を最適値としたときのポリシリコン膜の表面は、その空間構造に直線性が現れる規則的な形状となる特徴がある。
【0048】
また、エネルギ密度を最適値としたときのポリシリコン膜の表面画像(図4(B))は、エネルギ密度が最適とされていないポリシリコン膜の表面画像(図4(A)及び図4(C))と比較して、周期性が現れた画像となっている。具体的には、レーザの走査方向と直交する方向(図4中Y方向)に、周期性が現れた画像となっている。すなわち、エネルギ密度を最適値としたときのポリシリコン膜の表面は、その空間構造に周期性が現れる規則的な形状となる特徴がある。
【0049】
したがって、本発明の実施の形態のポリシリコン膜の評価装置では、以上のような特徴を利用して、ポリシリコン膜の状態を検査する。すなわち、本発明の実施の形態のポリシリコン膜の評価装置では、エキシマレーザアニールを行った後のポリシリコン膜の表面画像を数値解析して、ポリシリコン膜の表面空間構造に直線性が現れているか、或いは、ポリシリコン膜の表面空間構造に周期性が現れているか、或いは、ポリシリコン膜の表面空間構造に直線性及び周期性が現れているかを評価して、ポリシリコン膜の状態を検査する。
【0050】
なお、エネルギ密度を良好な値としてエキシマレーザアニールを行った後のポリシリコン膜の膜表面の画像が、直線性及び周期性が現れた画像となるのは、図5(A)のように、アモルファスシリコン膜の上層に自然酸化膜(SiO)が形成されている影響であると考えられる。この自然酸化膜の膜厚は、3〜4nmとなっていると考えられる。また、この自然酸化膜は、一定の膜厚までで酸化が停止し、ある一定以上の膜厚にはならないと考えられる。
【0051】
そして、この自然酸化膜が形成されたアモルファスシリコンに対してエキシマレーザを用いてアニール処理を行うと、図5(B)のように、この自然酸化膜(SiO)が隆起すると考えられる。この隆起の形状は、エキシマレーザアニールのエネルギ密度が良好であると、エキシマレーザの走査方向に平行な複数の直線状の凸部が形成され、さらに各直線が等間隔に周期性を有したものになる。そのため、ポリシリコン膜の膜表面画像を紫外光を用いた顕微鏡装置で撮像した場合、この直線状の凸部による反射回折光の影響から、図4に示したような縞状の画像が参照できるものと考えられる。なお、例えば、自然酸化膜の膜厚が3〜4nmで、XeClエキシマレーザのエネルギ密度が300〜400mJ/cmであれば、この直線状の凸部の間隔は、0.3μm程度となる。この間隔は、アニール用レーザ光源の波長程度となる。
【0052】
また、この自然酸化膜は、エキシマレーザアニールで与えられるエネルギ密度やアモルファスシリコン膜の膜厚の違い等の要因によって、図5(C)に示すように、アニール後の形状が変化するものと考えられる。例えば、エキシマレーザアニールのエネルギ密度が良好でない場合には、隆起の形状の直線性及び周期性が崩れていくものと考えられる。また、同一の膜面上の異なる場所でも、膜厚の違い等の多々の要因によって、直線性や周期性が一定の値とならない場合がある。
【0053】
(3) ここで、通常、薄膜トランジスタの製造プロセスでは、希フッ化水素(希HF)による不純物元素除去工程が設けられる。上述したボトムゲート型TFT1の製造工程でも、通常、アモルファスシリコン膜を形成した後、レーザアニール処理を行う前に、希HFによる不純物除去が行われる。
【0054】
しかしながら、アモルファスシリコン膜を形成した後に、基板を希HFで洗浄した場合、不純物とともにアモルファスシリコン膜上に形成されている自然酸化膜が溶解してしまう。そのため、その後にレーザアニール処理をしたとしても、ポリシリコン膜の表面に、図5(B)に示すような、自然酸化膜の隆起形状が形成されない。従って、ポリシリコン膜の膜表面の画像に直線性及び周期性が現れず、ポリシリコン膜の状態を評価することができなくなってしまう。
【0055】
そのため、ポリシリコン膜の状態を評価可能とするために、図6に示すように、レーザアニール処理を行う前工程として、表面酸化処理を行うようにする。すなわち、アモルファスシリコン膜の表面に自然酸化膜(SiO)が形成されている状態(状態1)から、希HF洗浄をして不純物除去をする。希HF洗浄をすると、アモルファスシリコン膜は、表面の自然酸化膜(SiO)が溶解した状態となる(状態2)。この次の工程として表面酸化工程が設けられる。この表面酸化工程では、例えば、基板を1日程度空気中に放置することによってアモルファスシリコン膜の表面に自然酸化膜を形成してもよいし、また、例えば10ppm程度のオゾン水に基板を浸すことによってアモルファスシリコン膜の表面を酸化させてもよい。このようにレーザアニール処理の前に表面酸化工程を設けることによって、アモルファスシリコン膜に自然酸化膜を形成することができ(状態3)、その結果、レーザアニール処理を行うことによって自然酸化膜の隆起が生じ(状態4)、ポリシリコン膜の評価を行うことができるようになる。
【0056】
(4) 次に、ポリシリコン膜の撮像画像に直線性、周期性、直線性及び周期性がある場合の数値化の手法の一例について説明する。
【0057】
例えば、直線性および周期性があるポリシリコン膜の撮像画像を模式的に表すと、図7(A)に示すように多数の直線が平行に並び、その間隔が一定間隔となっているように表される。これに対し、直線性も周期性もないポリシリコン膜の撮像画像を模式的に表すと、図8(A)に示すように、不規則な短い直線等が不規則に現れるように表される。これらの画像から、直線性及び周期性がどれだけあるか数値化して評価する場合には、周期性があるであろう方向と垂直な方向に画像を横ずらしし、横ずらしをしたときの画像の相関性を数値に表して評価すればよい。例えば、直線性及び周期性がある画像を横ずらしすると、図7(B)に示すように、ある一定の周期、つまりある一定の横ずらし量毎に、画像の重なり具合が多い相関性の高い画像が現れる。それに対し、直線性も周期性も無い画像は、図8(B)に示すように、横ずらしをしたとしても画像の重なりある具合が多い相関性の高い画像が、一定の周期毎に現れない。
【0058】
以上のような画像を横ずらしをしたときの画像の相関性を数値化するといった概念を用いることにより、ポリシリコン膜の周期性を数値化し評価をすることが可能となる。具体的にこのような手法を実現する一つの方法としては、画像の自己相関関数を求め、この自己相関関数のピーク値及びサイドピーク値を算出し、これらの比をとる方法がある。ここで、ピーク値とは、原点の値から原点よりy方向の2番目の極小値(デフォーカスの値を小さくするために使用している。1番目や2番目以降であってもよい)を引いた値をいうものとする。また、サイドピーク値とは、原点よりy方向の2番目(原点を含めない)の極大値から原点よりy方向の2番目の極小値を引いた値等をいうものとする。
【0059】
なお、本発明は、直線性又は周期性のいずれか一方のみを評価し、ポリシリコン膜の状態を判断することも可能である。
【0060】
