JP4728598B2 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
JP4728598B2
JP4728598B2 JP2004178180A JP2004178180A JP4728598B2 JP 4728598 B2 JP4728598 B2 JP 4728598B2 JP 2004178180 A JP2004178180 A JP 2004178180A JP 2004178180 A JP2004178180 A JP 2004178180A JP 4728598 B2 JP4728598 B2 JP 4728598B2
Authority
JP
Japan
Prior art keywords
sample
electrolyte
additive
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004178180A
Other languages
English (en)
Other versions
JP2005032716A (ja
Inventor
滋博 川内
勇一 伊藤
匠昭 奥田
修 蛭田
厳 佐々木
秀之 中野
要二 竹内
良雄 右京
辻岡  章一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Central Glass Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd, Toyota Central R&D Labs Inc filed Critical Central Glass Co Ltd
Priority to JP2004178180A priority Critical patent/JP4728598B2/ja
Publication of JP2005032716A publication Critical patent/JP2005032716A/ja
Application granted granted Critical
Publication of JP4728598B2 publication Critical patent/JP4728598B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は,リチウムイオンの吸蔵・放出を利用したリチウムイオン二次電池に関する。
従来より,リチウムイオンの吸蔵・放出を利用したリチウムイオン二次電池は,高電圧でエネルギー密度が高いことから,パソコン,携帯電話等の携帯情報端末等を中心に情報機器,通信機器の分野で実用が進み,広く一般に普及するに至っている。また他の分野では,環境問題及び資源問題から電気自動車の開発が急がれる中,リチウムイオン二次電池を電気自動車用の電源として用いることが検討されている。
リチウムイオン二次電池は,正極と,負極と,これらの正極及び負極間でリチウムイオンを移動させる非水電解液とを主要な構成としてなっている。
上記非水電解液は,例えば電解質を溶解した有機溶媒等よりなり,電解質としては,例えばLiClO4,LiPF6,LiBF4,LiAsF6,LiN(CF3SO22及びLiCF3SO3等がある。
このような電解質を有するリチウムイオン二次電池のうち,特に実用化されているものとしては,電解質としてLiPF6を有するリチウムイオン二次電池がある(特許文献1参照)。
LiPF6を電解質として含有するリチウムイオン二次電池は,他の電解質に比べて,爆発性や毒性がほとんど無く安全性に優れている。また,LiPFO4は,集電体からアルミニウム等の金属を溶出させることもほとんどないため,このようなリチウムイオン二次電池は,充放電を繰り返し行ったときの容量劣化が小さいという利点を有している。
しかしながら,上記のような電解質を用いたリチウムイオン二次電池は,熱安定性が低いという問題があった。
即ち,このようなリチウムイオン二次電池を高温条件下で繰り返し使用すると,電解質が分解し負極に高抵抗な被膜を形成するおそれがある。その結果,充放電容量が低下し,また電池の内部抵抗が上昇して出力電圧を低下させてしまうという問題があった。
また,上記電解質は,水と反応することにより分解し,集電体に含まれるアルミニウム等の金属を腐食して,電池容量の低下や内部抵抗の上昇を引き起こす。
そのため,上記電解質を有する非水電解液を用いてリチウムイオン二次電池を作製する際には,その製造工程において,電池系内への水の混入を極力防ぐ必要があった。
具体的には,このようなリチウムイオン二次電池の製造にあたっては,非水電解液中に水が混入することを防止するために,非水電解液を作製する工程や,非水電解液を電池へ注入する工程等を,Ar雰囲気のグローブボックス等を用いて行っていた。また,電池系内の水分量を極力ゼロに近づけるために,電極を真空乾燥する工程や電極を捲回する工程等もドライルームで行われ,徹底した水分除去のための措置がとられていた。
しかし,その結果,グローブボックスやドライルーム等の設備が必要となるため製造コストが高くなると共に,リチウムイオン二次電池の作製が煩雑になるという問題があった。
特開2001−307768号公報
本発明は,かかる従来の問題点に鑑みてなされたもので,高温条件下での充放電サイクル特性に優れ,低コストで簡単に作製できるリチウムイオン二次電池を提供しようとするものである。
本発明は,リチウムと遷移金属とを含有する酸化物又はポリアニオン系化合物を正極活物質の主成分として含有する正極と,炭素材料を負極活物質として含有する負極と,有機溶媒に電解質を溶解してなる非水電解液とを有するリチウムイオン二次電池において,
上記非水電解液には,添加剤として下記の式(α)で表される化合物が添加されており,
上記添加剤は,上記電解質とのモル比で,電解質:添加剤=99.9〜5:0.1〜95となるように上記非水電解液中に添加されており,
また,上記非水電解液は,濃度100ppm〜10000ppmの割合で水を含有していることを特徴とするリチウムイオン二次電池にある(請求項1)
Figure 0004728598
本発明のリチウムイオン二次電池においては,上記非水電解液中に上記電解質と共に上記式(α)で表される化合物が添加剤として添加されている。
そのため,上記リチウムイオン二次電池を一回以上充電させると,上記添加剤のすべてもしくは一部が分解し,上記正極又は/及び上記負極の表面や,上記正極活物質又は/及び上記負極活物質の表面に,これらを被覆する被覆物が形成される。
上記被覆物は,低抵抗でかつ安定であり,上記のように正極又は/及び負極の表面や,上記正極活物質又は/及び上記負極活物質の表面を被覆している。
そのため,上記リチウムイオン二次電池においては,リチウムイオンの吸蔵・放出がスムーズに行われ,正極又は/及び負極の表面や上記正極活物質又は/及び負極活物質の表面と,電解液との界面抵抗が低減し,幅広い温度範囲で電池の初期出力を向上できる。特に,低温では電解液の抵抗が高くなるために,出力の向上はより顕著になる。
また,上記被覆物は,非水電解液中の電解質の分解等によって起こる,負極上での高抵抗な被膜の形成を抑制することができる。
また,上記した高抵抗な被膜の形成は,上記リチウムイオン二次電池を例えば60℃という高温環境下で使用したとき等に特に起こりやすく,出力電圧や放電容量等を低下させる。
本発明のリチウムイオン二次電池においては,上記被覆物が,負極における高抵抗な被膜の形成を防止することができる。そのため,例えば60℃という高温環境下で使用した場合においても,優れた放電容量及び出力電圧を発揮することができる。
例えばすでに実用化されているLiPF6を支持塩に用いた電解液を用いた場合には,加水分解によってHFが生じるおそれがある。このHFは,例えば60℃,4.1V等という環境下において,例えばAl等からなる集電体を腐食するおそれがある。その結果,抵抗が上昇し,電池特性が劣化してしまうおそれがある。
これに対し,上記リチウムイオン二次電池においては,上記非水電解液に,上記式(α)で表される化合物が添加されているため,加水分解してもHFが発生しない。そのため,上記リチウムイオン二次電池は優れた耐久性を発揮することができる。
また,上記リチウムイオン二次電池においては,上記非水電解液中に,上記電解質と上記添加剤が添加されていることに加えて,濃度100ppm〜10000ppmの割合で水を含有している。
そのため,上記リチウムイオン二次電池は,その作製時において,従来のように電池内に水分を混入させないための特別な装置や設備等を必要としない。それ故,本発明のリチウムイオン二次電池は,低コストで簡単に作製することができる。また,上記リチウムイオン二次電池は,非水電解液中に上記添加剤が添加されているため,上記の濃度範囲で水分を含有していても,集電体等をほとんど腐食せず,高温条件下でのサイクル特性に優れている。即ち,高温条件下で充放電を繰り返し行っても,充放電容量の低下及び内部抵抗の上昇を抑制できる。
このように,本発明によれば,高出力で,高温条件下での充放電サイクル特性に優れ,低コストで簡単に作製できるリチウムイオン二次電池を提供することができる。
本発明(請求項1)のリチウムイオン二次電池においては,上記添加剤として,下記一般式(1)で表される化合物を上記非水電解液中に添加することができる。但し,下記一般式(1)において,Mは,遷移金属,周期律表のIII族,IV族,又はV族元素,A a+ は,金属イオン,プロトン,又はオニウムイオン,aは1〜3,bは1〜3,pはb/a,mは1〜4,nは1〜8,qは0又は1をそれぞれ表し,R 1 は,C 1 〜C 10 のアルキレン,C 1 〜C 10 のハロゲン化アルキレン,C 6 〜C 20 のアリーレン,又はC 6 〜C 20 のハロゲン化アリーレン(これらのアルキレン及びアリーレンはその構造中に置換基,ヘテロ原子を持ってもよく,またm個存在するR 1 はそれぞれが結合してもよい。),R 2 は,ハロゲン,C 1 〜C 10 のアルキル,C 1 〜C 10 のハロゲン化アルキル,C 6 〜C 20 のアリール,C 6 〜C 20 のハロゲン化アリール,又はX 3 3 (これらのアルキル及びアリールはその構造中に置換基,ヘテロ原子を持ってもよく,またn個存在するR 2 はそれぞれが結合して環を形成してもよい。),X 1 ,X 2 ,X 3 は,O,S,又はNR 4 ,R 3 ,R 4 は,それぞれが独立で,水素,C 1 〜C 10 のアルキル,C 1 〜C 10 のハロゲン化アルキル,C 6 〜C 20 のアリール,C 6 〜C 20 のハロゲン化アリールをそれぞれ示す(これらのアルキル及びアリールはその構造中に置換基,ヘテロ原子を持ってもよく,また複数個存在するR 3 ,R 4 はそれぞれが結合して環を形成してもよい。)。
Figure 0004728598
このような添加剤の具体的な例を次に示す。
Figure 0004728598
Figure 0004728598
Figure 0004728598
Figure 0004728598
Figure 0004728598
Figure 0004728598
上記の例では,上記一般式(1)におけるAa+がリチウムイオンであるものを挙げているが,リチウムイオン以外のカチオンとして,例えばナトリウムイオン,カリウムイオン,マグネシウムイオン,カルシウムイオン,バリウムイオン,セシウムイオン,銀イオン,亜鉛イオン,銅イオン,コバルトイオン,鉄イオン,ニッケルイオン,マンガンイオン,チタンイオン,鉛イオン,クロムイオン,バナジウムイオン,ルテニウムイオン,イットリウムイオン,ランタノイドイオン,アクチノイドイオン,テトラブチルアンモニウムイオン,テトラエチルアンモニウムイオン,テトラメチルアンモニウムイオン,トリエチルメチルアンモニウムイオン,トリエチルアンモニウムイオン,ピリジニウムイオン,イミダゾリウムイオン,プロトン,テトラエチルホスホニウムイオン,テトラメチルホスホニウムイオン,テトラフェニルホスホニウムイオン,トリフェニルスルホニウムイオン,トリエチルスルホニウムイオン等が挙げられる。
好ましくは,上記一般式(1)におけるAa+として,リチウムイオン,テトラアルキルアンモニウムイオン,プロトンがよい。
また,上記一般式(1)において,Aa+のカチオンの価数aは1〜3である。aが3より大きい場合には,上記添加剤の結晶格子エネルギーが大きくなるため,上記有機溶媒に溶解するのが困難になる。
そのため,最も好ましくはa=1である。このようなカチオンAa+としては,リチウムイオン,テトラアルキルアンモニウムイオン,プロトンがある。
また,同様にアニオンの価数bも1〜3であり,b=1が最も好ましい。
また,カチオンとアニオンの比を表す定数pは,両者の価数の比b/aにより必然的に決まってくる。
上記添加剤は,イオン性金属錯体構造をとっており,その中心となるMは,遷移金属,周期律表のIII族,IV族,又はV族元素から選ばれる。
好ましくは,上記一般式(1)中のMは,Al,B,V,Ti,Si,Zr,Ge,Sn,Cu,Y,Zn,Ga,Nb,Ta,Bi,P,As,Sc,Hf,またはSbのいずれかであることがよい。
この場合には,上記添加剤の合成が容易となる。
より好ましくは,上記一般式(1)中のMは,Al,B,又はPがよい。この場合には,上記添加剤の合成が容易になることに加えて,上記添加剤の毒性が低くなり,また製造コストが低くなるという効果を得ることができる。
次に,上記添加剤(イオン性金属錯体)の配位子の部分について説明する。以下,ここでは上記一般式(1)において,Mに結合している有機又は無機の部分を配位子とよぶ。
一般式(1)中のR1は,C1〜C10のアルキレン,C1〜C10のハロゲン化アルキレン,C6〜C20のアリーレン,又はC6〜C20のハロゲン化アリーレンから選ばれるものよりなる。これらのアルキレン及びアリーレンはその構造中に置換基,ヘテロ原子を持ってもよい。具体的には,アルキレン及びアリーレン上の水素の代わりに,ハロゲン,鎖状又は環状のアルキル基,アリール基,アルケニル基アルコキシ基,アリーロキシ基,スルホニル基,アミノ基,シアノ基,カルボニル基,アシル基,アミド基,水酸基,また,アルキレン及びアリーレン上の炭素の代わりに,窒素,硫黄,酸素が導入された構造等を挙げることができる。
さらには,R1が複数存在する場合(q=1,m=2〜4の場合)には,それぞれが結合してもよく,例えばエチレンジアミン四酢酸のような配位子を挙げることができる。
2は,ハロゲン,C1〜C10のアルキル,C1〜C10のハロゲン化アルキル,C6〜C20のアリール,C6〜C20のハロゲン化アリール,又はX33から選ばれるものよりなる。これらもR1と同様に,アルキル及びアリールはその構造中に置換基,ヘテロ原子を持ってもよく,またR2が複数個存在する場合(n=2〜8の場合)R2はそれぞれが結合して環を形成してもよい。
好ましくは,R2としては,電子吸引性の基がよく,特にフッ素がよい。この場合には,上記添加剤の溶解度や解離度が向上し,これに伴ってイオン伝導度が向上するという効果を得ることができる。さらにこの場合には,耐酸化性が向上し,これにより副反応の発生を防止することができる。
1,X2,X3は,それぞれ独立で,O,S,又はNR4であり,これらのヘテロ原子を介して配位子がMに結合する。ここで,O,S,N以外で結合することが,不可能ではないが,合成上非常に煩雑なものとなる。上記一般式(1)で表される化合物の特徴として,同一の配位子内におけるX1とX2によるMとの結合があり,これらの配位子はMとキレート構造を形成している。この配位子中の定数qは,0又は1である。q=0の場合には,キレートリングが五員環となり,上記添加剤の錯体構造が安定化する。そのため,この場合には,上記添加剤が上記被覆物の形成以外の副反応を起こすことを防止することができる。
3,R4は,それぞれが独立で,水素,C1〜C10のアルキル,C1〜C10のハロゲン化アルキル,C6〜C20のアリール,C6〜C20のハロゲン化アリールであり,これらのアルキル及びアリールはその構造中に置換基,ヘテロ原子を持ってもよく,またR3,R4が複数個存在する場合には,それぞれが結合して環を形成してもよい。
また,上述した配位子の数に関係する定数m及びnは,中心のMの種類によって決まってくるものであるが,mは1〜4,nは1〜8である。
また、上述のR1,R2,R3,R4において、C1〜C10は炭素数が1〜10であることを示し、C6〜C20は炭素数が6〜20であることを示す。
また,上記添加剤の合成方法としては,例えば次の式(2)化学式の化合物の場合には,非水溶媒中でLiBF4と2倍モルのリチウムアルコキシドを反応させた後,シュウ酸を添加して,ホウ素に結合しているアルコキシドをシュウ酸で置換する方法等がある。
Figure 0004728598
次に,本発明のリチウムイオン二次電池は,上記のように,該リチウムイオン二次電池を少なくとも一回以上充電させることにより,上記添加剤のすべてもしくは一部が分解して,上記正極又は/及び上記負極の表面や,上記正極活物質又は/及び上記負極活物質の表面に被覆して被覆物を形成する。
上記被覆物は,例えばX線光電子分光分析(XPS)やIR分析等により検出することができる。
また,上記リチウムイオン二次電池は,上記非水電解液中に,濃度100ppm〜10000ppmの割合で水を含有している。
上記非水電解液中の水の濃度が100ppm未満の場合には,水分量を100ppm未満という低濃度のリチウムイオン二次電池を作製するために,特別な設備や操作が必要となる。そのため,上記リチウムイオン二次電池の製造コストが高くなり,またその製造工程が煩雑になるおそれがある。
一方,上記非水電解液中の水の濃度が10000ppmを超える場合には,高温条件下で充放電を繰り返し行うことにより,上記リチウムイオン二次電池の充放電容量が劣化し易くなると共に内部抵抗が上昇しやすくなる。
また,上記リチウムイオン二次電池は,正極,負極,電池ケースの内壁等という上記非水電解液中以外の部分にも,水分を含有していても良い。
次に,上記リチウムイオン二次電池は,上記正極及び負極と,これらの正極と負極との間に狭装されるセパレータと,正極と負極との間でリチウムを移動させる上記非水電解液などを主要構成要素として構成することができる。
正極は,例えば上記正極活物質に導電材及び結着剤を混合し,適当な溶剤を加えてペースト状の正極合材としたものを,アルミニウム,ステンレスなどの金属箔性の集電体の表面に塗布乾燥し,必要に応じて電極密度を高めるべく圧縮して形成することができる。
上記正極活物質は,リチウムと遷移金属Mとを含有する酸化物又はポリアニオン系化合物を主成分とする。
上記リチウムと上記遷移金属Mとを含有する酸化物としては,例えば層状岩塩型構造を有するLiMO2や,スピネル構造を有するLiM24,及びこれらのLiもしくは遷移金属Mを他の金属元素で一部置換したもの等がある。
また,上記リチウムと上記遷移金属Mとを含有するポリアニオン系化合物としては,例えばLi32(SO4)3,Li32(WO4)3,Li32(MoO4)3,及びLiMPO4等のオリビン構造のリン酸化物等があり,その他にも例えばLi32(PO4)3等がある。
また,上記正極活物質は,上記遷移金属MとしてNi,Co,Mn,Fe,Tiから選ばれるいずれか1種以上を含有することが好ましい。
この場合には,上記リチウムイオン二次電池の電位及び充放電容量が高くなるという効果を得ることができる。
また,上記正極活物質の主成分である酸化物及びポリアニオン系化合物は,上記リチウムと遷移金属の他に,例えばAl,Mg等を含有していてもよい。
この場合には,上記リチウムイオン二次電池の充放電容量が一層向上するという効果を得ることができる。
Al及びMg等を含有する酸化物及びポリアニオン系化合物の具体的な例としては,例えば層状岩塩型構造を有するLi(Ni,Co,Al,Mg)O2等がある。
また,上記導電材は,正極の電気伝導性を確保するためのものであり,例えばカーボンブラック,アセチレンブラック,天然黒鉛,人造黒鉛,コークス類等の炭素物質粉末状体の1種又は2種以上を混合したものを用いることができる。
上記結着剤は,活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり,例えばポリテトラフルオロエチレン,ポリフッ化ビニリデン,フッ素ゴム等の含フッ素樹脂,或いはポリプロピレン,ポリエチレン等の熱可塑性樹脂等を用いることができる。また,水系バインダーであるセルロース系やスチレンブタジエンゴムの水分散体等を用いることもできる。
これら活物質,導電材,結着剤を分散させる溶剤としては,例えばN−メチル−2−ピロリドン等の有機溶剤を用いることができる。
次に,負極は,負極活物質である上記炭素材料に結着剤を混合し,適当な溶媒を加えてペースト状にした負極合材を,銅等の金属箔集電体の表面に塗布,乾燥し,その後にプレスにて形成することができる。また,正極と同様に,負極活物質に混合する結着剤としては,ポリフッ化ビニリデン等の含フッ素樹脂等を,溶剤としてはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。
上記負極活物質の炭素材料としては,例えば天然或いは人造の黒鉛,メソカーボンマイクロビーズ(MCMB),メソフェーズピッチ系炭素繊維及びその混合材,気相法炭素化繊維,フェノール樹脂等の有機化合物焼成体,コークス類,カーボンブラック,熱分解炭素類,炭素繊維等が挙げられる。これらの炭素材料は,1種又は2種以上を混合して用いることができる。
上記負極活物質としての上記炭素材料は,その比表面積が0.8〜5m2/gであることが好ましい。
この場合には,上記リチウムイオン二次電池の充電時に,上記添加剤が分解し負極又は/及び負極活物質に低抵抗でかつ安定な被覆物を形成し易くなり,上記リチウムイオン二次電池の内部抵抗の上昇を一層抑制することができる。
比表面積が0.8m2/g未満の場合又は5m2/gを越える場合には,上記被覆物が充分に形成されず,上記内部抵抗の上昇を充分に抑制できないおそれがある。
正極及び負極に狭装させるセパレータは,正極と負極とを分離し非水電解液を保持するものであり,例えばポリエチレン,ポリプロピレン等の薄い微多孔膜等を用いることができる。
次に,上記非水電解液としては,上記添加剤及び電解質を有機溶媒に溶解させたものを用いることができる。
上記電解質は,Aa+(PF6 -)a,Aa+(ClO4 -)a,Aa+(BF4 -)a,Aa+(AsF6 -)a,またはAa+(SbF6 -)a,(但し,Aa+は金属イオン,プロトン,又はオニウムイオン,aは1〜3である)から選ばれる1種以上であることが好ましい
この場合には,比較的イオン伝導度が高く,電気化学的に安定であるという効果を得ることができる。また,この場合には,低コストで上記リチウムイオン二次電池を作製することができる。
また,上記非水電解液において,上記添加剤は,上記一般式(1)中のAa+がLi+である化合物よりなることが好ましい。また,上記電解質は,LiPF6,LiClO4,LiBF4,LiAsF6,またはLiSbF6から選ばれる1種以上であることが好ましい(請求項)。
この場合には,比較的イオン伝導度が高く,電気化学的に安定であるという効果を得ることができるとともに,さらに,上記添加剤のリチウムイオンも電池の充放電反応に寄与できるという効果を得ることができる。また,この場合には低コストで上記リチウムイオン二次電池を作製できる。
上記添加剤及び上記電解質を溶解させる上記有機溶媒としては,非プロトン性の有機溶媒を用いることができる。このような有機溶媒としては,例えば環状カーボネート,鎖状カーボネート,環状エステル,環状エーテル,鎖状エーテル等から選ばれる1種又は2種以上からなる混合溶媒を用いることができる。
ここで,上記環状カーボネートとしては,例えばエチレンカーボネート,プロピレンカーボネート,ブチレンカーボネート,ビニレンカーボネート等がある。上記鎖状カーボネートとしては,例えばジメチルカーボネート,ジエチルカーボネート,メチルエチルカーボネート等がある。上記環状エステルカーボネートとしては,例えばガンマブチロラクトン,ガンマバレロラクトン等がある。上記環状エーテルとしては,例えばテトラヒドロフラン,2−メチルテトラヒドロフラン等がある。上記鎖状エーテルとしては,例えばジメトキシエタン,エチレングリコールジメチルエーテル等がある。上記有機溶媒としては,これらのもののうちいずれか1種を単独で用いることもできるし,2種以上を混合させて用いることもできる。
また,上記添加剤は,上記電解質とのモル比で,電解質:添加剤=99.9〜5:0.1〜95となるように上記非水電解液中に添加されていることが好ましい
上記電解質と上記添加剤とのモル比が上記の範囲から外れる場合には,充放電を繰り返し行うことによって,リチウムイオン二次電池の内部抵抗(IV抵抗)が上昇し,充分な出力を得ることができなくなるおそれがある。
上記リチウムイオン二次電池の充放電容量をより向上させたい場合には,特に電解質:添加剤=95〜20:5〜80であることが好ましい。より好ましくは電解質:添加剤=90〜20:10〜80がよい。
また,上記リチウムイオン二次電池のIV抵抗増加率をより抑制させたい場合には,特に電解質:添加剤=99.9〜20:0.1〜80であることが好ましい。より好ましくは電解質:添加剤=95〜50:5〜50であることが好ましい。
また,上記リチウムイオン二次電池の初期出力を向上させたい場合には,特に電解質:添加剤=99.9〜90:0.1〜10であることが好ましい。より好ましくは電解質:添加剤=99〜93:1〜7がよい。
したがって,上記電解質と上記添加剤との混合比は,上記リチウムイオン二次電池の用途に応じて要求される電池特性によって,適宜決定することができる。
(実施例1)
次に,本発明のリチウムイオン二次電池の実施例につき図1〜図2を用いて説明する。
図1及び図2に示すごとく,本例のリチウムイオン二次電池1は,リチウムと遷移金属とを含有する酸化物又はポリアニオン系化合物を正極活物質25の主成分として含有する正極2と,炭素材料を負極活物質35として含有する負極3と,有機溶媒に電解質51を溶解してなる非水電解液とを有する。
上記非水電解液には,添加剤53として下記の式(β)で表される化合物が添加されている。
また,上記非水電解液は,濃度100ppm〜10000ppmの割合で水を含有している。
Figure 0004728598
以下,本例のリチウムイオン二次電池1につき,図1及び図2を用いて詳細に説明する。
図1に示すごとく,本例のリチウムイオン二次電池1は,正極2,負極3,セパレータ4,ガスケット59,及び電池ケース6等よりなっている。電池ケース6は,18650型の円筒形状の電池ケースであり,キャップ63及び外装缶65よりなる。電池ケース6内には,シート状の正極2及び負極3が,該正極2及び負極3の間に挟んだセパレータ4と共に捲回した状態で配置されている。
また,電池ケース6のキャップ63の内側には,ガスケット59が配置されており,電池ケース6の内部には,非水電解液が注入されている。
また,図1及び図2に示すごとく,正極2は,正極活物質25としてLiNi0.75Co0.15Al0.102を含有し,負極3は負極活物質35として炭素材料を含有している。
正極2及び負極3には,それぞれ正極集電リード23及び負極集電リード33が熔接により設けられている。正極集電リード23は,キャップ63側に配置された正極集電タブ235に熔接により接続されている。また,負極集電リード33は,外装缶65の底に配置された負極集電タブ335に熔接により接続されている。
また,非水電解液は,エチレンカーボネートとジエチルカーボネートとを体積比で30:70で混合した有機溶媒に,図2に示すごとく,電解質51としてのLiPF6を溶解してなっており,電池ケース内に注入されている。そして,この非水電解液には,濃度100ppm〜10000ppmの割合で水が含有されている。また,非水電解液には,上記式(β)で表される化合物(以下適宜LPFOという)が添加剤53として添加されている。この添加剤53は,リチウムイオン二次電池1を1回以上充電することにより分解し,正極2又は/及び負極3や,正極活物質25又は/及び負極活物質35を被覆して被覆物55を形成する。なお,図2は,負極3の表面に被覆物55が形成された状態を示すものである。
次に,本例のリチウムイオン二次電池の製造方法につき,図1及び図2を用いて説明する。
まず,以下のようにして,上記非水電解液を準備した。
即ち,まずエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比で混合した有機溶媒に,電解質としてのLiPF6を終濃度が1Mとなるように加えて電解質溶液を作製した。また,エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比で混合した有機溶媒に,上記の式(β)で表される化合物(LPFO)を終濃度が1Mとなるように加えて添加剤溶液を作製した。
次に,上記電解質溶液と上記添加剤溶液とを混合し,さらに約1000ppmの濃度で水を加えて非水電解液を作製した。このとき,上記電解質溶液と上記添加剤溶液とは,非水電解液中の上記電解質(LiPF6)と上記添加剤(LPFO)とが,モル比で電解質:添加剤=95:5となるように混合した。
次に,以下のようにして,正極及び負極を準備した。
正極においては,まず正極活物質としてLiNi0.75Co0.15Al0.102を準備し,該正極活物質と,導電材としてのカーボンブラック(東海カーボン株式会社製,TB5500)と,結着剤としてのポリフッ化ビニリデン(呉羽化学工業株式会社製,KFポリマ)とを混合し,分散剤としてn−メチル−2−ピロリドンを適量添加し,混練してペースト状の正極合材を得た。正極活物質と導電材と結着剤との混合比は,重量比で,正極活物質:導電材:結着剤=85:10:5とした。
次いで,上記のようにして得られた正極合材を,厚さ20μmのアルミニウム箔集電体の両面に塗布して,乾燥させた。その後,ロールプレスで高密度化させ,幅52mm,長さ450mmの形状に切り出し,シート状の正極を作製した。なお,正極活物質の付着量は,片面当たり,7mg/cm2程度とした。
一方,負極においては,負極活物質として,繊維状黒鉛を準備し,該負極活物質と結着剤としてのポリフッ化ビニリデン(呉羽化学工業株式会社製,KFポリマ)とを混合し,分散剤としてn−メチル−2−ピロリドンを適量添加し,混練してペースト状の負極合材を得た。負極活物質と結着剤との混合比は,重量比で,負極活物質:結着剤=95:5とした。
次いで,上記のようにして得られた負極合材を,厚さ10μmの銅箔集電体の両面に塗布して,乾燥させた。その後,ロールプレスで高密度化させ,幅54mm,長さ500mmの形状に切り出し,シート状の負極を作製した。なお,負極活物質の付着量は,片面当たり,5mg/cm2程度とした。
次に,図1に示すごとく,上記のようにして得られたシート状の正極2及び負極3にそれぞれ正極集電リード23及び負極集電リード33を熔接した。これらの正極2及び負極3を,これらの間に幅56mm,厚さ25μmのポリエチレン製のセパレータ4(東燃タルピス株式会社製)を挟んだ状態で捲回し,スパイラル状の巻き電極を作製した。
続いて,この巻き電極を,外装缶65及びキャップ63よりなる18650型の円筒形状の電池ケース6に挿入した。このとき,電池ケース6のキャップ63側に配置した正極集電タブ235に,正極集電リード25を熔接により接続すると共に,外装缶6の底に配置した負極集電タブ335に負極集電リード33を熔接により接続した。
次に,電池ケース6内に上記のようにして準備した非水電解液を含浸させた。そして,キャップ63の内側にガスケット59を配置すると共に,このキャップ63を外装缶65の開口部に配置した。続いて,キャップ63にかしめ加工を施すことにより電池ケース6を密閉し,リチウムイオン二次電池1を作製した。これを試料E1とした。
また,本例では,上記試料E1とは,上記非水電解液中の上記電解質と上記添加剤との混合比及び水分量が異なる11種類のリチウムイオン二次電池を,上記試料E1と同様にして作製し,これらを試料E2〜試料E12とした。試料E2〜試料E12のリチウムイオン二次電池は,上記非水電解液中の上記電解質と上記添加剤との混合比及び水分量を変えた点を除いては,上記試料E1と同様にして作製した。
上記試料E1〜試料E12において,非水電解液に含まれる電解質と添加剤とのモル比及び水分量を,それぞれ後述する表1に示す。
本例において作製した試料E1〜試料E12のリチウムイオン二次電池においては,図2に示すごとく,上記非水電解液中に添加剤53が添加されている。そのため,各試料のリチウムイオン二次電池1においては,これを一回以上充電させると,添加剤53のすべてもしくは一部が分解し,負極3又は/及び負極活物質35の表面に被覆物55を形成する。
また,本例の試料E1〜試料E12のリチウムイオン二次電池は,非水電解液中に水を含有している。そのため,従来のように電池内に水が混入することを防止する必要が無く,特別な装置や操作を用いずに簡単に作製することができた。
(比較例)
本例は,上記実施例1において作製したリチウムイオン二次電池(試料E1〜試料E12)の優れた特性を明らかにするために,比較用のリチウムイオン二次電池を作製した例である。具体的には,比較用として,上記非水系電解液に上記添加剤を含有しない3種類のリチウムイオン二次電池(試料C1〜試料C3)を作製した。
具体的には,まず,エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比で混合した有機溶媒を準備し,該有機溶媒に電解質としてのLiPF6を終濃度が1Mとなるように加え,さらに水を約1000ppmの濃度で加えて非水電解液を作製した。
続いて,上記の実施例1と同様にして,正極及び負極を準備し,これらの正極,負極及び非水電解液を電池ケース内に配置して,リチウムイオン二次電池を作製した。これを試料C1とした。
試料C1は,非水電解液に添加剤(LPFO)が添加されていない点を除いては,上記試料E1〜試料E4と同様のものである。
また,試料C1とは非水電解液中の水分量が異なる非水電解液を準備し,この非水電解液を用いて,上記試料C1と同様にしてさらに2種類のリチウムイオン二次電池(試料C2及び試料C3)を作製した。
これらのうち,試料C2は,非水電解液中に約1500ppmの濃度で水を含有し,また非水電解液中に上記添加剤(LPFO)が添加されていないものである。即ち,試料C2は,添加剤が添加されていない点を除いては,上記試料E5〜試料E8と同様のものである。
一方,試料C3は,非水電解液中に約100ppmの濃度で水を含有し,また非水電解液中に上記添加剤(LPFO)が添加されていないものである。即ち,試料C3は,添加剤が添加されていない点を除いては,上記試料E9〜試料E12と同様のものである。
上記試料C1〜試料C3において,上記非水電解液に含まれる水分量を,それぞれ後述する表1に示す。
(実験例1)
次に,本例では,上記実施例1において作製した試料E1〜試料E12,及び比較例にて作製した試料C1〜試料C3を用いて,下記の充放電サイクル試験を行うと共に,容量維持率及び抵抗上昇率を測定した。
「充放電サイクル試験」
電池の実使用温度範囲の上限と目される60℃の温度条件下で,上記試料E1〜試料E12及び試料C1〜試料C3を,電流密度2.0mA/cm2の定電流で充電上限電圧4.2Vまで充電し,次いで電流密度2.0mA/cm2の定電流で放電下限電圧3Vまで放電を行う充放電を1サイクルとし,このサイクルを合計100サイクル行った。
「容量維持率」
充放電サイクル試験前の放電容量を容量A(初期放電容量),充放電サイクル試験後の放電容量を容量Bとしたとき,下記の式(a)により算出した。
容量維持率(%)=容量B/容量A×100 ・・・・(a)
容量維持率の算出においては,充放電サイクル試験前後の放電容量を各試料につき測定し,上記の式(a)より容量維持率を算出した。その結果を表1に示す。
また,充放電サイクル試験前後の抵抗上昇率を下記のようにして算出した。
「抵抗上昇率の評価」
各試料を電池容量の50%(SOC=50%)に調整し,0.12A,0.4A,1.2A,2.4A,4.8Aの電流を流して10秒後の電池電圧を測定した。流した電流と電圧とを直線近似し,その傾きからIV抵抗を求めた。
抵抗上昇率は,充放電試験後のIV抵抗を抵抗A(初期IV抵抗),充放電試験前のIV抵抗を抵抗Bとすると,下記の式(b)にて算出することができる。
抵抗上昇率(%)=(抵抗B−抵抗A)×100/抵抗A ・・・・(b)
抵抗上昇率の算出においては,充放電サイクル試験前後のIV抵抗を各試料につき測定し,上記の式(b)より抵抗上昇率を算出した。その結果を表1に示す。
Figure 0004728598
表1より知られるごとく,非水電解液中に1000ppmの水分を含有する試料E1〜試料E4と,これらと同量の水分を含有する試料C1とを比較すると,添加剤が添加された試料E1〜試料E4は,試料C1よりも,60℃という高温度条件下でのサイクル試験後において高い容量維持率を示した。また,試料E1〜試料E4は,試料C1に比べてIV抵抗増加率が小さく,内部抵抗の上昇が抑制されていることがわかる。
また,同様に,試料E5〜試料E8と試料C2,並びに試料E9〜試料E12と試料C3とをそれぞれ比較すると,試料E5〜試料E8及び試料E9〜試料E12は,それぞれほぼ同量の水分を含有する試料C2及び試料C3に比べて,高い容量維持率を示し,内部抵抗の上昇率も低かった。
このように,非水電解液中に水を100〜1000ppmの範囲で含有しているリチウムイオン二次電池においては,上記添加剤を非水電界中に添加させることにより,60℃程度の高温条件下におけるサイクル特性を向上させることができることがわかる。
また,本例においては明確に示していないが,最大量で10000ppmの水を非水電解液中に含有するリチウムイオン二次電池においても,上記と同様の結果が得られることを確認している。
また,表1より知られるごとく,電解質と添加剤とが,モル比で,電解質:添加剤=95〜50:5〜50の割合で非水電解液中に添加されているとき,高温条件下におけるサイクル特性を顕著に向上できることがわかる。また,表中には示していないが,非水電解液中に添加される電解質と添加剤とのモル比が,電解質:添加剤=95〜5:5〜95の場合に,上記リチウムイオン二次電池のサイクル特性を充分に向上できることを確認している。
また,上記のように試料E1〜試料E12のリチウムイオン二次電池が,60℃程度の高温における充放電サイクル特性に優れている理由としては,図2に示すごとく,これらのリチウムイオン二次電池1(試料E1〜試料E12)においては,非水電界液中に水を含有していると共に,電解質51と添加剤53とが添加されているからであると考えられる。
そして,同図に示すごとく,非水電解液中の添加剤53は,その少なくとも一部が初回充電時に分解し,負極活物質35又は/及び負極3の表面に低抵抗で安定な被覆物55を形成することにより,電解質51が分解して負極に高抵抗な被膜を形成することを防止していると考えられる。
また,上記試料E1〜試料E12及び試料C1〜試料C3の初回充電時の電圧−充電容量曲線を調べると,非水電解液に電解質と共に添加剤が添加されている試料E1〜試料E12においては,添加剤が分解して負極に被覆物を形成すると考えられる容量成分が1.8V近傍に認められた。
一方,添加剤が添加されていない試料C1〜試料C3においては,上記のような1.8V近傍の容量成分はなく,負極に被覆物が形成されていないと考えられる。
(実施例2)
本例は,後述の実験例2にて行う初期出力試験に用いるリチウムイオン二次電池を作製する例である。
本例においては,上記実施例1における上記試料E1とは,上記非水電解液中の上記電解質と上記添加剤との混合比が異なる3種類のリチウムイオン二次電池を,試料E1と同様にして作製した。これらをそれぞれ試料E13〜試料E15とした。試料E13〜試料E15のリチウムイオン二次電池は,上記非水電解液中の上記電解質と上記添加剤との混合比を変えた点を除いては,実施例1の上記試料E1と同様にして作製したものである。
具体的には,試料E13は,上記非水電解液中の上記電解質(LiPF6)と上記添加剤(LPFO)とが,モル比で,LPFO(モル)/(LiPF6(モル)+LPFO(モル))=0.03,即ち電解質(モル):添加剤(モル)=97:3となるように,上記電解質溶液と上記添加剤溶液とを混合し,さらに約1000ppmの濃度で水を加えて非水電解液を作製し,これを用いて作製したものである。試料E13において,非水電解液中の有機溶媒としては,実施例1と同様に,ECとDECとを体積比3:7で混合した混合溶媒を用いた。
即ち,試料E13は,非水電解液中に電解質と添加剤とが電解質:添加剤=97:3という割合で添加されている点を除いては,実施例1の上記試料E1と同様のものである。
また,試料E14は,上記非水電解液中の上記電解質(LiPF6)と上記添加剤(LPFO)とが,モル比で,LPFO(モル)/(LiPF6(モル)+LPFO(モル))=0.07,即ち電解質(モル):添加剤(モル)=93:7となるように,上記電解質溶液と上記添加剤溶液とを混合し,さらに約1000ppmの濃度で水を加えて非水電解液を作製し,これを用いて作製したものである。試料E14において,非水電解液中の有機溶媒としては,実施例1と同様に,ECとDECとを体積比3:7で混合した混合溶媒を用いた。
即ち,試料E14は,非水電解液中に電解質と添加剤とが電解質:添加剤=93:7という割合で添加されている点を除いては,実施例1の上記試料E1と同様のものである。
また,試料E15は,上記非水電解液中の上記電解質(LiPF6)と上記添加剤(LPFO)とが,モル比で,LPFO(モル)/(LiPF6(モル)+LPFO(モル))=0.15,即ち電解質(モル):添加剤(モル)=85:15となるように,上記電解質溶液と上記添加剤溶液とを混合し,さらに約1000ppmの濃度で水を加えて非水電解液を作製し,これを用いて作製したものである。試料E15において,非水電解液中の有機溶媒としては,実施例1と同様に,ECとDECとを体積比3:7で混合した混合溶媒を用いた。
即ち,試料E15は,非水電解液中に電解質と添加剤とが電解質:添加剤=85:15という割合で添加されている点を除いては,実施例1の上記試料E1と同様のものである。
また,本例においては,上記実施例1における上記試料E1とは,上記非水電解液中の上記電解質と上記添加剤との混合比,及び非水電解液中の有機溶媒が異なる6種類のリチウムイオン二次電池を,試料E1と同様にして作製した。これらをそれぞれ試料E16〜試料E21とした。試料E16〜試料E21のリチウムイオン二次電池は,上記非水電解液中の上記電解質と上記添加剤との混合比を変え,非水電解液の有機溶媒として,エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを3:3:4の体積比で混合した溶媒を用いた点を除いては,実施例1の上記試料E1と同様にして作製したものである。
具体的には,試料E16は,非水電解液として,ECとDMCとEMCとを3:3:4の体積比で混合してなる有機溶媒に,上記電解質(LiPF6)と上記添加剤(LPFO)とが,モル比で,LPFO(モル)/(LiPF6(モル)+LPFO(モル))=0.05,即ち電解質(モル):添加剤(モル)=95:5となるようにとなるように添加されたものを用いて作製したものである。また,試料E16の非水電界液中には,約1000ppmの濃度で水を添加した。
即ち,試料E16は,非水電解液の有機溶媒としてECとDMCとEMCとを3:3:4の体積比で混合してなる混合溶媒を用いた点を除いては,実施例1の試料E1と同様のものである。
また,試料E17は,非水電解液として,ECとDMCとEMCとを3:3:4の体積比で混合してなる有機溶媒に,上記電解質(LiPF6)と上記添加剤(LPFO)とが,モル比で,LPFO(モル)/(LiPF6(モル)+LPFO(モル))=0.10,即ち電解質(モル):添加剤(モル)=90:10となるように添加されたものを用いて作製したものである。また,試料E17の非水電界液中には,約1000ppmの濃度で水を添加した。
即ち,試料E17は,非水電解液の有機溶媒としてECとDMCとEMCとを3:3:4の体積比で混合してなる混合溶媒を用いた点を除いては,実施例1の試料E2と同様のものである。
試料E18は,非水電解液として,ECとDMCとEMCとを3:3:4の体積比で混合してなる有機溶媒に,上記電解質(LiPF6)と上記添加剤(LPFO)とが,モル比で,LPFO(モル)/(LiPF6(モル)+LPFO(モル))=0.20,即ち電解質(モル):添加剤(モル)=80:20となるように添加されたものを用いて作製したものである。また,試料E18の非水電界液中には,約1000ppmの濃度で水を添加した。
即ち,試料E18は,非水電解液の有機溶媒としてECとDMCとEMCとを3:3:4の体積比で混合してなる混合溶媒を用いた点を除いては,実施例1の試料E3と同様のものである。
試料E19は,非水電解液として,ECとDMCとEMCとを3:3:4の体積比で混合してなる有機溶媒に,上記電解質(LiPF6)と上記添加剤(LPFO)とが,モル比で,LPFO(モル)/(LiPF6(モル)+LPFO(モル))=0.03,即ち電解質(モル):添加剤(モル)=97:3となるように添加されたものを用いて作製したものである。また,試料E19の非水電界液中には,約1000ppmの濃度で水を添加した。
即ち,試料E19は,非水電解液の有機溶媒としてECとDMCとEMCとを3:3:4の体積比で混合してなる混合溶媒を用いた点を除いては,上記試料E13と同様のものである。
試料E20は,非水電解液として,ECとDMCとEMCとを3:3:4の体積比で混合してなる有機溶媒に,上記電解質(LiPF6)と上記添加剤(LPFO)とが,モル比で,LPFO(モル)/(LiPF6(モル)+LPFO(モル))=0.07,即ち電解質(モル):添加剤(モル)=93:7となるように添加されたものを用いて作製したものである。また,試料E20の非水電界液中には,約1000ppmの濃度で水を添加した。
即ち,試料E20は,非水電解液の有機溶媒としてECとDMCとEMCとを3:3:4の体積比で混合してなる混合溶媒を用いた点を除いては,上記試料E14と同様のものである。
試料E21は,非水電解液として,ECとDMCとEMCとを3:3:4の体積比で混合してなる有機溶媒に,上記電解質(LiPF6)と上記添加剤(LPFO)とが,モル比で,LPFO(モル)/(LiPF6(モル)+LPFO(モル))=0.15,即ち電解質(モル):添加剤(モル)=85:15となるように添加されたものを用いて作製したものである。また,試料E21の非水電界液中には,約1000ppmの濃度で水を添加した。
即ち,試料E21は,非水電解液の有機溶媒としてECとDMCとEMCとを3:3:4の体積比で混合してなる混合溶媒を用いた点を除いては,上記試料E15と同様のものである。
また,本例においては,上記試料E16〜E21の比較用のリチウム二次電池を作製した。これを試料C4とする。
試料C4は,非水電解液として,ECとDMCとEMCとを体積比3:3:4で混合してなる有機溶媒に,電解質としてのLiPF6を終濃度が1Mとなるように加え,さらに水を約1000ppmの濃度で加えた電解液を用いて作製したものである。試料C4の非水電解液には,添加剤(LPFO)が添加されていない。
即ち,試料C4は,有機溶媒として,ECとDMCとEMCとを体積比3:3:4で混合してなる溶媒を用いた点を除いては,比較例の上記試料C1と同様のものである。
(実験例2)
次に,本例においては,上記実施例2において作製した上記試料E13〜E21及び試料C4,上記実施例1において作製した試料E1〜試料E3,及び比較例において作製した上記試料C1について,低温(−30℃)における初期出力を測定した。測定は,下記の初期出力試験により行った。
上記試料E1〜E3,試料E13〜E21,試料C1及びC4は,非水電解液中に含まれる電解質と添加剤とのモル比、有機溶媒の種類が異なるリチウムイオン二次電池である。各試料の電解液中における電解質と添加剤とのモル比、有機溶媒を下記の表2に示す。
Figure 0004728598
「初期出力試験」
各試料(試料E1〜E3,試料E13〜E21,試料C1及びC4)を−30℃に保持した。その後,電池容量50%(SOC=50%)の状態に調整し,0.12A,0.4A,1.2A,2.4A,4.8Aの電流を流して10秒後の電池電圧を測定し,出力値を算出した。測定は,各試料と同様の試料を3つずつ作製して行い,その平均を求めた。
各試料の出力値は,試料C1の値を1としたときの相対値,即ち試料C1の値を基準に規格化した値で表した。その結果を図3に示す。
図3に示すごとく,電解液中の有機溶媒としてECとDECとの混合溶媒を用いた試料E1〜E3及び試料E13〜試料E15においては,−30℃という低温条件下で,試料E1が最も高い初期出力値を示し,試料C1に比べて1.3〜1.4倍という大きな出力を示した。また,試料E13及び試料E14は,試料C1に比べて1.2〜1.3倍大きい出力を示し,試料E2においても試料C1と同程度の出力を示した。一方,試料E15及び試料E3においては,試料C1よりも小さな出力を示した。
また,電解液中の有機溶媒としてECとDMCとEMCとの混合溶媒を用いた場合には,添加剤を含有していない試料C4が,試料C1よりも大きな出力を示した。また,試料E16〜試料E21においては,−30℃という低温条件下で,試料E16が最も高い初期出力値を示した。試料E16は,試料C1に比べて約1.7倍という大きな出力を示し,試料C4に比べても顕著に出力が向上していた。また,試料E19及び試料E20も,試料C1に比べて1.5〜1.6倍大きい出力を示し,試料C4に比べても大きく出力が向上していた。また,試料E17においては試料C1よりも大きく,試料C4と同程度の出力を示した。一方,試料E18及び試料E21においては,試料C4よりも小さな出力を示した。
即ち,図3より知られるごとく,低温での出力を向上させるための電解質と添加剤との混合比には最適比があり,本例の場合,0<{添加剤(モル)/(電解質(モル)+添加剤(モル))<0.1となるような混合比にすれば,良好な初期出力が得られることがわかる。さらに耐久性との兼ね合いから考えると,0.03≦{添加剤(モル)/(電解質(モル)+添加剤(モル))≦0.07であることがより好ましい。
このように,添加剤(LPFO)を適量加えることにより,低温での出力性能が顕著に向上することがわかる。この原因は,添加剤(LiPF2(C24)2)の少なくとも一部が初回充電時に分解し,正極又は/及び負極や,正極活物質又は/及び負極活物質の表面に安定な皮膜を形成しているからだと考えられる。この皮膜が活物質と電解液の界面(電極と電解液との界面)を活性化させ,リチウムイオンの挿入・脱離がスムーズに行われるようになり,その結果,上記界面の抵抗が低減して電池の初期出力を向上させることができたと考えられる。
実施例1にかかる,リチウムイオン二次電池の構成を示す説明図。 実施例1にかかる,リチウムイオン二次電池の正極及び負極の部分拡大図。 実験例2にかかる,試料E1〜試料E3,試料E13〜試料E21,試料C1及び試料C4のリチウムイオン二次電池についての低温における初期出力を示す線図。
符号の説明
1 リチウムイオン二次電池
2 正極
25 正極活物質
3 負極
35 負極活物質
51 電解質
53 添加剤
55 被覆物

Claims (2)

  1. リチウムと遷移金属とを含有する酸化物又はポリアニオン系化合物を正極活物質の主成分として含有する正極と,炭素材料を負極活物質として含有する負極と,有機溶媒に電解質を溶解してなる非水電解液とを有するリチウムイオン二次電池において,
    上記非水電解液には,添加剤として下記の式(α)で表される化合物が添加されており,
    上記添加剤は,上記電解質とのモル比で,電解質:添加剤=99.9〜5:0.1〜95となるように上記非水電解液中に添加されており,
    また,上記非水電解液は,濃度100ppm〜10000ppmの割合で水を含有していることを特徴とするリチウムイオン二次電池。
    Figure 0004728598
  2. 請求項1において,上記電解質は,LiPF 6 ,LiClO 4 ,LiBF 4 ,LiAsF 6 ,またはLiSbF 6 から選ばれる1種以上であることを特徴とするリチウムイオン二次電池。
JP2004178180A 2003-06-16 2004-06-16 リチウムイオン二次電池 Expired - Fee Related JP4728598B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004178180A JP4728598B2 (ja) 2003-06-16 2004-06-16 リチウムイオン二次電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003171233 2003-06-16
JP2003171233 2003-06-16
JP2004178180A JP4728598B2 (ja) 2003-06-16 2004-06-16 リチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JP2005032716A JP2005032716A (ja) 2005-02-03
JP4728598B2 true JP4728598B2 (ja) 2011-07-20

Family

ID=34219896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004178180A Expired - Fee Related JP4728598B2 (ja) 2003-06-16 2004-06-16 リチウムイオン二次電池

Country Status (1)

Country Link
JP (1) JP4728598B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060216612A1 (en) 2005-01-11 2006-09-28 Krishnakumar Jambunathan Electrolytes, cells and methods of forming passivation layers
US7638243B2 (en) * 2006-03-22 2009-12-29 Novolyte Technologies Inc. Stabilized nonaqueous electrolytes for rechargeable batteries
JP2008077915A (ja) * 2006-09-20 2008-04-03 Sanyo Electric Co Ltd リフロー対応リチウム二次電池
JP5124170B2 (ja) * 2007-05-09 2013-01-23 株式会社豊田中央研究所 リチウムイオン二次電池
JP2008288049A (ja) * 2007-05-18 2008-11-27 Toyota Central R&D Labs Inc リチウムイオン二次電池
JP2009021102A (ja) * 2007-07-12 2009-01-29 Toyota Central R&D Labs Inc リチウムイオン二次電池
JP5196909B2 (ja) * 2007-08-23 2013-05-15 株式会社豊田中央研究所 非水電解液リチウムイオン二次電池
JP5334410B2 (ja) * 2007-12-27 2013-11-06 株式会社豊田中央研究所 リチウムイオン二次電池
JP5350849B2 (ja) * 2009-03-23 2013-11-27 株式会社豊田中央研究所 リチウム二次電池
JP5448002B2 (ja) 2009-08-04 2014-03-19 トヨタ自動車株式会社 非水電解液型リチウムイオン二次電池
KR101387861B1 (ko) 2009-08-04 2014-04-22 도요타지도샤가부시키가이샤 비수전해액형 리튬 이온 2차 전지
US20160268633A1 (en) 2013-10-17 2016-09-15 Lubrizol Advanced Materials, Inc. Copolymers with a polyacrylic acid backbone as performance enhancers for lithium-ion cells
JP6110287B2 (ja) * 2013-11-28 2017-04-05 トヨタ自動車株式会社 非水電解液二次電池およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69228065T3 (de) * 1991-09-13 2003-05-08 Asahi Chemical Ind Sekundärzelle
DE19959722A1 (de) * 1999-12-10 2001-06-13 Merck Patent Gmbh Alkylspiroboratsalze zur Anwendung in elektrochemischen Zellen
JP3969924B2 (ja) * 2000-03-07 2007-09-05 セントラル硝子株式会社 イオン性金属錯体の製造方法
JP3722685B2 (ja) * 2000-10-03 2005-11-30 セントラル硝子株式会社 電気化学ディバイス用電解質及びそれを用いた電池
JP2002175836A (ja) * 2000-12-06 2002-06-21 Japan Storage Battery Co Ltd 非水電解質電池
JP4034940B2 (ja) * 2001-02-27 2008-01-16 独立行政法人科学技術振興機構 非水電解液を用いたリチウム二次電池

Also Published As

Publication number Publication date
JP2005032716A (ja) 2005-02-03

Similar Documents

Publication Publication Date Title
US6485868B1 (en) Electrolyte for electrochemical device
JP4579588B2 (ja) リチウムイオン二次電池
US8986896B2 (en) Electrolyte solution and use therefor
JP4880930B2 (ja) 非水電解液及びリチウム二次電池
JP4955951B2 (ja) リチウムイオン二次電池
JP2009021102A (ja) リチウムイオン二次電池
JP5357517B2 (ja) リチウムイオン二次電池
JP4728598B2 (ja) リチウムイオン二次電池
JP4995444B2 (ja) リチウムイオン二次電池
JP7225237B2 (ja) オリゴマー性ホスホン酸シリルエステルを含む電解質組成物
JP4880936B2 (ja) リチウムイオン二次電池
JP2005032715A (ja) リチウムイオン二次電池及びその製造方法
JP4795654B2 (ja) リチウムイオン二次電池
US20220029199A1 (en) Non-aqueous electrolyte solution for battery and lithium secondary battery
JP4828819B2 (ja) 非水電解液リチウムイオン二次電池
JP2008288049A (ja) リチウムイオン二次電池
JP4855331B2 (ja) リチウムイオン二次電池
JP5334410B2 (ja) リチウムイオン二次電池
JP5547591B2 (ja) 選定方法
JP4579587B2 (ja) リチウムイオン二次電池
JP5350849B2 (ja) リチウム二次電池
JP7120507B2 (ja) ホウ酸リチウム組成物、リチウム二次電池用添加剤、ホウ酸リチウム組成物の製造方法、リチウム二次電池用非水電解液、リチウム二次電池
JP2007035356A (ja) リチウムイオン二次電池
JP5192897B2 (ja) リチウムイオン二次電池
JP2008282619A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees