JP4743935B2 - 圧電トランスおよびadコンバータ - Google Patents

圧電トランスおよびadコンバータ Download PDF

Info

Publication number
JP4743935B2
JP4743935B2 JP2000127836A JP2000127836A JP4743935B2 JP 4743935 B2 JP4743935 B2 JP 4743935B2 JP 2000127836 A JP2000127836 A JP 2000127836A JP 2000127836 A JP2000127836 A JP 2000127836A JP 4743935 B2 JP4743935 B2 JP 4743935B2
Authority
JP
Japan
Prior art keywords
voltage
piezoelectric
electrode
piezoelectric transformer
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000127836A
Other languages
English (en)
Other versions
JP2001308404A (ja
Inventor
春美 林
弘 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000127836A priority Critical patent/JP4743935B2/ja
Publication of JP2001308404A publication Critical patent/JP2001308404A/ja
Application granted granted Critical
Publication of JP4743935B2 publication Critical patent/JP4743935B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は圧電トランスおよびADコンバータに関し、特に、各種電子機器に用いられるACアダプタやDC−DCコンバータ、およびノートパソコン、携帯用端末等に使用される液晶ディスプレイ用のバックライト冷陰極管のインバータ等に用いられる圧電トランスおよびADコンバータに関する。
【0002】
【従来技術】
近年、電子機器の小型化に関し、電源回路の小型化は重要な課題の一つであり、電源回路内の高周波化による小型化が図られている。
【0003】
従来のスイッチング電源では、変圧器として電磁誘導を原理とする電磁トランスを用いるが、高周波下での電磁トランスは、ヒステリシス損、渦電流損および表皮効果による損失が増大するという問題があった。
【0004】
さらに、電磁トランス自身の小型化、薄型化は、巻線の極細線多数巻による銅損、磁気結合の低下および漏れ磁束の増加を招き、いずれも電源回路の効率を大きく下げる原因となっていた。さらにまた、巻線による電磁ノイズの発生などの問題があった。
【0005】
一方、圧電トランスは圧電効果を原理とし、電磁トランスと比較して、小型化してもエネルギー密度が高く、かつ巻線を用いないため電磁ノイズが少ないなどの長所がある。
【0006】
図5に、従来のローゼン型圧電トランスを示す。このローゼン型圧電トランスは、長板状圧電板1の長手方向のほぼ半分を1次側とし、厚み方向に電極2、3が形成され、長手方向の残るほぼ半分を2次側とし、端面に電極4が形成されて構成されている。1次側は厚み方向に分極され、2次側は長手方向に分極されている。圧電トランスの1次側は圧電板1の制動容量が大きいため低インピーダンスであり、2次側は制動容量が小さいため高インピーダンスである。
【0007】
そして、2次側の電極4と1次側の電極2(あるいは3)に負荷抵抗を接続し、圧電トランスの1次側の電極2、3間に、圧電板1の長さで決まる圧電トランスの共振周波数あるいはその近傍の周波数の交流電圧を印加すると、逆圧電効果により長さ方向に強い機械的振動を励起し、これにより電極4に圧電効果によって電荷が発生し、2次側の電極4と1次側の電極2(あるいは3)間に電圧が得られる。
【0008】
このローゼン型圧電トランスは、2次側の制動容量にもよるが、一般に使用される範囲として、負荷抵抗が10KΩ以上の高インピーダンスであれば、昇圧用の圧電トランスとして、一方、負荷が10KΩ未満の低インピーダンスであれば降圧用の圧電トランスとして動作する。
【0009】
一方、負荷抵抗を1次側の電極2、3間に接続し、圧電トランスの2次側の電極4を入力とし、電極4と電極2(あるいは3)に共振周波数あるいはその近傍の周波数の交流電圧を印加すると、負荷抵抗が高インピーダンスであれば昇圧用の圧電トランスとして、低インピーダンスであれば降圧用の圧電トランスとして動作する。
【0010】
【発明が解決しようとする課題】
しかしながら、上記ローゼン型圧電トランスにおいて、1次側を入力とし、2次側を出力とした場合、2次側の電極4の面積が狭いため、電極4に表れる電荷量が少なく、高出力電流を得ることは困難であった。
【0011】
また電極4と電極2(あるいは3)との距離が長いため、圧電トランスの出力側の容量が小さく、出力インピーダンスが高い。そのため、負荷を接続した場合、高出力電力が得られる負荷はおのずと高いものに制限されてしまうという問題があった。
【0012】
即ち、例えば、ノートパソコン等の電子機器に用いられるアダプタ用電源の場合、負荷が低インピーダンスのため、従来のローゼン型圧電トランスでは高出力電力を得ることができず、アダプタ用電源として用いることができないという問題があった。
【0013】
一方、上記圧電トランスにおいて、2次側を入力とし、1次側を出力とすると、出力側電極面積は広くなるが、電極4と電極2(あるいは3)との距離が長いため、入力インピーダンスが高くなり、圧電トランス入力部での損失が大きく、高出力電力を得ることができない。
【0014】
また、入力インピーダンスを下げるため電極4の面積を広げると、圧電トランス自体が大型化してしまい、圧電トランスの持つ小型という利点を損なうという問題があった。
【0015】
さらに、上記従来のローゼン型圧電トランスでは、電極4を持つため、単一の磁器からなる圧電板1を長手方向と厚み方向の異なる2方向に分極する必要があり、そのため、分極方向が異なる界面付近で分極に伴う大きな応力が発生し、使用中に圧電板1が損傷したり破壊するなど信頼性が低いという問題があった。
【0016】
また、単一の磁器に方向が異なる2種類の分極を施す必要があるため、製造が困難であるという問題があった。さらに、圧電板1の長手方向の分極作業は高電圧を印加する必要があるため、作製時のトランス破壊および作製時における作業の危険性が増大するという問題があった。
【0017】
このような問題を解決するために、近年、圧電基板に、電圧入力部、電圧出力部を設け、これらの電圧入力部、電圧出力部を、圧電体層と内部電極層を交互に積層して構成した圧電トランスが知られている(例えば、特開平11−4026号公報参照)。
【0018】
しかしながら、このような積層型の圧電トランスでは、上下の内部電極を交互にずらし、外部電極は側面から上・下面にまで回り込むように形成されているために、図6(a)に示すように積層体6の角部での電極7の厚みが薄くなり断線が生じることがあった。それを解決する方法として、図6(b)に示すように積層体6の角部を研磨したり、図6(c)に示すように積層体6の角部に電極7の盛り上がり(こぶ)を形成したりする方法が考えられるが、研磨の場合は角部を均等に再現よく研磨するのは非常に難しく、電極7の盛り上がり(こぶ)を形成する場合も盛り上がりに対する再現性に問題があり、どちらの方法も信頼性という点で問題があった。
【0019】
本発明は、低負荷時に高出力電力が得られ、かつ大出力電流を高効率で取り出すことができるとともに、小型化を達成でき、さらに、外部電極と内部電極を確実に接続できる圧電トランスおよびADコンバータを提供することを目的とする。
【0020】
【課題を解決するための手段】
本発明の圧電トランスは、両主面が長方形状の圧電基板の長さ方向に、第1の電圧入力部、電圧出力部第2の電圧入力部を順次形成し、前記電圧出力部における前記圧電基板内に、4以上の出力部用内部電極を厚み方向に所定間隔を置いて設けるとともに、前記電圧出力部における前記圧電基板の側面に、前記出力部用内部電極に交互に接続する一対の出力部用側面電極を設け、さらに、前記電圧出力部における前記圧電基板の両主面にそれぞれ出力部用外部電極を設け、前記出力部用外部電極と、該出力部用外部電極に最も近い前記出力部用内部電極とをビアホール導体により接続してなり、前記圧電基板の幅方向に縦振動するものである。
【0021】
このような構成を採用することにより、電圧出力部において、外部電極を側面から上・下面にまで回り込むように形成する必要がなくなり、積層体の角部における断線の危険がなくなるとともに、圧電基板の両主面に形成された出力部用外部電極を、ビアホール導体を介して出力部用内部電極と確実に接続することが可能となる。
