JP4739215B2 - 酸化膜の形成方法、制御プログラム、コンピュータ記憶媒体およびプラズマ処理装置 - Google Patents

酸化膜の形成方法、制御プログラム、コンピュータ記憶媒体およびプラズマ処理装置 Download PDF

Info

Publication number
JP4739215B2
JP4739215B2 JP2006532704A JP2006532704A JP4739215B2 JP 4739215 B2 JP4739215 B2 JP 4739215B2 JP 2006532704 A JP2006532704 A JP 2006532704A JP 2006532704 A JP2006532704 A JP 2006532704A JP 4739215 B2 JP4739215 B2 JP 4739215B2
Authority
JP
Japan
Prior art keywords
oxide film
plasma
forming
processing apparatus
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006532704A
Other languages
English (en)
Other versions
JPWO2006025363A1 (ja
Inventor
岳志 小林
淳一 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2006532704A priority Critical patent/JP4739215B2/ja
Publication of JPWO2006025363A1 publication Critical patent/JPWO2006025363A1/ja
Application granted granted Critical
Publication of JP4739215B2 publication Critical patent/JP4739215B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31608Deposition of SiO2
    • H01L21/31612Deposition of SiO2 on a silicon body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32105Oxidation of silicon-containing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Formation Of Insulating Films (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、例えばフラッシュメモリ素子や薄膜トランジスタなどの半導体装置を製造する際の酸化膜の形成方法、制御プログラム、コンピュータ記憶媒体およびプラズマ処理装置に関する。
各種半導体装置、例えば、シリコン半導体のフラッシュメモリ素子やLCD(Liquid Crystal Display)に用いる薄膜トランジスタにおいて、ゲート電極の絶縁の目的で形成される酸化膜は、一般に熱酸化法やCVD法などによって形成されていた。従来、シリコンやポリシリコン(多結晶シリコン)を熱酸化することによって得られる熱酸化膜は、他の方法に比べて膜質が良質であることから、dry−Oや、WVG(Water Vapor Generation)、ISSG(In Situ Steam Generation)などのWetによる熱酸化法が多用されてきた。
しかし、熱酸化法は、酸化雰囲気中でポリシリコンを900〜1000℃の高温に加熱して酸化処理するため、ポリシリコン中にドープされたリンなどの不純物が再拡散して偏析したり、ポリシリコンが再結晶化することによって酸化膜との界面の平坦性が失われたりすることがある。また、熱酸化法において酸化雰囲気に水素を添加して酸化膜を形成する場合には、酸化膜中の水素が離脱し、ホールトラップが形成される。その結果、酸化膜の耐圧特性や信頼性の低下を招くという問題があった。
一方、熱酸化法やCVD法以外の酸化膜の形成方法として、例えば、高密度マイクロ波プラズマを用いて400℃前後の低温で酸化膜を形成する技術が提案されている(例えば、特許文献1、特許文献2)。これら特許文献1および2の方法では、低温でのプラズマ処理によって、熱酸化膜に匹敵する電気的特性および信頼性を備えた酸化膜が得られる、とされている。
WO01/69665号公報(図2など) WO01/69673号公報(図2など)
所望の膜厚のポリシリコン酸化膜を形成する際には、短時間で形成することが重要である。酸化膜の形成速度(酸化レート)を上げることは、半導体装置の製造プロセス全体のスループット向上にもつながる。しかし、上記特許文献1および2の方法では、酸化膜の膜質の向上を主要観点としているため、酸化レートを向上させるための条件については検討されていない。
従って、本発明の目的は、ポリシリコン上に、優れた膜質の酸化膜を高い酸化レートで成膜する酸化膜の形成方法を提供することにある。
本発明者らは鋭意研究を重ねた結果、RLSA方式のプラズマ処理装置による酸化処理において、処理ガスを構成するガス成分の選択と、その中に含まれる酸素の割合が酸化レートに大きな影響を与えるとの知見を得た。しかも酸素割合については、単に比率を大きくするだけでは、却って酸化レートの低下を招くことが判明した。つまり、RLSA方式のプラズマ処理装置を用いてポリシリコンの酸化を行なう際に、高い酸化レートと良好な膜質を両立させるためには、プラズマ処理条件を制御することが必要であることを見出し、本発明を完成するに至った。
すなわち、本発明の第1の観点によれば、少なくとも、ポリシリコン層と、該ポリシリコン層に形成された酸化膜とを有する半導体装置における前記酸化膜の形成方法であって、
複数のスロットを有する平面アンテナにて処理室内にマイクロ波を導入してプラズマを発生させるプラズマ処理装置により、Arガスと酸素ガスとを含み、かつ酸素分圧が、0.66〜2.66Paである処理ガスを用いて、前記ポリシリコン層にプラズマ処理を行い、酸化膜を形成する工程を含むことを特徴とする、酸化膜の形成方法が提供される。
第1の観点の酸化膜の形成方法では、前記プラズマ処理における圧力が67〜667Pa、処理温度が300〜600℃であることが好ましい
また、本発明の第の観点によれば、コンピュータ上で動作し、実行時に、複数のスロットを有する平面アンテナにて処理室内にマイクロ波を導入してプラズマを発生させるプラズマ処理装置を制御する制御プログラムであって、
前記制御プログラムは、第1の観点に係る酸化膜の形成方法が行なわれるように、前記プラズマ処理装置を制御するものであることを特徴とする、制御プログラムが提供される。
また、本発明の第の観点によれば、コンピュータ上で動作する制御プログラムが記憶されたコンピュータ記憶媒体であって、
前記制御プログラムは、実行時に、複数のスロットを有する平面アンテナにて処理室内にマイクロ波を導入してプラズマを発生させるプラズマ処理装置に、第1の観点に係る酸化膜の形成方法が行なわれるように、前記プラズマ処理装置を制御するものであることを特徴とする、コンピュータ記憶媒体が提供される。
また、本発明の第の観点によれば、プラズマにより被処理体を処理するための真空排気可能な処理室と、
複数のスロットを有する平面アンテナにて前記処理室内にマイクロ波を導入することによりプラズマを発生させるプラズマ供給源と、
前記処理室内で、複数のスロットを有する平面アンテナにて処理室内にマイクロ波を導入してプラズマを発生させるプラズマ処理装置に、第1の観点に係る酸化膜の形成方法が行なわれるように、制御する制御部と、
を備えたことを特徴とする、プラズマ処理装置が提供される。
本発明によれば、RLSA方式のプラズマ処理装置を用いてポリシリコンの酸化を行なう際に、酸素分圧を制御することによって、高い酸化レートを維持しながら、良質な酸化膜を形成することが可能となる。
すなわち、RLSA方式のプラズマ処理装置は、他の高密度プラズマと比較してプラズマの電子温度が低いため、低温で高品質な酸化膜形成が可能であり、しかも短時間に酸化膜を形成できる。
また、RLSA方式の高密度プラズマを用いたラジカル酸化では、活性種のエネルギーが高いため、面方位依存性がなく、この方法でポリシリコンを酸化しても低温処理によりポリシリコンの再結晶化が抑制され、ポリシリコン表面の突起形成も起こらず、その平坦性が失われない。従って、酸化過程の初期に面方位依存性が存在する熱酸化処理に対し、大きな優位性を持つ方法である。
さらに、低温で酸化膜を形成できるので、ポリシリコン中の不純物の再拡散が生じ難いとともに、酸化膜中に取り込まれる不純物濃度が小さく、膜中の不純物に起因する準位が少ない良質な酸化膜が得られる。
本発明方法の実施に適したプラズマ処理装置の一例を示す概略断面図。 平面アンテナ部材の構造を示す図面。 フラッシュメモリ素子の製造手順を示す図面であり、シリコン基板上に、LOCOS酸化膜を形成した状態を示す。 フラッシュメモリ素子の製造手順を示す図面であり、トンネル酸化膜を覆うように第1のポリシリコン層を形成した状態を示す。 フラッシュメモリ素子の製造手順を示す図面であり、ONO積層構造の絶縁膜を所定厚さで形成した状態を示す。 フラッシュメモリ素子の製造手順を示す図面であり、フラッシュメモリ素子200を形成した状態を示す。 プラズマ処理におけるArガスに対するOガスの割合と、膜厚および表面の非均一性の関係を示すグラフ図面。 テスト用ゲート電極の製造工程を示す図面。 テスト用ゲート電極の製造工程を示す図面。 テスト用ゲート電極の製造工程を示す図面。 テスト用ゲート電極の製造工程を示す図面。 テスト用ゲート電極の製造工程を示す図面。 テスト用ゲート電極の製造工程を示す図面。 テスト用ゲート電極の製造工程を示す図面。 テスト用ゲート電極の製造工程を示す図面。 テスト用ゲート電極の製造工程を示す図面。 第1のポリシリコン層の表面ラフネスを示すグラフ図面。 本発明のプラズマ処理により形成された第1のポリシリコン層の表面のAFM測定画像を示す図面。 HTO−CVD処理により形成された第1のポリシリコン層の表面のAFM測定画像を示す図面。 dry−熱酸化処理により形成された第1のポリシリコン層の表面のAFM測定画像を示す図面。 酸化膜形成前のポリシリコン層の断面状態のTEM像を示す図面。 プラズマ酸化処理後のポリシリコン層の断面状態のTEM像を示す図面。 熱酸化処理後のポリシリコン層の断面状態のTEM像を示す図面。 酸化膜が形成されたポリシリコン層の深さ方向のPの濃度分布を示すグラフ図面。 酸化膜が形成されたポリシリコン層の深さ方向のBの濃度分布を示すグラフ図面。 酸化膜が形成されたポリシリコン層におけるPの偏析状態を示すTEMによる画像。 酸化膜が形成されたポリシリコン層におけるPの偏析状態を示すTEMによる画像。 酸化膜が形成されたポリシリコン層におけるPの偏析状態を示すEELSによる画像。 酸化膜が形成されたポリシリコン層におけるPの偏析状態を示すEELSによる画像。 ゲート酸化膜のJ−Eプロットを示すグラフ図面。 ゲート酸化膜のEoxとToxとの関係を示すグラフ図。 処理ガス中に水素を添加せずに形成した酸化膜のJ−Eプロットを示すグラフ図。 処理ガス中に水素を添加して形成した酸化膜のJ−Eプロットを示すグラフ図。 本発明を適用可能な薄膜トランジスタの概要を示す模式図。
以下、図面を参照しながら、本発明の好ましい形態について説明する。
図1は、本発明による酸化膜の形成方法の実施に適したプラズマ処理装置の一例を模式的に示す断面図である。このプラズマ処理装置は、複数のスロットを有する平面アンテナにて処理室内にマイクロ波を導入してプラズマを発生させるRLSA(Radial Line Slot Antenna;ラジアルラインスロットアンテナ)プラズマ生成技術を利用することにより、高密度かつ低電子温度のマイクロ波プラズマを発生させ得るものである。
このプラズマ処理装置100は、電子温度の低いプラズマにより、600度以下の低温で下地膜等へのダメージフリーなプラズマ処理を進めることができるとともに、プラズマ均一性に優れており、拡散炉に比べても遜色無い緻密な酸化膜およびプロセスの均一性を実現できる。このため、プラズマ酸化処理装置100は、ポリシリコン層への酸化膜形成に好適に利用可能なものである。
このプラズマ処理装置100は、気密に構成され、接地された略円筒状のチャンバー1を有している。なお、チャンバー1の形状は、円筒状に限らず、四角形状でもよい。チャンバー1の底壁1aの略中央部には、円形の開口部10が形成されており、底壁1aにはこの開口部10と連通し、下方に向けて突出する排気室11が設けられている。
チャンバー1内には被処理基板であるウエハWを水平に支持するためのAlN等のセラミックスからなるサセプタ2が設けられている。このサセプタ2は、排気室11の底部中央から上方に延びる円筒状のAlN等のセラミックスからなる支持部材3により支持されている。サセプタ2の外縁部には、ウエハWをガイドするためのガイドリング4が設けられている。また、サセプタ2には抵抗加熱型のヒータ5が埋め込まれており、このヒータ5はヒータ電源6から給電されることによりサセプタ2を加熱して、その熱で被処理体であるウエハWを加熱する。このとき、例えば室温から800℃まで範囲で温度制御可能となっている。なお、チャンバー1の内周には、石英からなる円筒状のライナー7が設けられている。
サセプタ2には、ウエハWを支持して昇降させるためのウエハ支持ピン(図示せず)がサセプタ2の表面に対して突没可能に設けられている。
チャンバー1の側壁には環状をなすガス導入部材15が設けられており、このガス導入部材15にはガス供給系16が接続されている。なお、ガス導入部材はシャワー状に配置してもよい。このガス供給系16は、Arガス供給源17、Nガス供給源18、Oガス供給源19を有しており、これらのガスが、それぞれガスライン20を介してガス導入部材15に至り、ガス導入部材15からチャンバー1内に導入される。ガスライン20の各々には、マスフローコントローラ21およびその前後の開閉バルブ22が設けられている。なお、図1のプラズマ処理装置100では、Nガスは、Arガスとともに窒化膜の形成および酸化膜の窒化処理に用いられ、Oガスは、Arガスとともに酸化膜の形成に用いられるが、ガスの種類はこれに限定されるものではなく、NHガス、NOガス、NOガス、ハロゲン系のクリーニングガス等のガス供給源を接続することができる。
上記排気室11の側面には、排気管23が接続されており、この排気管23には高速真空ポンプを含む排気装置24が接続されている。そしてこの排気装置24を作動させることによりチャンバー1内のガスが、排気室11の空間11a内へ均一に排出され、排気管23を介して排気される。これによりチャンバー1内は所定の真空度、例えば0.133Paまで高速に減圧することが可能となっている。
チャンバー1の側壁には、プラズマ処理装置100に隣接する搬送室(図示せず)との間でウエハWの搬入出を行うための搬入出口25と、この搬入出口25を開閉するゲートバルブ26とが設けられている。
チャンバー1の上部は開口部となっており、この開口部の周縁部に沿って環状の支持部27が設けられている。この支持部27に誘電体、例えば石英やAl等のセラミックスからなり、マイクロ波を透過するマイクロ波透過板28がシール部材29を介して気密に設けられている。したがって、チャンバー1内は気密に保持される。
マイクロ波透過板28の上方には、サセプタ2と対向するように、円板状の平面アンテナ部材31が設けられている。この平面アンテナ部材31は、マイクロ波透過板28の上に配置され、さらに平面アンテナ部材31の上部を覆うように遅波材33が配備されている。これらの平面アンテナ部材31と遅波材33は、その周縁部において押え部材34bにより固定される。また、遅波材33を覆うように導体のシールド蓋体34が設けられ、このシールド蓋体34はチャンバー1の側壁上端に支持されている。平面アンテナ部材31は、例えば8インチサイズのウエハWに対応する場合には、直径が300〜400mm、厚みが1〜数mm(例えば5mm)の導電性材料からなる円板または四角形の角板である。具体的には、平面アンテナ部材31は、例えば表面が金メッキされた銅板またはアルミニウム板からなり、多数のマイクロ波放射孔32が所定のパターンで貫通して形成された構成となっている。
このマイクロ波放射孔32は、例えば図2に示すように長溝状のスロット32aからなり、隣接するスロット32a同士が「T」字状に配置され、さらに、これら複数のスロット32aが同心円状に配置された構造を採用することができる。スロット32aの長さや配列間隔は、マイクロ波発生装置39で発生した高周波の波長に応じて決定される。なお、マイクロ波放射孔32(スロット32a)は、円形状の貫通孔等の他の形状であってもよい。また、マイクロ波放射孔32(スロット32a)の配置形態は、特に限定されず、同心円状のほか、例えば、螺旋状、放射状等に配置させてもよい。
平面アンテナ部材31の上面には、真空よりも大きい誘電率を有する遅波材33が設けられている。チャンバー1の上面には、これら平面アンテナ部材31および遅波材33を覆うように、例えばアルミニウムやステンレス鋼、銅等の金属材からなるシールド蓋体34が設けられている。チャンバー1の上面とシールド蓋体34とはシール部材35によりシールされている。シールド蓋体34には、複数の冷却水流路34aが形成されており、そこに冷却水を通流させることにより、平面アンテナ部材31、マイクロ波透過板28、遅波材33、シールド蓋体34を冷却して、プラズマの熱による破損防止および安定的なプラズマの維持を図ることができるようになっている。なお、シールド蓋体34は接地されている。
シールド蓋体34の上壁の中央には、開口部36が形成されており、この開口部36には導波管37が接続されている。この導波管37の端部には、マッチング回路38を介してマイクロ波発生装置39が接続されている。これにより、マイクロ波発生装置39で発生した例えば周波数2.45GHzのマイクロ波が導波管37を介して上記平面アンテナ部材31へ伝搬されるようになっている。なお、マイクロ波の周波数としては、8.35GHz、1.98GHz等を用いることもできる。
導波管37は、上記シールド蓋体34の開口部36から上方へ延出する断面円形状の同軸導波管37aと、この同軸導波管37aの上端部に接続された水平方向に延びる矩形導波管37bとを有している。矩形導波管37bの同軸導波管37aとの接続部側の端部はモード変換器40となっている。同軸導波管37aの中心には内導体41が延在しており、この内導体41の下端部は、平面アンテナ部材31の中心に内導体41の傾斜部41aを介して接続固定されている。内導体41の傾斜部41aは、平面アンテナ部材31に向けて拡開した形状であり、マイクロ波を水平方向に均一に効率良く伝播させるように作用する。これにより、マイクロ波は、同軸導波管37aの内導体41、内導体41の傾斜部41aを介して効率よく平面アンテナ部材31へ伝播される。
プラズマ処理装置100の各構成部は、CPUを備えたプロセスコントローラ50に接続されて制御される構成となっている。プロセスコントローラ50には、工程管理者がプラズマ処理装置100を管理するためにコマンドの入力操作等を行うキーボードや、プラズマ処理装置100の稼働状況を可視化して表示するディスプレイ等からなるユーザーインタフェース51が接続されている。
また、プロセスコントローラ50には、プラズマ処理装置100で実行される各種処理をプロセスコントローラ50の制御にて実現するための制御プログラムや処理条件データ等が記録されたレシピが格納された記憶部52が接続されている。
そして、必要に応じて、ユーザーインタフェース51からの指示等にて任意のレシピを記憶部52から呼び出してプロセスコントローラ50に実行させることで、プロセスコントローラ50の制御下で、プラズマ処理装置100での所望の処理が行われる。また、前記制御プログラムや処理条件データ等のレシピは、コンピュータ読み取り可能な記憶媒体、例えばCD−ROM、ハードディスク、フレキシブルディスク、フラッシュメモリなどに格納された状態のものを利用したり、あるいは、他の装置から、例えば専用回線を介して随時伝送させてオンラインで利用したりすることも可能である。
このように構成されたRLSA方式のプラズマ処理装置100において、ポリシリコンのプラズマ酸化処理の条件としては、例えばガス流量は、Arなどの希ガス:100〜3000mL/min、Oガス:0.5〜500mL/minが好ましく、希ガス:100〜2000mL/min、Oガス:0.5〜52mL/minがより好ましい。
また、酸化レートを速くする観点から、処理ガス中のOの割合は0.5〜2.5%以下とすることが好ましく、1〜2%とすることが望ましい。また、チャンバー内圧力は、67〜667Pa、温度は400〜600℃、マイクロ波パワーは2000〜3500Wとすることが好ましい。さらに、プラズマ処理時間は、5〜600秒が好ましく、10〜180秒がより好ましい。形成する酸化膜の膜厚は、対象にもよるが、1〜12nmとすることが好ましく、2.2〜5nmがより好ましい。以上の条件により、高い酸化レートを維持しながら、ポリシリコン表面に緻密で良好な膜質の酸化膜を形成することができる。
プラズマ処理装置100によるポリシリコンの酸化処理は、具体的には、例えば、以下のステップ1〜7により実施できる。
ステップ1:シーズニング
まず、チャンバー1へ処理するウエハWを搬入する前に、シーズニングを実施し、チャンバー1内の残留水素分を除去する。この処理は、チャンバー1内にHが0.2%程度でも存在すると酸化膜形成に影響を与え、歩留まりを悪化させるので、チャンバー1内雰囲気を整えるために行なうものである。シーズニング条件は、後述するプラズマ処理と同じレシピで、例えば360秒間程度実施する。シーズニングの好ましい時間は160〜600秒である。なお、シーズニングは、ダミーウエハ(Wd)を用い、1枚のウエハWを処理する毎に行ってもよい。
ステップ2:ウエハ搬入
ステップ1のシーズニング終了後、ゲートバルブ26を開にして搬入出口25からポリシリコン(ゲート電極)が形成されたウエハWをチャンバー1内に搬入し、サセプタ2上に載置する。
ステップ3:昇温/昇圧
ガス供給系16のArガス供給源17およびOガス供給源19から、ArガスおよびOガスを所定の流量でガス導入部材15を介してチャンバー1内に導入し、所定の圧力に維持する。具体的には、例えば大流量のArガスを1500mL/min、Oを5mL/minに設定し、533.3Paの高圧まで昇圧する。また、ウエハWの温度を500℃程度に昇温する。このように、処理前にチャンバー1内にガスを導入し、処理時より高圧にして昇温することにより、ガスによる伝熱性を高め、ウエハWの温度上昇を促す効果が得られる。
ステップ4:流量制御
ステップ3の加熱温度および圧力を維持したまま、処理ガスの全流量が500mL/min(sccm)になるように、Arガス流量を495mL/min、Oガス流量を5mL/minに設定して処理ガスの流量を安定化させる。なお、ガス流量の制御は、後述するステップ5のプロセス圧力制御と同時に実施してもよい。
ステップ5:プロセス圧力制御
ステップ4のガス流量を維持したまま、チャンバー1内の圧力を例えば約133.3Paの処理圧力まで降圧して、Oガスの分圧を安定させる。
ステップ6:プラズマ処理
マイクロ波発生装置39からのマイクロ波を、マッチング回路38を経て導波管37に導く。マイクロ波は、矩形導波管37b、モード変換器40、および同軸導波管37a、内導体41を順次通って内導体41の傾斜部41aを介して平面アンテナ部材31に放射状に供給され、平面アンテナ部材31からマイクロ波透過板28を経てチャンバー1内におけるウエハWの上方空間に均一に放射される。マイクロ波は、矩形導波管37b内ではTEモードで伝搬し、このTEモードのマイクロ波はモード変換器40でTEMモードに変換されて、同軸導波管37a内を平面アンテナ部材31に向けて伝搬されていく。平面アンテナ部材31からマイクロ波透過板28を経てチャンバー1に放射されたマイクロ波によりチャンバー1内で電磁界が形成され、ArガスおよびOガスがプラズマ化し、このプラズマによりウエハWに形成されたポリシリコンを酸化する。このマイクロ波プラズマは、マイクロ波が平面アンテナ部材31の多数のスロット32aから放射されることにより、略5×1011〜1×1013/cmあるいはそれ以上の高密度のプラズマとなり、その電子温度は、0.7〜2eV程度、プラズマ密度の均一性は、±5%以下である。従って、低温かつ短時間で酸化処理を行って薄い酸化膜を形成することができ、しかも低電子温度のプラズマにより下地膜へのイオン等のプラズマダメージが小さく、緻密で良質な酸化膜を形成できるというメリットがある。
ステップ7:処理終了
ウエハWへの酸化膜形成が終了したら、圧力、ガス流量はそのままでプラズマを終了させた後、ガスを停止し、次いで排気装置24によりチャンバー1内のガスを排気し、圧力を常圧まで降下させる。
本発明による酸化膜の形成方法では、上記ステップ1〜7に例示したプラズマ酸化処理によって良好な膜質の酸化膜を形成できるが、別の好ましい形態として、プラズマ処理による酸化膜形成を行なった後、さらに900〜1200℃程度の熱酸化処理を行なうことも可能である。
次に、本発明方法による半導体装置の製造工程を、半導体集積回路を構成するフラッシュメモリ素子を例にとって説明する。図3A〜図3Dは、フラッシュメモリ素子200の製造工程を模式的に示すものである。
まず、図3Aでは、清浄に洗浄されたシリコン基板201上に、LOCOS酸化膜202を形成する。なお、シリコン基板201上には、酸化膜203が形成されている。
次に、図3Bでは、LOCOS酸化膜202によって区画されたメモリセル領域の酸化膜203を除去し、トンネル酸化膜204を所定膜厚で形成する。トンネル酸化膜204の形成は、図1のプラズマ処理装置100を用いて行なうことができる。トンネル酸化膜204を形成した後、トンネル酸化膜204を覆うように第1のポリシリコン層205を形成する。
次に、図3Cに示すように、第1のシリコン酸化膜206、窒化膜207、第2のシリコン酸化膜208を順に形成し、ONO積層構造の絶縁膜を所定厚さで形成する。
具体的には、図1のプラズマ処理装置100においてチャンバー1内を高真空状態に排気し、さらにガス導入部材15からArガスおよびOガスを導入し、処理室内の圧力を133Pa、ウエハWの温度を500℃に加熱した状態で、マイクロ波パワー2750Wのマイクロ波を平板アンテナ部材31およびマイクロ波透過板28を介して供給し、高密度のプラズマを生成させる。この高密度プラズマによって、第1のポリシリコン層205上に、約1〜12nm、好ましくは2.2〜5nmの膜厚の第1のシリコン酸化膜206が形成される。このプラズマ酸化処理におけるガス流量としては、酸素割合を0.5〜2.5%とすることが好ましく、例えばガス流量は、Arガス:100〜2000mL/min、Oガス:0.5〜52mL/minとすることが好ましい。
次に、マイクロ波の供給を停止した後、ArガスおよびOガスの導入を止め、チャンバー1内を排気する。このようにして、シリコン酸化膜の形成が終了したら、チャンバー1からウエハWを搬出する。
次に、SiN膜をCVDにより形成する。
すなわち、熱CVD装置を用いて、例えばSiHClガスおよびNHガスにより、成膜温度750℃により、上記第1のシリコン酸化膜206上に、シリコン窒化膜(Si)207を5〜7nmの膜厚で形成する。
次に、第2のシリコン酸化膜208を熱CVD法または高密度プラズマ処理法により形成する。
例えば、熱CVD法による場合は、SiHClガス(またはSiHガス)と、NOガスとを用い、800℃でシリコン窒化膜207上に、第2のシリコン酸化膜208を5〜7nmの膜厚で形成する。
高密度プラズマ処理法の場合には、ガス導入部材15からSiHまたはSiガスおよびOガスを導入し、上記第1のシリコン酸化膜206の成膜に準じた条件でプラズマ処理を行なうことにより、窒化膜207上に、第2の酸化膜208を形成する。
以上のようにして、ONO積層膜230を形成する。
以上の工程の後、図3Dに示すように、ONO積層膜230の上に、第2のポリシリコン層209を積層し、さらに必要に応じてWSi等の金属シリサイド層(または金属層)210を積層する。さらに、SiN等のエッチストッパ層(図示せず)を形成する。フォトリソグラフィーによりパターニングし、エッチングを行って最後に、図示しないソースおよびドレインの形成、コンタクト形成などを行なうことにより、フラッシュメモリ素子200を製造することができる。
次に、本発明の基礎となった試験について述べる。
図4は、図1のプラズマ処理装置100により酸化膜の形成を行なった際の処理ガス(ArおよびO)中のO割合と、酸化膜の膜厚および粗さ(非均一性)との関係を測定した結果である。プラズマ処理条件は、チャンバー内圧力133Pa、温度500℃、マイクロ波パワー2750W、処理時間を180秒とし、全ガス流量が500mL/minになるように、Arガス流量を375〜495mL/min、Oガス流量を2.5〜125mL/min(処理ガス中の酸素の割合は0.5〜25%;酸素分圧としては、0.66〜33.25Pa)で変化させた。
図4から、O割合(分圧)が高くなるに従い、酸化膜の膜厚が減少しており、酸化レートの低下がみられる。また、O割合(分圧)が高くなるに従い、酸化膜の均一性も低下している。
しかし、Ar中のO割合が0.5〜2.5%(酸素分圧は1.33〜2.66Pa)程度までは膜厚が増大しており、Ar中のO割合1〜2%(酸素分圧は1.33〜1.995Pa)が最も膜厚が大きくなっている。
また、O割合0.5〜5%であれば、膜の均一性も良好である。酸化レートを考慮すると、O割合は0.5〜5%(酸素分圧は0.66〜6.67Pa)が好ましく、より好ましくは、0.5〜2.5%(酸素分圧は0.66〜2.66Pa)が望ましいことが示された。
次に、図5A〜図5Iに概略を示す手順で素子テストパターンを作製し、得られた酸化膜について、各種の電気的特性および物理的特性を評価した。
図5Aでは、まず、Si基板300上に熱CVDにより膜厚100nmの絶縁膜301を形成し、次に、図5Bに示すように、絶縁膜301上にCVDによって膜厚150nmの第1のポリシリコン層302を形成した。この際、第1のポリシリコン層302には、5×1020atom/cmのPをドープし、800℃で15分加熱することによってPの拡散を行なった。
次に、第1のポリシリコン層302にレジスト膜(図示せず)を形成した後、図5Cではフォトリソグラフィーによる露光、現像、エッチング、洗浄を実施して、パターニングを行なった。
次いで、図5Dでは、エッチング後の各ポリシリコン層302に対しプラズマ酸化処理を行い、酸化膜303を形成した。この酸化膜303の形成は、図1のプラズマ処理装置により、チャンバー内圧力133Pa、温度500℃、マイクロ波パワー2750W、500mL/minのArガスおよび5mL/minのOガスを用いてRLSAプラズマ酸化処理を行うことにより実施した。また、比較のため、HTO(High Temperature Oxidizing)−CVD処理、dry−熱酸化処理によってもSiO膜の成膜を行なった。dry−熱酸化は、900℃のOドライ熱酸化で酸化膜厚が3.5nmとなるように行なった。また、HTO−CVDは、SiHClとNOを用い、780℃で酸化膜を形成した。
次に、図5Eに示すように、HTO−CVD法により、酸化膜303を覆うように膜厚1600オングストロームの第2のポリシリコン層304を成膜した。この第2のポリシリコン層304を成膜後、POClを用いたアニールにより4×1020atom/cmのリンを拡散させた。
さらに図5Fに示すように、レジスト膜(図示せず)を形成した後フォトリソグラフィーによる露光、現像、エッチング、洗浄を実施して、パターニングを行なった。
図5Gでは、上記のように形成された電極を覆うようにCVDを行い、絶縁膜305を形成し、さらに図5Hに示すように、コンタクトメタル形成を行なった。コンタクトメタル306は、フォトリソグラフィーによりコンタクトホールを形成した後、アルミニウムをスパッタリングによって埋め込み、さらにフォトリソグラフィーにより露光、現像、エッチングを行なうことによって実施した。コンタクトメタル形成後、400℃、30分間アルミニウムへのHシンター処理を実施した。
以上のようにして形成されたゲート電極310に、図5Iで示すようにプローバーを接続し、各種電気特性の測定に供した。
図6は、ゲート電極310において、酸化膜303より上の層をHFで処理して剥離した後の第1のポリシリコン層302の表面(10μm×10μm)を、AFM(原子間力顕微鏡;Atomic Force Microscopy)により測定し、表面粗さ(ラフネス)を比較した結果を示す。また、図7A〜図7Cは、同測定における第1のポリシリコン層302の表面の測定結果を示すイメージ図であり、図7Aは本発明のプラズマ処理、図7BはHTO−CVD処理、図7Cはdry−熱酸化処理による結果を示す。
図6および図7A〜図7Cに示されるように、dry−熱酸化処理をした場合には表面ラフネスが最も大きく、また、第1のポリシリコン層302の表面には突起が形成されており、この突起部分は酸化膜303のSiOの膜厚が薄くなるため、耐圧劣化につながる。HTO−CVD処理の場合には、ラフネスは改善されたが、図1のプラズマ処理装置100を用いたプラズマ処理では、さらにラフネスが小さく、緻密で良好な膜質であった。また、第1のポリシリコン層302の表面に熱酸化処理のような突起は確認されなかった。
図8A〜図8Cは、第1のポリシリコン層302の断面を示すTEM(透過型電子顕微鏡)写真であり、図8Aは絶縁膜303を形成する前(酸化処理前)の状態を示しており、図8Bは、図1のプラズマ処理装置100による本発明の酸化処理を実施した後の状態を示しており、図8Cは、熱酸化処理後の状態を示している。
図8Cに示すように、第1のポリシリコン層302中では、高温によるポリシリコンの再結晶化が顕著に観察されたが、本発明方法による図8Bの場合は、処理前である図8Aと比較しても同等の結晶サイズおよび平坦性を維持できることが示された。
次に、不純物をドープしたポリシリコンに単層の酸化膜を形成したサンプルを調製し、不純物の拡散状態を測定した。図9は、Pをドープしたポリシリコン層に対し、図1のプラズマ処理装置100を用い、チャンバー内圧力133Pa、温度500℃、マイクロ波パワー2750W、500mL/minのArガスおよび5mL/minのOガスを用いてRLSAプラズマ酸化して酸化膜を形成した場合と、1130℃の酸素雰囲気条件で熱酸化処理によりポリシリコンを酸化して酸化膜を形成した場合のドーパントの深さ方向分布をSIMS(二次イオン質量分析法;Secondary Ion Mass Spectrometry)によって調査した結果を示している。同様に、図10は、Bをドープしたポリシリコン層に同様に酸化膜を形成し、SIMSにより測定した場合の深さ方向分布を示している。なお、図9、図10において、横軸は、酸化膜表面からの深さであり、三角印は、ポリシリコン層と酸化膜との界面を示している。
熱酸化の場合は、図9より、界面付近でPの濃度が高く顕著であり、また、図10より、界面付近のBの濃度が高く、酸化膜中へのBの吸上げが顕著に見られ、ポリシリコン層中のBの濃度まで変化が見られた。これに対して、本発明のプラズマ処理の場合には、不純物の濃度および再拡散が抑制されており、良質な酸化膜が形成できることが示された。
図11A〜図11Dは、図9と同一のサンプルについて、ポリシリコン層と酸化膜(SiO)との境界付近の断面を示しており、図11Aおよび図11BはTEMによる測定画像、図11Cおよび図11Dは、EELS(電子エネルギー損失分光法;Electron Energy Loss Spectroscopy)による測定画像を示している。
図11Bおよび図11Dより、熱酸化処理の場合には、酸化膜とポリシリコン層との界面に、絶縁破壊の起点となるPの偏析が観察された。図11D中に円で囲った部分は、Pが偏析した領域を示している。一方、プラズマ処理装置100を用いた酸化の場合、図11Aおよび図11Cに示すようにPの偏析は観察されず、ドーパントの再拡散が抑制されていることがわかる。
図12および図13は、図5A〜図5Iのようにして得られたゲート電極310の絶縁特性を調べた結果を示す図面である。
図12は、本発明のプラズマ処理で形成した酸化膜、HTO−CVDで形成した酸化膜およびdry−熱酸化による酸化膜のJ−Eプロットを比較したグラフである。図12のグラフの縦軸のJgは、ゲート酸化膜を介して流れる単位面積当りのリーク電流を意味する。また横軸のEoxは、ゲート酸化膜にかかる電界強度を意味し、下式によって求められる。
Eox=印加電圧/Tox
Tox=(εox×ε0×電極面積)/C
ここで、εoxは酸化膜の誘電率、ε0は真空の誘電率、Cはゲート酸化膜の容量値C-V測定から求められる値である。
J−Eプロットは、図1のプラズマ処理装置100を用いて7nmの膜厚の酸化膜を形成した場合(a)、12nmの膜厚の酸化膜を形成した場合(b)、HTO−CVDにより12nmの膜厚の酸化膜を形成した場合(c)、dry−熱酸化により15nmの酸化膜を形成した場合(d)について比較を行なった。
図12より、図1のプラズマ処理装置100を用いた酸化処理により得られた酸化膜では、熱酸化処理による酸化膜と比較するとJgが小さく、膜厚に関わらず耐圧が非常に良好なことがわかる。よって、7nmのプラズマ酸化膜でも効果があることが示された。
図13は、リーク電流密度が1×10−6[A/cm]のときの電界強度とToxの関係を示している。この図から、プラズマ酸化で形成した酸化膜のほうが、熱酸化で形成した酸化膜に比べて高耐圧であることがわかる。
また、本試験では、図5Dの工程において、プラズマ処理装置100による酸化膜を3nm形成後に、1000℃度でOガス雰囲気でdry−熱酸化処理をして、合計10nmの酸化膜としたテストパターン(ゲート電極)についても測定を実施し、グラフ中にプロットした。この結果から、プラズマ酸化処理後に熱酸化前を施すと、耐圧が改善することも判明した。この現象は、面方位依存性が生じやすい初期酸化過程をプラズマ酸化により行なうことにより、表面凹凸の発生が抑制され、その後に熱酸化を行なった場合でも酸化膜の耐圧が向上した結果であると考えられる。
次に、プラズマ酸化膜と熱酸化膜に、CCS=−0.1A/cmのストレスを与えたときのQbdを測定した。その結果、熱酸化膜のQbdは0[C/cm]であったのに対し、プラズマ酸化膜のQbdは、3.8[C/cm]であった。この結果から、熱酸化膜と比較して、プラズマ酸化膜の信頼性は非常に高いことがわかる。
図14および図15は、図5A〜図5Iのようにして得られたゲート電極310の酸化膜303の絶縁特性を調べた結果のJ−Eプロットを示すグラフである。
図14に示すJ−Eプロットは、図1のプラズマ処理装置100を用い、ArとOを流量比Ar:O=500:5mL/min(sccm)で供給し、処理圧力133.33Pa、マイクロ波パワー2750W、処理温度500℃でプラズマ酸化処理を行うことによって膜厚7nmの酸化膜303を形成した場合の測定結果である。
また、図15に示すJ−Eプロットは、図1のプラズマ処理装置100を用い、ArとOとHとを、流量比Ar:O:H=500:5:1mL/min(sccm)で供給し、上記と同様の処理圧力、マイクロ波パワーおよび処理温度でプラズマ酸化処理を行うことによって、上記と同様の膜厚で酸化膜303を形成した場合の測定結果である。
図14より、図1のプラズマ処理装置100を用い、水素が存在しない処理ガスを用いてプラズマ酸化処理して得られた酸化膜303では、デバイス間でJgのばらつきが小さく、耐圧性能が非常に良好であった。これに対して、図15より、ArおよびOとともに、1mL/min(sccm)の水素を供給してプラズマ酸化処理を行うことにより得られた酸化膜303では、デバイス間でJgのばらつきが大きく、耐圧性能のばらつきも大きかった。これは、酸化膜303の形成過程でプラズマ中に水素(ラジカル、イオン)が存在することにより、ポリシリコンへの水素ダメージが入ること、および、形成される酸化膜に水素が存在するとそれが脱離してホールトラップが形成されることによって、絶縁耐性を不安定なものにしているものと推測された。この傾向は、被処理体が単結晶シリコンの場合よりも、ポリシリコンの場合に特に顕著に現れた。
従って、形成されるシリコン酸化膜(SiO)の絶縁特性を十分なものとする観点から、図1のプラズマ処理装置100を用いたプラズマ酸化処理における処理ガス中には水素を含まないことが好ましい。また、プラズマ酸化処理を行う処理チャンバー1内には水素が存在していないことが好ましいから、プラズマ酸化処理の前に、前記シーズニングを実施して水素を除去しておくことが好ましい。特に、ポリシリコンを酸化処理してシリコン酸化膜を形成する場合には、シーズニングにより、絶縁特性の大きな改善効果が期待できる。
以上、本発明の実施形態を述べたが、本発明は上記実施形態に制約されることはなく、種々の変形が可能である。
例えば、図3A〜図3Dの実施形態では、フラッシュメモリ素子200を例に挙げたが、本発明の酸化膜の形成方法は、通常のトランジスタのゲート酸化膜や、薄膜トランジスタのゲート酸化膜を形成する場合にも好適に適用できる。例えば、図16は、ガラス基板211に第1のポリシリコン層212が積層され、その上にゲート酸化膜213および第2のポリシリコン層214が形成された薄膜トランジスタ220の模式図である。この薄膜トランジスタ220において、ゲート酸化膜213を形成する場合に、プラズマ処理装置100を用いてガス流量を制御しながらプラズマ酸化処理を施すことによって、高い酸化レートで良質な酸化膜を形成することができる。
また、上記実施形態では、ArとOとを含む処理ガスを用いて酸化処理を行なったが、さらにN、NO、NO、NO、NH等のガスを含む処理ガスを用いることもできる。特に、処理ガス中に窒素を含むガスを混合することにより、ポリシリコンと酸化膜との界面に窒素が導入された酸窒化膜を形成し、その上に、熱酸化(加熱)を行ない酸化膜を形成する2段階酸化処理をすることによって、工程数を削減できる。また、これにより、ポリシリコンとの界面の酸化膜欠陥を修復することができ、半導体装置の信頼性を向上させ得るとともに、ポリシリコン中の不純物が酸化膜中へ移行する拡散を防止できる。
さらに、本実施形態で形成したシリコン酸化膜に図1のプラズマ処理装置100を用いてArとNの混合ガスのプラズマを照射し、シリコン酸化膜を窒化処理してシリコン窒化膜を形成し、その上に熱酸化膜を形成するようにしてもよい。
本発明は、フラッシュメモリ素子やトランジスタなどの各種半導体装置の製造に好適に利用できる。

Claims (11)

  1. 少なくとも、ポリシリコン層と、該ポリシリコン層に形成された酸化膜とを有する半導体装置における前記酸化膜の形成方法であって、
    複数のスロットを有する平面アンテナにて処理室内にマイクロ波を導入してプラズマを発生させるプラズマ処理装置により、Arガスと酸素ガスとを含み、かつ酸素分圧が、0.66〜2.66Paである処理ガスを用いて、前記ポリシリコン層にプラズマ処理を行い、酸化膜を形成する工程を含むことを特徴とする、酸化膜の形成方法。
  2. 請求項1において、前記プラズマ処理における圧力が67〜667Pa、処理温度が300〜600℃であることを特徴とする、酸化膜の形成方法。
  3. 請求項1または請求項2において、前記酸化膜より上層に第2のポリシリコン層を形成する工程を、さらに有することを特徴とする、酸化膜の形成方法
  4. 請求項3において、前記酸化膜の形成方法が、フラッシュメモリ素子または薄膜トランジスタの製造方法に用いられることを特徴とする、酸化膜の形成方法
  5. 請求項1から請求項3のいずれか1項において、前記酸化膜に対して、熱酸化処理を行なう第2の酸化工程を含むことを特徴とする、酸化膜の形成方法。
  6. 請求項1から請求項5のいずれか1項において、前記酸化膜を形成する工程の前に、前記処理室内の残留水素分を除去する工程を、備えていることを特徴とする、酸化膜の形成方法。
  7. 請求項6において、前記処理室内の残留水素分を除去する工程は、前記酸化膜を形成する工程と同じレシピで行われることを特徴とする、酸化膜の形成方法。
  8. 請求項1から請求項5のいずれか1項において、前記ポリシリコン層にプラズマ処理を行う前に、前記処理室内に前記Arガス及び前記酸素ガスを導入し、前記酸化膜を形成する工程よりも高圧にして昇温することを特徴とする、酸化膜の形成方法。
  9. コンピュータ上で動作し、実行時に、複数のスロットを有する平面アンテナにて処理室内にマイクロ波を導入してプラズマを発生させるプラズマ処理装置を制御する制御プログラムであって、
    前記制御プログラムは、請求項1から請求項8のいずれか1項に記載の酸化膜の形成方法が行なわれるように、前記プラズマ処理装置を制御するものであることを特徴とする、制御プログラム。
  10. コンピュータ上で動作する制御プログラムが記憶されたコンピュータ記憶媒体であって、
    前記制御プログラムは、実行時に、複数のスロットを有する平面アンテナにて処理室内にマイクロ波を導入してプラズマを発生させるプラズマ処理装置に、請求項1から請求項8のいずれか1項に記載の酸化膜の形成方法が行なわれるように、前記プラズマ処理装置を制御するものであることを特徴とする、コンピュータ記憶媒体。
  11. プラズマにより被処理体を処理するための真空排気可能な処理室と、
    複数のスロットを有する平面アンテナにて前記処理室内にマイクロ波を導入することによりプラズマを発生させるプラズマ供給源と、
    前記処理室内で、複数のスロットを有する平面アンテナにて処理室内にマイクロ波を導入してプラズマを発生させるプラズマ処理装置に、請求項1から請求項8のいずれか1項に記載の酸化膜の形成方法が行なわれるように、制御する制御部と、
    を備えたことを特徴とする、プラズマ処理装置。
JP2006532704A 2004-08-31 2005-08-30 酸化膜の形成方法、制御プログラム、コンピュータ記憶媒体およびプラズマ処理装置 Expired - Fee Related JP4739215B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006532704A JP4739215B2 (ja) 2004-08-31 2005-08-30 酸化膜の形成方法、制御プログラム、コンピュータ記憶媒体およびプラズマ処理装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004253530 2004-08-31
JP2004253530 2004-08-31
PCT/JP2005/015727 WO2006025363A1 (ja) 2004-08-31 2005-08-30 シリコン酸化膜の形成方法、半導体装置の製造方法およびコンピュータ記憶媒体
JP2006532704A JP4739215B2 (ja) 2004-08-31 2005-08-30 酸化膜の形成方法、制御プログラム、コンピュータ記憶媒体およびプラズマ処理装置

Publications (2)

Publication Number Publication Date
JPWO2006025363A1 JPWO2006025363A1 (ja) 2008-05-08
JP4739215B2 true JP4739215B2 (ja) 2011-08-03

Family

ID=36000015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006532704A Expired - Fee Related JP4739215B2 (ja) 2004-08-31 2005-08-30 酸化膜の形成方法、制御プログラム、コンピュータ記憶媒体およびプラズマ処理装置

Country Status (7)

Country Link
US (1) US20090053903A1 (ja)
EP (1) EP1786030A4 (ja)
JP (1) JP4739215B2 (ja)
KR (1) KR100945770B1 (ja)
CN (1) CN100587922C (ja)
TW (1) TW200620471A (ja)
WO (1) WO2006025363A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7429538B2 (en) * 2005-06-27 2008-09-30 Applied Materials, Inc. Manufacturing method for two-step post nitridation annealing of plasma nitrided gate dielectric
EP2259294B1 (en) * 2006-04-28 2017-10-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and manufacturing method thereof
JP5128172B2 (ja) * 2006-04-28 2013-01-23 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5089121B2 (ja) * 2006-09-29 2012-12-05 東京エレクトロン株式会社 シリコン酸化膜の形成方法およびプラズマ処理装置
JP5121217B2 (ja) * 2006-12-05 2013-01-16 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5229711B2 (ja) * 2006-12-25 2013-07-03 国立大学法人名古屋大学 パターン形成方法、および半導体装置の製造方法
KR101248651B1 (ko) * 2008-02-08 2013-03-28 도쿄엘렉트론가부시키가이샤 절연막의 형성 방법, 컴퓨터 판독 가능한 기억 매체 및 처리 시스템
JP5691074B2 (ja) * 2008-08-20 2015-04-01 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP4792097B2 (ja) 2009-03-25 2011-10-12 株式会社東芝 不揮発性記憶装置及びその製造方法
JP5551946B2 (ja) * 2010-03-10 2014-07-16 東京エレクトロン株式会社 表面平坦化方法
US8741394B2 (en) * 2010-03-25 2014-06-03 Novellus Systems, Inc. In-situ deposition of film stacks
CN109023307A (zh) * 2018-09-05 2018-12-18 朱广智 一种微波等离子真空镀膜设备及使用方法
KR102414099B1 (ko) * 2018-10-23 2022-06-29 주식회사 원익아이피에스 기판 처리 시스템 및 이를 이용한 박막 증착 방법
CN113629161B (zh) * 2021-08-04 2024-06-07 苏州拓升智能装备有限公司 间歇等离子体氧化方法和装置、太阳电池的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160555A (ja) * 1999-11-30 2001-06-12 Tadahiro Omi 111面方位を表面に有するシリコンを用いた半導体装置およびその形成方法
WO2001069673A1 (fr) * 2000-03-13 2001-09-20 Tadahiro Ohmi Dispositif de memoire flash et son procede de fabrication et procede de formation de pellicule dielectrique

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812403A (en) * 1996-11-13 1998-09-22 Applied Materials, Inc. Methods and apparatus for cleaning surfaces in a substrate processing system
US6197701B1 (en) * 1998-10-23 2001-03-06 Taiwan Semiconductor Manufacturing Company Lightly nitridation surface for preparing thin-gate oxides
KR100473856B1 (ko) * 2000-12-28 2005-03-07 (주)쎄미시스코 플라즈마 챔버의 공정 상태 관찰방법
US6514870B2 (en) * 2001-01-26 2003-02-04 Applied Materials, Inc. In situ wafer heat for reduced backside contamination
US6589868B2 (en) * 2001-02-08 2003-07-08 Applied Materials, Inc. Si seasoning to reduce particles, extend clean frequency, block mobile ions and increase chamber throughput
KR100486278B1 (ko) * 2002-11-11 2005-04-29 삼성전자주식회사 신뢰성이 향상된 게이트 산화막 형성방법
JP2004343031A (ja) * 2002-12-03 2004-12-02 Advanced Lcd Technologies Development Center Co Ltd 誘電体膜およびその形成方法ならびに誘電体膜を用いた半導体装置およびその製造方法
JP4408653B2 (ja) * 2003-05-30 2010-02-03 東京エレクトロン株式会社 基板処理方法および半導体装置の製造方法
US7041562B2 (en) * 2003-10-29 2006-05-09 Freescale Semiconductor, Inc. Method for forming multiple gate oxide thickness utilizing ashing and cleaning

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160555A (ja) * 1999-11-30 2001-06-12 Tadahiro Omi 111面方位を表面に有するシリコンを用いた半導体装置およびその形成方法
WO2001069673A1 (fr) * 2000-03-13 2001-09-20 Tadahiro Ohmi Dispositif de memoire flash et son procede de fabrication et procede de formation de pellicule dielectrique

Also Published As

Publication number Publication date
TW200620471A (en) 2006-06-16
CN100587922C (zh) 2010-02-03
KR100945770B1 (ko) 2010-03-08
US20090053903A1 (en) 2009-02-26
EP1786030A4 (en) 2011-06-29
KR20070047769A (ko) 2007-05-07
EP1786030A1 (en) 2007-05-16
CN101010787A (zh) 2007-08-01
WO2006025363A1 (ja) 2006-03-09
JPWO2006025363A1 (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
JP4739215B2 (ja) 酸化膜の形成方法、制御プログラム、コンピュータ記憶媒体およびプラズマ処理装置
JP5229711B2 (ja) パターン形成方法、および半導体装置の製造方法
JP4633729B2 (ja) 半導体装置の製造方法およびプラズマ酸化処理方法
JP5252913B2 (ja) 半導体装置の製造方法およびプラズマ酸化処理方法
JP5231233B2 (ja) プラズマ酸化処理方法、プラズマ処理装置、及び、記憶媒体
TWI402912B (zh) Manufacturing method of insulating film and manufacturing method of semiconductor device
KR101380094B1 (ko) 반도체 장치의 제조 방법
US8003484B2 (en) Method for forming silicon oxide film, plasma processing apparatus and storage medium
US8026187B2 (en) Method of forming silicon oxide film and method of production of semiconductor memory device using this method
JP2006332555A (ja) プラズマ処理方法
WO2006070685A1 (ja) トンネル酸化膜の窒化処理方法、不揮発性メモリ素子の製造方法および不揮発性メモリ素子、ならびに制御プログラムおよびコンピュータ読取可能な記憶媒体
JP5231232B2 (ja) プラズマ酸化処理方法、プラズマ処理装置、及び、記憶媒体
JP4906659B2 (ja) シリコン酸化膜の形成方法
CN102165568B (zh) 硅氧化膜的形成方法和装置
JP4975622B2 (ja) 半導体装置の製造方法
JP5291467B2 (ja) プラズマ酸化処理方法、記憶媒体、及び、プラズマ処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees