JP7007884B2 - Case and its manufacturing method - Google Patents

Case and its manufacturing method Download PDF

Info

Publication number
JP7007884B2
JP7007884B2 JP2017237337A JP2017237337A JP7007884B2 JP 7007884 B2 JP7007884 B2 JP 7007884B2 JP 2017237337 A JP2017237337 A JP 2017237337A JP 2017237337 A JP2017237337 A JP 2017237337A JP 7007884 B2 JP7007884 B2 JP 7007884B2
Authority
JP
Japan
Prior art keywords
case
aluminum alloy
content
molding
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017237337A
Other languages
Japanese (ja)
Other versions
JP2019104958A (en
Inventor
正広 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2017237337A priority Critical patent/JP7007884B2/en
Publication of JP2019104958A publication Critical patent/JP2019104958A/en
Application granted granted Critical
Publication of JP7007884B2 publication Critical patent/JP7007884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、モーター、二次電池、キャパシタなどの発熱を伴う装置のケース、およびその製造方法に関する。 The present invention relates to a case of a device that generates heat, such as a motor, a secondary battery, and a capacitor, and a method for manufacturing the same.

モーター装置は、円筒状のケース内部に磁石と誘電コイルを巻いた鉄心などを収めた構造となっており、誘電コイルに電気を流す際に誘電コイルの電気抵抗により発熱する。磁石が高熱にさらされると磁力の低下を招くため、ケースを通じて放熱することが求められる。また、ケースの材料は磁力を封じ込めるために非磁性材料が好ましく、アルミニウム製ケースが用いられてきた。充放電を繰り返す二次電池やキャパシタのケースも充放電時に発生する熱を放熱するため、モーター装置と同じくアルミニウム製ケースが用いられている。 The motor device has a structure in which a magnet and an iron core wound with a dielectric coil are housed inside a cylindrical case, and when electricity is passed through the dielectric coil, heat is generated by the electric resistance of the dielectric coil. When a magnet is exposed to high heat, the magnetic force is reduced, so it is required to dissipate heat through the case. Further, the material of the case is preferably a non-magnetic material in order to contain the magnetic force, and an aluminum case has been used. The case of the secondary battery and the capacitor, which are repeatedly charged and discharged, also uses an aluminum case like the motor device in order to dissipate the heat generated during charging and discharging.

ケース材料のアルミニウムとしては、熱伝導率が高く放熱性の優れた純アルミニウムが用いられる他、高強度が求められるケースでは、A3003合金などのAl-Mn系合金やAl-Mn-Cu系合金が用いられている(特許文献1、2参照)。 As the case material aluminum, pure aluminum having high thermal conductivity and excellent heat dissipation is used, and in cases where high strength is required, Al—Mn alloys such as A3003 alloy and Al—Mn—Cu alloys are used. It is used (see Patent Documents 1 and 2).

特開2015-125886号公報Japanese Unexamined Patent Publication No. 2015-125886 特開2014-185377号公報Japanese Unexamined Patent Publication No. 2014-185377

しかし、Al-Mn系合金やAl-Mn-Cu系合金は純アルミニウムよりも熱伝導率が低く放熱性が劣るという問題点がある。また、有底のケースを円盤形の素材にインパクト成形や絞り成形を施して作製する場合には、放熱性および強度に加えて、成形性が良好であることが求められる。 However, Al-Mn-based alloys and Al-Mn-Cu-based alloys have a problem that they have lower thermal conductivity and inferior heat dissipation than pure aluminum. Further, when the bottomed case is manufactured by impact molding or drawing molding on a disk-shaped material, it is required to have good moldability in addition to heat dissipation and strength.

本発明は、上述した背景技術に鑑み、良い放熱性、強度、成形性に優れたアルミニウム合金製のケースとその製造方法を提供することを目的とする。 In view of the background art described above, it is an object of the present invention to provide a case made of an aluminum alloy having excellent heat dissipation, strength and moldability, and a method for manufacturing the same.

即ち、本発明は下記[1]~[8]に記載の構成を有する。 That is, the present invention has the configurations described in the following [1] to [8].

[1]アルミニウム合金からなり、底壁と側壁が一体に成形された有底ケースであり、
前記アルミニウム合金は、Si:0.2%~0.6%、Fe:0.1%~0.35%、Mg:0.45%~0.9%を含み、残部がAlおよび不可避的不純物からなり、熱伝導率が180W/(m・K)以上であり、HV硬さが55以上であることを特徴とするケース。
[1] A bottomed case made of an aluminum alloy and having a bottom wall and a side wall integrally molded.
The aluminum alloy contains Si: 0.2% to 0.6%, Fe: 0.1% to 0.35%, Mg: 0.45% to 0.9%, and the balance is Al and unavoidable impurities. A case characterized by having a thermal conductivity of 180 W / (m · K) or more and an HV hardness of 55 or more.

[2]前記アルミニウム合金が、さらに、Cu:0.01%~0.1%、Mn:0.01%~0.1%、Cr:0.01%~0.1%のうちの少なくとも1種を含む前項1に記載のケース。 [2] The aluminum alloy further contains at least one of Cu: 0.01% to 0.1%, Mn: 0.01% to 0.1%, and Cr: 0.01% to 0.1%. The case according to item 1 above, including seeds.

[3]前記アルミニウム合金が、さらに、Ti:0.002%~0.1%、B:0.001%~0.05%のうちの少なくとも1種を含む前項1または2に記載のケース。 [3] The case according to item 1 or 2 above, wherein the aluminum alloy further contains at least one of Ti: 0.002% to 0.1% and B: 0.001% to 0.05%.

[4]Si:0.2%~0.6%、Fe:0.1%~0.35%、Mg:0.45%~0.9%を含み、残部がAlおよび不可避的不純物からなるアルミニウム合金に、熱処理後に焼き入れして成形用の素材を作製し、120℃~200℃に加熱した前記素材にインパクト成形を施して底壁と側壁が一体化した有底ケースを成形することを特徴とするケースの製造方法。 [4] Si: 0.2% to 0.6%, Fe: 0.1% to 0.35%, Mg: 0.45% to 0.9%, and the balance consists of Al and unavoidable impurities. A material for molding is produced by quenching an aluminum alloy after heat treatment, and impact molding is performed on the material heated to 120 ° C to 200 ° C to form a bottomed case in which the bottom wall and the side wall are integrated. A characteristic case manufacturing method.

[5]前記熱処理は、熱間圧延、熱間押出、溶体化処理のいずれかである前項4に記載のケースの製造方法。 [5] The method for manufacturing a case according to item 4 above, wherein the heat treatment is any one of hot rolling, hot extrusion, and solution treatment.

[6]焼き入れ後の素材に人工時効処理を施す前項4または5に記載のケースの製造方法。 [6] The method for manufacturing a case according to item 4 or 5 above, wherein the material after quenching is subjected to artificial aging treatment.

[7]前項1~3のうちのいずれかのケースが用いられた車載電池であり、車体の構造体の一部を構成することを特徴とする車載電池。 [7] An in-vehicle battery in which any of the cases 1 to 3 in the preceding paragraph is used, which comprises a part of the structure of the vehicle body.

[8]前項7に記載の車載電池が車体の構造体の一部として用いられていることを特徴とする車体。 [8] A vehicle body characterized in that the vehicle-mounted battery according to item 7 above is used as a part of the structure of the vehicle body.

上記[1]に記載のケースは、熱伝導率が180W/(m・K)以上であり、HV硬さが55以上であるから、放熱性および強度が高い。また、ケースは底壁と側壁が一体に成形された有底ケースであり、成形性が良好であることを示している。 The case described in [1] above has a thermal conductivity of 180 W / (m · K) or more and an HV hardness of 55 or more, and therefore has high heat dissipation and strength. Further, the case is a bottomed case in which the bottom wall and the side wall are integrally molded, indicating that the moldability is good.

上記[2]に記載されたケースは強度および/または成形性が特に優れている。 The case described in [2] above is particularly excellent in strength and / or moldability.

上記[3]に記載されたケースは成形性が特に優れている。 The case described in [3] above is particularly excellent in moldability.

上記[4]に記載されたケースの製造方法によれば、熱処理とその後の焼き入れによってMgSi粒子を析出させて強度および成形性の良い素材を作製し、かつ作製した素材を120℃~200℃の温間に加熱してインパクト成形を施すことにより、焼き入れ効果によって得た強度を減じることなく有底ケースに成形できる。 According to the case manufacturing method described in the above [4], Mg 2 Si particles are precipitated by heat treatment and subsequent quenching to prepare a material having good strength and moldability, and the prepared material is produced at 120 ° C. or higher. By applying impact molding by heating to a temperature of 200 ° C., it can be molded into a bottomed case without reducing the strength obtained by the quenching effect.

上記[5]に記載のケースの製造方法によれば、熱間圧延、熱間押出、溶体化処理のいずれかの熱処理を行って[4]に記載した効果を得ることができる。 According to the case manufacturing method described in [5] above, any of the heat treatments of hot rolling, hot extrusion, and solution heat treatment can be performed to obtain the effect described in [4].

上記[6]に記載のケースの製造方法によれば、時効硬化によって強度の高いケースを作製できる。 According to the case manufacturing method described in [6] above, a case having high strength can be manufactured by age hardening.

上記[7]に記載の車載電池はケースの強度が高いので、車体の構造体の一部として利用できる。 Since the in-vehicle battery described in [7] above has high strength in the case, it can be used as a part of the structure of the vehicle body.

上記[8]に記載の車体は車載電池が構造体の一部を構成しているので、従来の車体と重複する部材を減らすことができる。 Since the vehicle-mounted battery constitutes a part of the structure of the vehicle body according to the above [8], it is possible to reduce the number of members overlapping with the conventional vehicle body.

本発明のケースの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the case of this invention. インパクト成形法を示す説明図である。It is explanatory drawing which shows the impact molding method. 車載電池を車体の構造体の一部として用いられた電気自動車を示す図である。It is a figure which shows the electric vehicle which used the in-vehicle battery as a part of the structure of a car body.

[ケース]
図1に本発明のケースの一実施形態を示す。
[Case]
FIG. 1 shows an embodiment of the case of the present invention.

ケース1は、アルミニウム合金からなり、底壁11と側壁12が一体に成形された有底の円筒体であり、アルミニウム合金の化学組成、熱伝導率およびHV硬さが規定されている。
(アルミニウム合金の化学組成)
前記ケース1の材料のアルミニウム合金の化学組成において、各元素の添加意義および含有量の限定理由は以下のとおりである。また、各元素の含有量の単位は質量%であり、「%」と略して記載する。
Case 1 is a bottomed cylindrical body made of an aluminum alloy and integrally formed with a bottom wall 11 and a side wall 12, and the chemical composition, thermal conductivity, and HV hardness of the aluminum alloy are specified.
(Chemical composition of aluminum alloy)
In the chemical composition of the aluminum alloy of the material of Case 1, the significance of adding each element and the reason for limiting the content are as follows. The unit of the content of each element is mass%, which is abbreviated as "%".

Siは、Mgと共存してMgSi粒子を析出させて合金の強度向上に寄与する。Si含有量が0.2%未満では、析出強化の効果が少なくなり、一方、0.60%を越えると、Siの粒界析出が多くなって粒界脆化が生じやすくなり、合金の靭性が低下する。従って、Si含有量は0.2%~0.6%とし、特に好ましいSi含有量は0.3%~0.5%である。 Si coexists with Mg and precipitates Mg 2 Si particles, which contributes to improving the strength of the alloy. If the Si content is less than 0.2%, the effect of precipitation strengthening is reduced, while if it exceeds 0.60%, the grain boundary precipitation of Si increases and grain boundary embrittlement is likely to occur, and the toughness of the alloy is increased. Decreases. Therefore, the Si content is 0.2% to 0.6%, and a particularly preferable Si content is 0.3% to 0.5%.

Feは、AlFeSi相として晶出して結晶粒粗大化防止し、合金の焼入れ感受性を減少させ、また強度と靭性を向上させ、耐食性の向上に寄与する。Fe含有量が0.1%未満ではその効果が小さくなり、一方、0.35%を越えると熱伝導率が低下する。従って、Fe含有量は0.1%~0.35%とし、特に好ましいFe含有量は0.15%~0.25%である。 Fe crystallizes as an AlFeSi phase to prevent grain coarsening, reduces quenching sensitivity of the alloy, improves strength and toughness, and contributes to improvement of corrosion resistance. If the Fe content is less than 0.1%, the effect is small, while if it exceeds 0.35%, the thermal conductivity is lowered. Therefore, the Fe content is 0.1% to 0.35%, and a particularly preferable Fe content is 0.15% to 0.25%.

Mgは、Siと共存してMgSi粒子を析出させて合金の強度向上に寄与する。Mg含有量が0.45%未満では強度向上の効果が小さく、一方、Mg含有量が0.9%を越えると成形性および熱伝導率が低下する。従って、Mg含有量は、0.45~0.9%とし、特に好ましいMg含有量は0.5%~0.8%である。 Mg coexists with Si and precipitates Mg 2 Si particles, which contributes to the improvement of the strength of the alloy. When the Mg content is less than 0.45%, the effect of improving the strength is small, while when the Mg content exceeds 0.9%, the moldability and the thermal conductivity are lowered. Therefore, the Mg content is 0.45 to 0.9%, and a particularly preferable Mg content is 0.5% to 0.8%.

前記アルミニウム合金は、要すればさらに、Cu、Mn、Crのうちの少なくとも1種を含有することが好ましい。 The aluminum alloy preferably further contains at least one of Cu, Mn, and Cr, if necessary.

Cuは、CuAl2粒子を析出させてアルミニウム合金の強度向上に寄与する。Cu含有量が0.01%未満ではその効果が小さくなり、一方、Cu含有量が0.1%を超えると成形性が低下する。従って、Cu含有量は0.01%~0.1%とし、特に好ましいCu含有量は0.05%~0.08%である。 Cu precipitates CuAl 2 particles and contributes to improving the strength of the aluminum alloy. If the Cu content is less than 0.01%, the effect is small, while if the Cu content is more than 0.1%, the moldability is lowered. Therefore, the Cu content is 0.01% to 0.1%, and a particularly preferable Cu content is 0.05% to 0.08%.

Mnは、Al-Mn系粒子やAl-Mn-Fe-Si系粒子を析出させて組織を微細化し、成形時の塑性流動を促して成形性を向上させる効果がある。Mn含有量が0.01%未満では前記効果が小さく、一方、Mn含有量が0.1%を超えると熱伝導率を低下させるために好ましくない。従って、Mn含有量は0.01%~0.1%とし、特に好ましいMn含有量は0.03%~0.06%である。 Mn has the effect of precipitating Al—Mn-based particles and Al—Mn—Fe—Si-based particles to make the structure finer, promoting plastic flow during molding, and improving moldability. If the Mn content is less than 0.01%, the effect is small, while if the Mn content exceeds 0.1%, the thermal conductivity is lowered, which is not preferable. Therefore, the Mn content is 0.01% to 0.1%, and a particularly preferable Mn content is 0.03% to 0.06%.

Crは、Al-Cr系粒子やAl-Cr-Fe-Si系粒子を析出させて組織を微細化し、成形時の塑性流動を促して成形性を向上させる効果がある。Cr含有量が0.01%未満では前記効果が小さく、一方、Cr含有量が0.1%を超えると熱伝導率を低下させるために好ましくない。従って、Cr含有量は0.01%~0.1%とし、特に好ましいCr含有量は0.03%~0.06%である。 Cr has the effect of precipitating Al—Cr-based particles and Al—Cr—Fe—Si-based particles to make the structure finer, promoting plastic flow during molding, and improving moldability. If the Cr content is less than 0.01%, the effect is small, while if the Cr content exceeds 0.1%, the thermal conductivity is lowered, which is not preferable. Therefore, the Cr content is 0.01% to 0.1%, and a particularly preferable Cr content is 0.03% to 0.06%.

前記アルミニウム合金は、要すればさらに、Ti、Brのうちの少なくとも1種を含有することが好ましい。 The aluminum alloy preferably further contains at least one of Ti and Br, if necessary.

TiおよびBは鋳塊組織の微細化する効果があり、鋳塊組織の微細化によって成形性が高まる。かかる効果を得るためにTi含有量は0.002%~0.1%が好ましく、さらに0.02%~0.08%が好ましく、0.002%~0.05%がなお一層好ましい。また、B含有量は0.0001%~0.05%が好ましく、さらに0.005%~0.01%が好ましい。 Ti and B have the effect of miniaturizing the ingot structure, and the miniaturization of the ingot structure enhances the moldability. In order to obtain such an effect, the Ti content is preferably 0.002% to 0.1%, more preferably 0.02% to 0.08%, and even more preferably 0.002% to 0.05%. The B content is preferably 0.0001% to 0.05%, more preferably 0.005% to 0.01%.

前記アルミニウム合金の残部はAlおよび不可避不純物である。
(アルミニウム合金の物性)
アルミニウム合金は熱伝導率が180W/(m・K)以上であり、放熱性が優れている。特に好ましい熱伝導率は200W/(m・K)以上である。また、アルミニウム合金のHV硬さが55以上であり、強度が優れている。特に好ましいHV硬さ58以上である。さらに、ケース1は底壁11と側壁12が一体に成形された有底ケースであり、成形性が良好であることを示している。
The rest of the aluminum alloy is Al and unavoidable impurities.
(Physical characteristics of aluminum alloy)
The aluminum alloy has a thermal conductivity of 180 W / (m · K) or more and is excellent in heat dissipation. A particularly preferable thermal conductivity is 200 W / (m · K) or more. Further, the HV hardness of the aluminum alloy is 55 or more, and the strength is excellent. A particularly preferable HV hardness is 58 or more. Further, the case 1 is a bottomed case in which the bottom wall 11 and the side wall 12 are integrally molded, indicating that the moldability is good.

また、ケース1を構成するアルミニウム合金の引張強度は限定されないが、180MPa以上であることが好ましく、200MPa以上であればなお一層好ましい。
[ケースの製造方法]
前記ケース1は、素材にインパクト成形を施して作製する。
Further, the tensile strength of the aluminum alloy constituting the case 1 is not limited, but is preferably 180 MPa or more, and even more preferably 200 MPa or more.
[Case manufacturing method]
The case 1 is manufactured by subjecting a material to impact molding.

インパクト成形は、図2に示すように、ダイス21のキャビテティ22に投入した素材2にパンチ23で衝撃を与え、素材2の厚みを減じて底壁11を形成しながらパンチ23の周面に沿って素材を伸び上がらせることにより、底壁11と側壁12を一体に成形する加工方法である。インパクト成形によれば、一つの工程で有底のケースを成形することができる。インパクト成形では素材2を薄くしながら側壁12を伸び上がらせるので、成形用の素材2は目的形状のケース1の底壁11よりも厚いものが用いられる。深絞り成形では、ケースの底壁と同程度の厚みの素材から側壁を成形する加工方法であるが、一つの工程で成形可能の側壁の高さに限界があるため、高い側壁を成形するには複数の工程が必要であり、各工程用のダイスとパンチが必要である。一方、インパクト成形は一つの工程で一組のダイス21とパンチ23で所期する高さの側壁が得られるので、深絞り成形よりも製造効率が良く製造コストを低減できる。 In the impact molding, as shown in FIG. 2, the material 2 put into the cavity 22 of the die 21 is impacted by the punch 23, the thickness of the material 2 is reduced to form the bottom wall 11, and the material 2 is formed along the peripheral surface of the punch 23. This is a processing method in which the bottom wall 11 and the side wall 12 are integrally formed by stretching the material. According to impact molding, a bottomed case can be molded in one step. In impact molding, the side wall 12 is stretched while thinning the material 2, so that the material 2 for molding is thicker than the bottom wall 11 of the case 1 having the target shape. Deep drawing is a processing method for molding the side wall from a material with the same thickness as the bottom wall of the case, but since there is a limit to the height of the side wall that can be molded in one process, it is necessary to form a high side wall. Requires multiple steps and requires dies and punches for each step. On the other hand, in impact molding, since a side wall having a desired height can be obtained with a set of dies 21 and punch 23 in one process, the manufacturing efficiency is higher than that of deep drawing molding, and the manufacturing cost can be reduced.

インパクト成形によって有底のケースを成形するには素材の流動性が良く成形性が良いことが必要であるが、成形したケースはHV硬さが55以上の強度を有していることが条件である。本発明においては、素材のアルミニウム合金の化学組成を規定し、そのアルミニウム合金を鋳造して素材の形状に加工するまでの間に熱処理および焼き入れを行い、インパクト成形に供する素材の温度を規定することによって、インパクト成形における成形性を制御し、かつ成形されたケースが高い放熱性と強度を有するものとする。なお、放熱性はアルミニウム合金の化学組成に基づいて得ている。 In order to form a bottomed case by impact molding, it is necessary that the material has good fluidity and formability, but the molded case must have an HV hardness of 55 or more. be. In the present invention, the chemical composition of the aluminum alloy of the material is specified, and the temperature of the material to be subjected to impact molding is specified by performing heat treatment and quenching until the aluminum alloy is cast and processed into the shape of the material. Thereby, the moldability in impact molding is controlled, and the molded case has high heat dissipation and strength. The heat dissipation is obtained based on the chemical composition of the aluminum alloy.

前記素材2は、厚みがケース1の底壁11よりも厚い板材であり、平面形状がケースの底壁11に略同一である。例えば円形ケースの素材は円形板であり、角形ケースの素材は角形板である。このような形状の素材の作製方法を大別すると、(A)素材相当の厚みで大サイズの板をファインブランキングによって素材の平面形状に打ち抜く方法と、(B)素材の平面形状を断面とする棒材を素材の厚みにスライス切断する方法がある。本発明のケースの製造方法は、インパクト成形用の素材を作製する工程中で熱処理と熱処理後の焼き入れを行い、かつインパクト成形に供する素材の温度を規定する。素材作製工程中の熱処理とその後の焼き入れによって上述した粒子を析出させる。即ち、MgSi粒子、CuAl2粒子を析出させて強度を向上させ、また、Al-Mn系粒子、Al-Mn-Fe-Si系粒子、Al-Cr系粒子やAl-Cr-Fe-Si系粒子粒子を析出させて強度および成形性を向上させる。 The material 2 is a plate material having a thickness thicker than that of the bottom wall 11 of the case 1, and its planar shape is substantially the same as that of the bottom wall 11 of the case. For example, the material of the circular case is a circular plate, and the material of the square case is a square plate. The methods for producing a material with such a shape can be roughly divided into (A) a method of punching a large-sized plate with a thickness equivalent to the material into a planar shape of the material by fine blanking, and (B) a method of punching the planar shape of the material into a cross section. There is a method of slicing the bar material to the thickness of the material. The method for manufacturing a case of the present invention defines the temperature of a material to be subjected to heat treatment and quenching after the heat treatment in the process of producing a material for impact molding, and to be subjected to impact molding. The above-mentioned particles are precipitated by heat treatment during the material preparation process and subsequent quenching. That is, Mg 2 Si particles and CuAl 2 particles are precipitated to improve the strength, and Al-Mn-based particles, Al-Mn-Fe-Si-based particles, Al-Cr-based particles and Al-Cr-Fe-Si. Systematic particles Precipitate particles to improve strength and formability.

以下に、(A)の大サイズの板材を作製する2種類の方法と(B)の棒状材を作製する2種類の方法を示し、各方法における熱処理条件について説明する。
(A-1)
スラブを半連続鋳造し、このスラブを均質化処理した後に面削し、熱間圧延後に焼き入れし、さらに素材2の厚みまで冷間圧延する。要すれば、冷間圧延材を時効処理する。前記冷間圧延で作製した大サイズの板材を、ファインブランキングにより打ち抜いて所要形状の素材2を作製する。
Hereinafter, two types of methods for producing the large-sized plate material (A) and two types of methods for producing the rod-shaped material (B) will be shown, and the heat treatment conditions in each method will be described.
(A-1)
The slab is semi-continuously cast, the slab is homogenized, then face-cut, hot-rolled, then quenched, and then cold-rolled to the thickness of the material 2. If necessary, the cold-rolled material is aged. A large-sized plate material produced by cold rolling is punched out by fine blanking to produce a material 2 having a required shape.

上記工程においては、熱間圧延が本発明における熱処理に対応する。前記熱間圧延温度(スラブの予加熱温度)は420℃~520℃が好ましく、特に480℃~500℃が好ましい。そして、前記温度から焼き入れする。
(A-2)
ビレットを半連続鋳造し、このビレットを均質化処理した後に面削し、素材2の厚みの板材に熱間押出し、焼き入れする。要すれば、押し出した板材を時効処理する。前記押し出しで作製した大サイズの板材を、ファインブランキングにより打ち抜いて所要形状の素材2を作製する。
In the above steps, hot rolling corresponds to the heat treatment in the present invention. The hot rolling temperature (preheating temperature of the slab) is preferably 420 ° C to 520 ° C, particularly preferably 480 ° C to 500 ° C. Then, it is quenched from the above temperature.
(A-2)
The billet is semi-continuously cast, and after the billet is homogenized, it is face-cut, hot-extruded into a plate having the thickness of the material 2, and quenched. If necessary, the extruded plate material is aged. The large-sized plate material produced by the extrusion is punched out by fine blanking to produce a material 2 having a required shape.

上記工程においては、熱間押出が本発明における熱処理に対応する。前記熱間押出温度(ビレットの予加熱温度)は420℃~520℃が好ましく、特に450℃~500℃が好ましい。そして、前記温度から焼き入れする。
(B-1)
ビレットを半連続鋳造し、このビレットを均質化処理した後に面削し、素材2の平面形状を断面とする棒材を熱間押出し、焼き入れする。要すれば、押し出した棒材を時効処理する。前記棒材を素材2の厚みにスライス切断し、素材2を作製する。
In the above steps, hot extrusion corresponds to the heat treatment in the present invention. The hot extrusion temperature (preheating temperature of the billet) is preferably 420 ° C to 520 ° C, particularly preferably 450 ° C to 500 ° C. Then, it is quenched from the above temperature.
(B-1)
The billet is semi-continuously cast, the billet is homogenized, and then surface-cut, and a bar having a planar shape of the material 2 is hot-extruded and quenched. If necessary, the extruded bar is aged. The bar is sliced to the thickness of the material 2 to prepare the material 2.

上記工程においては、熱間押出が本発明における熱処理に対応する。前記熱間押出温度(ビレットの予加熱温度)は420℃~520℃が好ましく、特に450℃~500℃が好ましい。そして、前記温度から焼き入れする。
(B-2)
素材2の平面形状を断面とする棒材を連続鋳造し、この連続鋳造材を均質化処理し、さらにピーリングし、素材2の厚みにスライス切断する。このスライス切断材に溶体化処理した後に焼き入れする。要すれば、焼き入れ後に時効処理する。これにより素材2を作製する。
In the above steps, hot extrusion corresponds to the heat treatment in the present invention. The hot extrusion temperature (preheating temperature of the billet) is preferably 420 ° C to 520 ° C, particularly preferably 450 ° C to 500 ° C. Then, it is quenched from the above temperature.
(B-2)
A bar having a plane shape of the material 2 as a cross section is continuously cast, the continuous cast material is homogenized, peeled, and sliced to the thickness of the material 2. This slice cutting material is solution-treated and then quenched. If necessary, it is aged after quenching. As a result, the material 2 is produced.

上記工程においては、スライス切断材の溶体化処理が本発明における熱処理に対応する。前記溶体化処理温度は480℃~560℃が好ましく、特に510℃~540℃が好ましい。また、溶体化処理時間は120分~360分が好ましく、特に150分~240分が好ましい。そして、前記温度から焼き入れする。 In the above step, the solution treatment of the sliced cutting material corresponds to the heat treatment in the present invention. The solution treatment temperature is preferably 480 ° C to 560 ° C, particularly preferably 510 ° C to 540 ° C. The solution treatment time is preferably 120 minutes to 360 minutes, particularly preferably 150 minutes to 240 minutes. Then, it is quenched from the above temperature.

前記(A-1)(A-2)(B-1)(B-2)の工程において、焼き入れ後に行う時効処理は任意に行う工程である。時効処理によってAl-Cu、MgSiなどの時効析出物の微細析出によって強度および硬度が上昇するという効果がある。時効処理の好ましい条件は170℃~220℃×2時間~18時間であり、特に好ましい条件は180℃~200℃×4時間~10時間である。また、鋳造材に対する均質化処理も任意に行う処理であり、490℃~570℃で行うことが好ましい。均質化処理温度が前記の範囲内であれば、鋳造時の偏析を均質化する効果が得られ、再結晶核となる遷移金属元素の粗大化が起こらず、粗大再結晶防止の点から好ましい。均質化処理温度が490℃未満であれば鋳造時の偏析を均質化する効果が得られにくくなり、一方570℃を超えると遷移金属元素の析出が粗大となり、粗大再結晶防止効果が小さくなる。特にFe、Mnを添加したアルミニウム合金の場合、より高い効果を得るためには、この範囲が好ましい。また、均質化処理時間は3時間~20時間とすることが好ましい。 In the steps (A-1), (A-2), (B-1), and (B-2), the aging treatment performed after quenching is an optional step. The aging treatment has the effect of increasing the strength and hardness due to the fine precipitation of aging precipitates such as Al-Cu and Mg 2 Si. Preferred conditions for the aging treatment are 170 ° C. to 220 ° C. × 2 hours to 18 hours, and particularly preferable conditions are 180 ° C. to 200 ° C. × 4 hours to 10 hours. Further, the homogenization treatment for the cast material is also an arbitrary treatment, and it is preferable to perform the homogenization treatment at 490 ° C to 570 ° C. When the homogenization treatment temperature is within the above range, the effect of homogenizing the segregation during casting can be obtained, the transition metal element to be the recrystallization nucleus does not become coarse, and it is preferable from the viewpoint of preventing coarse recrystallization. If the homogenization treatment temperature is less than 490 ° C, it becomes difficult to obtain the effect of homogenizing the segregation during casting, while if it exceeds 570 ° C, the precipitation of the transition metal element becomes coarse and the effect of preventing coarse recrystallization becomes small. In particular, in the case of an aluminum alloy to which Fe and Mn are added, this range is preferable in order to obtain a higher effect. The homogenization treatment time is preferably 3 hours to 20 hours.

前記(A-1)(A-2)(B-1)(B-2)の方法で作製した素材2は、表面を潤滑処理した後に120℃~200℃に加熱し、かかる温度でインパクト成形する。素材2の温度が120℃未満では成形性が不十分でインパクト成形による成形が困難である。一方、200℃を超えると焼き入れ効果が低減または消滅する。素材2の特に好ましい温度は140℃~180℃である。 The material 2 produced by the methods (A-1), (A-2), (B-1), and (B-2) is heated to 120 ° C. to 200 ° C. after the surface is lubricated, and impact molding is performed at such a temperature. do. If the temperature of the material 2 is less than 120 ° C., the moldability is insufficient and molding by impact molding is difficult. On the other hand, if the temperature exceeds 200 ° C., the quenching effect is reduced or disappears. A particularly preferable temperature for the material 2 is 140 ° C to 180 ° C.

また、前記素材の成形方法は上述した4つの方法に限定されない。所要形状の素材を作製する工程中に熱処理とその後の焼き入れを行う限り、他の方法で素材を作製してもよい。 Further, the molding method of the material is not limited to the above-mentioned four methods. As long as heat treatment and subsequent quenching are performed during the process of producing a material having a required shape, the material may be produced by another method.

本発明のケースの用途は限定されないが、放熱性が優れているので、モーター、電池、キャパシタ等の発熱を伴う装置のケースに適している。また、強度が優れていることから、荷重を支える構造体、または構造体の一部として利用することができる。例えば、図3に示すように、電気自動車3においては多数個の電池30を搭載する必要があり、電池30を車体の構造体の一部として利用している。多数個の電池30はケースの側壁同士が接するように組み付けて結束バンドを巻き付ける等の方法でブロック化することで構造材として利用できる。前記構造材はケースの側壁に平行する方向に対して高い強度を有しており、図3は多数個の電池30のケースの側壁でフロアパネル31の荷重Wを支持する構造を示している。また、構造材の寸法は電池の数と配置によって変更できる。このように、車載電池を車体の構造体の一部として利用することによって、従来の車体と重複する部材を減らすことができる。 The use of the case of the present invention is not limited, but since it has excellent heat dissipation, it is suitable for the case of a device that generates heat such as a motor, a battery, and a capacitor. Further, since it has excellent strength, it can be used as a structure that supports a load or as a part of the structure. For example, as shown in FIG. 3, in the electric vehicle 3, it is necessary to mount a large number of batteries 30, and the batteries 30 are used as a part of the structure of the vehicle body. A large number of batteries 30 can be used as a structural material by assembling them so that the side walls of the case are in contact with each other and blocking them by winding a binding band or the like. The structural material has high strength in a direction parallel to the side wall of the case, and FIG. 3 shows a structure in which the side wall of the case of a large number of batteries 30 supports the load W of the floor panel 31. In addition, the dimensions of the structural material can be changed depending on the number and arrangement of batteries. As described above, by using the in-vehicle battery as a part of the structure of the vehicle body, it is possible to reduce the number of members overlapping with the conventional vehicle body.

[素材の製作]
表1の各例に示す化学組成のアルミニウム合金でスラブを鋳造し、540℃×12時間の均質化処理をした。次いで、前記スラブの表面を面削し、520℃で熱間圧延して厚みが15mmの厚板を成形し、この厚板を水冷焼入れした。そして、焼入れ後の厚板を冷間圧延により3mmまで圧延して冷間圧延板とし、この冷間圧延板を180℃×6時間の人工時効処理し、直径28mmのファインブランキング型を用いて打抜きをして素材2を作製した。素材2は厚み3mm×直径28mmの円盤である。
[インパクト成形および成形性]
作製した素材2に潤滑皮膜形成処理としてボンデ処理を施し、表1に示す温度に加熱して図2のダイス21とパンチ23を用いてインパクト成形し、有底のケース1(図1参照)に加工した。
[Production of material]
A slab was cast from an aluminum alloy having the chemical composition shown in each example of Table 1 and homogenized at 540 ° C. for 12 hours. Next, the surface of the slab was surface-cut and hot-rolled at 520 ° C. to form a thick plate having a thickness of 15 mm, and the thick plate was water-cooled and quenched. Then, the hardened thick plate is rolled to 3 mm by cold rolling to obtain a cold rolled plate, and this cold rolled plate is artificially aged at 180 ° C. for 6 hours, and a fine blanking mold having a diameter of 28 mm is used. Material 2 was produced by punching. Material 2 is a disk having a thickness of 3 mm and a diameter of 28 mm.
[Impact molding and moldability]
The prepared material 2 is subjected to bonde treatment as a lubricating film forming treatment, heated to the temperature shown in Table 1, impact-molded using the die 21 and punch 23 of FIG. 2, and placed in a bottomed case 1 (see FIG. 1). processed.

インパクト成形は、素材2の厚みの3mmから0.5mmの底壁11を成形することを目標とし、実際の成形値が目標値より薄く成形できたもの成形可、成形値が目標値に達しなかったものを成形不可と評価した。
[成形品の物性]
成形したケースの物性について下記の方法で測定した。
(HV硬さ)
ケース1の側壁12部分を切断し、断面におけるHV硬さを測定した。
(引張強度)
ケース1の側壁12から試験片を作製し、引張強度を測定した。
(熱伝導率)
ケース1の底壁11においてレーザーフラッシュ法により熱伝導率を測定した。
Impact molding aims to mold the bottom wall 11 having a thickness of 3 mm to 0.5 mm of the material 2, and the actual molding value can be formed thinner than the target value. Molding is possible, and the molding value does not reach the target value. It was evaluated that it could not be molded.
[Physical characteristics of molded products]
The physical characteristics of the molded case were measured by the following method.
(HV hardness)
The 12 side walls of the case 1 were cut and the HV hardness in the cross section was measured.
(Tensile strength)
A test piece was prepared from the side wall 12 of the case 1 and the tensile strength was measured.
(Thermal conductivity)
The thermal conductivity of the bottom wall 11 of Case 1 was measured by a laser flash method.

これらの測定結果を表1に示す。 The results of these measurements are shown in Table 1.

Figure 0007007884000001
Figure 0007007884000001

表1より、実施例のケースは成形性、放熱性、強度を兼ね備えていることを確認した。 From Table 1, it was confirmed that the cases of the examples had moldability, heat dissipation, and strength.

本発明のケースは、モーター、二次電池、キャパシタなどの発熱を伴う装置のケースとして利用できる。 The case of the present invention can be used as a case for a device that generates heat, such as a motor, a secondary battery, and a capacitor.

1…ケース
2…素材
3…電気自動車
11…底壁
12…側壁
21…ダイス
22…キャビティ
23…パンチ
30…電池
31…フロアパネル
1 ... Case 2 ... Material 3 ... Electric vehicle 11 ... Bottom wall 12 ... Side wall 21 ... Dice 22 ... Cavity 23 ... Punch 30 ... Battery 31 ... Floor panel

Claims (6)

アルミニウム合金からなり、底壁と側壁が一体に成形された有底ケースであり、
前記アルミニウム合金は、Si:0.2%~0.6%、Fe:0.1%~0.35%、Mg:0.45%~0.9%を含み、残部がAlおよび不可避的不純物からなり、熱伝導率が180W/(m・K)以上であり、HV硬さが55以上であることを特徴とするケース。
A bottomed case made of aluminum alloy with the bottom wall and side walls integrally molded.
The aluminum alloy contains Si: 0.2% to 0.6%, Fe: 0.1% to 0.35%, Mg: 0.45% to 0.9%, and the balance is Al and unavoidable impurities. A case characterized by having a thermal conductivity of 180 W / (m · K) or more and an HV hardness of 55 or more.
前記アルミニウム合金が、さらに、Cu:0.01%~0.1%、Mn:0.01%~0.1%、Cr:0.01%~0.1%のうちの少なくとも1種を含む請求項1に記載のケース。 The aluminum alloy further contains at least one of Cu: 0.01% to 0.1%, Mn: 0.01% to 0.1%, and Cr: 0.01% to 0.1%. The case according to claim 1. 前記アルミニウム合金が、さらに、Ti:0.002%~0.1%、B:0.001%~0.05%のうちの少なくとも1種を含む請求項1または2に記載のケース。 The case according to claim 1 or 2, wherein the aluminum alloy further contains at least one of Ti: 0.002% to 0.1% and B: 0.001% to 0.05%. Si:0.2%~0.6%、Fe:0.1%~0.35%、Mg:0.45%~0.9%を含み、残部がAlおよび不可避的不純物からなるアルミニウム合金に、熱間圧延、熱間押出、溶体化処理のいずれかによる熱処理後に焼き入れし、170℃~200℃で人工時効処理を施して成形用の素材を作製し、120℃~200℃に加熱した前記素材にインパクト成形を施して底壁と側壁が一体化し、熱伝導率が180W/(m・K)以上であり、HV硬さが55以上の有底ケースを成形することを特徴とするケースの製造方法。 An aluminum alloy containing Si: 0.2% to 0.6%, Fe: 0.1% to 0.35%, Mg: 0.45% to 0.9%, and the balance is Al and unavoidable impurities. After heat treatment by hot rolling, hot extrusion, or solution treatment, quenching was performed at 170 ° C to 200 ° C to prepare a material for molding, and the material was heated to 120 ° C to 200 ° C. A case characterized in that the material is impact-molded to integrate the bottom wall and the side wall, and a bottomed case having a thermal conductivity of 180 W / (m · K) or more and an HV hardness of 55 or more is molded. Manufacturing method. 請求項1~3のうちのいずれかに記載のケースが用いられた車載電池であり、車体の構造体の一部を構成することを特徴とする車載電池。 An in-vehicle battery in which the case according to any one of claims 1 to 3 is used, which comprises a part of a structure of a vehicle body. 請求項に記載の車載電池が車体の構造体の一部として用いられていることを特徴とする車体。 A vehicle body according to claim 5 , wherein the vehicle-mounted battery is used as a part of the structure of the vehicle body.
JP2017237337A 2017-12-12 2017-12-12 Case and its manufacturing method Active JP7007884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017237337A JP7007884B2 (en) 2017-12-12 2017-12-12 Case and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017237337A JP7007884B2 (en) 2017-12-12 2017-12-12 Case and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019104958A JP2019104958A (en) 2019-06-27
JP7007884B2 true JP7007884B2 (en) 2022-02-10

Family

ID=67061001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017237337A Active JP7007884B2 (en) 2017-12-12 2017-12-12 Case and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7007884B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113073239A (en) * 2021-03-24 2021-07-06 瑞旭实业有限公司 Solar photovoltaic frame support aluminum alloy material and manufacturing method thereof
CN114540652A (en) * 2022-02-23 2022-05-27 东莞市灿煜金属制品有限公司 Method for manufacturing high-strength heat-treated alumina 6N63 for pen flat plate
KR102605792B1 (en) * 2022-08-25 2023-11-29 (주)알루텍 manufacturing method of aluminium 5052 plates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321755A (en) 2002-03-01 2003-11-14 Showa Denko Kk PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL
JP2016079475A (en) 2014-10-20 2016-05-16 昭和電工株式会社 Method for producing thermally conductive and electrically conductive member
JP2017530259A (en) 2015-07-20 2017-10-12 ノベリス・インコーポレイテッドNovelis Inc. AA6XXX aluminum alloy sheet having high anodizing quality and method for making the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299738A (en) * 1989-05-15 1990-12-12 Asahi Tec Corp Pressure container and manufacture of pressure container
JP3186980B2 (en) * 1996-06-26 2001-07-11 冨士発條株式会社 Method of manufacturing bottomed container for rectangular batteries

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321755A (en) 2002-03-01 2003-11-14 Showa Denko Kk PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL
JP2016079475A (en) 2014-10-20 2016-05-16 昭和電工株式会社 Method for producing thermally conductive and electrically conductive member
JP2017530259A (en) 2015-07-20 2017-10-12 ノベリス・インコーポレイテッドNovelis Inc. AA6XXX aluminum alloy sheet having high anodizing quality and method for making the same

Also Published As

Publication number Publication date
JP2019104958A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP7007884B2 (en) Case and its manufacturing method
CN105026588A (en) Sintered body, and sputtering target for magnetic recording film formation use which comprises said sintered body
EP2728026A1 (en) Damage tolerant aluminium material having a layered microstructure
JP6850797B2 (en) Process for warm molding of hardened aluminum alloy
JP5498069B2 (en) Method for producing aluminum alloy sheet blank for cold press forming, and cold press forming method and molded product thereby
JP2013525608A5 (en)
JP6936293B2 (en) Aluminum alloy foil
JPH0617208A (en) Manufacture of aluminum alloy for forming excellent in shape freezability and coating/baking hardenability
JP7044863B2 (en) Al-Mg-Si based aluminum alloy material
CN106399783A (en) Magnesium-based alloy for wrought applications
WO2016094464A1 (en) Reduced aging time of 7xxx series alloy
US11814713B2 (en) Rapidly aged, high strength, heat treatable aluminum alloy products and methods of making the same
JP2012531521A (en) AlMgSi strip for applications with high formability requirements
JP2014532114A (en) Method for producing AlMgSi aluminum strip
EP2811043A1 (en) High-strength aluminum alloy extrudate with excellent corrosion resistance, ductility, and hardenability and process for producing same
JP2015532679A (en) Highly formable intergranular corrosion-resistant AlMg strip
JPWO2015129304A1 (en) High-strength aluminum alloy extruded material with excellent formability
JP2015127449A (en) Aluminum alloy sheet material for high molding excellent in thermal conductivity and production method thereof
JP2004250738A (en) Al-Mg BASED ALLOY SHEET
CN110872665B (en) Al-Mg-Si alloy plate
CN113474479A (en) Method for producing a plate or strip from an aluminium alloy and plate, strip or shaped part produced thereby
JP2006169574A (en) Aluminum alloy sheet for secondary battery case and producing method therefor
JP2003221637A (en) Aluminum alloy plate for fabrication and its manufacturing process
JP6581347B2 (en) Method for producing aluminum alloy plate
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220107

R150 Certificate of patent or registration of utility model

Ref document number: 7007884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350