【0022】
また、積層構造にすることで、同じ設置面積で電圧出力部の電極面積を広くすることができ、大電力電流が取り出せる。さらに、圧電基板の厚さ方向に分極するため、分極処理用の印加電圧を低くすることができる。
【0023】
本発明の圧電トランスでは、前記第1および第2の電圧入力部のそれぞれにおける前記圧電基板内に、一対の入力部用内部電極を厚み方向に所定間隔を置いて設けるとともに、前記第1および第2の電圧入力部のそれぞれにおける圧電基板の両主面にそれぞれ入力部用外部電極を設けてなり、前記入力部用外部電極と前記入力部用内部電極とをビアホール導体により接続してなることが望ましい。
【0024】
このような構造によれば、電圧入力部において、外部電極を側面から上・下面にまで回り込むように形成する必要がなくなり、積層体の角部における断線の危険がなくなるとともに、圧電基板の両主面に形成された入力部用外部電極を、ビアホール導体を介して入力部用内部電極と確実に接続することが可能となる。
【0025】
また、電圧入力部、電圧出力部における圧電基板の両主面に、それぞれ入力部用外部電極、出力部用外部電極を形成することにより、これらの入力部用外部電極、出力部用外部電極を用いて、単一方向に分極処理を行うことができるため、製造が容易となる。
【0026】
また、本発明の圧電トランスでは、前記一対の入力部用内部電極間の圧電体層、および前記出力部用内部電極間の圧電体層が厚み方向に分極され、前記電圧出力部の隣設する前記圧電体層の分極方向が逆であり、前記圧電基板の幅方向振動で基本波振動することが望ましい。
【0027】
このような構造によれば、両側の電圧入力部の圧電体層に、圧電基板の主面の幅方向振動で基本波振動する振動(以下、幅方向縦振動ということもある)が生じ、例えば基本波の共振周波数近傍の周波数の交流電圧を入力すれば、電気機械結合係数K’31をもって圧電基板の電圧入力部に幅方向縦振動の基本波が励振され、再び電気機械結合係数K’31をもって、中央の電圧出力部の圧電体層に入力電圧と同じ周波数の出力電圧が発生する。
【0028】
幅方向縦振動の電気機械結合係数は一般的に長さ方向の電気機械結合係数よりも大きいが、本発明の圧電トランスでは、幅方向縦振動を利用するために、長さ方向の振動モードを利用する従来のローゼン型圧電トランスに比べると、エネルギー伝送を行う場合においては、高効率化、高電力化が可能となる。
【0029】
また、圧電トランスの出力側の制動容量をCd2、圧電トランスの共振周波数をfr、負荷抵抗をRLとした場合、ローゼン型圧電トランスと比較して、同形状において電極面積を広く取れるためCd2を大きな値とでき、共振周波数frに関しても、幅方向縦振動を用いるため大きな値にできる。
【0030】
最大電力を取れる負荷抵抗、すなわちインピーダンス整合となる負荷抵抗RL’は、RL’=1/(2πfrCd2)で決定されるので、本発明の圧電トランスでは、従来のローゼン型圧電トランスと比べて、低インピーダンスにおいて高出力電力を得ることができる。
【0031】
本発明の圧電トランスは、基本波モードで作動することが望ましい。これにより、一般に、基本波の電気機械結合係数は高次モードの電気機械結合係数に比べて大きいことから、基本波を利用した本発明の圧電トランスは、高次モードを利用したトランスと比較すると材料の持つ特性を充分に発揮でき、高効率化、高電力化が可能となる。
【0032】
また、本発明の圧電トランスでは、前記ビアホール導体が振動の節に形成されていることが望ましい。圧電基板の主面の幅方向に対して基本波モードで縦振動することにより、振動の節が圧電基板の幅方向の中央長さ方向に渡って形成され、この振動の節にビアホール導体を形成する振動を阻害することがない。また、このような振動の節に対応する外部電極の部分にリード線等を接続することができる。
【0033】
また、焼結後の磁器は焼成時に反りが生じるが、表層の圧電体層の表面を研磨することにより、上下面の平行を出し保持し易くできるとともに、研磨することによりビアホールに充填された導体を露出させ、外部電極との接続を確実にすることもできる。
【0034】
本発明のADコンバータは、交流電圧を直流電圧に変換する1次側整流回路と、前記直流電圧を高周波交流電圧に変換するとともに、該高周波交流電圧を降圧する発振回路と、降圧された前記高周波交流電圧を直流電圧に変換する2次整流回路とを具備するADコンバータであって、前記発振回路内に、上記圧電トランスを有するものである。
【0035】
【発明の実施の形態】
本発明の圧電トランスは、図1に示すように、両主面が長方形状の圧電基板20の長さ方向に、電圧入力部21、電圧出力部22、電圧入力部23が順次形成され、電圧入力部21、23における圧電基板20内に、一対の入力部用内部電極25a、25bが厚み方向に所定間隔を置いて設けられ、電圧出力部22における圧電基板20内に、6層の出力部用内部電極27a、27bが厚み方向に所定間隔を置いて交互に設けられている。
【0036】
即ち、電圧入力部21、23は、一対の入力部用内部電極25a、25bにより挟持された圧電体層29aと、表層圧電体層29b、29cとから構成されている。また、電圧出力部22は、出力部用内部電極27a、27bと圧電体層31aが交互に積層され、その上下の表層に表層圧電体層31b、31cを形成して構成されている。
【0037】
電圧出力部22における圧電基板20の側面には、出力部用内部電極27a、27bに交互に接続する一対の出力部用側面電極35a、35bが形成されている。これらの出力部用側面電極35a、35bは、圧電基板20の側面のみに形成されており、圧電基板20の角部には形成されていない。
【0038】
即ち、出力部用内部電極27a、27bは、図2(a)に示すように、交互に圧電基板20の側面に露出し、出力部用内部電極27aの端部は、出力部用側面電極35aと電気的に接続され、出力部用内部電極27bの端部は、出力部用側面電極35bと接続されている。
【0039】
また、一対の入力部用内部電極25a、25bは、図2(b)に示すようにその電圧出力部22側の端部を除いて、圧電基板20の側面に露出している。
【0040】
さらに、図2(c)に示すように、電圧出力部22における出力部用側面電極35a、35bと、この出力部用側面電極35a、35bと電気的に絶縁されている出力部用内部電極27a、27bとの間隔をL、対向して形成された一対の出力部用内部電極27a、27bの間隔をt、即ち圧電体層31aの厚みをtとした時、t/2≦L≦3t/2を満足することが望ましい。電圧出力部22における無電極部の幅を制御することにより、電圧出力部22における分極時の絶縁抵抗をも防止できる。
【0041】
また、電圧入力部21、23、電圧出力部22における圧電基板20の両主面には、それぞれ入力部用外部電極37a、37b、出力部用外部電極39a、39bが形成されており、入力部用外部電極37a、37bは、表層圧電体層29b、29cに形成されたビアホール内に導体を充填したビアホール導体33a、33bにより、それぞれ入力部用内部電極25a、25bに接続されており、出力部用外部電極39a、39bは、表層圧電体層31b、31cに形成されたビアホール内に導体を充填したビアホール導体36a、36bにより、出力部用外部電極39a、39bに最も近い出力部用内部電極27a、27bにそれぞれ接続されている。
【0042】
一対の入力部用内部電極25a、25b間の圧電体層29a、出力部用内部電極27a、27b間の圧電体層31aは厚み方向に分極され、電圧出力部22では、隣設する圧電体層31aの分極方向が逆とされている。
【0043】
この圧電トランスは、図1に示したように、圧電基板の幅方向に振動するものであり、基本波で作動することが望ましい。また降圧用として機能することが望ましい。
【0044】
本発明の圧電トランスの製造方法について説明する。例えば、圧電体層としてPZT系圧電磁器材料を用い、また内部電極材料としてAg/Pdを用い、図3に示すように、PZT系圧電材料からなるグリーンシート51上に、必要に応じてAg/Pdペーストをスクリーン印刷して入力部用内部電極25a、25b、出力部用内部電極27a、27bとなる内部電極パターンを形成し、表層圧電体層となるグリーンシートには打ち抜き加工でビアホール53を形成した後、Ag/Pdペーストを充填する。このようなグリーンシート51を、図3に示すように7層積層し、この積層成形体を焼成する。
【0045】
この後、両主面の表層圧電体層29b、29c、31b、31cの表面を研磨した後、電圧入力部21、23および電圧出力部22の両主面に、銀とガラスを主成分とする電極ペーストを塗布するとともに、圧電基板20側面に、銀とガラスを主成分とする電極ペーストを塗布して焼き付け、外部電極37a、37b、39a、39bを形成すると同時に、側面電極35a、35bを形成する。
【0046】
この後、電圧入力部21、23及び電圧出力部22の電極間に直流の高電界を印加して分極処理する。
【0047】
側面電極35a、35bは、例えば、蒸着、スパッタ等の手法を用いて形成しても良い。また、Ag以外の導電性材料を用いても良い。
【0048】
尚、ここでは圧電磁器材料と内部電極材料としてPZT系圧電磁器材料およびAg/Pdを用いたが、圧電性を有する圧電磁器材料およびそれと一体焼成可能である電極材料であれば他の組み合わせでも良いことはいうまでもない。
【0049】
本発明の圧電トランスでは、電圧入力部21、23の入力部用内部電極25a、25b間、即ち圧電体層29aに、圧電基板20の主面の幅方向xに縦振動する基本波の共振周波数近傍の周波数を持つ交流電圧を印加すれば、圧電横効果の電気機械結合係数K’31をもって圧電基板20が幅方向縦振動の基本波で励振し、再び圧電横効果の電気機械結合係数K’31をもって電圧出力部22の出力部用内部電極27a、27b間に、入力電圧と同じ周波数の電圧が発生する。このとき、出力電圧は負荷抵抗や駆動周波数に依存する。
【0050】
即ち、電圧入力部21、23の入力部用内部電極25a、25b間に、圧電基板20の幅方向に縦振動する基本波の共振周波数近傍の周波数を持つ交流電圧を印加すると、図1に示したように、圧電基板20の主面の幅方向(短辺方向)に半周期となるような振動(基本波)が生じ、つまり、短辺方向に伸縮する振動が生じ、この振動が中央の電圧出力部22に伝達され、電圧出力部22の出力部用内部電極27a、27b間に入力電圧と同じ周波数の電圧が発生する。
【0051】
そして、このような幅方向縦振動で基本波を用いると、図1の一点鎖線で示すように、圧電基板20の主面の短辺の中央部が振動の節Yとなり、この振動の節Yの部分で圧電基板20を保持すれば、圧電基板20の幅方向縦振動モードの基本波を妨げずに固定することができる。
【0052】
さらに、本発明の圧電トランスは幅方向縦振動モードを利用しており、一般に主面が長方形状の圧電基板20の幅方向縦振動の電気機械結合係数K’31は、圧電基板20の長さ方向振動の電気機械結合係数K31よりも大きいため、より高電力化、高効率化を図ることができる。
【0053】
また、本発明の圧電トランスは分極方向が積層方向の単一方向であるために、ローゼン型圧電トランスと比較して、圧電基板20の長さ方向の分極処理の必要がないため、比較的低電圧の直流電圧で分極でき、製造工程を簡略化でき、製造工程における安全性を向上できる。
【0054】
本発明の圧電トランスは、圧電横効果の電気機械結合係数K’31をもって交流の入力電圧を機械的な振動に変換し、再び圧電横効果の電気機械結合係数K’31をもって交流の出力電圧に変換するために、エネルギー伝送の高効率化、高電力化を図るために、圧電材料としては、電気機械結合係数K’31の大きな材料が望ましい。特にPZT系の圧電セラミック材料が望ましい。
【0055】
そして、本発明の圧電トランスでは、従来のように、外部電極37a、37b、39a、39bを側面から上・下面にまで回り込むように形成する必要がなくなり、圧電基板20の角部における断線の危険がなくなるとともに、圧電基板20の両主面に形成された外部電極37a、37b、39a、39bを、ビアホール導体33a、33b、36a、36bを介して内部電極25a、25b、27a、27bと確実に接続することができる。
【0056】
本発明のADコンバータは、図4に示すように、交流電圧を直流電圧に変換する1次側整流回路と、直流電圧を高周波交流電圧に変換するとともに、該高周波交流電圧を降圧する発振回路と、降圧された高周波交流電圧を直流電圧に変換する2次整流回路とを具備するものである。
【0057】
1次側整流回路は、例えば、ブリッジダイオードとコンデンサとを有し、2次側整流回路は、例えば、2個のダイオード、コンデンサを有し、発振回路は、スイッチング回路と、上記した圧電トランスを有している。
【0058】
【実施例】
図1に示した圧電トランスをグリーンシート法により作製した。先ず、圧電磁器材料としてPZT系圧電磁器材料を用い、また内部電極材料としてAg/Pdを用い、PZT系圧電磁器材料からなるグリーンシート上に、Ag/Pdペーストをスクリーン印刷し、さらに表層圧電体層となるグリーンシートには打ち抜き加工でビアホールを形成した後、Ag/Pdペーストを充填し、電圧入力部21、23、電圧出力部22の内部電極パターンを形成した。この内部電極パターンが形成されたグリーンシートを7枚積層し、焼成した。
【0059】
電圧入力部21、23では、圧電体層29aが1層、入力部用内部電極25a、25bが2層、表層圧電体層29b、29cが2層積層されて構成され、電圧出力部22では、圧電体層31aが5層、出力部用内部電極27a、27bが6層、表層圧電体層31b、31cが2層積層されて構成されており、圧電体層31aの厚さが0.3mm、圧電体層29aの厚さが1.5mmであった。焼成後、表層圧電体層29b、29c、31b、31cの研磨を行い、全体の長さ30mm、幅4.5mmに切断した。ビアホール導体33a、33b、36a、36bは、振動の節に形成した。
【0060】
電圧入力部21、23および電圧出力部22の両主面、および側面に、銀とガラスを主成分とする電極ペーストを塗布して焼き付けることにより、外部電極37a、37b、39a、39bを形成すると同時に、側面電極35a、35bを形成し、入力部用外部電極37aと入力部用内部電極25a、入力部用外部電極37bと入力部用内部電極25b、出力部用外部電極39aと出力部用内部電極27a、出力部用外部電極39bと出力部用内部電極27bの導通をとった。
【0061】
電圧入力部21、23の入力部用外部電極37a、37b、および入力部用内部電極25a、25bの寸法は、主面の長さ方向の辺が9mm、主面の幅方向の辺が4.5mmであり、入力部用第2外部電極37a、37bと、出力部用第2外部電極39a、39bとの間隔、および入力部用内部電極25a、25bと出力部用内部電極27a、27bの間隔は1.5mmとした。
【0062】
電圧出力部22の出力部用外部電極39a、39bの寸法は、主面の長さ方向の辺が9mm、主面の幅方向の辺が4.5mmであり、出力部用内部電極27a、27bの寸法は、主面の長さ方向の辺が9mm、主面の幅方向の辺が4.2mmであり、出力部用内部電極27a、27bと出力部用側面電極35a、35bの間隔Lを0.3mmとした。
【0063】
この後、190℃のシリコンオイル中で1.6kV/mmの電場を印加する、つまり電圧入力部21、23には2.4kVを、電圧出力部22には480Vを印加し、10分間分極を行い、圧電基板20を厚み方向に分極し、図1および図2に示すような圧電トランスを得た。
【0064】
そして、圧電トランスの電圧入力部21、23の入力部用外部電極37a、37b(1次側電極)に入力用端子を接続し、電圧出力部22の出力部用外部電極39a、39b(2次側電極)に出力用端子を接続し、この出力用端子に10Ωの負荷抵抗RLを接続した。入力電圧は関数発生器を用い振幅5Vの正弦波を入力側電極に印加し、出力用端子からの出力電圧(V)を検出し、出力電流(mA)、出力電力(mW)を求め、最大効率80%のトランスとして駆動することを確認した。この結果から、本発明の圧電トランスでは、負荷抵抗が10Ωでも高い変換効率を示すことが判る。
【0065】
【発明の効果】
本発明の圧電トランスでは、電圧入力部の入力部用内部電極間に、圧電基板の幅方向に振動する基本波の共振周波数近傍の周波数の交流電圧を入力すれば、電気機械結合係数K’31をもって圧電基板に幅方向縦振動の基本波が励振され、再び電気機械結合係数K’31をもって電圧出力部の出力部用内部電極間に入力電圧と同じ周波数の出力電圧が発生し、従来のローゼン型圧電トランスと比較して、大出力電流を取り出せる。
【0066】
そして、表層の圧電体に形成されたビアホール導体により、入力部用外部電極と入力部用内部電極の接続、および出力部用外部電極と出力部用内部電極の接続を確実に行えるようになり、磁器の角部の加工や電極材料の角部での盛り上がり(こぶ)を形成する必要がない。
【図面の簡単な説明】
【図1】本発明の圧電トランスを示す斜視図である。
【図2】図1の圧電トランスを示すもので、(a)は図1のB−B線に沿った断面図、(b)は図1のA−A線に沿った断面図、(c)は(a)の一部を拡大して示す断面図である。
【図3】本発明の圧電トランスを作製する際のグリーンシートの積層を説明する分解斜視図である。
【図4】ADコンバータを示す回路図である。
【図5】従来のローゼン型圧電トランスを示す斜視図である。
【図6】圧電基板の角部を示すもので、(a)は角部での電極厚みが薄くなった状態を示す断面図、(b)は圧電基板の角部を研磨した断面図、(c)は圧電基板の角部に電極の盛り上がりを形成した状態を示す断面図である。
【符号の説明】
20・・・圧電基板
21、23・・・電圧入力部
22・・・電圧出力部
25a、25b・・・入力部用内部電極
27a、27b・・・出力部用内部電極
29a、31a・・・圧電体層
33a、33b、36a、36b・・・ビアホール導体
35a、35b・・・出力部用側面電極
37a、37b・・・入力部用外部電極
39a、39b・・・出力部用外部電極

Claims (7)

  1. 両主面が長方形状の圧電基板の長さ方向に、第1の電圧入力部、電圧出力部第2の電圧入力部を順次形成し、前記電圧出力部における前記圧電基板内に、4以上の出力部用内部電極を厚み方向に所定間隔を置いて設けるとともに、前記電圧出力部における前記圧電基板の側面に、前記出力部用内部電極に交互に接続する一対の出力部用側面電極を設け、さらに、前記電圧出力部における前記圧電基板の両主面にそれぞれ出力部用外部電極を設け、前記出力部用外部電極と、該出力部用外部電極に最も近い前記出力部用内部電極とをビアホール導体により接続してなり、前記圧電基板の幅方向に縦振動することを特徴とする圧電トランス。
  2. 前記第1および第2の電圧入力部のそれぞれにおける前記圧電基板内に、一対の入力部用内部電極を厚み方向に所定間隔を置いて設けるとともに、前記第1および第2の電圧入力部のそれぞれにおける圧電基板の両主面にそれぞれ入力部用外部電極を設けてなり、前記入力部用外部電極と前記入力部用内部電極とをビアホール導体により接続してなることを特徴とする請求項1記載の圧電トランス。
  3. 前記一対の入力部用内部電極間の圧電体層、および前記出力部用内部電極間の圧電体層が厚み方向に分極され、前記電圧出力部の隣設する前記圧電体層の分極方向が逆であることを特徴とする請求項1または2記載の圧電トランス。
  4. 前記圧電基板の幅方向振動で基本波振動することを特徴とする請求項1乃至3のうちいずれかに記載の圧電トランス。
  5. 前記ビアホール導体が振動の節に形成されていることを特徴とする請求項1乃至4のうちいずれかに記載の圧電トランス。
  6. 降圧用であることを特徴とする請求項1乃至5のうちいずれかに記載の圧電トランス。
  7. 交流電圧を直流電圧に変換する1次側整流回路と、前記直流電圧を高周波交流電圧に変換するとともに、該高周波交流電圧を降圧する発振回路と、降圧された前記高周波交流電圧を直流電圧に変換する2次整流回路とを具備するADコンバータであって、前記発振回路内に、請求項1乃至6のうちいずれかに記載の圧電トランスを有することを特徴とするADコンバータ。
JP2000127836A 2000-04-27 2000-04-27 圧電トランスおよびadコンバータ Expired - Lifetime JP4743935B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000127836A JP4743935B2 (ja) 2000-04-27 2000-04-27 圧電トランスおよびadコンバータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000127836A JP4743935B2 (ja) 2000-04-27 2000-04-27 圧電トランスおよびadコンバータ

Publications (2)

Publication Number Publication Date
JP2001308404A JP2001308404A (ja) 2001-11-02
JP4743935B2 true JP4743935B2 (ja) 2011-08-10

Family

ID=18637366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000127836A Expired - Lifetime JP4743935B2 (ja) 2000-04-27 2000-04-27 圧電トランスおよびadコンバータ

Country Status (1)

Country Link
JP (1) JP4743935B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779025A (ja) * 1993-06-18 1995-03-20 Murata Mfg Co Ltd 積層型圧電体素子の内部電極と外部電極の接続構造
JP2842382B2 (ja) * 1996-06-11 1999-01-06 日本電気株式会社 積層型圧電トランスおよびその製造方法
JPH114026A (ja) * 1997-04-18 1999-01-06 Nec Corp 積層型圧電トランス
JP3137063B2 (ja) * 1997-12-16 2001-02-19 日本電気株式会社 圧電トランス素子とその製造方法

Also Published As

Publication number Publication date
JP2001308404A (ja) 2001-11-02

Similar Documents

Publication Publication Date Title
JP2004516657A (ja) 複合圧電変圧器
JP2606667B2 (ja) 圧電磁器トランス及びその駆動方法
EP1446842A1 (en) Multilayer piezoelectric transformer
JP3706509B2 (ja) 圧電トランス
WO1997028568A1 (fr) Transformateur piezo-electrique
JP4743935B2 (ja) 圧電トランスおよびadコンバータ
JP3060666B2 (ja) 厚み縦振動圧電磁器トランスとその駆動方法
JP3709114B2 (ja) 圧電トランス
JP2508964B2 (ja) 圧電磁器トランス及びその駆動方法
JP3659309B2 (ja) 圧電トランス
JP3673433B2 (ja) 圧電トランス
JP4831859B2 (ja) 圧電トランス
JP3022373B2 (ja) 圧電磁器トランスとその駆動方法
JP2576648B2 (ja) 厚み縦振動圧電磁器トランスとその駆動方法
JP2002076465A (ja) 圧電トランスおよびadコンバータ
JP4721540B2 (ja) 圧電トランス及び電源装置
JP2531087B2 (ja) 圧電磁器トランス及びその駆動方法
JP2003017772A (ja) 圧電セラミックトランス回路
JPH11145528A (ja) 圧電トランス
JP2003008098A (ja) 積層型圧電トランス
JP2001068753A (ja) 圧電トランス
JPH10200172A (ja) 圧電トランス
JPH10223939A (ja) 圧電トランス
JP4747540B2 (ja) 圧電トランス
JP2002324923A (ja) 圧電トランス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4743935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term