また、ポリシリコン膜の撮像画像に直線性、周期性、直線性及び周期性がある場合の数値化の手法の他の例としては、例えば、規格化された画像を直線性のそろった方向に、全ての画素の値を足し合わせてその変調度をとる手法がある。また、規格化された画像を、2次元フーリエ変換し、ある周波数成分の強度をとる手法がある。また、画像(例えば、y方向に直線性を有するであろう画像)の内の極値(極小値又は極大値)の座標を抽出し、y方向に縦長な範囲内(x方向の中心を極値×座標の平均値にとり、x方向の長さをx方向の配列のピッチとする)の座標に関して、x方向の分散をとる手法がある。また、画像(例えば、y方向に直線性を有するであろう画像)の内の極値(極小値又は極大値)の座標を抽出し、y方向に縦長な範囲内(x方向の中心を極値×座標の平均値にとり、x方向の長さをx方向の配列のピッチとする)の座標に関して、各点の上下近傍の点との角度を取る手法がある。
【0061】
ポリシリコン膜の評価装置の具体的な構成とその処理内容
(1) 次に、以上のようなポリシリコン膜の表面空間構造の直線性及び周期性を評価するためのポリシリコン膜評価装置の具体的な構成例について説明する。
【0062】
ポリシリコン膜評価装置は、波長266nmの紫外光レーザを用いた顕微鏡装置によってボトムゲート型TFTの製造基板(アモルファスシリコン膜にエキシマレーザアニールを行うことによってポリシリコン膜が形成された直後の状態の基板)を撮像し、撮像した画像から形成されたポリシリコン膜の状態を評価する装置である。
【0063】
本ポリシリコン膜の評価装置の構成図を図9に示す。
【0064】
図9に示すポリシリコン膜評価装置20は、可動ステージ21と、紫外線固体レーザ光源22と、CCDカメラ23と、光ファイバプローブ24と、偏光ビームスプリッタ25と、対物レンズ26と、1/4波長板27と、制御用コンピュータ28と、画像処理用コンピュータ29とを備えて構成される。
【0065】
可動ステージ21は、被検査物となるポリシリコン膜が成膜された基板1を支持するためのステージである。この可動ステージ21は、被検査物となる基板1を支持するとともに、この基板1を所定の検査対象位置へと移動させる機能も備えている。
【0066】
具体的には、可動ステージ21は、Xステージ、Yステージ、Zステージ、吸着プレート等を備えて構成される。
【0067】
Xステージ及びYステージは、水平方向に移動するステージであり、XステージとYステージとで、被検査物となる基板1を互いに直交する方向に移動させ、検査対象となる基板1を所定の検査位置へと導くようにしている。Zステージは、鉛直方向に移動するステージであり、ステージの高さを調整するためのものである。すなわち、このZステージは、照射される紫外光レーザの光軸方向、換言すると基板1の平面に垂直な方向に移動する。なお、このZステージの移動方向のことを、以下Z方向という。吸着プレートは、検査対象となる基板1を吸着して固定するためのものである。
【0068】
紫外線固体レーザ光源22は、波長266nmの紫外光レーザ光源であり、例えば、Nd:YAG4倍波全固体レーザが用いられる。なお、この紫外線レーザ光源としては、近年、波長157nm程度のものも開発されており、このようなものを光源として用いても良い。
【0069】
CCDカメラ23は、紫外光に対して高感度化されたカメラであり、内部に撮像素子としてCCDイメージセンサを備え、このCCDイメージセンサにより基板1の表面を撮像する。このCCDカメラ23は、本体を冷却することにより、CCDイメージセンサ等で発生する熱雑音、読み出し雑音、回路雑音等を抑圧している。
【0070】
光ファイバプローブ24は、紫外線レーザ光の導波路であり、紫外線固体レーザ光源22から出射された紫外光レーザを、偏光ビームスプリッタ25に導いている。
【0071】
偏光ビームスプリッタ25は、紫外線固体レーザ光源22からの紫外線レーザ光を反射して、対物レンズ26を介して可動ステージ21上の基板1に照射し、それとともに、基板1から反射された反射光を透過して、高感度低雑音カメラ3に照射する。すなわち、偏光ビームスプリッタ25は、紫外線固体レーザ光源22等の出射光の光学系の光路と、CCDカメラ23への反射光の光学系の光路とを分離するためのレーザ光分離器である。
【0072】
対物レンズ26は、基板1からの反射光を拡大して検出するための光学素子である。この対物レンズ26は、例えば、NAが0.9で、波長266nmで収差補正がされたものである。この対物レンズ26は、偏光ビームスプリッタ25と可動ステージ21との間に配置される。
【0073】
1/4波長板27は、紫外光レーザ光から反射光成分を抽出する。1/4波長板27により円偏光とされた紫外光は、基板1によって反射され再び1/4波長板27を透過することによって、90°直線偏光の方向が回転する。このため戻り光は、偏光ビームスプリッタ25を透過することとなる。
【0074】
制御用コンピュータ28は、紫外線固体レーザ光源22のレーザ光の点灯の制御、可動ステージ21の移動位置の制御、対物レンズ26の切換制御等を行う。
【0075】
画像処理用コンピュータ29は、CCDカメラ23に備えられるCCDイメージセンサにより撮像した基板1の画像を取り込み、その画像を解析し、基板1上に形成されているポリシリコン膜の状態の評価を行う。
【0076】
以上のような構成の評価装置20では、紫外線固体レーザ光源22から出射された紫外光レーザが、光ファイバプローブ24、偏光ビームスプリッタ25、対物レンズ26、1/4波長板27を介して、基板1に照射される。直線偏光で入射した光は、1/4波長板27で円偏光になり、基板1に入射する。反射した戻り光の位相は、90°変化し、再度1/4波長板27を通過すると直線偏光の方向が90°回転する。そのため反射した戻り光は、偏光ビームスプリッタ25を透過し、CCDカメラ23に入射する。そして、CCDカメラ23は、その入射した反射光をCCDイメージセンサにより撮像し、撮像して得られたポリシリコン膜の表面画像情報を画像処理用コンピュータ29に供給する。
【0077】
そして、この画像処理用コンピュータ29が、以下説明するように、取り込まれたポリシリコン膜の表面画像の情報に基づき、そのポリシリコン膜の状態を評価する。そして、その評価結果に基づき、ポリシリコン膜を生成するためのエキシマレーザアニール時におけるエネルギ密度の設定値を求めたり、また、その基板1上に形成されたポリシリコン膜が良品であるか或いは不良品であるかの判別を行う。
【0078】
(2) 次に、上記画像処理用コンピュータ29のポリシリコン膜の状態の評価手順について説明する。この画像処理用コンピュータ29は、ポリシリコン膜の表面画像から自己相関を用いて周期性を数値化した値(以後AC値とする。)を求め、ポリシリコン膜の表面空間構造の直線性及び周期性を評価して、ポリシリコン膜の状態の評価を行う。
【0079】
評価の処理手順は、図10のフローチャートに示すように、まず、ポリシリコン膜の表面の画像取り込み処理を行う(ステップS1)。続いて、取り込んだ画像から自己相関関数の計算を行う(ステップS2)。続いて、画像座標上の(0,0)を含む整列方向と垂直な面の切り出しを行う(ステップS3)。続いて、切り出した面における自己相関関数のピーク値とサイドピーク値とを算出し、このピーク値とサイドピーク値との比をとって、AC値を求める(ステップS4)。続いて、このAC値に基づき、ポリシリコン膜の評価を行う(ステップS5)。
【0080】
ここで、自己相関関数は、以下の式に示すような関数となる。
【0081】
【数1】
Figure 0004770028
【0082】
この自己相関関数R(τ)は、ある関数f(x)をτだけx方向に平行移動させたときの相関を示す関数である。
【0083】
このポリシリコン膜評価装置20では、以下のようなウィンナーヒンチンの定理を用いて、ポリシリコン膜の表面画像の自己相関関数を求めている。なお、ここでは、具体的に取り込んだ画像情報を“i”としている。
1 取り込み画像“i”の2次元フーリエ変換する。
:f=fourier(i)
2 フーリエ級数“f”を二乗してパワースペクトル“ps”を生成する。
:ps=|f|
3 パワースペクトル“ps”を逆フーリエ変換して2次元の自己相関関数“ac”を生成する。
:ac=inversfourier(ps)
4 自己相関関数“ac”の絶対値をとり、自己相関関数の実数“aca”を求める。
:aca=|ac|
【0084】
このように生成された自己相関関数“aca”を表示すると、図11及び図12に示すような関数となる。図11は、自己相関が高い画像、即ち、ポリシリコン膜の表面空間構造の周期性及び直線性が良いものの自己相関関数である。それに対して、図12は、自己相関が低い画像、即ち、ポリシリコン膜の表面空間構造の周期性及び直線性が悪いものの自己相関関数である。
【0085】
ポリシリコン膜評価装置20は、このようなウィンナーヒンチンの定理を用いて計算した自己相関画像から、さらに、整列方向(即ち、直線性を有する方向)と垂直で、画面上の座標(0,0)を含む面を切り出して、その切り出したときに得られる関数を求める。ここで、画面上の座標(0,0)を含む面を切り出すのは、照明光量やCCDゲイン等の実験パラメータによって変化する自己相関関数からの値を規格化するために行っている。
【0086】
このように切り出したときに得られる関数が、上述した整列方向と垂直な方向の自己相関関数R(τ)に対応する関数となる。
【0087】
また、ここで、上述したステップS1〜S3は、以下の図13のステップS11〜S14に示すように行ってもよい。
【0088】
また、このような評価の手順に代えて以下のような評価を行ってもよい。
【0089】
この評価の処理手順は、図13のフローチャートに示すように、まず、ポリシリコン膜の表面の画像取り込み処理を行う(ステップS11)。続いて、レーザビームの進行方向(直線性がある方向:x方向)と垂直な方向(周期性がある方向:y方向)の取り込み画像の1ライン分を切り出す(ステップS12)。続いて、この1ラインに関して自己相関関数の計算を行う(ステップS13)。続いて、必要に応じて、これらの作業を数回繰り返し、各ラインの平均化を行う(ステップS14)。
【0090】
この場合における自己相関関数は、ウィンナーヒンチンの定理を用いて、以下のように求められる。なお、ここでは、具体的に取り込んだ1ライン分の画像情報を“l”としている。
1 取り込み画像の1ライン“l”に関してのフーリエ変換をする。
:fl=fourier(l)
2 フーリエ級数“fl”を二乗してパワースペクトル“psl”を生成する。
:psl=|fl|
3 パワースペクトル“psl”を逆フーリエ変換して2次元の自己相関関数“acl”を生成する。
:acl=inversfourier(psl)
4 自己相関関数“acl”の絶対値をとり、自己相関関数の実数“acal”を求める。
:acal=|acl|
【0091】
このように生成された自己相関関数acalをグラフ上に表すと、図14及び図15に示すような関数となる。図14は、自己相関が高い関数、即ち、ポリシリコン膜の表面空間構造の周期性及び直線性が良いものの自己相関関数である。
それに対して、図15は、自己相関が低い関数、即ち、ポリシリコン膜の表面空間構造の周期性及び直線性が悪いものの自己相関関数である。
【0092】
これら1ラインの自己相関関数を取り込み画像の全てのラインに関して行い、各自己相関関数の平均化を施す。これが上述した整列方向(すなわち、直線性を有する方向)と垂直な方向の自己相関関数R(τ)に対応する関数となる。
【0093】
ポリシリコン膜評価装置20は、続いて、この得られた関数から、極大ピーク値と、サイドピーク値とを求める。そして、サイドピーク値に対する極大ピーク値の比を求め、この値をAC値とする。
【0094】
したがって、AC値は、自己相関が高い画像、即ち、ポリシリコン膜の表面空間構造の周期性及び直線性が良い場合は、極大ピーク値とサイドピーク値との差が大きくなり、その値が大きくなる。それに対して、自己相関が低い画像、即ち、ポリシリコン膜の表面空間構造の周期性及び直線性が悪い場合は、極大ピーク値とサイドピーク値との差が小さくなり、その値が小さくなる。
【0095】
以上のように、ボトムゲート型TFT1では、ポリシリコン膜の表面画像を撮像して、その撮像画像の自己相関関数を求め、ポリシリコン膜の表面空間構造の直線性及び周期性を数値化している。
【0096】
具体的に、その撮像画像の一例に対するAC値を示すと、図16に示すようになる。
【0097】
以上のようにエキシマレーザアニールがされたポリシリコン膜は、図5に示したように、膜の表面に複数の直線状の凸部が形成され、さらに、この直線状の凸部が周期的に配列されることから、AC値によりその状態を評価することができる。すなわち、ポリシリコン膜の表面の空間構造が、反射型のグレーティング状となっているため、AC値で評価することができる。
【0098】
(3) つぎに、AC値を求める際の演算範囲について説明をする。
【0099】
上述したようにAC値は、ポリシリコン膜の表面画像を取り込んで、その取り込んだ画像範囲に対して、2次元フーリエ変換を行い算出される。
【0100】
通常、その演算範囲(演算する表面画像の範囲で2次元的なもの)が大きければ大きいほど、ポリシリコン膜の表面空間構造の直線性及び周期性を正確に示すこととなる。しかしながら、AC値は、上述したように2次元フーリエ変換を行って求められるため、その演算量が膨大となるため、より高速に処理行うためには、演算範囲をより小さくすることが望ましい。
【0101】
一方、その演算範囲が小さすぎると、表面全体のAC値との誤差が大きくなり、正確にポリシリコン膜の直線性及び周期性を評価することができない。
【0102】
このように、AC値を求める演算範囲は、精度と処理速度とに影響する。従って、より効率的に再現性よくAC値を求めるために、演算範囲を最適に設定しなければならない。
【0103】
以下、表面の空間構造の周期性が悪いポリシリコン膜の表面画像、表面の空間構造の周期性が中程度のポリシリコン膜の表面画像、表面の空間構造の周期性が良いポリシリコン膜の表面画像をそれぞれ示し、これらの特徴について考察しながら、AC値の最適な演算範囲について説明をする。なお、以下、この最適な演算範囲の説明するにあたり、エキシマレーザアニール時におけるレーザの走査方向に平行な方向をX方向、レーザの走査方向に直交する方向をY方向というものとする。
【0104】
図17(A)に、表面の空間構造の周期性が全体として悪いポリシリコン膜の表面画像を示し、図17(B)にこの画像を模式的に示したものを示す。表面の空間構造の周期性が悪い場合、本来AC値は小さくなるはずである。しかしながら、このように全体として周期性が悪い場合であったとしても、周期性が良くなっている部分が、X方向に対して発生する特徴がある。この周期性が良くなっている部分は、X方向にある程度の長さに亘り形成されている。そのため、もし、X方向の演算範囲を、この周期性が良くなっている部分のより狭い範囲に設定してしまうと、この周期性が良い部分の画像のみを切り出してAC値の演算を行ってしまう可能性がある。すなわち、このような狭い範囲を設定して演算をしてしまうと、本来AC値が小さくなるべき画像であるにもかかわらず、算出したAC値が大きくなってしまい、正確な値を得ることができない可能性がある。従って、X方向に対する演算範囲は、周期性が悪いポリシリコン膜の表面画像に対して演算する場合に、この周期性が良くなっている部分が演算範囲に含まれたとしても、充分AC値が低くなるように定めなければならない。例えば、X方向に対するAC値の演算範囲を、周期性が良くなっている部分の長さ(図2中L1の長さ)の2倍以上とし、この周期性が良くなっている部分の影響を半減させ、正確な値を得るようにするのがよい。
【0105】
続いて、図18(A)に、表面の空間構造の周期性が全体として中程度のポリシリコン膜の表面画像を示し、図18(B)にこの画像を模式的に示したものを示す。表面の空間構造の周期性が中程度の場合、本来AC値は中程度の値となるはずである。しかしながら、このように全体として周期性が中程度のポリシリコン膜の表面空間構造は、周期性の良い部分と、周期性の悪い部分とが交互に繰り返されて発生する特徴がある。この周期性が良くなっている部分及び周期性が悪くなっている部分は、X方向にある程度の長さに亘り形成されている。そのため、もし、X方向の演算範囲をこの周期性が良くなっている部分より狭い範囲(或いは周期性が悪くなっている部分より狭い範囲)に設定してしまうと、この周期性が良い部分の画像のみ(或いは周期性が悪い部分の画像のみ)を切り出して演算を行ってしまう可能性がある。すなわち、このような狭い範囲を設定して演算をしてしまうと、本来AC値が中程度になるべき画像であるにもかかわらず、算出したAC値が極端に大きくなってしまったり或いは極端に小さくなってしまったりし、正確な値を得ることができない可能性がある。従って、X方向に対する演算範囲は、X方向に対して周期性の良い部分と周期性の悪い部分の繰り返しの1周期分の長さ(図3中L2の長さ)以上とし、この周期性が良くなっている部分及び悪くなっている部分の繰り返しの影響を半減させ、正確な値を得るようにするのがよい。
【0106】
図19(A)に、表面の空間構造の周期性が全体として良いポリシリコン膜の表面画像を示し、図19(B)にこの画像を模式的に示したものを示す。表面の空間構造の周期性が良い場合、本来AC値は大きくなるはずである。しかしながら、このように全体として周期性が良い場合であったとしても、周期性が悪くなっている部分が、X方向に対して発生する特徴がある。この周期性が悪くなっている部分は、X方向にある程度の長さに亘り形成されている。そのため、もし、X方向の演算範囲をこの周期性が悪くなっている部分より狭い範囲に設定してしまうと、この周期性が悪い部分の画像のみを切り出して演算を行ってしまう可能性がある。すなわち、このような狭い範囲を設定して演算をしてしまうと、本来AC値が大きくなるべき画像であるにもかかわらず、算出したAC値が小さくなってしまい、正確な値を得ることができない可能性がある。従って、X方向に対する演算範囲は、周期性が良いポリシリコン膜の表面画像に対して演算する場合に、この周期性が悪くなっている部分が演算範囲に含まれたとしても、充分AC値が低くなるように定めなければならない。例えば、X方向に対するAC値の演算範囲を、周期性が悪くなっている部分の長さ(図4中L3の長さ)の2倍以上とし、この周期性が悪くなっている部分の影響を半減させ、正確な値を得るようにするのがよい。
【0107】
X方向に対する演算範囲は、以上の3つの条件を満足するように設定すると、正確なAC値を得ることができる。すなわち、表面の空間構造の周期性が全体として悪いポリシリコン膜における周期性の良い部分の2倍の範囲以上であること、表面の空間構造の周期性が全体として中程度のポリシリコン膜における周期性の良い部分と周期性の悪い部分の繰り返しの1周期分以上であること、表面の空間構造の周期性が全体として良いポリシリコン膜における周期性の悪い部分の2倍の範囲以上であること、を満足するように設定すると正確なAC値を得ることができる。
【0108】
一方、Y方向に対する演算範囲は、最適なエネルギー密度でレーザアニールをした際に形成される複数の直線状の凸部の配列周期に対して、周期性を算出しているわけであるので、自己相関を求めるためには、図19に示しているように、その2周期分以上の範囲が必要となる。
【0109】
なお、精度を高めるために演算範囲を広げる場合、Y方向に演算範囲を広げるよりも、X方向に演算範囲を広げる方が、精度が高くなる可能性が高い。これは、X方向に演算範囲を広げれば、周期性が悪いポリシリコン膜に発生している周期性の良い部分の影響、周期性が中程度のポリシリコン膜の周期性が良い部分と悪い部分のX方向の繰り返しの影響、周期性が良いポリシリコン膜に発生している周期性の悪い部分の影響が、除去されるためである。従って、演算範囲を設定する場合には、X方向の長さが、Y方向の長さ以上となっている長方形の範囲とするのがよい。
【0110】
また、上述したようにレーザアニールをした際に生じる複数の直線状の凸部の配列の周期は、0.3μmなので、Y方向の演算範囲は0.6μm以上とするのが望ましい。また、経験上、全体として周期性が中程度のポリシリコン膜の場合、X方向に対する周期性の良い部分と周期性の悪い部分との繰り返し周期は、5μmであったので、X方向の演算範囲は5μm以上とするのが望ましい。
【0111】
(4) つぎに、再現性よくAC値を算出するためのポリシリコン膜評価装置20の紫外光の光量の制御について説明をする。
【0112】
ポリシリコン膜評価装置20では、紫外光をポリシリコン膜の表面に照射し、その反射光をCCDにより撮像し、その撮像画像からAC値を算出している。
【0113】
ここで、AC値は、CCDにより撮像された撮像画像に基づき算出されるので、その撮像画像の明るさによって、AC値の値が変動してしまう場合がある。例えば、CCDへの露光量不足の場合や露光量がオーバーした場合などは、その撮像画像自体のコントラストが少なくなり、凹凸の状態を認識できなくなるためである。
【0114】
図20に、CCDへの紫外光の露光量に対するAC値の変動を示したグラフを示す。露光量(μJ/cm)は、CCDのシャッタが開いている時間(s)×照射光量(mW/cm)で表される。ここで、この図20に示すように、AC値は、露光量がある一定の範囲(図中Tで示した範囲)にある場合、その値が一定となっている。すなわち、露光量をこの一定の範囲内とするように制御することによって、AC値が再現性よく得られるように、CCDへの入射光量を制御することができる。
【0115】
そのため本実施の形態のポリシリコン膜評価装置20では、対物レンズからの紫外光の出射光量を例えばフォトディテクタ等で検出して、ポリシリコン膜への照射光量を検出する。そして、この照射光量とCCDのシャッタスピードから露光量を算出し、CCDへの入射光量をモニタする。そして、この入射光量をモニタリングしながら、例えば、紫外光レーザのパーワー、シャッタスピード等をフィードバック制御して、露光量が上記一定の範囲に入るようにコントロールする。
【0116】
また、図21に、撮像画像の画面の明るさに対するAC値の変動を示したグラフを示す。撮像画像の画面の明るさは、ここでは256階調で表している。ここで、この図21に示すように、AC値は、撮像画像の明るさがある一定の範囲(図中Tで示した範囲)にある場合、その値が一定となっている。すなわち、撮像画像の明るさをこの一定の範囲内とするように制御することによって、AC値が再現性よく得られるように、CCDへの入射光量を制御することができる。このように上述したように露光量を検出するのではなく、撮像画像の明るさを検出しても、CCDへの入射光量を制御することが可能である。
【0117】
そのため、本実施の形態のポリシリコン膜評価装置20では、撮像画像の画面の明るさを、CPUなどで演算して、入射光量をモニタする。そして、この入射光量をモニタリングしながら、例えば、紫外光レーザのパーワー、シャッタスピード等をフィードバック制御して、露光量が上記一定の範囲に入るようにコントロールする。
【0118】
(5) 次に、上述したように演算した結果得られるAC値と、ポリシリコン膜のグレーンサイズ及びポリシリコン膜に与えられるエネルギーとの関係を説明する。
【0119】
AC値は、図22に示すように、エキシマレーザアニールによりポリシリコン膜に与えられるエネルギーが、あるエネルギーEとなったときからその値が比例的に上昇し、あるエネルギーEでその値が最大となる。そして、AC値は、この最大となるエネルギーEでピーク値を迎え、その後その値が比例的に減少し、あるエネルギーEB2でその減少が終了し、その値が最小値となる。このようにAC値は、与えられるエネルギーに対してピーク特性を有している。
【0120】
このようなAC値のピーク特性を、図3で示したポリシリコン膜のグレーンサイズの変化の特性に重ね合わせてみると、図23に示すようになる。この図23に示すように、AC値のピーク特性を示すグラフの最大値が、ポリシリコン膜のグレーンサイズが適正となるエネルギー範囲内に入ることが分かる。さらに、AC値が比例的に上昇を開始するエネルギーEが、ポリシリコン膜に与えてグレーンサイズが適正となる許容最低エネルギーLよりも低くなる。また、AC値の比例的な減少が停止して最低値となったときのエネルギーEB2が、ポリシリコン膜の結晶粒径が微結晶化する閾値のエネルギーである許容最大エネルギーHよりも高くなる。
【0121】
したがって、このようなピーク特性を有するAC値からポリシリコン膜のグレーンサイズが良好なものであるかどうかを評価する場合には、AC値が図23中太線で示した範囲の値に入っているかどうかを判断すればよいこととなる。
【0122】
(6) このような特性を有するAC値を評価して、ポリシリコン膜が良品であるか否かの検査を行う場合には、例えば、検査対象となる基板のAC値が、許容最低エネルギーL或いは許容最大エネルギーHを与えたときに求められるACのいずれか高い方の値を閾値として、この閾値よりも大きければ良品であると判断することにより検査が可能である。
【0123】
また、このような特性を有するAC値を評価して、エキシマレーザアニール装置から出射されるレーザのエネルギ密度を最適に設定する場合には、例えば、エキシマレーザのエネルギ密度を変動させながら、複数個の基板に対してレーザアニール処理を行う。そして、各エネルギ密度に対応させたAC値の特性図を描き、具体的には、図22に示すような特性図を描き、この特性図から最適なエネルギ密度を求めればよい。
【0124】
(7) ところで、上述したようにボトムゲート型TFTでは、ゲート電極3がポリシリコン膜6の下層に位置しているので、レーザアニールを行った場合におけるエネルギーの拡散性が、ガラス基板2上(ソース/ドレイン領域上)のポリシリコン膜6よりも、ゲート電極3上のポリシリコン膜6の方が高くなる。そのため、エキシマレーザアニール装置から与えられるエネルギ密度が同一であっても、ゲート電極3上のポリシリコン膜6と、ガラス基板2上(ソース/ドレイン領域上)のポリシリコン膜6とで、与えられるエネルギーが異なることとなり、その影響からグレーンサイズが双方で異なってしまう。
【0125】
一般に、エキシマレーザアニール装置によりレーザアニールを行った場合、ゲート電極上に位置するポリシリコン膜と、ガラス基板上(ソース/ドレイン領域上)に位置するポリシリコン膜とで、エネルギ密度を変化させるような制御をすることはできず、同一のエネルギ密度の設定で、一律にエキシマレーザアニールを行うこととなる。
【0126】
そのため、ボトムゲート型TFTでは、エキシマレーザのエネルギ密度に対するAC値の特性は、図24に示すようになり、ガラス基板上(ソース/ドレイン領域上)と、ゲート電極上とで、そのピーク値が異なる位置となってしまう。具体的には、ガラス基板上(ソース/ドレイン領域上)に位置するポリシリコン膜のAC値の方が、ゲート電極上に位置するポリシリコン膜よりも低いエネルギ密度でピーク値を迎えることとなる。
【0127】
したがって、AC値を評価して、ポリシリコン膜が良品であるか否かの検査を行う場合、並びに、AC値を評価してエキシマレーザアニール装置から出射されるエネルギ密度を最適に設定する場合には、この両者(ガラス基板上及びゲート電極上)のポリシリコン膜が良好となるような値とする必要がある。
【0128】
続いて、ボトムゲート型TFTのポリシリコン膜について、エキシマレーザのエネルギ密度に対するAC値の具体的な実験データの一例を図25に示す。この図25に示すように、AC値は、ゲート電極上とガラス基板上とで異なるピーク値となる特性となる。例えば、この図25で示した特性図上では、エキシマレーザアニールでのエネルギ密度を380mJで設定することが最適であることが分かる。
【0129】
(8) 以上のように、ボトムゲート型TFTに形成されたポリシリコン膜を評価する場合に、ポリシリコン膜表面の空間構造の直線性及び/又は周期性を評価することにより、非破壊で容易にポリシリコンの検査をすることができ、検査工程を製造工程に組み込むことが可能となる。また、この直線性及び/又は周期性を数値化するので、目視検査等によらず数値演算が可能となる。さらに、数値化を行って評価を行うので、そのため自動検査が可能となり、また、高い精度で客観的な検査を行うことができる。また、検査結果をアニール処理工程にフィードバックして、製造する薄膜トランジスタの歩留まりを高くすることができる。
【0130】
なお、以上ポリシリコン膜を撮像する装置として、波長266nmの紫外光レーザを用いた顕微鏡装置を適用していたが、ポリシリコン膜の表面空間構造の直線性及び/又は周期性を評価するための元画像を撮像する装置は、このような装置に限られない。例えば、SEMにより観察した画像に基づいて、ポリシリコン膜の表面空間構造の直線性及び/周期性を評価しても良い。例えば、図26に示すように、紫外光レーザを用いた顕微鏡装置(DUV)で撮像した画像に基づきAC値を求めた場合の特性と、SEMで撮像した画像に基づきAC値を求めた場合の特性とを比較すると、SEMの方がより精彩な画像となるため相対的にAC値が低くなるもの、その特性を示す曲線はほぼ同一となることが分かる。
【0131】
また、直線性及び/周期性を数値化する手法として自己相関関数を用いた例を詳細に説明したが、数値化の手法もこの自己相関関数を用いた例に限られない。
【0132】
ボトムゲート型TFTの製造プロセスにおける具体的な適用例
つぎに、ボトムゲート型TFTの製造プロセスに上記ポリシリコン膜評価装置20を適用した具体的な適用例について説明する。
【0133】
まず、図27に示すような、ボトムゲート型TFTのポリシリコン膜の撮像画像から得られたAC値を評価して、その評価結果をエキシマレーザアニール装置にフィードバックし、このエキシマレーザアニール装置30から出射されるレーザパワーを最適に設定する適用例(EQC:Equipment Quality Control)について説明する。
【0134】
エキシマレーザアニール装置は、上述したようにレーザパワーの設定値に対して、実際のレーザパワーの出力値の変動が比較的に大きい。出力されるレーザパワーは、ガウス分布的な特性を示しばらつきが生じ、所定のパワー設定値に対してある程度のばらつきが生じる。これに対して、ボトムゲート型TFTの場合、ポリシリコン膜に与えられるエネルギーの製造マージン(この範囲より外のエネルギーが与えられた場合には不良品となるエネルギー範囲)は、そのばらつきに対して相対的に大きな値となる。
【0135】
したがって、図28に示すように、ポリシリコン膜の製造マージンの中心位置がレーザパワーの設定値の最適値となり、この最適値にレーザパワーが設定してあれば、レーザパワーが変動したとしてもポリシリコン膜に与えられるエネルギーは製造マージン内に入ることとなり、高い歩留まりを得ることができる。しかしながら、図29に示すように、レーザパワーの設定値が、製造マージンの最適値に設定されていない場合には、レーザパワーが変動すると、ポリシリコン膜に与えられるエネルギーが製造マージンから外れる場合が多く、歩留まりが低くなってしまう。
【0136】
そのため、本適用例は、ボトムゲート型TFTのAC値のピーク特性を利用して、以下のように、エキシマレーザアニール装置のレーザパワーを最適値に設定する。
【0137】
まず、本適用例では、ポリシリコン膜を形成した複数枚の基板を製造する。このとき、各基板毎にエキシマレーザアニール装置のレーザパワーの設定を変化させ、それぞれの基板についてゲート電極上及びガラス基板上のAC値を求める。
【0138】
すると、図30や図31に示すような、AC値のピーク曲線をグラフ上に描くことができる。
【0139】
このようなAC値のピーク曲線を描くと、ゲート電極上とガラス基板上ともに良好なグレーンサイズを得られるレーザパワーの許容範囲(ポリシリコン膜の製造マージン)を求めることができる。具体的には、製造マージンの下位限界のレーザパワーは、ゲート電極上のポリシリコン膜に与えられるエネルギーの最低許容エネルギー(L)に対応したレーザパワー、具体的には、図30及び図31に示したゲート電極上のAC値の太線で描いた部分の左端のレーザパワー(MO(L))となる。また、製造マージンの上位限界のレーザパワーは、ガラス基板上のポリシリコン膜に与えられるエネルギーの最高許容エネルギー(H)に対応したレーザパワー、具体的には、図30及び図31に示したガラス基板上のAC値の太線で描いた部分の右端のレーザパワー(G(H))となる。
【0140】
そして、このように求めた製造マージンの中間値を求め、この中間値におけるレーザパワーを最適値として設定する。
【0141】
以上のようにAC値を求めて、製造マージンを求め、この製造マージンを最適値として設定することによって、ボトムゲート型TFTの歩留まりを高くすることができる。
【0142】
【発明の効果】
本発明にかかるポリシリコンの評価方法並びに薄膜トランジスタ製造システム及び方法では、レーザアニール処理により生成したポリシリコン膜を紫外光を用いた撮像部で撮像し、その撮像画像に基づきポリシリコン膜の表面空間構造の直線性及び/又は周期性を評価する。この評価の際に、撮像部に入射する上記反射光の光量を検出し、検出された上記光量に応じて撮像部に入射される反射光の光量を、所定の範囲内に制御する。
【0143】
このことにより本発明では、低温多結晶化プロセスで形成されたポリシリコン膜の表面の空間構造を自己相関関数を用いて数値化して膜の状態を評価する際に、撮像部に入射する紫外光を最適が最適に設定され、再現性よくポリシリコン膜の状態を評価することができる。
【図面の簡単な説明】
【図1】ボトムゲート型TFTの模式的な断面構成を説明する図である。
【図2】ポリシリコン膜を形成したのちのボトムゲート型TFTの断面構造を説明するための図である。
【図3】ポリシリコン膜のグレーンサイズと、エキシマレーザアニールで与えられるエネルギーとの関係を説明するための図である。
【図4】出力するレーザのエネルギ密度を最適値としてエキシマレーザアニールを行ったときのポリシリコン膜の膜表面の画像と、最適値よりも少ないパワーとしたときのポリシリコン膜の膜表面の画像と、最適値よりも大きいパワーとしたときのポリシリコン膜の膜表面の画像とを説明するための図である。
【図5】(A)は、エキシマレーザアニールをする前のTFT基板の断面構造を説明するための図である。(B)は、良好なエネルギ密度でエキシマレーザアニールを行った場合のTFT基板の断面構造を説明するための図である。(C)は、良好ではないエネルギ密度でエキシマレーザアニールを行った場合のTFT基板の断面構造を説明するための図である。
【図6】エキシマレーザアニールをする前の工程に、表面酸化工程を設けたTFTの製造プロセスを説明するための図である。
【図7】直線性および周期性があるポリシリコン膜の撮像画像を模式的に表した図である。
【図8】直線性および周期性がないポリシリコン膜の撮像画像を模式的に表した図である。
【図9】本発明の実施の形態のポリシリコン膜の評価装置の構成図である。
【図10】ポリシリコン膜の評価手順を説明するためのフローチャートである。
【図11】周期性が高い場合の自己相関関数を説明するための図である。
【図12】周期性が低い場合の自己相関関数を説明するための図である。
【図13】ポリシリコン膜の他の評価手順を説明するためのフローチャートである。
【図14】上記他の評価手順で評価した場合の周期性が高い場合の自己相関画像を説明するための図である。
【図15】上記他の評価手順で評価した場合の周期性が低い場合の自己相関画像を説明するための図である。
【図16】具体的な撮像画像に対する求められたAC値の特性を説明する図である。
【図17】表面の空間構造の周期性が悪いポリシリコン膜の表面画像を示す図、及びその模式的な構造を示す図である。
【図18】表面の空間構造の周期性が中程度のポリシリコン膜の表面画像を示す図、及び、その模式的な構成を示す図である。
【図19】表面の空間構造の周期性が良いポリシリコン膜の表面画像を示す図、及びその模式的な構造を示す図である。
【図20】CCDへの紫外光の露光量に対するAC値の変動を示したグラフを示す。
【図21】撮像画像の画面の明るさに対するAC値の変動を示したグラフを示す。
【図22】ポリシリコン膜に与えられるエネルギーに対する自己相関値の特性を説明するための図である。
【図23】ポリシリコン膜に与えられるエネルギーに対するAC値及びグレーンサイズの特性を説明するための図である。
【図24】ボトムゲート型TFTにおけるエキシマレーザのエネルギ密度に対するAC値の特性を説明するための図である。
【図25】ボトムゲート型TFTのポリシリコン膜について、エキシマレーザのエネルギ密度に対するAC値の具体的な実験データの一例を説明するための図である。
【図26】紫外光レーザを用いた顕微鏡装置(DUV)で撮像した画像に基づきAC値を求めた場合の特性と、SEMで撮像した画像に基づきAC値を求めた場合の特性とを比較して説明するための図である。
【図27】ボトムゲート型TFTの製造プロセスにポリシリコン膜評価装置を適用した具体的な適用例(EQC)の構成を説明するための図である。
【図28】ポリシリコン膜に与えられるエネルギーの製造マージンと、エキシマレーザのエネルギ密度の変動との関係を説明するための図である(最適にエネルギ密度が設定されている場合)。
【図29】ポリシリコン膜に与えられるエネルギーの製造マージンと、エキシマレーザのエネルギ密度の変動との関係を説明するための図である(最適にレーザのエネルギ密度が設定されていない場合)。
【図30】ボトムゲート型TFTの製造マージンと、エキシマレーザのエネルギ密度との関係の一例を示し、この一例からエネルギ密度の最適値を求めるための方法を説明するための図である。
【図31】ボトムゲート型TFTの製造マージンと、エキシマレーザのエネルギ密度との関係の他の一例を示し、この他の一例からエネルギ密度の最適値を求めるための方法を説明するための図である。
【符号の説明】
1 ボトムゲート型TFT、2 ガラス基板、3 ゲート電極、4 第1のゲート絶縁膜、5 第2のゲート絶縁膜、6 ポリシリコン膜、20 ポリシリコン膜評価装置、30 エキシマレーザアニール装置

Claims (12)

  1. 基板上にアモルファスシリコン膜を成膜し、成膜したアモルファスシリコン膜に対してエキシマレーザアニール処理することによって形成されたポリシリコン膜を評価するポリシリコン評価装置において、
    上記ポリシリコン膜に対して集光した紫外光レーザを照射し、その反射光を検出する光学系と、
    上記光学系により検出された上記反射光を撮像する紫外光に対して高感度化されたカメラと、
    上記紫外光に対して高感度化されたカメラにより撮像された上記ポリシリコン膜の撮像画像の自己相関関数のサイドピーク値に対する極大ピーク値の比(AC値)を算出して、ポリシリコン膜の表面空間構造の周期性を評価し、この評価に基づいて上記ポリシリコン膜の結晶状態を評価する評価手段と、
    上記紫外光に対して高感度化されたカメラに入射する上記反射光の光量を検出する光量検出手段と、
    上記紫外光に対して高感度化されたカメラに入射される反射光の光量を、上記ポリシリコン膜の撮像画像の自己相関関数のサイドピーク値に対する極大ピーク値の比(AC値)が一定となる範囲内に制御する制御手段と
    を備えることを特徴とするポリシリコン評価装置。
  2. 上記光量検出手段は、上記ポリシリコン膜に対して集光した紫外光レーザの照射を検出し、この検出した照射に上記紫外光に対して高感度化されたカメラの撮像時間とを乗算して、上記紫外光に対して高感度化されたカメラに入射される反射光の光量を算出すること
    を特徴とする請求項1記載のポリシリコン評価装置。
  3. 上記光量検出手段は、上記撮像画像の明るさから上記紫外光に対して高感度化されたカメラに入射される反射光の光量を算出すること
    を特徴とする請求項1記載のポリシリコン評価装置。
  4. 基板上にアモルファスシリコン膜を成膜し、成膜したアモルファスシリコン膜に対してエキシマレーザアニール処理することによって形成されたポリシリコン膜を評価するポリシリコン評価方法において、
    上記ポリシリコン膜に対して集光した紫外光レーザを照射し、その反射光を検出し、検出した上記反射光を紫外光に対して高感度化されたカメラで撮像し、
    上記紫外光に対して高感度化されたカメラにより撮像された、上記ポリシリコン膜の撮像画像の自己相関関数のサイドピーク値に対する極大ピーク値の比(AC値)を算出して、ポリシリコン膜の表面空間構造の周期性を評価し、この周期性に基づいてポリシリコン膜の結晶状態を評価し、
    上記紫外光に対して高感度化されたカメラに入射する上記反射光の光量を検出し、上記紫外光に対して高感度化されたカメラに入射される反射光の光量を、上記ポリシリコン膜の撮像画像の自己相関関数のサイドピーク値に対する極大ピーク値の比(AC値)が一定となる範囲内に制御すること
    を特徴とするポリシリコン評価方法。
  5. 上記ポリシリコン膜に対して集光した紫外光レーザの照射を検出し、この検出した照射に上記紫外光に対して高感度化されたカメラの撮像時間とを乗算して、上記紫外光に対して高感度化されたカメラに入射される反射光の光量を算出すること
    を特徴とする請求項4記載のポリシリコン評価方法。
  6. 上記撮像画像の明るさから上記紫外光に対して高感度化されたカメラに入射される反射光の光量を算出すること
    を特徴とする請求項4記載のポリシリコン評価方法。
  7. 薄膜トランジスタを製造する薄膜トランジスタ製造システムにおいて、
    基板上にアモルファスシリコン膜を成膜する成膜装置と、
    アモルファスシリコン膜に対してエキシマレーザアニール処理することによってチャネル層となるポリシリコン膜を生成するエキシマレーザアニール装置と、
    上記ポリシリコン膜に対して集光した紫外光レーザを照射し、その反射光を検出する光学系と、上記光学系により検出された上記反射光を撮像する紫外光に対して高感度化されたカメラと、上記紫外光に対して高感度化されたカメラにより撮像された上記ポリシリコン膜の撮像画像の自己相関関数のサイドピーク値に対する極大ピーク値の比(AC値)を算出して、ポリシリコン膜の表面空間構造の周期性を評価し、この評価に基づいて上記ポリシリコン膜の結晶状態を評価する評価手段と、上記紫外光に対して高感度化されたカメラに入射する上記反射光の光量を検出する光量検出手段と、上記紫外光に対して高感度化されたカメラに入射される反射光の光量を、上記ポリシリコン膜の撮像画像の自己相関関数のサイドピーク値に対する極大ピーク値の比(AC値)が一定となる範囲内に制御する制御手段とを有するポリシリコン検査装置とを備えること
    を特徴とする薄膜トランジスタ製造システム。
  8. 上記光量検出手段は、上記ポリシリコン膜に対して集光した紫外光レーザの照射を検出し、この検出した照射に上記紫外光に対して高感度化されたカメラの撮像時間とを乗算して、上記紫外光に対して高感度化されたカメラに入射される反射光の光量を算出すること
    を特徴とする請求項7記載の薄膜トランジスタ製造システム。
  9. 上記光量検出手段は、上記撮像画像の明るさから上記紫外光に対して高感度化されたカメラに入射される反射光の光量を算出すること
    を特徴とする請求項7記載の薄膜トランジスタ製造システム。
  10. エキシマレーザアニール装置によってアモルファスシリコン膜に対してアニール処理することによってチャネル層となるポリシリコン膜を生成するポリシリコン膜生成工程を有し、薄膜トランジスタを製造する薄膜トランジスタ製造方法において、
    基板上にアモルファスシリコン膜を成膜し、
    上記アモルファスシリコン膜に対して、エキシマレーザアニール処理を行ってポリシリコン膜を形成し、
    上記ポリシリコン膜に対して集光した紫外光レーザを照射し、その反射光を検出し、検出した上記反射光を紫外光に対して高感度化されたカメラで撮像し、
    上記紫外光に対して高感度化されたカメラにより撮像された、上記ポリシリコン膜の撮像画像の自己相関関数のサイドピーク値に対する極大ピーク値の比(AC値)を算出して、ポリシリコン膜の表面空間構造の周期性を評価し、この周期性に基づいてポリシリコン膜の結晶状態を評価し、
    上記紫外光に対して高感度化されたカメラに入射する上記反射光の光量を検出し、紫外光に対して高感度化されたカメラに入射される反射光の光量を、上記ポリシリコン膜の撮像画像の自己相関関数のサイドピーク値に対する極大ピーク値の比(AC値)が一定となる範囲内に制御すること
    を特徴とする薄膜トランジスタ製造方法。
  11. 上記ポリシリコン膜に対して集光した紫外光レーザの照射を検出し、この検出した照射に上記紫外光に対して高感度化されたカメラの撮像時間とを乗算して、上記紫外光に対して高感度化されたカメラに入射される反射光の光量を算出すること
    を特徴とする請求項10記載の薄膜トランジスタ製造方法。
  12. 上記撮像画像の明るさから上記紫外光に対して高感度化されたカメラに入射される反射光の光量を算出すること
    を特徴とする請求項10記載の薄膜トランジスタ製造方法。
JP2001012106A 2001-01-19 2001-01-19 ポリシリコン評価装置及び薄膜トランジスタ製造システム Expired - Fee Related JP4770028B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001012106A JP4770028B2 (ja) 2001-01-19 2001-01-19 ポリシリコン評価装置及び薄膜トランジスタ製造システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001012106A JP4770028B2 (ja) 2001-01-19 2001-01-19 ポリシリコン評価装置及び薄膜トランジスタ製造システム

Publications (2)

Publication Number Publication Date
JP2002217108A JP2002217108A (ja) 2002-08-02
JP4770028B2 true JP4770028B2 (ja) 2011-09-07

Family

ID=18879160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001012106A Expired - Fee Related JP4770028B2 (ja) 2001-01-19 2001-01-19 ポリシリコン評価装置及び薄膜トランジスタ製造システム

Country Status (1)

Country Link
JP (1) JP4770028B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3342387B2 (ja) * 1997-02-28 2002-11-05 三洋電機株式会社 半導体膜の評価方法、評価装置及び形成方法
JP3547979B2 (ja) * 1998-03-17 2004-07-28 三洋電機株式会社 半導体膜の形成装置及び形成方法
JP4116141B2 (ja) * 1998-03-26 2008-07-09 東芝松下ディスプレイテクノロジー株式会社 結晶シリコン膜の製造方法
JP2000031229A (ja) * 1998-07-14 2000-01-28 Toshiba Corp 半導体薄膜の検査方法及びそれを用いた半導体薄膜の製造方法
JP4586266B2 (ja) * 2000-12-18 2010-11-24 ソニー株式会社 薄膜トランジスタ製造システム及び物体表面の評価装置

Also Published As

Publication number Publication date
JP2002217108A (ja) 2002-08-02

Similar Documents

Publication Publication Date Title
JP4715016B2 (ja) ポリシリコン膜の評価方法
JP4556302B2 (ja) 薄膜トランジスタ製造システム及び方法、ポリシリコン評価方法及びポリシリコン検査装置
JP4586266B2 (ja) 薄膜トランジスタ製造システム及び物体表面の評価装置
JP2001110861A (ja) 半導体膜の検査方法、薄膜トランジスタの製造方法、および半導体膜の検査装置
JP5188718B2 (ja) 表示装置の製造方法
KR100753782B1 (ko) 폴리실리콘 평가 방법, 박막 트랜지스터를 준비하기 위한 폴리실리콘 검사 장치 및 방법
JP4556266B2 (ja) ポリシリコン評価方法、ポリシリコン検査装置、薄膜トランジスタ製造方法、及び、アニール処理装置
JP4774598B2 (ja) ポリシリコン評価装置及び薄膜トランジスタ製造システム
JP4770027B2 (ja) ポリシリコン評価方法並びに薄膜トランジスタ製造システム及び方法
JP2003133560A (ja) 薄膜トランジスタの製造方法
JP4770028B2 (ja) ポリシリコン評価装置及び薄膜トランジスタ製造システム
JP4631116B2 (ja) 薄膜トランジスタ製造方法
JP4572436B2 (ja) 薄膜トランジスタ製造方法
JP2008177476A (ja) 半導体評価方法、半導体評価装置、半導体デバイス製造方法、および半導体デバイス製造装置
JP3954488B2 (ja) 結晶膜の検査方法および検査装置
JP2004063504A (ja) 結晶膜の検査方法および検査装置
TW202410232A (zh) 散射熔化偵測系統及其使用方法
JP5453372B2 (ja) ポリシリコン結晶膜の検査方法および検査装置
JP2005003566A (ja) 結晶膜の検査方法および検査装置
JP2014011240A (ja) 結晶膜の検査方法及び検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees