JP4739654B2 - Method for producing Al-Mg-Si alloy plate and Al-Mg-Si alloy plate - Google Patents

Method for producing Al-Mg-Si alloy plate and Al-Mg-Si alloy plate Download PDF

Info

Publication number
JP4739654B2
JP4739654B2 JP2003052621A JP2003052621A JP4739654B2 JP 4739654 B2 JP4739654 B2 JP 4739654B2 JP 2003052621 A JP2003052621 A JP 2003052621A JP 2003052621 A JP2003052621 A JP 2003052621A JP 4739654 B2 JP4739654 B2 JP 4739654B2
Authority
JP
Japan
Prior art keywords
alloy plate
mass
producing
less
plate according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003052621A
Other languages
Japanese (ja)
Other versions
JP2003321755A (en
Inventor
数男 木村
信彦 明城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CNA038050749A priority Critical patent/CN1639373A/en
Priority to AU2003211572A priority patent/AU2003211572A1/en
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to KR1020047013535A priority patent/KR100686657B1/en
Priority to PCT/JP2003/002379 priority patent/WO2003074750A1/en
Priority to EP10154099.5A priority patent/EP2184375B1/en
Priority to EP03743538A priority patent/EP1482065B1/en
Priority to DE60336891T priority patent/DE60336891D1/en
Priority to JP2003052621A priority patent/JP4739654B2/en
Priority to AT03743538T priority patent/ATE507316T1/en
Priority to TW092104430A priority patent/TWI284152B/en
Priority to US10/376,266 priority patent/US7189294B2/en
Publication of JP2003321755A publication Critical patent/JP2003321755A/en
Application granted granted Critical
Publication of JP4739654B2 publication Critical patent/JP4739654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Abstract

<P>PROBLEM TO BE SOLVED: To produce an Al-Mg-Si alloy plate having excellent thermal conductivity, electric conductivity and strength by simple and minimal steps. <P>SOLUTION: The process for producing the alloy plate comprises a step of hot rolling an Al-Mg-Si alloy ingot which has a composition consisting of, by mass, 0.2 to 0.8% Si, 0.3 to 1% Mg, ≤0.5% Fe, ≤0.5% Cu, further at least either of ≤0.1% Ti, and ≤0.1% B, and the balance Al with inevitable impurities and a step of cold rolling the resultant alloy plate. In the course between the completion of the hot rolling and the completion of the cold rolling, heat treatment is carried out by holding the rolled matter at 200 to 400°C for ≥1 h. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、Al−Mg−Si系合金板の製造方法、およびこの方法によって製造されるAl−Mg−Si系合金板に関する。
【0002】
さらにこの発明は、Al−Mg−Si系合金板、特に熱伝導性、導電性、強度および加工性に優れたAl−Mg−Si系合金板およびその製造方法、ならびにAl−Mg−Si系合金材に関する。
【0003】
【従来の技術】
PDP(プラズマディスプレイ)、LCD(液晶ディスプレイ)、ノートパソコン等シャーシやメタルベースプリント基板のように発熱体を内蔵または装着する部材材料においては、強度はもとより、速やかに放熱すべく優れた熱伝導性が要求される。しかも、昨今のこれら製品の高性能化、複雑化、小型化、発熱体の高密度化によって発熱量は飛躍的に増大し、益々熱伝導性と加工性の向上が希求されている。
【0004】
然るに、上記部材をアルミニウムで製作する場合、熱伝導性の高い材料としては、JIS 1100、1050、1070等の純アルミニウム系合金が適している。しかし、これらの合金は強度に難点がある。一方、高強度材料として採用されるJIS 5052合金は、純アルミニウム系合金よりも熱伝導性が著しく低い。また、Al−Mg−Si系合金は、熱伝導性が良く時効硬化により高強度も得られるが、圧延後高温で溶体化処理後時効処理するという複雑な工程が必要である。また、高い強度を得ても、曲げ加工性、張出加工性等の成形加工性が極端に低下するという欠点があった(例えば、特許文献1、2、3)。
【0005】
このような状況にあって、本出願人は、Al−Mg−Si系合金板の製造に際し、熱間圧延工程の圧延条件を規定することにより、熱伝導性と強度の両方を実現できる技術を提案し、溶体化処理および時効処理を行なわずとも所要の強度を得ることができた(特許文献4、5)。
【0006】
【特許文献1】
特開平8−209279号公報
【0007】
【特許文献2】
特開平9−1343644号公報
【0008】
【特許文献3】
特開2000−144294号公報
【0009】
【特許文献4】
特開2000−87198号公報
【0010】
【特許文献5】
特開2000−226628号公報
【0011】
【発明が解決しようとする課題】
しかしながら、上記技術においては、熱間圧延工程の任意のパス工程において、パス前の材料温度、パス間の冷却速度、パス上がり温度、上がり板厚を制御し、さらにその後の冷間圧延における加工度を制御するという、複雑な条件管理を要するものであった。
【0012】
また、製造された合金板の加工性は市場の要求を十分に満たすものではなく、厳しい条件で成形加工する場合、加工設備や加工方法に格別の配慮を要するものであった。
【0013】
ところで、JIS 1000系から7000系のアルミニウム合金においては、熱伝導率と導電率とが良好な相関性を示すことが知られている。図2に示すアルミニウム合金における熱伝導率と導電率の関係を回帰分析すると、回帰式:y=3.5335x+13.525、決定係数:R2=0.981が得られ、極めて高い相関性を示していることがわかる。従って、優れた熱伝導性を示すアルミニウム合金板は同時に優れた導電性をも兼ね備えるものであって、放熱部材材料として利用される他、導電部材材料としても好適に用いることができる。
【0014】
この発明は、上述した技術背景に鑑み、Al−Mg−Si系合金板を簡単で少ない工程で製造する方法を提供するとともにこの方法で製造されたAl−Mg−Si系合金板の提供を目的とする。
【0015】
さらにこの発明は、上述した技術背景に鑑み、熱伝導性、導電性、強度および加工性に優れたAl−Mg−Si系合金板を簡単で少ない工程で製造する方法を提供するとともに、この方法で製造されたAl−Mg−Si系合金板の提供を目的とする。また、この発明は熱伝導性、導電性、強度および加工性に優れたAl−Mg−Si系合金材の提供を目的とする。
【0016】
【課題を解決するための手段】
前記目的を達成するために、この発明のAl−Mg−Si系合金板の製造方法は下記の構成を有するものである。
(1) Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下、Cu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Alおよび不可避不純物からなるAl−Mg−Si系合金鋳塊を、熱間圧延し、さらに冷間圧延する工程を含む合金板の製造方法であって、熱間圧延後で冷間圧延終了までの間に、200〜400℃で1時間以上保持することにより熱処理を行うことを特徴とするAl−Mg−Si系合金板の製造方法。
(2) 合金鋳塊において、不純物としてのMnおよびCrが、Mn:0.1質量%以下、Cr:0.1質量%以下に規制されている前項1に記載のAl−Mg−Si系合金板の製造方法。
(3) 熱処理は、熱間圧延後冷間圧延前に行う前項1または2に記載のAl−Mg−Si系合金板の製造方法。
(4) 熱処理は、冷間圧延中に行う前項1または2に記載のAl−Mg−Si系合金板の製造方法。
(5) 熱処理は、220〜280℃で1〜10時間保持することにより行う前項1〜4のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。
(6) 合金鋳塊に対し、500℃以上で均質化処理を行う前項1〜5のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。
(7) 熱処理後の冷間圧延を20%以上の加工度で行う前項1〜6のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。
(8) 加工度は30%以上である前項7に記載のAl−Mg−Si系合金板の製造方法。
(9) 冷間圧延終了後、200℃以下で最終焼鈍を行う前項1〜8のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。
(10) 最終焼鈍は、110〜150℃で行う前項9に記載のAl−Mg−Si系合金板の製造方法。
(11) 熱間圧延前に、材料温度を450〜580℃に予備加熱する前項1〜10のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。
(12) 熱間圧延の任意のパス工程において、パス前の材料温度を450〜350℃とし、パス後の冷却速度を50℃/分以上とする前項1〜11のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。
(13) 合金鋳塊中のSi含有量は0.32〜0.6質量%である前項1〜12のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。
(14) 合金鋳塊中のMg含有量は0.35〜0.55質量%である前項1〜12のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。
(15) 合金鋳塊中のFe含有量は0.1〜0.25質量%である前項1〜12のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。
(16) 合金鋳塊中のCu含有量は0.1質量%以下である前項1〜12のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。
(17) 合金鋳塊中のTi含有量は0.005〜0.05質量%である前項1〜12のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。
(18) 合金鋳塊中のB含有量は0.06質量%以下である前項1〜12のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。
(19) 合金鋳塊中のMn含有量は0.05質量%以下に規制されている前項1〜12のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。
(20) 合金鋳塊中のCr含有量は0.05質量%以下に規制されている前項1〜12のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。
【0017】
この発明のAl−Mg−Si系合金材は、下記の構成を有するものである。
(21) Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下、Cu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Alおよび不可避不純物からなり、導電率が55〜60%(IACS)であることを特徴とするAl−Mg−Si系合金材。
(22) 引張強さが140〜240N/mm2である前項21に記載のAl−Mg−Si系合金材。
(23) 不純物としてのMnおよびCrが、Mn:0.1質量%以下、Cr:0.1質量%以下に規制されている前項21または22に記載のAl−Mg−Si系合金材。
【0018】
この発明のAl−Mg−Si系合金板は、下記の構成を有するものである。
(24) 前項1〜20に記載された方法で製造されたAl−Mg−Si系合金板。
(25) Al−Mg−Si系合金板は、放熱部材材料、導電部材材料、ケース材料、あるいは反射板またはその支持体である前項21〜24に記載のAl−Mg−Si系合金板。
(26) Al−Mg−Si系合金板は、プラズマディスプレイ背面シャーシ材、プラズマディスプレイ筐体またはプラズマディスプレイ外装部材である前項21〜24に記載のAl−Mg−Si系合金板。
(27)Al−Mg−Si系合金板は、液晶ディスプレイ背面シャーシ材、液晶ディスプレイベゼル材、液晶ディスプレイ反射シート材、液晶ディスプレイ反射シート支持材または液晶ディスプレイ筐体である前項21〜24に記載のAl−Mg−Si系合金板。
【0019】
この発明の方法が対象とするAl−Mg−Si合金組成において、各元素の添加意義および含有量の限定理由は次のとおりである。
【0020】
MgおよびSiは強度の発現に必要な元素であり、Si:0.2〜0.8質量%、Mg:0.3〜1質量%とする。Si含有量が0.2質量%未満あるいはMg含有量が0.3質量%未満では十分な強度を得ることができない。一方、Si含有量が0.8質量%、Mg含有量が1質量%を超えると、熱間圧延での圧延負荷が高くなって生産性が低下するとともに、耳割れが大きくなって途中工程でトリミングが必要となる。また、成形加工性も悪くなる。好ましいSi含有量は0.32〜0.6質量%である。また好ましいMg含有量は0.35〜0.55質量%である。
【0021】
FeおよびCuは、成形加工上必要な成分であるが、多量に含有すると耐食性が低下して合金板としての実用性に欠けるため、Fe含有量を0.5質量%以下、好ましくは0.35質量%以下に規制し、Cu含有量を0.5質量%以下、好ましくは0.2質量%以下に規制する必要がある。さらに好ましいFe含有量は0.1〜0.25質量%、好ましいCu含有量は0.1質量%以下である。
【0022】
TiおよびBは、合金をスラブに鋳造する際に結晶粒を微細化するとともに凝固割れを防止する効果がある。前記効果はTiまたはBの少なくとも1種の添加によって得られ、両方を添加しても良い。しかし、多量に含有すると、晶出物の量が多くなりかつ大きな晶出物が形成されるため、製品への加工性が低下する。加えて、熱伝導性および導電性が低下する。これらの理由により、Ti含有量は0.1質量%以下とする。好ましいTi含有量は0.005〜0.05質量%である。また、B含有量は0.1質量%以下とする。好ましいB含有量は0.06質量%以下である。
【0023】
また、合金鋳塊には種々の不純物元素が不可避的に含有されるが、MnおよびCrは熱伝導性および導電性を低下させる原因となるため可及的に少ないことが好ましい。不純物としてのMn含有量を0.1質量%以下、Cr含有量を0.1質量%以下に規制することが好ましい。特に好ましいMn含有量は0.05質量%以下、特に好ましいCr含有量は0.05質量%以下である。さらに好ましいMn含有量は0.04質量%以下、特に好ましいCr含有量は0.03質量%以下である。また、その他の不純物元素は、個々の含有量として0.05質量%以下であることが好ましい。
【0024】
次に、この発明の方法における一連の処理工程について、図1(A)(B)を参照しつつ詳述する。
【0025】
通常の圧延工程において、合金鋳塊は熱間圧延および冷間圧延を経て所要厚さの合金板に加工され、これらの工程間あるいは工程中に種々の熱処理が施される。この発明の方法においては、熱間圧延後で冷間圧延終了までの間に所定条件の熱処理がなされる。具体的には、前記熱処理は、熱間圧延後冷間圧延前(図1(A))、または冷間圧延中、換言すれば複数回行われる冷間圧延のパス間(図1(B))に行なわれる。なお、図1において、前記熱処理を二重線ブロックで示し、必須処理を実線ブロックで示し、任意に行われる処理を破線ブロックで示す。
【0026】
前記熱処理の目的は、Mg2Siを微細かつ均一に析出させるとともに、圧延材料中に存在する加工歪みを減少させることにある。そして、その後の冷間加工によって加工硬化させ、成形加工性を損なわない範囲で高強度の合金板を得ることができる。この熱処理は材料中に加工歪みが存在する状態で行うことが好ましく、図1(B)に示したように、熱間圧延後少なくとも1パスの冷間圧延をし、確実に加工歪みが存在する状態で行うことを推奨できる。
【0027】
前記熱処理は、200〜400℃で1時間以上保持することにより行う。200℃未満は上記効果を得るために長時間を要し、400℃を超えると粗大析出物が形成されて、最終製品における高強度および良好な成形加工性が得られない。さらに、450℃以上では、再結晶粒の粗大化が起こり、最終製品の成形加工性に悪影響を及ぼす。また、処理時間が1時間未満の場合も上記効果を得ることができない。好ましい熱処理条件は200〜300℃で1時間以上であり、さらに好ましくは220〜280℃で1〜10時間である。
【0028】
次に、前記熱処理以外の任意に行う処理および圧延について説明する。
【0029】
合金鋳塊への均質化処理は任意に行う。均質化処理は500℃以上で行うことが好ましく、合金組織を均質化することが出来る。
【0030】
熱間圧延に際しては、予備加熱により材料中に晶出物およびMg、Siを固溶させ、均一な金属組織にした上で行うことが好ましい。均一な金属組織で圧延を開始することにより、最終製品の品質安定性が確保される。予備加熱は450℃以上で行うことが好ましく、500℃以上が特に好ましい。一方、580℃を超えると共晶融解が生じるため、580℃以下で行うことが好ましい。
【0031】
熱間圧延の条件は限定されず、熱間粗圧延とその後の熱間仕上げ圧延等常法に従う。ただし、任意のパス工程において、パス前の材料温度を450〜350℃とし、パス後の冷却速度を50℃/分以上とすることが好ましい。これにより、パス前のMgおよびSiが固溶された状態から、パス後のMg2Siの粗大析出物の発生が抑制され、焼入れと同様の効果を得て最終製品の品質を安定させることができる。パス前の材料温度が350℃未満ではこの時点でMg2Siが粗大析出物となり、その後の焼入れ効果が得られない。また、温度が低いためにその後のパスの圧延性が著しく悪くなるとともに、パス上がり温度が低くなり過ぎて表面品質が低下する。一方、450℃を超えるとパス上がりで材料温度が十分低下せず焼入れの効果が不足する。パス前の材料温度は420〜380℃の範囲が特に好ましい。
【0032】
前記熱処理後に行う冷間圧延は、加工硬化により所定の強度を得るために加工度を20%以上とすることが好ましい。特に好ましい加工度30%以上である。なお、図1(B)に示した熱処理前の冷間圧延の加工度については、熱処理に供する材料に加工歪みを発生させることが目的であり、上記加工度によらずとも良い。
【0033】
さらに、要すれば冷間圧延した合金板を200℃以下で最終焼鈍する。低温での熱処理を行うことにより、材料中に残存する固溶されたMg、SiをMg2Siとして析出させ、さらに強度を向上させるとともに、伸びも向上させることができる。また機械的諸性質を安定させる効果もある。特に好ましい焼鈍温度は110〜150℃である。
【0034】
この発明のAl−Mg−Si系合金板の製造方法によれば、所定の条件での熱処理とその後の冷間圧延により高い強度と良好な加工性が得られる。この熱処理は、所定温度に保持するだけの処理であるから、圧延工程管理範囲内で処理でき、従来の溶体化処理、焼入れ、焼き戻しといった別工程の複雑な処理を要しない。また、もとよりAl−Mg−Si系合金は熱伝導性、導電性は良好であるから、熱伝導性、導電性、強度および加工性を兼ね備えた合金板を簡単で少ない工程で製造することができる。
【0035】
この発明の方法によって製造されたAl−Mg−Si系合金板は、上述した諸特性に優れているため各種成形加工に供される。例えば、放熱部材材料、導電部材材料、ケース材料、あるいは反射板またはその支持体として好適に用いられる。ここでいう放熱部材とは、熱交換器やヒートシンク、放熱フィンのように放熱を本来の目的とする部材の他、プラズマディスプレイ、液晶ディスプレイ、コンピュータ等の電子製品のシャーシやアルミニウムベースプリント基板またはメタルコアプリント回路基板のように発熱体を内蔵または装着し、主目的外に放熱性を要求される部材を含むものである。導電部材としては、バスバー材、各種電池端子材、燃料電池車およびハイブリッド車用キャパシタ端子材、各種電気機器の端子材、各種機械設備の端子材を例示できる。ケースとしては、携帯電話、PDA等の電池ケースおよび筐体、各種電子機器の筐体を例示できる。この発明の合金板は高強度で加工性も優れているから、薄肉でもケースとして十分な強度があり、ケースの軽量化や小型化が可能である。反射板としては、液晶直下型バックライト用光反射板、液晶エッジライト型ユニット用光反射板、電飾看板用反射板を例示できる。また、これらの反射板としてアルミニウム以外の素材を用いる場合の支持体としても用いられる。例えば、オレフィン系重合体、硫酸バリウム、炭酸カルシウム、酸化チタン等の無機充填剤を含む樹脂組成物を発泡させた多孔性樹脂シートを本発明のAl−Mg−Si系合金板に積層させた反射板を例示できる。前記多孔性樹脂シートはラミネーション加工や粘着テープ等によって支持体に積層される。また、反射板の素材として白色塗料が用いられることもあり、本発明の合金板を支持体とし、この支持体に白色塗料により白色塗装を施したものを反射板として用いる。また、放熱性、強度および軽量性が求められる部材として、コンピュータ、特に厳しい小型軽量化が求められるノート型コンピュータのキーボード基板、ヒートスプレッダープレート、筐体を例示できる。また、各種強度部材として好適に用いられる。
【0036】
さらに具体的用途として、プラズマディスプレイ背面シャーシ材、プラズマディスプレイ筐体またはプラズマディスプレイ外装部材といったプラズマディスプレイ関連部材、液晶ディスプレイ背面シャーシ材、液晶ディスプレイベゼル材、液晶ディスプレイ反射シート材、液晶ディスプレイ反射シート支持材または液晶ディスプレイ筐体といった液晶ディスプレイ関連部材の材料を例示できる。なお、前記プラズマディスプレイ背面シャーシ材は放熱板を兼ねるものである。
【0037】
本発明のAl−Mg−Si系合金材は、合金組成が上述したAl−Mg−Si系合金板と共通であって、導電率が55〜60%(IACS)となされて優れた導電性を有するものである。また、上述したように導電率と熱伝導率とは高い相関性を示すものであるから、優れた熱伝導性を有するものである。あるいはさらに、引張強さが140〜240N/mm2でとなされたものは、強度と加工性とを兼ね備えたものである。引張強さが140N/mm2未満では加工性が良好であっても強度が不足し、一方を240N/mm2越えると強度が向上しても加工性が悪くなり、両者のバランスが低下する。このようなAl−Mg−Si系合金材は、例えば本発明のAl−Mg−Si系合金板の製造方法によって製造され、熱間圧延後で冷間圧延終了までの間に所定の熱処理を施すことにより、含有元素のFe、Mg、Siを適度に析出させる効果と、その熱処理による回復再結晶化によるその後の冷間加工度の減少効果とにより、上記範囲の引張強さが達成される。
【0038】
この発明の製造方法によれば、熱間圧延後で冷間圧延終了までの間に熱処理を施すという簡単な工程によって熱伝導性、導電性、強度および加工性に優れたAl−Mg−Si系合金板を製造できる。このため、これらの特性が要求される各種部材の製造において、簡単な工程でこれらの部材の性能向上を図ることができる。また、この発明のAl−Mg−Si系合金材は熱伝導性、導電性、強度および加工性に優れたものであり、これらの特性が要求される各種部材の材料として広範囲に利用できる。
【0039】
【実施例】
まず、後掲の表1〜5に示す各組成合金を常法により連続鋳造してスラブを製作した。このスラブに対し、580℃×10時間の均質化処理を施し、あるいは均質化処理することなく、面削した。これらの表に示す合金組成において、実施例1〜55および比較例1〜10は不純物としてのMn含有量およびCr含有量はいずれも0.1質量%未満であり、他の不純物元素はいずれも0.05質量%以下である。また、表4における実施例60Aと60BとはMn含有量およびCr含有量のみが相違し、その他の元素の含有量は共通であり、後述する製造工程も共通である。同様に、実施例61Aと61B、62Aと62B、63Aと63Bは、Mn含有量およびCr含有量のみが相違する。また、表4の各実施例における他の不純物元素はいずれも0.05質量%以下であった。
【0040】
実施例1、3〜9、11〜19、21〜24、26、28〜34、36〜44、46〜49、51、52、54、55、60A〜62Bおよび比較例6〜9については、図1(A)に示す工程で合金板を製作し、試験材とした。
【0041】
即ち、前記スラブを表1〜5に示す温度に予備加熱し、該温度で熱間圧延を開始した。そして、熱間粗圧延の最終パス工程において、パス前の材料温度を400℃とし、パス後80℃/分の速度で冷却した。
【0042】
次いで、前記熱間圧延板に対し表1〜5に示す温度と時間に保持して熱処理を施し、表1〜5に示す加工度で冷間圧延した。
【0043】
さらに、実施例3、28については130℃で4時間の最終焼鈍を行い、その他は最終焼鈍を行わなかった。
【0044】
また、実施例2、10、20、25、27、35、45、50、53、63A、63Bおよび比較例10については、図1(B)に示す工程で合金板を製作した。
【0045】
即ち、前記スラブを表1〜5に示す温度に予備加熱し、該温度で熱間圧延を開始した。そして、熱間粗圧延の最終パス工程において、パス前の材料温度を400℃とし、パス後80℃/分の速度で冷却した。
【0046】
次いで、前記熱間圧延板に対し、3パスの冷間圧延を行った後、表1〜4に示す温度と時間に保持して熱処理を施した。その後、表1〜5に示す加工度で冷間圧延した。
【0047】
さらに、実施例10、35については130℃で4時間の最終焼鈍を行い、その他は最終焼鈍を行わなかった。
【0048】
比較例1〜5については、市販の圧延板または押出型材を試験材とした。
【0049】
得られた各試験材について、引張強さ、熱伝導率、導電率、加工性を次の方法により評価した。評価結果を表1〜5に併せて示す。
【0050】
引張強さは、JIS5号試験片について、常温で常法により測定した。
【0051】
熱伝導率は、25℃でレーザーフラッシュ法により測定した。
【0052】
導電率は、IACS(20℃)に基づいて測定した。IACSとは、国際的に採択された焼鈍標準軟銅のことを指す。その体積抵抗率は1.7241×10-2μΩmであり、これを100%IACSと表す。
【0053】
加工性は、JIS Z 2248金属材料曲げ試験方法の5.3Vブロック法による90度曲げで、曲げ内側半径r=0mmによって判定した。判定区分は次のとおりである。
○:良好
△:わずかに割れが発生した
×:割れが発生した。
【0054】
【表1】

Figure 0004739654
【0055】
【表2】
Figure 0004739654
【0056】
【表3】
Figure 0004739654
【0057】
【表4】
Figure 0004739654
【0058】
【表5】
Figure 0004739654
【0059】
表1〜5の結果より、この発明の条件で熱処理することにより、純アルミニウムに匹敵する高い熱伝導性、導電性と、JIS5052合金および6063合金に匹敵する高い強度とを兼ね備えたアルミニウム合金板を得られることを確認できた。また、加工性も良好であった。
【0060】
【発明の効果】
以上説明したように、この発明の方法が対象とするAl−Mg−Si系合金は、その組成を、Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下、Cu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Alおよび不可避不純物からなるため、熱伝導性および導電性に優れている。そして、このAl−Mg−Si系合金鋳塊を熱間圧延し、さらに冷間圧延する工程を含む合金板の製造方法において、熱間圧延後で冷間圧延終了までの間に、200〜400℃で1時間以上保持することにより熱処理を行うから、熱処理の間にMg2Siが微細かつ均一に析出するとともに、圧延材料中に存在する加工歪みが減少する。そして、その後の冷間加工によって加工硬化し、成形加工性を損なわない範囲で高い強度が得られる。この熱処理は、所定温度に保持するだけの処理であるから、圧延工程管理範囲内で処理でき、従来の溶体化処理、焼入れ、焼き戻しといった別工程の複雑な処理を要さず、熱伝導性、導電性、強度および加工性を兼ね備えた合金板を簡単で少ない工程で製造することができる。
【0061】
さらに、合金鋳塊において、不純物としてのMnおよびCrが、Mn:0.1質量%以下、Cr:0.1質量%以下に規制されている場合は、さらに熱伝導性および導電性に優れた合金板となし得る。
【0062】
前記熱処理は、熱間圧延後冷間圧延前、または冷間圧延中のいずれに行っても上記効果を奏することができる。
【0063】
前記熱処理を220〜280℃で1〜10時間の保持で行う場合は、最も効率よく上記効果を奏することができる。
【0064】
また、前記合金鋳塊に対し500℃以上で均質化処理を行う場合は、合金組織を均質化させることができる。
【0065】
また、前記熱処理後の冷間圧延を20%以上、特に30%以上の加工度で行う場合は、加工硬化による十分な強度向上が達成される。
【0066】
また、前記冷間圧延終了後、200℃以下、特に110〜150℃で最終焼鈍を行うことにより、さらに強度を向上させるとともに、伸びも向上させることができる。また機械的諸性質を安定させることができる。
【0067】
また、前記熱間圧延前に、材料温度を450〜580℃に予備加熱する場合は、材料中に晶出物およびMg、Siが固溶されて均一な金属組織となり、この状態で圧延を開始することにより、最終製品の品質安定性が確保される。
【0068】
また、前記熱間圧延の任意のパス工程において、パス前の材料温度を450〜350℃とし、パス後に50℃/分以上で冷却する場合は、Mg2Siの粗大析出物の発生が抑制され、焼入れと同様の効果を得て最終製品の品質を安定させることができる。
【0069】
前記合金鋳塊において、Si含有量が0.32〜0.6質量%である場合は、特に強度と加工性のバランスのとれた合金板となし得る。
【0070】
また、Mg含有量が0.35〜0.55質量%である場合は、特に強度と加工性のバランスのとれた合金板となし得る。
【0071】
また、Fe含有量が0.10〜0.25質量%である場合は、加工性に優れかつ良好な耐食性も確保される。
【0072】
また、Cu含有量が0.1質量%以下である場合は、加工性に優れかつ良好な耐食性も確保される。
【0073】
また、Ti含有量が0.005〜0.05質量%である場合は、特に良好な加工性、熱伝導性および導電性が確保される。
【0074】
また、B含有量が0.06質量%以下である場合は、特に良好な加工性、熱伝導性および導電性が確保される。
【0075】
また、不純物としてのMn含有量が0.05質量%以下に規制されている場合は、特に優れた熱伝導性および導電性が確保される。
【0076】
また、不純物としてのCr含有量が0.05質量%以下に規制されている場合は、特に優れた熱伝導性および導電性が確保される。
【0077】
この発明のAl−Mg−Si系合金材は、上記組成の合金であり、導電率が55〜60%(IACS)であるから、優れた熱伝導性および導電性を有する。
【0078】
また、引張強さが140〜240N/mm2である場合は、強度と加工性とを兼ね備える。
【0079】
さらに、合金において、不純物としてのMnおよびCrが、Mn:0.1質量%以下、Cr:0.1質量%以下に規制されている場合は、さらに熱伝導性および導電性に優れた合金材板となし得る。
【0080】
この発明のAl−Mg−Si系合金板は、上述した方法で製造されたたものであるから、熱伝導性、導電性、強度および加工性に優れている。
【0081】
また、前記Al−Mg−Si系合金板は、放熱部材材料、導電部材材料、ケース材料、あるいは反射板またはその支持体として好適に用いられ、種々の成形加工が施され、上述の緒特性を発揮する。
【0082】
また、Al−Mg−Si系合金板は、プラズマディスプレイ背面シャーシ材、プラズマディスプレイ筐体またはプラズマディスプレイ外装部材として好適に用いられ、種々の成形加工が施され、上述の緒特性を発揮する。
【0083】
また、Al−Mg−Si系合金板は、液晶ディスプレイ背面シャーシ材、液晶ディスプレイベゼル材、液晶ディスプレイ反射シート材、液晶ディスプレイ反射シート支持材または液晶ディスプレイ筐体として好適に用いられ、種々の成形加工が施され、上述の緒特性を発揮する。
【図面の簡単な説明】
【図1】この発明のAl−Mg−Si系合金板の製造方法において、一連の工程を示すフロー図であり、(A)は熱処理を熱間圧延後冷間圧延前に行う場合、(B)は熱処理を冷間圧延中に行う場合を示している。
【図2】アルミニウム合金における導電率と熱伝導率の関係を示す相関図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an Al—Mg—Si based alloy plate and an Al—Mg—Si based alloy plate produced by this method.
[0002]
Furthermore, the present invention provides an Al—Mg—Si based alloy plate, in particular an Al—Mg—Si based alloy plate excellent in thermal conductivity, conductivity, strength and workability, and a method for producing the same, and an Al—Mg—Si based alloy. Regarding materials.
[0003]
[Prior art]
In materials such as PDP (Plasma Display), LCD (Liquid Crystal Display), Notebook PC, etc. that have built-in or mounted heating elements, such as chassis and metal base printed circuit boards, not only strength but also excellent thermal conductivity to dissipate quickly Is required. In addition, the amount of heat generation has increased dramatically due to the recent high performance, complexity, miniaturization, and high density of the heating elements, and further improvements in thermal conductivity and workability are desired.
[0004]
However, when the member is made of aluminum, a pure aluminum alloy such as JIS 1100, 1050, or 1070 is suitable as a material having high thermal conductivity. However, these alloys have difficulty in strength. On the other hand, JIS 5052 alloy adopted as a high-strength material has remarkably lower thermal conductivity than a pure aluminum alloy. Al-Mg-Si alloys have good thermal conductivity and high strength can be obtained by age hardening, but they require a complicated process of aging treatment after solution treatment at a high temperature after rolling. In addition, even if high strength is obtained, there is a drawback that molding workability such as bending workability and overhang workability is extremely lowered (for example, Patent Documents 1, 2, and 3).
[0005]
Under such circumstances, the applicant of the present invention provides a technology that can realize both thermal conductivity and strength by prescribing the rolling conditions of the hot rolling process when manufacturing the Al—Mg—Si based alloy sheet. Proposed and required strength was obtained without solution treatment and aging treatment (Patent Documents 4 and 5).
[0006]
[Patent Document 1]
JP-A-8-209279
[0007]
[Patent Document 2]
JP-A-9-134644
[0008]
[Patent Document 3]
JP 2000-144294 A
[0009]
[Patent Document 4]
JP 2000-87198 A
[0010]
[Patent Document 5]
JP 2000-226628 A
[0011]
[Problems to be solved by the invention]
However, in the above technique, in any pass step of the hot rolling step, the material temperature before the pass, the cooling rate between passes, the pass rising temperature, the rising plate thickness are controlled, and the workability in the subsequent cold rolling is further controlled. It required complicated condition management to control the system.
[0012]
Further, the workability of the manufactured alloy plate does not sufficiently satisfy the market demand, and when forming under severe conditions, special consideration is required for the processing equipment and processing method.
[0013]
By the way, it is known that in JIS 1000 series to 7000 series aluminum alloys, thermal conductivity and electrical conductivity show a good correlation. Regression analysis of the relationship between thermal conductivity and electrical conductivity in the aluminum alloy shown in FIG. 2 shows that the regression equation: y = 3.5335x + 13.525, the coefficient of determination: R 2 = 0.981 is obtained, showing that the correlation is extremely high. Accordingly, the aluminum alloy plate exhibiting excellent thermal conductivity also has excellent conductivity, and can be suitably used as a conductive member material in addition to being used as a heat radiating member material.
[0014]
In view of the above-described technical background, the present invention provides a method for producing an Al—Mg—Si based alloy plate with simple and few steps and an object of providing an Al—Mg—Si based alloy plate produced by this method. And
[0015]
Furthermore, in view of the above-mentioned technical background, the present invention provides a method for producing an Al—Mg—Si based alloy plate excellent in thermal conductivity, conductivity, strength and workability in a simple and few process, and this method. It aims at providing the Al-Mg-Si type alloy plate manufactured by this. Another object of the present invention is to provide an Al—Mg—Si based alloy material excellent in thermal conductivity, conductivity, strength and workability.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing an Al—Mg—Si alloy plate of the present invention has the following configuration.
(1) Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, Cu: 0.5 mass% or less, and Ti: 0 .1% by mass or less or B: 0.1% by mass or less of Al—Mg—Si alloy ingot containing the remaining Al and inevitable impurities is hot-rolled and further cold-rolled. A method for producing an alloy plate including a process, wherein heat treatment is performed by holding at 200 to 400 ° C. for 1 hour or more after hot rolling and before the end of cold rolling. A method for producing a Si-based alloy plate.
(2) In the alloy ingot, Mn and Cr as impurities are regulated to Mn: 0.1% by mass or less and Cr: 0.1% by mass or less. A manufacturing method of a board.
(3) The method for producing an Al—Mg—Si based alloy sheet according to item 1 or 2, wherein the heat treatment is performed after hot rolling and before cold rolling.
(4) The method for producing an Al—Mg—Si-based alloy sheet according to item 1 or 2, wherein the heat treatment is performed during cold rolling.
(5) The method for producing an Al—Mg—Si based alloy sheet according to any one of items 1 to 4, wherein the heat treatment is performed by holding at 220 to 280 ° C. for 1 to 10 hours.
(6) The method for producing an Al—Mg—Si based alloy plate according to any one of the preceding items 1 to 5, wherein the alloy ingot is homogenized at 500 ° C. or higher.
(7) The method for producing an Al—Mg—Si based alloy sheet according to any one of items 1 to 6, wherein the cold rolling after the heat treatment is performed at a workability of 20% or more.
(8) The method for producing an Al—Mg—Si based alloy plate according to item 7, wherein the degree of work is 30% or more.
(9) The method for producing an Al—Mg—Si based alloy sheet according to any one of items 1 to 8, wherein the final annealing is performed at 200 ° C. or less after the end of cold rolling.
(10) The method for producing an Al—Mg—Si-based alloy plate according to item 9, wherein the final annealing is performed at 110 to 150 ° C.
(11) The method for producing an Al—Mg—Si alloy plate according to any one of items 1 to 10, wherein the material temperature is preheated to 450 to 580 ° C. before hot rolling.
(12) In any pass process of hot rolling, the material temperature before the pass is 450 to 350 ° C., and the cooling rate after the pass is 50 ° C./min or more. A method for producing an Al—Mg—Si based alloy plate.
(13) The method for producing an Al—Mg—Si-based alloy plate according to any one of items 1 to 12, wherein the Si content in the alloy ingot is 0.32 to 0.6% by mass.
(14) The method for producing an Al—Mg—Si based alloy sheet according to any one of items 1 to 12, wherein the Mg content in the alloy ingot is 0.35 to 0.55 mass%.
(15) The method for producing an Al—Mg—Si based alloy plate according to any one of items 1 to 12, wherein the Fe content in the alloy ingot is 0.1 to 0.25% by mass.
(16) The method for producing an Al—Mg—Si based alloy plate according to any one of items 1 to 12, wherein the Cu content in the alloy ingot is 0.1% by mass or less.
(17) The method for producing an Al—Mg—Si alloy plate according to any one of items 1 to 12, wherein the Ti content in the alloy ingot is 0.005 to 0.05 mass%.
(18) The method for producing an Al—Mg—Si alloy plate according to any one of items 1 to 12, wherein the B content in the alloy ingot is 0.06% by mass or less.
(19) The method for producing an Al-Mg-Si alloy plate according to any one of items 1 to 12, wherein the Mn content in the alloy ingot is regulated to 0.05% by mass or less.
(20) The method for producing an Al—Mg—Si based alloy plate according to any one of items 1 to 12, wherein the Cr content in the alloy ingot is regulated to 0.05% by mass or less.
[0017]
The Al—Mg—Si based alloy material of the present invention has the following configuration.
(21) Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, Cu: 0.5 mass% or less, and Ti: 0 Al-Mg characterized by containing at least one of 1 mass% or less or B: 0.1 mass% or less, consisting of the balance Al and inevitable impurities, and having a conductivity of 55 to 60% (IACS). -Si alloy material.
(22) Tensile strength is 140 to 240 N / mm 2 22. The Al—Mg—Si based alloy material according to item 21 above.
(23) The Al—Mg—Si based alloy material according to item 21 or 22, wherein Mn and Cr as impurities are regulated to Mn: 0.1 mass% or less and Cr: 0.1 mass% or less.
[0018]
The Al—Mg—Si based alloy plate of the present invention has the following configuration.
(24) An Al—Mg—Si based alloy plate produced by the method described in the preceding paragraphs 1-20.
(25) The Al—Mg—Si based alloy plate according to the above items 21 to 24, wherein the Al—Mg—Si based alloy plate is a heat radiating member material, a conductive member material, a case material, a reflecting plate or a support thereof.
(26) The Al—Mg—Si based alloy plate according to any one of 21 to 24 above, wherein the Al—Mg—Si based alloy plate is a plasma display rear chassis member, a plasma display casing, or a plasma display exterior member.
(27) The Al—Mg—Si alloy plate is a liquid crystal display rear chassis material, a liquid crystal display bezel material, a liquid crystal display reflective sheet material, a liquid crystal display reflective sheet support material, or a liquid crystal display housing, Al-Mg-Si alloy plate.
[0019]
In the Al—Mg—Si alloy composition targeted by the method of the present invention, the significance of addition of each element and the reason for limiting the content are as follows.
[0020]
Mg and Si are elements necessary for strength development, and Si: 0.2 to 0.8 mass% and Mg: 0.3 to 1 mass%. If the Si content is less than 0.2% by mass or the Mg content is less than 0.3% by mass, sufficient strength cannot be obtained. On the other hand, when the Si content exceeds 0.8% by mass and the Mg content exceeds 1% by mass, the rolling load in hot rolling is increased and the productivity is lowered, and the ear cracks are increased and the intermediate process is performed. Trimming is required. Moreover, the moldability is also deteriorated. A preferable Si content is 0.32 to 0.6% by mass. Moreover, preferable Mg content is 0.35-0.55 mass%.
[0021]
Fe and Cu are components necessary for forming, but if contained in a large amount, the corrosion resistance is lowered and the practicality as an alloy plate is lacking. Therefore, the Fe content is 0.5% by mass or less, preferably 0.35. It is necessary to regulate to not more than mass%, and to limit the Cu content to not more than 0.5 mass%, preferably not more than 0.2 mass%. A more preferable Fe content is 0.1 to 0.25% by mass, and a preferable Cu content is 0.1% by mass or less.
[0022]
Ti and B have the effect of reducing crystal grains and preventing solidification cracking when casting the alloy into a slab. The effect is obtained by adding at least one of Ti or B, and both may be added. However, if it is contained in a large amount, the amount of the crystallized product increases and a large crystallized product is formed, so that the processability to the product is lowered. In addition, thermal conductivity and conductivity are reduced. For these reasons, the Ti content is 0.1% by mass or less. A preferable Ti content is 0.005 to 0.05 mass%. Moreover, B content shall be 0.1 mass% or less. A preferable B content is 0.06% by mass or less.
[0023]
In addition, various impurity elements are inevitably contained in the alloy ingot, but Mn and Cr are preferably as small as possible because they cause a decrease in thermal conductivity and conductivity. It is preferable to regulate the Mn content as an impurity to 0.1% by mass or less and the Cr content to 0.1% by mass or less. A particularly preferable Mn content is 0.05% by mass or less, and a particularly preferable Cr content is 0.05% by mass or less. Further, the preferable Mn content is 0.04% by mass or less, and the particularly preferable Cr content is 0.03% by mass or less. Moreover, it is preferable that other impurity elements are 0.05 mass% or less as each content.
[0024]
Next, a series of processing steps in the method of the present invention will be described in detail with reference to FIGS.
[0025]
In a normal rolling process, the alloy ingot is processed into an alloy plate having a required thickness through hot rolling and cold rolling, and various heat treatments are performed between or during these processes. In the method of the present invention, heat treatment under a predetermined condition is performed after hot rolling and before the end of cold rolling. Specifically, the heat treatment is performed after hot rolling and before cold rolling (FIG. 1 (A)) or during cold rolling, in other words, between passes of cold rolling performed a plurality of times (FIG. 1 (B)). ). In addition, in FIG. 1, the said heat processing is shown by a double line block, an essential process is shown by a solid line block, and the process performed arbitrarily is shown by a broken line block.
[0026]
The purpose of the heat treatment is Mg 2 The purpose is to precipitate Si finely and uniformly and to reduce processing strains present in the rolled material. And it can be work-hardened by the subsequent cold work, and a high-strength alloy plate can be obtained within a range that does not impair the formability. This heat treatment is preferably performed in a state where processing strain exists in the material. As shown in FIG. 1 (B), at least one pass of cold rolling is performed after hot rolling to ensure that processing strain exists. It is recommended to do it in a state.
[0027]
The said heat processing is performed by hold | maintaining at 200-400 degreeC for 1 hour or more. If it is less than 200 ° C., it takes a long time to obtain the above effect, and if it exceeds 400 ° C., coarse precipitates are formed, and high strength and good moldability in the final product cannot be obtained. Furthermore, at 450 ° C. or higher, recrystallized grains become coarse, which adversely affects the moldability of the final product. Moreover, the said effect cannot be acquired also when processing time is less than 1 hour. Preferable heat treatment conditions are 200 to 300 ° C. for 1 hour or longer, more preferably 220 to 280 ° C. for 1 to 10 hours.
[0028]
Next, the process and rolling performed arbitrarily other than the said heat processing are demonstrated.
[0029]
The homogenization process to the alloy ingot is arbitrarily performed. The homogenization treatment is preferably performed at 500 ° C. or higher, and the alloy structure can be homogenized.
[0030]
The hot rolling is preferably carried out after solidifying the crystallized substance, Mg, and Si in the material by preheating to obtain a uniform metal structure. By starting rolling with a uniform metal structure, quality stability of the final product is ensured. The preheating is preferably performed at 450 ° C. or higher, particularly preferably 500 ° C. or higher. On the other hand, since eutectic melting occurs when the temperature exceeds 580 ° C., it is preferably performed at 580 ° C. or lower.
[0031]
The conditions for hot rolling are not limited, and follow conventional methods such as hot rough rolling and subsequent hot finish rolling. However, in any pass step, it is preferable that the material temperature before pass is 450 to 350 ° C., and the cooling rate after pass is 50 ° C./min or more. As a result, from the state where Mg and Si before pass were dissolved, Mg after pass 2 Generation | occurrence | production of the coarse precipitate of Si is suppressed, the effect similar to quenching can be acquired, and the quality of a final product can be stabilized. If the material temperature before pass is less than 350 ° C, Mg 2 Si becomes a coarse precipitate, and the subsequent quenching effect cannot be obtained. Further, since the temperature is low, the rolling property of the subsequent pass is remarkably deteriorated, and the temperature at which the pass rises becomes too low, and the surface quality is deteriorated. On the other hand, when the temperature exceeds 450 ° C., the material temperature does not sufficiently decrease due to an increase in pass and the effect of quenching is insufficient. The material temperature before pass is particularly preferably in the range of 420 to 380 ° C.
[0032]
The cold rolling performed after the heat treatment preferably has a workability of 20% or more in order to obtain a predetermined strength by work hardening. A particularly preferable degree of processing is 30% or more. Note that the degree of workability of the cold rolling before the heat treatment shown in FIG. 1B is for the purpose of generating work distortion in the material to be subjected to the heat treatment, and may not depend on the workability.
[0033]
Further, if necessary, the cold-rolled alloy plate is finally annealed at 200 ° C. or lower. By performing heat treatment at a low temperature, the solid solution of Mg and Si remaining in the material is changed to Mg. 2 It can be precipitated as Si, further improving the strength and improving the elongation. It also has the effect of stabilizing mechanical properties. A particularly preferable annealing temperature is 110 to 150 ° C.
[0034]
According to the method for producing an Al—Mg—Si alloy plate of the present invention, high strength and good workability can be obtained by heat treatment under a predetermined condition and subsequent cold rolling. Since this heat treatment is a treatment that is only maintained at a predetermined temperature, it can be carried out within the rolling process control range, and does not require complicated processes in other processes such as conventional solution treatment, quenching, and tempering. In addition, since the Al-Mg-Si-based alloy has good thermal conductivity and electrical conductivity, an alloy plate having thermal conductivity, electrical conductivity, strength, and workability can be manufactured in a simple and few process. .
[0035]
Since the Al—Mg—Si based alloy plate produced by the method of the present invention is excellent in the above-mentioned various properties, it is subjected to various forming processes. For example, it is suitably used as a heat radiating member material, a conductive member material, a case material, a reflector or a support thereof. The heat radiating member here means a heat exchanger, a heat sink, a member intended for heat radiating such as a heat radiating fin, a chassis of an electronic product such as a plasma display, a liquid crystal display, a computer, an aluminum base printed board or a metal core. Like a printed circuit board, a heating element is built in or attached, and includes a member that requires heat dissipation outside the main purpose. Examples of the conductive member include bus bar materials, various battery terminal materials, capacitor terminal materials for fuel cell vehicles and hybrid vehicles, terminal materials for various electric devices, and terminal materials for various mechanical facilities. Examples of the case include battery cases and cases such as mobile phones and PDAs, and cases of various electronic devices. Since the alloy plate of the present invention has high strength and excellent workability, even a thin wall has sufficient strength as a case, and the case can be reduced in weight and size. Examples of the reflecting plate include a light reflecting plate for a liquid crystal direct backlight, a light reflecting plate for a liquid crystal edge light type unit, and a reflecting plate for an electric signboard. Moreover, it is used also as a support body when using materials other than aluminum as these reflecting plates. For example, a reflection obtained by laminating a porous resin sheet obtained by foaming a resin composition containing an inorganic filler such as an olefin polymer, barium sulfate, calcium carbonate, and titanium oxide on the Al-Mg-Si alloy plate of the present invention. A board can be illustrated. The porous resin sheet is laminated on the support by lamination or an adhesive tape. A white paint may be used as a material for the reflector, and the alloy plate of the present invention is used as a support, and the support is white coated with a white paint as a reflector. Further, examples of a member that requires heat dissipation, strength, and lightness include a keyboard substrate, a heat spreader plate, and a housing of a computer, particularly a notebook computer that is required to be severely reduced in size and weight. Moreover, it is suitably used as various strength members.
[0036]
Further specific applications include plasma display back chassis material, plasma display related material such as plasma display housing or plasma display exterior member, liquid crystal display back chassis material, liquid crystal display bezel material, liquid crystal display reflective sheet material, liquid crystal display reflective sheet support material Or the material of liquid crystal display related members, such as a liquid crystal display housing | casing, can be illustrated. The plasma display rear chassis material also serves as a heat sink.
[0037]
The Al—Mg—Si based alloy material of the present invention has the same alloy composition as that of the Al—Mg—Si based alloy plate described above, and has an electrical conductivity of 55 to 60% (IACS). It is what you have. Moreover, since electrical conductivity and thermal conductivity show high correlation as mentioned above, it has excellent thermal conductivity. Alternatively, the tensile strength is 140 to 240 N / mm. 2 What was made in (1) has both strength and workability. Tensile strength is 140 N / mm 2 If it is less than 1, the strength is insufficient even if the workability is good, and one side is 240 N / mm 2 If it exceeds, the workability deteriorates even if the strength is improved, and the balance between the two decreases. Such an Al—Mg—Si based alloy material is produced, for example, by the method for producing an Al—Mg—Si based alloy sheet of the present invention, and is subjected to a predetermined heat treatment after hot rolling until the end of cold rolling. Thus, the tensile strength in the above range is achieved by the effect of appropriately precipitating the contained elements Fe, Mg, and Si and the effect of reducing the degree of subsequent cold work by the recovery recrystallization by the heat treatment.
[0038]
According to the manufacturing method of the present invention, an Al—Mg—Si system excellent in thermal conductivity, conductivity, strength and workability by a simple process of performing heat treatment after hot rolling and before the end of cold rolling. Alloy plates can be manufactured. For this reason, in the manufacture of various members that require these characteristics, the performance of these members can be improved with a simple process. Moreover, the Al—Mg—Si based alloy material of the present invention is excellent in thermal conductivity, conductivity, strength and workability, and can be widely used as materials for various members which require these characteristics.
[0039]
【Example】
First, each composition alloy shown in the following Tables 1 to 5 was continuously cast by a conventional method to produce a slab. The slab was subjected to a homogenization treatment at 580 ° C. for 10 hours, or faced without being homogenized. In the alloy compositions shown in these tables, in Examples 1 to 55 and Comparative Examples 1 to 10, the Mn content and Cr content as impurities are both less than 0.1% by mass, and the other impurity elements are all It is 0.05 mass% or less. Moreover, Example 60A and 60B in Table 4 differ only in Mn content and Cr content, content of other elements is common, and the manufacturing process mentioned later is also common. Similarly, Examples 61A and 61B, 62A and 62B, and 63A and 63B differ only in Mn content and Cr content. Moreover, all the other impurity elements in each Example of Table 4 were 0.05 mass% or less.
[0040]
For Examples 1, 3-9, 11-19, 21-24, 26, 28-34, 36-44, 46-49, 51, 52, 54, 55, 60A-62B and Comparative Examples 6-9, An alloy plate was manufactured by the process shown in FIG.
[0041]
That is, the slab was preheated to the temperatures shown in Tables 1 to 5, and hot rolling was started at the temperatures. Then, in the final pass step of hot rough rolling, the material temperature before the pass was set to 400 ° C., and after the pass, the material was cooled at a rate of 80 ° C./min.
[0042]
Next, the hot-rolled plate was subjected to heat treatment while maintaining the temperature and time shown in Tables 1 to 5, and cold-rolled at the working degree shown in Tables 1 to 5.
[0043]
Further, Examples 3 and 28 were subjected to final annealing at 130 ° C. for 4 hours, and the others were not subjected to final annealing.
[0044]
Moreover, about Example 2, 10, 20, 25, 27, 35, 45, 50, 53, 63A, 63B and the comparative example 10, the alloy plate was manufactured at the process shown to FIG. 1 (B).
[0045]
That is, the slab was preheated to the temperatures shown in Tables 1 to 5, and hot rolling was started at the temperatures. Then, in the final pass step of hot rough rolling, the material temperature before the pass was set to 400 ° C., and after the pass, the material was cooled at a rate of 80 ° C./min.
[0046]
Next, the hot-rolled sheet was subjected to 3 passes of cold rolling, and then subjected to heat treatment while maintaining the temperature and time shown in Tables 1 to 4. Then, it cold-rolled with the workability shown in Tables 1-5.
[0047]
Further, Examples 10 and 35 were subjected to final annealing at 130 ° C. for 4 hours, and the others were not subjected to final annealing.
[0048]
About Comparative Examples 1-5, the commercially available rolling plate or the extrusion die material was used as the test material.
[0049]
About each obtained test material, tensile strength, thermal conductivity, electrical conductivity, and workability were evaluated by the following method. An evaluation result is combined with Tables 1-5, and is shown.
[0050]
Tensile strength was measured by a conventional method at normal temperature for a JIS No. 5 test piece.
[0051]
The thermal conductivity was measured by a laser flash method at 25 ° C.
[0052]
The conductivity was measured based on IACS (20 ° C.). IACS refers to annealed standard annealed copper adopted internationally. Its volume resistivity is 1.7241 × 10 -2 μΩm, which is expressed as 100% IACS.
[0053]
The workability was determined by a bending inner radius r = 0 mm in a JIS Z 2248 metal material bending test method of 90 degree bending by the 5.3 V block method. Judgment categories are as follows.
○: Good
Δ: Slight cracking occurred
X: Cracking occurred.
[0054]
[Table 1]
Figure 0004739654
[0055]
[Table 2]
Figure 0004739654
[0056]
[Table 3]
Figure 0004739654
[0057]
[Table 4]
Figure 0004739654
[0058]
[Table 5]
Figure 0004739654
[0059]
From the results of Tables 1 to 5, by heat-treating under the conditions of this invention, an aluminum alloy plate having high thermal conductivity and conductivity comparable to pure aluminum and high strength comparable to JIS 5052 alloy and 6063 alloy is obtained. It was confirmed that it was obtained. Moreover, the workability was also good.
[0060]
【The invention's effect】
As described above, the Al—Mg—Si based alloy targeted by the method of the present invention has a composition of Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe : 0.5% by mass or less, Cu: 0.5% by mass or less, and further Ti: 0.1% by mass or less or B: 0.1% by mass or less, the balance Al and unavoidable Since it consists of impurities, it is excellent in thermal conductivity and conductivity. And in the manufacturing method of an alloy plate including the process of carrying out hot rolling of this Al-Mg-Si type alloy ingot, and also cold rolling, it is 200-400 between the end of cold rolling after hot rolling. Since heat treatment is performed by holding at 1 ° C. for 1 hour or more, Mg during the heat treatment 2 Si precipitates finely and uniformly, and processing strain existing in the rolled material is reduced. And it is work-hardened by the subsequent cold working, and high strength is obtained within a range that does not impair the moldability. Since this heat treatment is a process that is only maintained at a predetermined temperature, it can be processed within the rolling process control range, and does not require a complicated process in another process such as conventional solution treatment, quenching, and tempering. Further, an alloy plate having conductivity, strength and workability can be manufactured with simple and few steps.
[0061]
Furthermore, in the alloy ingot, when Mn and Cr as impurities are regulated to Mn: 0.1% by mass or less and Cr: 0.1% by mass or less, they are further excellent in thermal conductivity and conductivity. Can be made with an alloy plate.
[0062]
The heat treatment can achieve the above effects even if it is performed either after hot rolling but before cold rolling or during cold rolling.
[0063]
When the heat treatment is performed at 220 to 280 ° C. for 1 to 10 hours, the above-described effect can be most efficiently achieved.
[0064]
Moreover, when performing a homogenization process at 500 ° C. or higher for the alloy ingot, the alloy structure can be homogenized.
[0065]
Further, when the cold rolling after the heat treatment is performed at a workability of 20% or more, particularly 30% or more, sufficient strength improvement by work hardening is achieved.
[0066]
Further, after the cold rolling is completed, the final annealing is performed at 200 ° C. or less, particularly 110 to 150 ° C., so that the strength can be further improved and the elongation can also be improved. Moreover, mechanical properties can be stabilized.
[0067]
In addition, when the material temperature is preheated to 450 to 580 ° C. before the hot rolling, the crystallized product and Mg and Si are dissolved in the material to form a uniform metal structure, and rolling is started in this state. By doing so, the quality stability of the final product is ensured.
[0068]
Moreover, in the arbitrary pass process of the hot rolling, when the material temperature before the pass is set to 450 to 350 ° C. and cooling is performed at 50 ° C./min or more after the pass, Mg 2 Generation | occurrence | production of the coarse precipitate of Si is suppressed, the effect similar to quenching can be acquired, and the quality of a final product can be stabilized.
[0069]
In the alloy ingot, when the Si content is 0.32 to 0.6% by mass, an alloy plate having a particularly good balance between strength and workability can be obtained.
[0070]
Moreover, when Mg content is 0.35-0.55 mass%, it can be set as the alloy board with which especially the intensity | strength and workability were balanced.
[0071]
Moreover, when Fe content is 0.10-0.25 mass%, it is excellent in workability and favorable corrosion resistance is also ensured.
[0072]
Moreover, when Cu content is 0.1 mass% or less, it is excellent in workability and favorable corrosion resistance is also ensured.
[0073]
Moreover, when Ti content is 0.005-0.05 mass%, especially favorable workability, thermal conductivity, and electroconductivity are ensured.
[0074]
Moreover, when B content is 0.06 mass% or less, especially favorable workability, heat conductivity, and electroconductivity are ensured.
[0075]
Further, when the Mn content as an impurity is regulated to 0.05% by mass or less, particularly excellent thermal conductivity and conductivity are ensured.
[0076]
In addition, when the Cr content as an impurity is regulated to 0.05% by mass or less, particularly excellent thermal conductivity and conductivity are ensured.
[0077]
Since the Al—Mg—Si based alloy material of the present invention is an alloy having the above composition and has an electrical conductivity of 55 to 60% (IACS), it has excellent thermal conductivity and electrical conductivity.
[0078]
Moreover, the tensile strength is 140 to 240 N / mm 2 In this case, it has both strength and workability.
[0079]
Furthermore, in the alloy, when Mn and Cr as impurities are regulated to Mn: 0.1% by mass or less and Cr: 0.1% by mass or less, an alloy material further excellent in thermal conductivity and conductivity You can do with a board.
[0080]
Since the Al—Mg—Si based alloy plate of the present invention is manufactured by the above-described method, it is excellent in thermal conductivity, conductivity, strength and workability.
[0081]
Further, the Al—Mg—Si based alloy plate is suitably used as a heat radiating member material, a conductive member material, a case material, a reflecting plate or a support thereof, and is subjected to various forming processes and has the above-mentioned characteristics. Demonstrate.
[0082]
In addition, the Al—Mg—Si based alloy plate is suitably used as a plasma display rear chassis material, a plasma display casing, or a plasma display exterior member, and is subjected to various forming processes to exhibit the above-mentioned characteristics.
[0083]
Also, the Al—Mg—Si based alloy plate is suitably used as a liquid crystal display rear chassis material, a liquid crystal display bezel material, a liquid crystal display reflective sheet material, a liquid crystal display reflective sheet support material, or a liquid crystal display housing, and is subjected to various molding processes. Is applied and exhibits the above-mentioned characteristics.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a series of steps in a method for producing an Al—Mg—Si based alloy sheet according to the present invention. FIG. 1 (A) shows a case where heat treatment is performed after hot rolling and before cold rolling. ) Shows the case where the heat treatment is performed during cold rolling.
FIG. 2 is a correlation diagram showing the relationship between electrical conductivity and thermal conductivity in an aluminum alloy.

Claims (23)

Si:0.2〜0.8質量%、Mg:0.3〜1質量%、Fe:0.5質量%以下、Cu:0.5質量%以下を含有し、さらにTi:0.1質量%以下またはB:0.1質量%以下の少なくとも1種を含有し、残部Alおよび不可避不純物からなるAl−Mg−Si系合金鋳塊を、予備加熱した後熱間圧延し、さらに冷間圧延する工程を含む合金板の製造方法であって、
熱間圧延のパス工程におけるパス前の材料温度450〜350℃の場合、パス後の冷却速度を50℃/分以上で冷却し、熱間圧延後で冷間圧延終了までの間に、200〜400℃で1時間以上保持することにより熱処理を行うことを特徴とするAl−Mg−Si系合金板の製造方法。
Si: 0.2 to 0.8 mass%, Mg: 0.3 to 1 mass%, Fe: 0.5 mass% or less, Cu: 0.5 mass% or less, and Ti: 0.1 mass% % Or less B: 0.1% by mass or less of Al-Mg-Si alloy ingot containing the balance Al and inevitable impurities, pre-heated, hot-rolled, and further cold-rolled A method for producing an alloy plate including a step of:
If the material temperature before the pass in path step of hot rolling of four hundred fifty to three hundred and fifty ° C., the cooling rate after the pass is cooled at 50 ° C. / min or more, and before cold rolling ends after hot rolling, A method for producing an Al—Mg—Si based alloy plate, characterized in that heat treatment is performed by holding at 200 to 400 ° C. for 1 hour or longer.
合金鋳塊において、不純物としてのMnおよびCrが、Mn:0.1質量%以下、Cr:0.1質量%以下に規制されている請求項1に記載のAl−Mg−Si系合金板の製造方法。  In the alloy ingot, Mn and Cr as impurities are regulated to Mn: 0.1% by mass or less and Cr: 0.1% by mass or less. Production method. 熱処理は、熱間圧延後冷間圧延前に行う請求項1または2に記載のAl−Mg−Si系合金板の製造方法。  The method for producing an Al-Mg-Si alloy plate according to claim 1 or 2, wherein the heat treatment is performed after hot rolling and before cold rolling. 熱処理は、冷間圧延中に行う請求項1または2に記載のAl−Mg−Si系合金板の製造方法。  The method for producing an Al-Mg-Si alloy plate according to claim 1 or 2, wherein the heat treatment is performed during cold rolling. 熱処理は、220〜280℃で1〜10時間保持することにより行う請求項1〜4のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。  The method for producing an Al-Mg-Si alloy plate according to any one of claims 1 to 4, wherein the heat treatment is performed by holding at 220 to 280 ° C for 1 to 10 hours. 合金鋳塊に対し、500℃以上で均質化処理を行う請求項1〜5のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。  The manufacturing method of the Al-Mg-Si type alloy plate as described in any one of Claims 1-5 which performs a homogenization process with respect to an alloy ingot at 500 degreeC or more. 熱処理後の冷間圧延を20%以上の加工度で行う請求項1〜6のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。  The manufacturing method of the Al-Mg-Si type alloy plate as described in any one of Claims 1-6 which performs the cold rolling after heat processing with the workability of 20% or more. 加工度は30%以上である請求項7に記載のAl−Mg−Si系合金板の製造方法。  The method for producing an Al-Mg-Si alloy plate according to claim 7, wherein the degree of work is 30% or more. 冷間圧延終了後、200℃以下で最終焼鈍を行う請求項1〜8のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。  The manufacturing method of the Al-Mg-Si type alloy plate as described in any one of Claims 1-8 which performs final annealing at 200 degrees C or less after completion | finish of cold rolling. 最終焼鈍は、110〜150℃で行う請求項9に記載のAl−Mg−Si系合金板の製造方法。  The method for producing an Al-Mg-Si alloy plate according to claim 9, wherein the final annealing is performed at 110 to 150 ° C. 予備加熱温度が450〜580℃である請求項1〜10のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。  Preheating temperature is 450-580 degreeC, The manufacturing method of the Al-Mg-Si type alloy plate as described in any one of Claims 1-10. 合金鋳塊中のSi含有量は0.32〜0.6質量%である請求項1〜11のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。  The method for producing an Al-Mg-Si based alloy plate according to any one of claims 1 to 11, wherein the Si content in the alloy ingot is 0.32 to 0.6 mass%. 合金鋳塊中のMg含有量は0.35〜0.55質量%である請求項1〜11のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。  The method for producing an Al-Mg-Si alloy plate according to any one of claims 1 to 11, wherein the Mg content in the alloy ingot is 0.35 to 0.55 mass%. 合金鋳塊中のFe含有量は0.1〜0.25質量%である請求項1〜11のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。  The method for producing an Al-Mg-Si alloy plate according to any one of claims 1 to 11, wherein the Fe content in the alloy ingot is 0.1 to 0.25 mass%. 合金鋳塊中のCu含有量は0.1質量%以下である請求項1〜11のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。  The Cu content in the alloy ingot is 0.1% by mass or less, The method for producing an Al—Mg—Si based alloy plate according to any one of claims 1 to 11. 合金鋳塊中のTi含有量は0.005〜0.05質量%である請求項1〜11のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。  The method for producing an Al-Mg-Si alloy plate according to any one of claims 1 to 11, wherein a Ti content in the alloy ingot is 0.005 to 0.05 mass%. 合金鋳塊中のB含有量は0.06質量%以下である請求項1〜11のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。  The method for producing an Al-Mg-Si alloy plate according to any one of claims 1 to 11, wherein the B content in the alloy ingot is 0.06% by mass or less. 合金鋳塊中のMn含有量は0.05質量%以下に規制されている請求項1〜11のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。  The method for producing an Al-Mg-Si alloy plate according to any one of claims 1 to 11, wherein the Mn content in the alloy ingot is regulated to 0.05 mass% or less. 合金鋳塊中のCr含有量は0.05質量%以下に規制されている請求項1〜11のいずれか一項に記載のAl−Mg−Si系合金板の製造方法。  The method for producing an Al-Mg-Si alloy plate according to any one of claims 1 to 11, wherein the Cr content in the alloy ingot is regulated to 0.05 mass% or less. 請求項1〜19のいずれか一項に記載された方法で製造され、導電率が55〜60%(IACS)であり、引張強さが140〜240N/mmIt is manufactured by the method as described in any one of Claims 1-19, and electrical conductivity is 55-60% (IACS), and tensile strength is 140-240 N / mm. 2 であるAl−Mg−Si系合金板。An Al—Mg—Si based alloy plate. Al−Mg−Si系合金板は、放熱部材材料、導電部材材料、ケース材料、あるいは反射板またはその支持体である請求項20に記載のAl−Mg−Si系合金板。21. The Al—Mg—Si based alloy plate according to claim 20 , wherein the Al—Mg—Si based alloy plate is a heat radiating member material, a conductive member material, a case material, a reflecting plate or a support thereof. Al−Mg−Si系合金板は、プラズマディスプレイ背面シャーシ材、プラズマディスプレイ筐体またはプラズマディスプレイ外装部材である請求項20に記載のAl−Mg−Si系合金板。21. The Al—Mg—Si based alloy plate according to claim 20 , wherein the Al—Mg—Si based alloy plate is a plasma display rear chassis material, a plasma display casing, or a plasma display exterior member. Al−Mg−Si系合金板は、液晶ディスプレイ背面シャーシ材、液晶ディスプレイベゼル材、液晶ディスプレイ反射シート材、液晶ディスプレイ反射シート支持材または液晶ディスプレイ筐体である請求項20に記載のAl−Mg−Si系合金板。Al-Mg-Si alloy plate, a liquid crystal display back chassis member, a liquid crystal display bezel member, a liquid crystal display reflecting sheet material, Al-Mg- according to the liquid crystal display reflecting sheet supporting member or claim 20 is a liquid crystal display casing Si alloy plate.
JP2003052621A 2002-03-01 2003-02-28 Method for producing Al-Mg-Si alloy plate and Al-Mg-Si alloy plate Expired - Fee Related JP4739654B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2003052621A JP4739654B2 (en) 2002-03-01 2003-02-28 Method for producing Al-Mg-Si alloy plate and Al-Mg-Si alloy plate
KR1020047013535A KR100686657B1 (en) 2002-03-01 2003-02-28 PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL
AU2003211572A AU2003211572A1 (en) 2002-03-01 2003-02-28 PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL
EP10154099.5A EP2184375B1 (en) 2002-03-01 2003-02-28 Al-Mg-Si alloy material and plate
EP03743538A EP1482065B1 (en) 2002-03-01 2003-02-28 PROCESS FOR PRODUCING AN Al-Mg-Si ALLOY PLATE
AT03743538T ATE507316T1 (en) 2002-03-01 2003-02-28 METHOD FOR PRODUCING AN AL-MG-SI ALLOY PLATE
CNA038050749A CN1639373A (en) 2002-03-01 2003-02-28 Process for producing Al-Mg-Si alloy plate, Al-Mg-Si alloy plate and Al-Mg-Si alloy material
PCT/JP2003/002379 WO2003074750A1 (en) 2002-03-01 2003-02-28 PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL
DE60336891T DE60336891D1 (en) 2002-03-01 2003-02-28 METHOD FOR PRODUCING A PLATE OF Al-Mg-Si ALLOYING
TW092104430A TWI284152B (en) 2002-03-01 2003-03-03 Process for producing Al-Mg-Si alloy plate, Al-Mg-Si alloy plate and Al-Mg-Si alloy material
US10/376,266 US7189294B2 (en) 2002-03-01 2003-03-03 Al-Mg-Si series alloy plate, method for manufacturing the same and Al-Mg-Si series alloy material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002055392 2002-03-01
JP2002055392 2002-03-01
JP2002-55392 2002-03-01
JP2003052621A JP4739654B2 (en) 2002-03-01 2003-02-28 Method for producing Al-Mg-Si alloy plate and Al-Mg-Si alloy plate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008310395A Division JP5254764B2 (en) 2002-03-01 2008-12-05 Al-Mg-Si alloy material

Publications (2)

Publication Number Publication Date
JP2003321755A JP2003321755A (en) 2003-11-14
JP4739654B2 true JP4739654B2 (en) 2011-08-03

Family

ID=29552184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052621A Expired - Fee Related JP4739654B2 (en) 2002-03-01 2003-02-28 Method for producing Al-Mg-Si alloy plate and Al-Mg-Si alloy plate

Country Status (4)

Country Link
JP (1) JP4739654B2 (en)
KR (1) KR100686657B1 (en)
AT (1) ATE507316T1 (en)
DE (1) DE60336891D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019055A (en) * 2002-03-01 2013-01-31 Showa Denko Kk PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060134375A (en) * 2005-06-22 2006-12-28 삼성전자주식회사 Backlight assembly and display device provided with the same
JP4787885B2 (en) * 2008-08-11 2011-10-05 住友電気工業株式会社 Wire harness for wire harness and wire harness for automobile
JP4777487B1 (en) * 2008-08-11 2011-09-21 住友電気工業株式会社 Method for manufacturing aluminum alloy wire
JP5247584B2 (en) * 2009-05-14 2013-07-24 株式会社フジクラ Al alloy and Al alloy conductive wire
SE534689C2 (en) * 2009-09-17 2011-11-15 Sapa Heat Transfer Ab Soldered aluminum sheet
JP5542472B2 (en) * 2010-02-17 2014-07-09 株式会社東芝 Battery component, battery pack, and battery pack manufacturing method
JP5490594B2 (en) * 2010-03-31 2014-05-14 Jx日鉱日石金属株式会社 Cu-Zn alloy strip for battery connection tab material
JP5555580B2 (en) * 2010-09-15 2014-07-23 株式会社Uacj Aluminum alloy excellent in thermal conductivity, strength and formability and method for producing the same
JP5586502B2 (en) * 2011-02-18 2014-09-10 三協立山株式会社 Method for producing extruded aluminum alloy
EP2832874B1 (en) 2012-03-29 2018-04-25 Furukawa Electric Co., Ltd. Aluminum alloy wire and process for producing same
CN104297300A (en) * 2014-10-23 2015-01-21 西南铝业(集团)有限责任公司 Method for determining head and tail reference saw cutting quantity of aluminum alloy round ingot
JP2017082281A (en) * 2015-10-27 2017-05-18 昭和電工パッケージング株式会社 Small sized electronic device case, molding method thereof and aluminum alloy rolled laminate sheet material for small sized electronic device case
JP2017179452A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6774200B2 (en) * 2016-03-30 2020-10-21 昭和電工株式会社 Manufacturing method of Al-Mg-Si based alloy plate
WO2017168892A1 (en) * 2016-03-30 2017-10-05 昭和電工株式会社 Method for producing al-mg-si alloy plate
JP2017179450A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2017179451A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP6774199B2 (en) * 2016-03-30 2020-10-21 昭和電工株式会社 Manufacturing method of Al-Mg-Si based alloy plate
JP2017179456A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY MATERIAL
JP2017179454A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2017179457A (en) * 2016-03-30 2017-10-05 昭和電工株式会社 Al-Mg-Si-BASED ALLOY MATERIAL
WO2017168891A1 (en) * 2016-03-30 2017-10-05 昭和電工株式会社 Method for producing al-mg-si alloy plate
KR101792799B1 (en) 2016-05-25 2017-11-20 한국기계연구원 Manufacturing method of wrought materials using aluminum alloy
WO2017204576A1 (en) * 2016-05-25 2017-11-30 한국기계연구원 Method for producing working material using aluminum alloy
EP3604580A4 (en) * 2017-03-29 2021-01-13 Furukawa Electric Co., Ltd. Aluminium alloy material, conductive member using same, battery member, fastening component, spring component, and structure component
KR101979344B1 (en) * 2017-09-14 2019-08-28 한국기계연구원 Methods of treating aluminum alloy
JP7007884B2 (en) * 2017-12-12 2022-02-10 昭和電工株式会社 Case and its manufacturing method
CN110373579A (en) * 2019-08-14 2019-10-25 上海应用技术大学 A kind of high conductive high strength aluminum alloy materials and preparation method thereof
JP7442304B2 (en) 2019-11-25 2024-03-04 堺アルミ株式会社 Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019055A (en) * 2002-03-01 2013-01-31 Showa Denko Kk PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL

Also Published As

Publication number Publication date
DE60336891D1 (en) 2011-06-09
KR20040081812A (en) 2004-09-22
KR100686657B1 (en) 2007-02-27
ATE507316T1 (en) 2011-05-15
JP2003321755A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
JP4739654B2 (en) Method for producing Al-Mg-Si alloy plate and Al-Mg-Si alloy plate
EP1482065B1 (en) PROCESS FOR PRODUCING AN Al-Mg-Si ALLOY PLATE
JP5254764B2 (en) Al-Mg-Si alloy material
JP2007009262A (en) Aluminum alloy sheet with excellent thermal conductivity, strength and bendability and its manufacturing method
JP2005264174A (en) Aluminum alloy sheet having excellent thermal conductivity and formability and its production method
JP5555580B2 (en) Aluminum alloy excellent in thermal conductivity, strength and formability and method for producing the same
JP2020033605A (en) Al-Mg-Si-BASED ALLOY SHEET
JP2017179454A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2017179445A (en) Al-Mg-Si-BASED ALLOY SHEET
JP2009242813A (en) Method for producing aluminum alloy rolled sheet having excellent thermal conductivity and bending workability
JP2010222624A (en) Copper alloy, and method for manufacturing the same
JP2017179453A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP7422539B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
JP2005008926A (en) Aluminum alloy sheet with excellent thermal conductivity and formability, and its manufacturing method
JP2017179449A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP4933326B2 (en) Aluminum alloy rolled sheet excellent in thermal conductivity, strength and bending workability, and manufacturing method thereof
JP2000226628A (en) Aluminum radiating member and its production
JP2017179452A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2020033607A (en) Al-Mg-Si-BASED ALLOY SHEET
US20040118493A1 (en) A1-Mg-Si series alloy plate excellent in thermal conductivity and strength, and method of manufacturing the same
TW201738390A (en) Method for producing al-mg-Si alloy plate
JP6718275B2 (en) Method for manufacturing Al-Mg-Si alloy plate
JP2017179443A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP2020033609A (en) Al-Mg-Si-BASED ALLOY SHEET
JP2001003131A (en) Aluminum alloy material excellent in low temperature creep characteristics, its manufacture, and aluminum alloy product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4739654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees