JP4703116B2 - 記憶素子およびその製造方法 - Google Patents

記憶素子およびその製造方法 Download PDF

Info

Publication number
JP4703116B2
JP4703116B2 JP2004032911A JP2004032911A JP4703116B2 JP 4703116 B2 JP4703116 B2 JP 4703116B2 JP 2004032911 A JP2004032911 A JP 2004032911A JP 2004032911 A JP2004032911 A JP 2004032911A JP 4703116 B2 JP4703116 B2 JP 4703116B2
Authority
JP
Japan
Prior art keywords
charge
charge transfer
film
layer
transfer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004032911A
Other languages
English (en)
Other versions
JP2005228763A (ja
Inventor
國夫 斎藤
好人 神
勝 嶋田
祥雅 片桐
俊司 中田
陽一 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004032911A priority Critical patent/JP4703116B2/ja
Publication of JP2005228763A publication Critical patent/JP2005228763A/ja
Application granted granted Critical
Publication of JP4703116B2 publication Critical patent/JP4703116B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

本発明は、MOS(metal-oxide-semiconductor)型またはMIS(metal-insulator-semiconductor)型の記憶素子およびその製造方法に関する。
本発明の記憶素子は従来提案されている記憶素子とは動作原理が異なる。本願発明者等の知るところに限れば、本発明の記憶素子と同じ動作原理による記憶素子の先行技術は見当たらない。
そこで、まず、本発明の記憶素子と構造が似ている電荷蓄積型記憶素子について説明する。電荷蓄積型記憶素子は、図18に示す膜構成を有し、少なくとも半導体層100、第1の電荷障壁層101、電荷蓄積層102、第2の電荷障壁層103、ゲート電極104、ソース105、およびドレイン106を有する。現在、実用化されているのは、電荷蓄積層102にポリシリコンを用いた浮遊ゲート型の電荷蓄積型記憶素子であり、第1および第2の障壁層101、103はSiO2 膜である。ポリシリコンに導電性を持たせ、浮遊ゲートにしている。半導体層100とゲート電極104間に電圧を印加し、第1の障壁層101を介して電荷を半導体層100からゲート電極104に注入し、電荷蓄積層102に電荷を蓄積することにより、MOSトランジスタ閾値を変化させることによっで情報を記憶している。
この型の記憶素子は、情報を10年以上記憶させるために、電荷蓄積層102に貯えた電荷を10年以上保持する。そのため、第1および第2の障壁層101、103は、電気的絶縁性に優れている必要があり、弱い電界に対して導通があってはならない。電荷蓄積層102への電荷の注入や引き抜き(すなわち、情報の書き込みや消去)は、半導体層100とゲート電極104間に印加する電圧を高くし、強電界によって第1の障壁層101を流れるファウラー・ノルドハイム(Fowler-Nordheim)型(F−N型)トンネル電流や強電界下で現れる他の伝導機構によって行っている。このとき、第2の障壁層103には電流を流さないようにするため、第2の障壁層103は第1の障壁層101より厚くなされている。
情報の読み出しは、電荷の蓄積によって閾値が変化したMOSトランジスタのゲート電極104に電圧を印加し、ソース・ドレイン間に電圧を印加したとき電流が流れるか否かによって行われる。この読み出し動作は、通常のMOSトランジスタの動作とほぼ同じであるが、電荷障壁層と電荷蓄積層の膜厚が厚いので、高いゲート電圧を印加する必要がある。また、浮遊ゲート型は導通性のあるポリシリコンに電荷を蓄積しており、電荷の保持は第1の障壁層101の絶縁性能に頼っている。そのため、浮遊ゲート型は、第1の障壁層101を(SiO2 膜で7〜8nm)薄くすることに難があり、したがって、書き込み・消去の低電圧化(現在、10〜20V)も限界に達している。そこで、浮遊ゲートにより多くの電荷を蓄積するために、ポリアセチレンを用いた例(例えば、特許文献1参照)等も提案されている。
電荷蓄積型メモリには、上記の浮遊ゲート型の他に、電荷を欠陥がつくる局在準位にトラップさせる絶縁膜トラップ型がある。絶縁膜トラップ型においては、電荷蓄積層102にSiN膜やAl23 膜が使われ、これらには、MONOS(metal oxide nitride oxide sillicon)型、またはNROM(多ビット型)型、あるいは、SONOS(silicon oxide nitride oxide sillcon)型などの種類がある(例えば、非特許文献1参照)。絶縁膜トラップ型は、将来の大容量化に向け研究・開発が精力的に行われている。絶縁膜トラップ型は、絶縁膜中の欠陥がつくる局在準位に電荷をトラップさせているため、第1の障壁層101が欠陥等により局部的に導通しても、その欠陥の近傍の局在準位にトラップされている電荷が逃げ出すだけであり、電荷蓄積層102の全ての電荷が逃げ出すわけではなく、第1の障壁層101の絶縁性の要求条件は浮遊ゲート型よりも緩和される。そのため、電荷トラップ型は、第1の障壁層101をキャリアがトンネルできるほど薄くすることができ、情報の書き込み・読み出し・消去の電圧を低くすることができる。
しかし、絶縁膜トラップ型にも限界がある。すなわち、絶縁膜トラップ型は絶縁膜の深い局在準位に電荷をトラップさせ、トラップ間の伝導を抑制する必要があるため、トラップの空間密度を大きくすることができない。トラップ間の距離は5nm以上必要と考えられている。そのため、トランジスタの閾値を変化させるのに必要な量の電荷をトラップさせるには、絶縁膜に比較的大きな体積が必要である。したがって、素子の微細化に限界があり、また、低電圧化にも限界がある。
次に、DRAM(dynamic random access memory)について説明する。DRAMは、1つのトランジシタと1つのキャパシタを1つのセルとした1T1C型が一般的である。情報は、トランジスタのチャンネルを介し、キャパシタに電荷を蓄えることによって書き込まれる。トランジスタはスイッチであり、情報はキャパシタに電荷を蓄えることで記憶される。キャパシタに蓄えられた電荷は、主にトランジスタの半導体層(ソース・ドレインと基板のpn接合)を介してリークするため、比較的短時間で無くなってしまう。そこで、情報の検出と再書き込みを頻繁(100msecのオーダー)に行って、情報の記憶を維持している。近年の微細化されたセルにおいては、シリコン基板に5〜10μmの深い溝(ディープトレンチ)を掘り、溝の表面に酸化膜を成長させた後、溝をポリシリコンで埋め、シリコン基板とポリシリコンを電極としたキャパシタを用いている。
最近では、さらに微細化を押し進めるため、配線に円筒型の突起やフィンを形成して面積を拡大し、その表面に絶縁膜と電極を形成してキャパシタを形成している。将来の予測(例えば、非特許文献2参照)においては、高誘電率の絶縁膜を用い、配線上にMIM(metal insulator metal)キャパシタを形成して微細素子の容量を確保しようとしている。DRAMは、このキャパシタをいかに微細化することができるかによって、どれだけ大容量化できるかが決まると言って良い。DRAMにおけるMIMキャパシタの絶縁膜の比誘電率は、ITRSによれば、近い将来でも100を超える値が要求されており、また、その将来では、1000を超える値が要求されている。そのような高誘電率を実現する材料としてペロブスカイト型結晶構造を持つ材料が考えられている。また、下部・上部電極にペロブスカイト型結晶の結晶化を促進するPt、Ru、Irなどの高価な金属が必要になる。電極は、高価な材料と機能を分担した多層膜構造になり、製造工程数も格段に多くなるためコストアップが避けられない。
特開平5−152576号公報 日経マイクロデバイス、2003年6月号、85〜90頁 ITRS:International Technology Roadmap for Semiconductors,<URL>http://www.itrs.net/
本発明の目的は、上記記憶素子とは異なる動作原理に基づき、高価な材料を用いる必要がなく製造コストを格段に引き下げることができ、データの読み出しが非破壊で、セル面積を小さくでき、将来のスケーリングに永く対応できる記憶素子およびその製造方法を提供することである。
請求項にかかる発明の記憶素子は、金属、絶縁膜、半導体からなるMIS型トランジスタ構造を有し、前記絶縁膜が少なくとも電荷移動層と電荷障壁層とを有し、前記電荷障壁層の欠陥密度は前記電荷移動層中の欠陥密度よりも少なく、かつ、前記電荷障壁層は電荷移動に対して前記電荷移動層よりも大きな障壁を持ち、前記電荷障壁層が前記半導体に接し、前記電荷移動層が前記金属に接し、前記電荷移動層の膜厚が前記電荷障壁層の膜厚よりも厚く、前記金属と前記半導体間に印加する電圧でつくられる電界により前記電荷移動層中の電荷を移動させ、前記金属に印加した電圧とは反対極性の電荷が前記電荷移動層中の前記金属の側に、前記金属に印加した前記電圧と同極性の電荷が前記電荷移動層中の前記半導体の側に蓄積することにより前記MIS型トランジスタの閾値を変化させることを特徴とする。
請求項にかかる発明は、請求項に記載の記憶素子の製造方法であって、前記電荷障壁層はSiOであり、前記半導体はシリコンであり、当該SiOを、希ガスと酸素ガスの電子サイクロトロン共鳴プラズマを前記シリコンの表面に照射することにより形成することを特徴とする。
本発明は、従来のメモリとは異なる原理で動作する記憶素子であり、MIS型トランジスタのゲート絶縁膜の部位に保持され移動する電荷を利用しているので、高価な材料を用いる必要がなく、メモリの製造コストを格段に引き下げることができる。また、既存DRAMが1TICで構成されるのに対し、本発明の記憶素子は1TのみでDRAMの機能が得られる。1TIC型DRAMのデータの読み出しは破壊読み出しであり、読み出し後、すぐに再書き込みを行っているが、本発明のメモリはデータの読み出しが非破壊であるため、この点でも1TIC型DRAMよりも優れている。また、ゲート絶縁膜のEOTを小さくできるので、セル面積を小さくでき、将来のスケーリングに永く対応できる。
以下、本発明の実施例について説明する。
図1に実施例1の記憶素子の基本構成の断面図を示す。半導体層1上に電荷障壁層2、電荷移動層3、ゲート電極4が順次形成され、両端にソース5およびドレイン6が形成される。図2は実施例1の動作原理を説明するための図であり、半導体層1はp型であって、ゲート電極4にプラスの電圧を印加した場合を示す。電荷障壁層2と電荷移動層3はMIS型トランジスタのゲート絶縁膜として機能する。ゲート電極4にプラス電圧を印加すると、半導体層1表面には反転層、すなわち、少数キャリアである電子が誘起され、その一部は電荷障壁層2を突き抜けて電荷移動層3に注入される。電荷移動層3に注入された電子の一部は、局在準位にトラップされるが、電荷移動層3の局在準位の電荷を電界によって移動できるようにしておくと、電子は電界によってゲート電極4側に移動し、その一部はゲート電極4に抜ける。ゲート電極4のプラス電荷は、その一部が電荷移動層3中に注入され、電界によって電荷障壁層2の方に移動し、局在準位にトラップされる。このような一連の電荷移動により、電荷移動層3の半導体層1側にはプラス電荷が、ゲート電極4側にはマイナス電荷がより多くトラップされる。
本実施例1では、ゲート電極4側に電荷障壁層を用いていないため、ゲート電極4からのプラス電荷の注入・移動の方が優勢であり、プラス電荷が電荷障壁層2側に多く蓄積されることになる。これらの電荷が保持されている間はMIS型トランジスタの閾値を低くすることになる。すなわち、ゲート電極4に印加するプラス電圧がより低い状態でトランジスタがオンの状態になる。保持する電荷の量をある程度多くしておけば、ゲート電圧が0Vであってもトランジスタをオンの状態にしておくことが可能である。この状態は、情報“1”の記憶に相当する。情報“0”を記憶するにはゲート電極4に対して半導体1の側をプラスにすれば良いことは説明するまでもないであろう。電荷移動と半導体中キャリアの動きについては後述の実験例1においてさらに詳細に説明する。
電荷移動層3には、電荷をトラップするため、また、その電荷を弱電界によつて移動させるための適度な空間密度の欠陥が必要である。欠陥は絶縁膜のバンドギャップの中に局在準位を作る。局在準位にトラップされている電荷の波動関数の重なりがほとんどないほどの疎の欠陥密度の場合には、電荷が弱電界で容易に移動するには、キャリアが熱励起によって局在準位から絶縁膜の伝導帯に脱出できなければならないので、キャリアが電子の場合、伝導帯の底からの局在準位の深さが極浅くなければならない。局在準位が深い場合で波動関数の重なりがある場合には、いわゆる、トラップアシストトンネル伝導によって局在準位間を移動できので、局在準位の探さと重なりの程度によって電荷の移動のし易さが決まる。通常、化学量論的組成のずれた化合物が作る欠陥は、深い局在準位を持つと考えられる。したがって、欠陥の空間密度を制御することで電荷のトンネル移動を生じせしめる方法が適すると考えられる。トラップされた電荷の波動関数が重なりあう距離は、およそ5nm以下であると考えられ、その距離を短くすることと、低電圧で動作させることは対応するので本発明の記憶素子は微細な素子に適応できる。電荷がトラップされている準位の深さや電荷移動による膜の抵抗値は実験的に求めることができ、電荷移動層3の最適な電気的特性を得ることが可能である。
電荷障壁層2と電荷移動層3は、MIS型トランジスタのゲート絶縁膜としての機能も果たさなければならない。したがって、長期的に閾値が大きく変動したり、電荷移動層3の電気特性が劣化するようなことがあってはならない。一般的に、強電界を絶縁膜に印加すると絶縁膜の劣化は早いが、弱電界では劣化は遅い。本発明の電荷移動型記憶素子は、弱電界(低ゲート電圧)で動作するので、劣化は遅いと予想できる。
電荷障壁層2は、半導体層1に接する絶縁膜であるから、良好なMISトランジスタ特性をもたらす絶縁膜に限られる。その代表的な材料は、熱酸化で形成したSiO2 膜であるが、近年、盛んに開発が進められている高誘電率(high-k)ゲート絶縁膜であっても良い。ECRスパッタ法で形成したSiO2 膜、SiOxy 膜、Al23 膜、AlOxy 膜、HfO2 膜、HfOxy 膜なども好適である。また、ArとO2 ガスのECRプラズマ流をシリコン基板に照射して成長させたSiO2 膜も好適である。これらの膜の形成方法は後述する。また、この膜構成のMISダイオードの特性の実測例を後述する。
電荷障壁層2は電荷蓄積型記憶素子のように電荷を長期間保持するためのものではないので厚く形成する必要はない。電荷障壁層2を厚くすると、電荷移動させるためのゲート電圧を高くする必要があり、また、電荷移動による閾値の変化が小さくなる。したがって、電荷障壁層2は最小限の厚さにするのが好ましい。電荷障壁層2にHigh-k 膜を用いる場合、その厚さは、酸化膜換算膜厚(EOT:equivalent oxide thickness)で議論する。EOTは、
EOT={(SiO2 膜の誘電率)÷(High-k 膜の誘電率)}×(High-k 膜の誘電率)
と定義される。High-k 膜を用いると、SiO2 膜に比べて、同じEOTでより大きな電荷移動抑制効果が得られる。また、より薄いEOTの電荷障壁層2を用いることにより、トランジスタのゲート電圧を低くすることが可能になる。
電荷移動層3には、Si化合物のSiOx 膜(0<x<2)、SiN膜、およびSiOxy 膜、Al化合物のAlOx 膜(0<x<1.5)、AlN膜、およびAlOxy 膜、Hf化合物のHfOx 膜(0<x<2)、HfN膜、およびHfOxy 膜などが適する。これらの膜の形成方法は後述する。
<実験例1>
本実験例1では上記の実施例1と同じ膜構成で作製したMISダイオードによる記憶動作を確認した実験例を示す。図3は作製したMISダイオードの概略断面構造を示す図であり、51は半導体層、52は電荷障壁層、53は電荷移動層、54はゲート電極である。半導体層5lには抵抗率が3〜5Ωcmで面方位が(100)のp型シリコン基板を用いた。電荷障壁層52にはAl23 膜を用いた。この電荷障壁層52は、半導体層51に接する絶縁膜であるから、良好なMISトランジスタ特性をもたらす絶縁膜に限られる。その代表的な材料は、熱酸化で形成したSiO2 膜であるが、近年、盛んに開発が進められているHigh-k ゲート絶縁膜であっても良い。
本実験例1のAl23 膜は、High-k 材料の1つであるが、電子サイクロトロン共鳴(ECR)プラズマを利用した反応性スパッタリング法によって形成した膜である。その堆積方法とAl23 膜の基本的なMISダイオード特性は、例えば、文献(Y.Jin,K.Saito,M.Shimada and T.Ono,"Using electron cyclotron resonance sputtering in the deposition of ultrathin A1203 gate dilectrics",Journal of Vacuum Science & Technology B21,942(2003).)、および持願2001−270029号公報を参照されたい。
本実験例1では、ECRスパッタ法により、AlターゲットとAr/O2 ガスによるメタルモード堆積(O2 流量を少なくした堆積条件)にて1.5nmの厚さのAl23 膜を堆積し、続いて、Ar/O2 ガスのECRプラズマを30秒間Al23 膜上に照射した。Al23 膜の堆積とECRプラズマ照射条件の概略は以下の通りである。
Al23 膜堆積条件;
Ar流量:20sccm、O2 流量:5.5sccm、マイクロ波(2.45GHz)電力:500W、高周波(13.56MHz)電力:500W、ターゲット:Al、基板加熱せず。
ECRプラズマ照射条件;
Ar流量:20sccm、O2 流量:8sccm、マイクロ波電力:500W、照射時間:20sec。
これらの工程を繰り返すことにより、4.5nmの厚さのAl23 膜を堆積し、電荷障壁層52とした。ECRプラズマ照射は、Al23 膜中およびAl23 /Si界面の膜堆積時の酸化不足による欠陥を減少させる効果があると考えられ、MOS特性の改善効果が確認されている(持願2001−270029号公報)。ECRプラズマ照射は最初の1.5nmのAl23 膜に施すだけでもMIS界面特性が大幅に改善される。このようにして形成されたシリコン基板上のAl23 膜を高真空中、本実施例1では、1〜2×10-4Paの真空中で約550℃、約3分加熟し、ポストアニールを施した。
次に、ECRスパッタのガスをArとN2 に切り替え、AlターゲットにてAlN膜を6〜12nm堆積し、電荷移動層53を形成した。AlN膜の堆積条件は、
Ar流量:20sccm、N2流量:6sccm、マイクロ波電力:500W、高周波電力:500W、基板加熱せず。
である。その上にAlを真空蒸着で堆積してゲート電極を形成した。シリコンウェハの裏面にもAlを真空蒸着し、裏面電極を形成した。
以上のようにして作成したMISダイオードの電気特性を高周波C−V測定によつて評価した。その特性を図4に示す。図4において縦軸は1MHzの微小交流で測定した容量(pF)であり、横軸は直流バイアス電圧(V)である。この測定では、直流バイアスを+2Vを起点として−3Vまで掃引し、引き続き、−3Vから+2Vまで折り返している。バイアスの掃引速度は0.5V/sである。測定された容量は、最初のバイアス掃引時よりも折り返し時の方が大きく、大きなヒステリシスが生じた。最大容量の半分の容量におけるヒステリシス幅は、約0.6Vであった。
このようなバイアスの往復掃引で生ずるヒステリシスには2種類がある。すなわち、バイアス掃引の往路の容量の方が復路の容量よりも大きい場合(トラップ型)とその逆の場合(ドリフト型)である。トラップ型のヒステリシスは、電荷が絶縁膜中にトラップされることによって生ずる。一方、ドリフト型はトラップされた電荷が絶縁膜中を移動することによって生ずる。
以下、ヒステリシスの原因をより詳細に説明する。ヒステリシスは、同種電荷の反発と異種電荷の吸引という単純な電磁気法則と半導体の3つの状態(蓄積、空乏、反転)によって理解できる。まず、p型半導体を用いた場合のトラップ型のヒステリシスについて説明する。最初にゲート電極に大きなプラスバイアスが印加されるとp型半導体には反転層が生じ、絶縁膜/半導体界面に少数キャリアである電子が誘起される。反転層の下には空乏層ができている。この反転層の電子は強い電界によって絶縁膜中に注入され、欠陥が作る局在準位等に捕足される。バイアス電圧がマイナス側に進むに従い、半導体は反転の状態から空乏の状態をとり、さらに蓄積の状態に移り、多数キャリアであるホールが誘起され、半導体全体はp型伝導の導通状態になる。
反転や空乏の状態では、全体の容量は絶縁膜の容量と空乏層の容量の直列接続の容量となるため、空乏層の小さな容量に支配された小さな容量になっているが、蓄積の状態では半導体は導電体になるため全体の容量には絶縁膜本来の大きな容量が現れる。このとき絶縁膜中に電子がトラップされていると、電子とホールの吸引力により、よりプラス側のバイアスで半導体中にホールを誘起することになる。バイアスがマイナスの最大値に近付くと、絶縁膜中にトラップされていた電子は強い電界によってその一部が絶縁膜から半導体に抜け、また、半導体に誘起されているホールが強い電界によって絶縁膜中に注入され、その一部は電子を中和する。そのため、バイアス掃引の復路において、ホールとホールの反発により、よりマイナス側のバイアス電圧で蓄積状態から空乏の状態に移ることになり、このためトラップ型のヒステリシスが現れる。
次に、ゲート電極にプラスの電圧を印加したとき、ゲート電極からホールが電荷移動層に注入される場合を考える。電荷移動層にホールが蓄積すると、ヒステリシスは上記の場合と逆極性になり、ドリフト型と同じ向きのヒステリシスが現れる。実施例1の記憶素子は、ゲート電極と電荷移動層との間に電荷障壁層を設けていないので、このタイプの電荷注入が生じ易いと考えられる。しかし、本発明の記憶素子が、単なる電荷トラップ型の特性で動作するのではないことは、後述の実験結果によって明らかにされる。
次に、p型半導体を用いた場合のドリフト型ヒステリシスについて説明する。バイアス掃引の過程で、絶縁膜中に注入された電荷が電界によって移動すると、ヒステリシスの向きは逆転する。まず、バイアス掃引の往路(プラスのバイアス)においては、絶縁膜に注入された電子は電界に引かれて絶縁膜中を電極側に移動する。移動した電子の一部は電極に抜けるものと考えられる。このとき、絶縁膜の半導体側にはゲート電極からホールの一部が注入・移動してきて半導体中の反転層の電子とバランスするため反対電荷のホールが誘起されることになると考えられる。ゲート電極側では、ゲート電極のプラス電圧にバランスする形でマイナス電荷がより多く蓄積されるものと考えられる。この状態を空乏から蓄積に移るときまで保持すると、ホールとホールの反発により、空乏から蓄積に移るバイアス電圧をマイナス側にシフトすることになる。
バイアス掃引の復路においては、ゲート電極の負電位によって、半導体側に負電荷が蓄積される。この状態が半導体の蓄積から空乏に移るときまで保持されると、電子とホールの吸引により蓄積から空乏に移るバイアス電圧をプラス側にシフトすることになる。このような電荷の動きによってトラップ型とは反対向きのヒステリシスが生ずることになる。本発明の記憶素子は、このドリフト型ヒステリシスを利用する。図4のC−V特性は、このドリフト型ヒステリシスが生じていることを示している。
大きなドリフト型ヒステリシスを得るためには電荷障壁層52と電荷移動層53の膜厚の関係が重要である。電荷障壁層52に対して電荷移動層53を厚くした方が大きなヒステリシス幅が得られることは、電荷間の反発・吸引力とゲート電極54に印加した電圧による電界の半導体中キャリアヘの影響を考えると理解できる。ゲート電極54からの電界が小さく、絶縁膜/半導体の電荷間の距離が短いほど、絶縁膜中電荷の影響が大きくなるからである。本実験例1では電荷移動層53として、6nmと12nmのAlN膜を用いたが、同じ最大バイアス電圧に対して、予想通り、12nmの方でより大きなヒステリシスが得られている。このことは、半導体表面付近の電荷とは反対極性の電荷が、電荷移動層53の半導体側に蓄積されたことの証拠であり、単なる電荷トラップ型とは異なることがわかる。
ドリフト型ヒステリシスは、ゲート電極からの電荷注入、電荷保持、および電荷の移動によって生じているが、バイアスの掃引を0.2V/s程度に遅くしたところヒステリシス幅は小さくなった。このことは、電荷の保持が数秒〜数10秒のオーダーであることを示している。この電荷保持時間は、記憶情報保持のためにリフレッシュを行うDRAMにとって充分な時間である。
次に、電荷障壁層52と電荷移動層53が持つべき特性について説明する。電荷障壁層52は半導体層51と接触しており、MIS型トランジスタの特性を損なわないことが必要である。使用できる代表的な膜は、800℃以上の温度での熱酸化法で形成したSiO2 膜であるが、最近、盛んに研究開発が進められているHigh-k ゲート絶縁膜も可能性がある。
本実験例1ではECRスパッタ法で堆積した欠陥の少ないA123 膜を用いた。欠陥密度をさらに低減するためにAr/O2 ガスのECRプラズマを照射した。さらに、酸素ガスや水分を除いた窒素ガスや水素ガス雰囲気中または高真空中で400℃程度で熱処理を行うことによって欠陥を低減することができる。この低温熱処理により、1MHzのC−V測定では現れず、1kHz程度の低周波のC−V測定で現れる、いわゆる、遅いトラップの密度を低減できる。このようにして形成したAl23 膜膜は、本発明の電荷移動型記憶素子の電荷障壁層として用いることが可能と考えられる。
<実験例2>
シリコン基板に接する電荷障壁層52として、ECRプラズマでシリコン基板を酸化して形成したSiO2 膜の使用を提案することができる。以下、その形成方法について述べる。p型、(100)面方位、1〜2Ωcmのシリコン基板をH2SO4/H22 混合液と希フッ酸を用いて洗浄し、シリコン基板表面を水素終端により疎水性にした。その基板をECRプラズマ照射装置(本実験2ではECRプラズマスパッタ装置を代用)に装填し、基板加熱を行わず、ArとO2 ガスのECRプラズマを照射した。ECRプラズマ照射は以下の条件で行った。
Ar流量:20sccm、O2 流量:8sccm、マイクロ波電力:500W。
この処理によりシリコン基板表面にSiO2 膜が成長する。図5にエリプソメータで測定したSiO2 膜の厚さとECRプラズマ照射時間との関係を示す。成長したSiO2 膜の厚さは照射時間に対して累乗の関係になった。
次に、このようにして形成されたシリコン基板上のSiO2 膜を高真空中、1〜2×10-4Paで400〜800℃で約3分加熱し、ポストアニールを施した。次に、その上にAlを真空蒸着で堆積してゲート電極を形成した。Siウェハの裏面にもAlを真空蒸着し、裏面電極を形成した。
以上のようにして作成したMISダイオードの電気特性を高周波C−V測定によつて評価した。ECRプラズマ酸化を30分間行った試料のC−V特性を図6に示す。図6において、縦軸は1MHzの微小交流で測定した容量(F/cm2)であり、横軸は+1、−3、+1Vの順に往復掃引した直流バイアス電圧(V)である。図中のいずれのポストアニール条件においてもヒステリシスの幅は70mV以下であり、特に、600℃のポストアニールを施したものは25mV以下となり、トラップの少ない良好なMISダイオード特性を示した。C−Vカーブが示すフラットバンド電位(本条件ではカーブの立ち上がり付近)は、予想値の約0.8〜0.9V付近にあり、SiO2 膜中の固定電荷も少ないことがわかった。したがって、ECRプラズマ酸化法は良好な電荷障壁層を提供できることがわかった。ECRスパッタ装置を用いて、プラズマ酸化法でSiO2 膜を形成すると、真空を破らずに、そのまま電荷移動層をECRスパッタ法で堆積できるというメリットもある。
実施例2の記憶素子の概略断面図を図7に示す。図7において、図1と同じ部位には同じ番号を付し、説明を省略する。実施例2は、実施例1の電荷障壁層2を取り除いた形になっている。実施例2における電荷障壁層7は、良好なMIS特性を確保する必要のあることから、欠陥密度の少ない絶縁膜が適する。
ゲート電極4に電圧を印加すると、実施例1で説明したように電荷移動層7中の電荷が移動し、トランジスタの閾値を変化させる。本実施例2では、そのとき同時に、トンネル効果によって半導体層1またはゲート電極4から電荷移動層7中に電荷が注入され、トラップされることになる。注入された電荷の一部は、電荷移動層7中を移動してきた電荷と会合し、消滅する。このトラップ電荷によるMIS型トランジスタの閾値の移動方向と電荷移動による移動方向とは逆になるので、電荷移動の効果の方を勝るようにすれば、電荷移動による記憶素子ができる。そのような素子は、弱電界時のトンネル効果で移動できる電荷の距離(およそ3nm以下)と比較して電荷移動層7の厚さが充分に厚い場合である。電荷移動による充分な閾値の変化を得るためには、電荷移動層7は15nm以上の厚さが必要と考えられる。電荷移動層7を厚くするとトランジスタを駆動するためのゲート電圧は大きくしなければならない。したがって、デバイスの要求条件を満足する最小の厚さに抑えることが望ましい。
この実施例2の記憶素子は、極めて単純な構成であるため、素子の製造コストダウンに有望な素子構造である。電荷移動層7には、Si化合物のSiOx 膜(0<x<2)、SiN膜、およびSiOxy 膜、Al化合物のAlOx 膜(0<x<1.5)、AlN膜、およびAlOxy 膜、Hf化合物のHfOx 膜(0<x<2)、HfN膜、およびHfOxy 膜などが適する。これらの膜の形成方法は後述する。
実施例3の記憶素子の概略断面図を図8に示す。図8において、図1と同じ部位には同じ番号を付し、説明を省略する。実施例3は、電荷移動層8とゲート電極4との間に電荷障壁層9を設けたものである。電荷障壁層9はゲート電極4からの電荷注入を抑制し、電荷の注入が主に半導体層1から起こるようにする。電荷移動層8の厚さと欠陥密度を適度に選ぶことにより、半導体層1の電荷とは反対極性の電荷を電荷移動層5の半導体層側に蓄積することができる。電荷障壁層9には実施例1の電荷障壁層2に用いた材料と同じ材料が適する。EOTを小さくするほどトランジスタのゲート電圧を低くできることは上記の例と同じである。
実施例4の記憶素子の概略断面図を図9に示す。図9において、図1と同じ部位には同じ番号を付し、説明を省略する。実施例4は、半導体層1と電荷移動層10との間に第1の電荷障壁層11を、また、電荷移動層10とゲート電極4との間に第2の電荷障壁層12を設けたものである。電荷障壁層11と12は、トンネルによる電荷移動層10中への電荷の注入を抑制するものである。電荷障壁層11と12は、電荷を電荷移動層10中に完全に閉じ込めるほど厚くするのは好ましくない。そのようにすると、電荷トラップ型特性が出てしまい、期待するドリフト型特性が得られなくなる。また、長期的には電荷移動層10中の総電荷の増減が生じ、閾値が変化してしまう。電荷障壁層11と12は、同じ材料の場合、そのどちらか、または、両方を薄くすることにより、電荷移動層10中の電荷の一部が抜けるようにする。それにより、閾値の長期的変化が防止できる。異なる材料を用いる場合にも電荷の引き抜きを考慮する。EOTを小さくするほどトランジスタのゲート電圧を低くできることは上記の例と同じである。
実施例5の記憶素子の概略断面図を図10に示す。図10において、図1と同じ部位には同じ番号を付し、説明を省略する。実施例5は、電荷保持層13と電荷障壁層14との積層膜からなる電荷移動層15を有する。電荷保持層13の欠陥密度を電荷障壁層14のそれよりも多くすることで電荷保持層13により多くの電荷をトラップする。電荷保持層13に金属の窒化物を用い、電荷障壁層14に金属の酸化物を用いてもよい。あるいは、電荷保持層13と電荷障壁層14は金属の酸窒化物としその酸素と窒素の含有量を変化させてもよい。すなわち、電荷保持層13は窒素含有量を多くし、電荷障壁層14は酸素含有量を多くする。この実施例5では電荷保持層13の欠陥密度を他の実施例の電荷移動層のそれよりも大きくすることができる。電荷移動の障壁は、電荷障壁層14の材料と厚さに依存する。電荷障壁層14を薄くして電荷移動の障壁を低くすることで低電圧で動作する記憶素子が得られる。電荷障壁層14のうち半導体層1またはゲート電極4と接する層の厚さを適度に調整することにより、トンネルによる電荷注入を抑制できる。なお、実施例1〜4の電荷移動層3,7,8,10を、この実施例5の電荷移動層15に置き換えることもできる。
実施例6の記憶素子の概略断面図を図11に示す。図11において、図1と同じ部位には同じ番号を付し、説明を省略する。実施例6は、微小導電体16が絶縁体17の中に存在する電荷移動層18を有する。微小導電体16にトラップされた電荷を電界によって半導体層1側またはゲート電極4側に移動させる。電荷は、電子の場合、微小導電体16の伝導帯(固まりが微小なため、帯の準位は連続的ではないが)にトラップされることになる。微小導電体16相互間の絶縁体17が電荷移動の障壁となるため、微小導電体16相互間の距離と絶縁体17の電気特性が障壁の大きさを決めることになる。微小導電体16相互間の距離を数nm以下の距離にすると、微小導電体16の伝導帯の電子の波動関数は互いにオーバーラップすることになり、トンネルによって移動できる状態になる。したがって、微小導電体16にトラップされている電荷は、電界によって微小導電体16相互間を比較的容易に移動できる。この実施例における微小導電体16は、上記の実施例における欠陥に対応する。それらの違いは、欠陥よりも多くの電荷を1つの微小導電体16に蓄えることが可能になる点である。微小導電体16の形成方法については後述する。なお、実施例1〜4の電荷移動層3,7,8,10を、この実施例6の電荷移動層18に置き換えることもできる。
実施例7の記憶素子の概略断面図を図12に示す。図12において、図1と同じ部位には同じ番号を付し、説明を省略する。実施例7は、微小導電体19が絶縁体20の中に層状に複数層にわたって存在する電荷移動層21を有する。すなわち、この電荷移動層21は、絶縁体からなる第1の層と微小導電体19それぞれが相互に離れた形で絶縁体内に設けられた第2の層とを交互に積層した構造を有する。微小導電体19にトラップされた電荷を電界によって半導体層1側またはゲート電極4側に移動させることは実施例6と同じである。実施例6では微小導電体16が絶縁体17中にランダムに分布させるのに対し実施例7の微小導電体19は層状に形成する。微小導電体19を層状に形成する方法については後述する。なお、実施例1〜4の電荷移動層3,7,8,10を、この実施例7の電荷移動層21に置き換えることもできる。
実施例8では金属酸化物からなる電荷移動層の形成方法を示す。本実施例8では、ECRスパッタ法を用い、化学量論的組成のずれた金属酸化物を形成する。金属元素としては、Al、Si、Ti、Y、Zr、La系列、Hf、およびTaが適する。これらの金属のターゲットを用い、ArとO2 ガスを用いてECRスパッタ法のメタルモードで金属酸化物を堆積することにより電荷移動層を形成することができる。一例としてターゲットにAlを用いたときのAlOx 膜の成膜特性を図13に示す。図13において、横軸はO2 流量(sccm)、左縦軸は堆積速度(nm/min)、右縦軸は屈折率である。成膜条件は、以下の通りである。
Ar流量:20sccm、マイクロ波(2.45GHz)電力:500W、高周波(13.56MHz)電力:500W、基板加熱せず。
図13において、O2 流量が少なく、堆積速度が大きい領域であって屈折率があまり変化していない領域をメタルモード領域、O2 流量がさらに少なく屈折率が大きく変化している領域を、ここでは便宜上、強メタルモード領域、O2 流量が大きい領域であって堆積速度が小さい領域をオキサイドモードの領域と呼ぶ。メタルモード領域は、ターゲット表面があまり酸化されないため、スパッタ率が大きい。O2 流量を多くすると、ターゲット表面が酸化され、A123 のスパッタ率に近くなるため堆積速度が大きく低下する。一般に金属の酸化物のスパッタ率は金属のスパッタ率よりも小さい傾向があるので、硬くて安定な酸化物を形成する金属をターゲットにすると、ECRスパッタ法では図13と類似の成膜特性が得られる。実際にAl、Si、Ti、Zr、Hf、およびTaで確認されている。
ECRスパッタ法の場合、メタルモードの領域で成膜した膜は、基板表面に照射される酸素のECRプラズマによって酸化されるため、エリプソメータで測定した屈折率がオキサイドモードのそれとほとんど同じ値を示す。これは、メタルモードでも良質な金属酸化物を成膜できることを示している。しかしながら、O2 流量をさらに少なくして強メタルモードにすると、屈折率が顕著に大きくなり、膜質に大きな変化が現れる。その領域で成膜した膜は、酸素不足(メタルリッチ)になっていると考えられる。したがって、その膜中には多くの欠陥を有する。図13は、その欠陥の密度をO2 流量を変化させることで制御できることを示している。このようにして化学量論的組成のずれた金属酸化物による電荷移動層を形成することができる。
上記、第2〜実施例5(図7〜図10)における電荷障壁層、電荷保持層、および電荷移動層を金属酸化物の化学量論的組成の違いによって形成するには、電荷障壁層に屈折率がオキサイドモードのそれとほぼ同じメタルモード領域の膜を適用し、電荷保持層、または、電荷移動層に屈折率が変化する強メタルモード領域の膜を適用すれば良い。
実施例9では金属窒化物からなる電荷移動層の形成方法を示す。本実施例9では、ECRスパッタ法を用い、金属ターゲット、Ar、およびN2 ガスを用いて金属窒化物を形成する。金属元素としては、Al、Si、Ti、Y、Zr、La系列、Hf、およびTaが適する。一例としてターゲットにAlを用いたときのAlN膜の成膜特性を図14に示す。図14において、横軸はN2 流量(sccm)、左縦軸は堆積速度(nm/min)、右縦軸は屈折率である。成膜条件は、以下の通りである。
Ar流量:20sccm、マイクロ波(2.45GHz)電力:500W、高周波(13.56MHz)電力:500W、基板加熱せず。
金属の窒化物は、ECRスパッタ法においては、メタルモードとオキサイドモードの明瞭な境界は形成されない傾向がある。N2 ガス流量を少なくしていくと、堆積される膜には導電性が生じ、図示した領域はメタリックな膜(抵抗体)になる。前述の実験例1で示したように、AlN膜は電荷移動層に好適である。N2 ガス流量に対する堆積速度と屈折率の変化は、他の金属窒化物でも同様であり、上記の元素の窒化物もまた電荷移動層に好適であると考えられる。
実施例10では金属酸窒化物からなる電荷移動層の形成方法を示す。本実施例10では、ECRスパッタ法を用い、金属ターゲット、Ar、O2 、およびN2 ガスを用いて金属酸窒化物を形成する。金属元素としては、Al、Si、Ti、Y、Zr、La系列、Hf、およびTaが適する。金属酸窒化物は、高温でも結晶化しない性質があるため、セルフアラインのイオン注入でソース/ドレイン領域を形成し、高温の活性化熱処理を行う場合に好適である。ECRスパッタ法の場合、ArとO2 の混合ガスに少量のN2 ガスを添加しても膜中にはN元素があまり入らないため、ArとN2 ガスの混合ガスに少量のO2 ガスを漆加するようにする。O2 ガスの添加量によって膜中のNとOの組成を変えることができる。
実施例11では、実施例5(図10)における電荷保持層13と電荷障壁層14を形成するにあたり、電荷障壁層14にECRスパッタ法で堆積した金属酸化物を用い、電荷保持層13を金属酸化物表面のECRプラズマ窒化によって形成する方法について示す。金属酸化物は、実施例8(図13)で説明したメタルモード領域で成膜した膜を用いる。引き続き、ECRスパッタ装置のガスをO2 からN2 に切り替え、ArとN2 のECRプラズマを生成して金属酸化物表面に照射する。ECRプラズマ照射条件は、例えば、
Ar流量:20sccm、N2 流量:4〜10sccm、マイクロ波(2.45GHz)電力:500W、基板加熱せず、照射時間:30〜120sec。
とする。このプラズマ照射によって金属酸化物表面は約1.5nmの深さまで窒化され、酸窒化物となる。金属酸化物を1.5nmよりも厚く形成しておけば金属酸化物と金属酸窒化物の積層構造ができる。これを繰り返して実施例5の多層の電荷移動層15の構造を得る。
実施例12では、実施例6と7(図11と図12)の微小導電体16と19を有する電荷移動層18と21の形成方法の一例を示す。図15に示すような2つの金属ターゲット30、31を有するECRスパッタ装置を用いて形成することができる。図15において、32、33はECRプラズマ源、34は基板ホルダー、35は基板、36は加熱ヒーターである。基板35は膜厚の均一化のため回転される。この種のECRスパッタ装置は、すでに商品化されている(例えば、NTTアフティ社)。金属ターゲット30には絶縁膜を形成するための実施例8、9で挙げた金属を用いる。また、金属ターゲット31には、酸化や窒化されにくいPtやAuなどの金属を用いる。
実施例6(図11)の電荷移動層18を形成するには、加熱ヒーター36によって基板35を適度な温度に加熱し、Ar、O2 ガス、およびN2 ガスによってターゲット30をスパッタして基板35に金属酸化物を堆積すると同時にターゲット31をスパッタしてPtないしはAuを堆積させる。金属酸化物上に堆積したPtやAuは、熱のため表面でマイグレーションし、合体してしだいに大きくなっていく。小さな粒子のマイグレーションの速度は大きいが、大きく成長した粒子のマイグレーションの速度は遅くなる。同時に絶縁膜が堆積しているので、大きく成長した粒子は絶縁膜に覆われて行く。粒の大きさは、温度、PtやAuの堆積速度、絶縁膜の堆積速度によって制御できる。
実施例7(図12)における電荷移動層21を形成するには、金属酸化物の堆積とPtやAuの堆積を交互に行えば良い。
実施例13では、実施例7(図12)の電荷移動層21を1つのターゲットを持つECRスパッタ装置で形成する場合を示す。金属酸化物を堆積したのち、加熱した基板上にArガスのみで金属ターゲットをスパッタすることにより金属を酸化物表面に堆積する。堆積された金属粒子は酸化物表面でマイグレーションし、粒が形成される。酸化物と金属のスパッタを繰り返して多層の積層構造を得る。
実施例14では、本発明の記憶素子をメモリとして用いる場合のセル構成の例とその駆動回路について説明する。本発明の記憶素子は、1つのトランジスタの閾値の変化を利用しで情報を記憶するものであり、図16に示すような1トランジスタ型メモリセル41の構成をとることができる。42はビット線制御回路、43はワード線制御回路、44はセンス回路である。データの書き込みは、ビット線(BL1,BL2)とワード線(WL)間に書き込み電圧を印加する。例えば、p型半導体の反転層をチャンネルとする素子では、ワード線の書き込み電圧はビット線に対してプラスである。例えば、ビット線(BL1,BL2)に0V、ワード線(WL)に+3Vを印加する。この書き込みによって電荷移動層の半導体層側には正電荷が誘起され、ゲート電極側には負電荷が誘起される。これによりトランジスタの閾値は、図17に示すように、負の方向に動き、低いゲート電圧でもトランジスタがオンの状態になる。この状態を情報“1”が書き込まれた状態とする。データの読み出しはワード線に読み出し電圧(閾値のオフセット電圧を考慮した適度な電圧であり、オフセットを0Vに調整すれば印加の必要はない)を印加し、ビット線につながれたセンス回路44でトランジスタのオン/オフを判読する。“0”データを書き込む場合には、ワード線に対してビット線の電圧を高くする。例えば、ワード線(WL)に0V、ビット線(BL1,BL2)に+3Vを印加する。トランジスタの閾値が前の場合と逆に動き、低いゲート電圧ではオフの状態になる。
この記憶素子は、フラッシュメモリのように情報の消去を高電圧で一括して行う必要は無く、ランダムアクセスで記憶できる。ただし、トランジスタの閾値は、電荷移動層に保持されている電荷によっており、電荷保持時間は数秒から数100秒と予測される。したがって、本メモリはDRAMの一種であり、定期的なデータのリフレッシュが必要である。リフレッシュは、データ保持時間内にデータを読み出し、判読して同じデータを書き込むことで行われることは既存のキャパシタを用いた1TIC型DRAMと同様である。既存DRAMは数100msの周期でリフレッシュを行っているが、本メモリでは数秒の周期に延ばせる可能性が高い。1TIC型DRAMの電荷の逃げが速いのは、主に半導体のpn接合からの逃げのためであるが、本メモリでは、半導体からの逃げは起こらない。
本メモリはフラッシュメモリと異なり、電荷を長期間絶縁膜中に閉じ込めておく必要が無いため、電荷障壁層と電荷移動層の厚さを薄く形成することが可能である。また、誘電率の高いHigh-k 材料を用いてEOTを小さくすることも可能である。そのため、絶縁膜を薄くすると、低電圧でも絶縁膜にかかる電界は大きくなるので、書き込み、読み出し電圧を小さくすることができる。High-k 材料の使用は、MOSトランジスタのスケーリングに乗り、素子を微細化できるため、本メモリは将来のスケーリングに永く対応できるものと考えられる。
本発明の実施例1を示す記憶素子の概略断面図である。 実施例1の動作原理の説明図である。 本発明の実験例1で作成したMISダイオードの概略断面図である。 本発明の実験例1で作成したMISダイオードのC−V特性図である。 ECRプラズマ照射によって成長させたSiO2 膜の成膜特性図である。 ECRプラズマ照射で成長させたSiO2 膜のMOSダイオード特性図である。 本発明の実施例2を示す記憶素子の概略断面図である。 本発明の実施例3を示す記憶素子の概略断面図である。 本発明の実施例4を示す記憶素子の概略断面図である。 本発明の実施例5を示す記憶素子の概略断面図である。 本発明の実施例6を示す記憶素子の概略断面図である。 本発明の実施例7を示す記憶素子の概略断面図である。 ECRスパッタ法によるAl23 膜の成膜特性図である。 ECRスパッタ法によるAlN膜の成膜特性図である。 2つのECR源を持つECRスパッタ装置の概略断面図である。 本発明の電荷移動型メモリの基本回路図である。 本発明の電荷移動型記憶素子の閾値シフトを示す説明図である。 従来の電荷蓄積記憶素子(フラッシュメモリ)を示す概略断面図である。
符号の説明
1:半導体層
2:電荷障壁層
3:電荷移動層
4:ゲート電極
5:ソース
6:ドレイン
7:電荷障壁層
8:電荷移動層
9:電荷障壁層
10:電荷移動層
11:第1の電荷障壁層
12:第2の電荷障壁層
13:電荷保持層
14:電荷障壁層
15:電荷移動層
16:微小導電体
17:絶縁体
18:電荷移動層
19:微小導電体
20:絶縁体
21:電荷移動層
30,31:金属ターゲット
32,33:ECRプラズマ源
34:基板ホルダー
35:基板
36:加熱ヒーター
41:メモリセル
42:ビット線制御回路
43:ワード線制御回路
44:センス回路
51:半導体層
52:電荷障壁層
53:電荷移動層
54:ゲート電極

Claims (2)

  1. 金属、絶縁膜、半導体からなるMIS型トランジスタ構造を有し、
    前記絶縁膜が少なくとも電荷移動層と電荷障壁層とを有し、前記電荷障壁層の欠陥密度は前記電荷移動層中の欠陥密度よりも少なく、かつ、前記電荷障壁層は電荷移動に対して前記電荷移動層よりも大きな障壁を持ち、前記電荷障壁層が前記半導体に接し、前記電荷移動層が前記金属に接し、前記電荷移動層の膜厚が前記電荷障壁層の膜厚よりも厚く、
    前記金属と前記半導体間に印加する電圧でつくられる電界により前記電荷移動層中の電荷を移動させ、前記金属に印加した電圧とは反対極性の電荷が前記電荷移動層中の前記金属の側に、前記金属に印加した前記電圧と同極性の電荷が前記電荷移動層中の前記半導体の側に蓄積することにより前記MIS型トランジスタの閾値を変化させることを特徴とする記憶素子。
  2. 請求項1に記載の記憶素子の製造方法であって、
    前記電荷障壁層はSiOであり、前記半導体はシリコンであり、
    当該SiOを、希ガスと酸素ガスの電子サイクロトロン共鳴プラズマを前記シリコンの表面に照射することにより形成することを特徴とする記憶素子の製造方法。
JP2004032911A 2004-02-10 2004-02-10 記憶素子およびその製造方法 Expired - Fee Related JP4703116B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004032911A JP4703116B2 (ja) 2004-02-10 2004-02-10 記憶素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004032911A JP4703116B2 (ja) 2004-02-10 2004-02-10 記憶素子およびその製造方法

Publications (2)

Publication Number Publication Date
JP2005228763A JP2005228763A (ja) 2005-08-25
JP4703116B2 true JP4703116B2 (ja) 2011-06-15

Family

ID=35003265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004032911A Expired - Fee Related JP4703116B2 (ja) 2004-02-10 2004-02-10 記憶素子およびその製造方法

Country Status (1)

Country Link
JP (1) JP4703116B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070108502A1 (en) * 2005-11-17 2007-05-17 Sharp Laboratories Of America, Inc. Nanocrystal silicon quantum dot memory device
WO2008005892A2 (en) * 2006-06-30 2008-01-10 Applied Materials, Inc. Nanocrystal formation
JP4965948B2 (ja) 2006-09-21 2012-07-04 ルネサスエレクトロニクス株式会社 半導体装置
JP2010117996A (ja) * 2008-11-14 2010-05-27 Sharp Corp 定電流回路および半導体装置、電子機器
JP2011176168A (ja) * 2010-02-25 2011-09-08 Nippon Telegr & Teleph Corp <Ntt> 半導体メモリ
JP5696882B2 (ja) * 2010-12-16 2015-04-08 日立化成株式会社 帯電体並びにそれを用いた電界効果トランジスタ及びメモリ素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130552A (ja) * 1987-11-17 1989-05-23 Sharp Corp 高抵抗素子
JPH03104285A (ja) * 1989-09-19 1991-05-01 Casio Comput Co Ltd 不揮発性半導体メモリ
JPH10173181A (ja) * 1996-12-12 1998-06-26 Sony Corp 電子素子
JP2001313342A (ja) * 1999-06-04 2001-11-09 Matsushita Electric Ind Co Ltd 半導体素子およびその製造方法
JP2002118184A (ja) * 2000-10-11 2002-04-19 Sony Corp 不揮発性半導体記憶装置の動作方法
JP3571679B2 (ja) * 2001-09-06 2004-09-29 日本電信電話株式会社 薄膜形成方法

Also Published As

Publication number Publication date
JP2005228763A (ja) 2005-08-25

Similar Documents

Publication Publication Date Title
KR100674965B1 (ko) 지우기 특성이 개선된 메모리 소자의 제조 방법
US20160308070A1 (en) Semiconductor device
JP4489359B2 (ja) 不揮発性半導体記憶装置
JP4334196B2 (ja) フラッシュメモリデバイスの製造方法
King et al. MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex
US11765907B2 (en) Ferroelectric memory device and operation method thereof
WO2006112793A1 (en) Nonvolatile flash memory device and method for producing the same
US20050167734A1 (en) Flash memory devices using large electron affinity material for charge trapping
Chin et al. Stack gate PZT/Al 2 O 3 one transistor ferroelectric memory
KR101342476B1 (ko) 기억 소자 및 그 프로그램 전압의 저감 방법과 판독 방법
JP4703116B2 (ja) 記憶素子およびその製造方法
JP2005347328A (ja) 記憶素子
JP6472149B2 (ja) 不揮発性記憶素子
KR100652135B1 (ko) 안정된 다층 양자점을 가지는 유기 비휘발성 메모리 소자및 이의 제조 방법
Cao et al. Study of γ-ray radiation influence on SiO 2/HfO 2/Al 2 O 3/HfO 2/Al 2 O 3 memory capacitor by C–V and DLTS
KR20070082509A (ko) 합금으로 형성된 게이트 전극층을 포함하는 반도체 메모리소자
Zhao et al. A low voltage SANOS nonvolatile semiconductor memory (NVSM) device
WO2008069325A1 (ja) 半導体記憶装置および半導体装置
KR101065060B1 (ko) 전하 트랩형 비휘발성 메모리
CN103545316B (zh) 基于带隙调控的新型电荷陷阱型存储器、其制备方法及应用
KR101083418B1 (ko) 전하트랩형 비휘발성 메모리 소자
KR101111255B1 (ko) 스태거 터널 배리어를 가지는 비휘발성 메모리 소자
KR101052328B1 (ko) 전하트랩형 비휘발성 메모리 소자
RU2403631C1 (ru) Флэш элемент памяти электрически перепрограммируемого постоянного запоминающего устройства
Kudoh et al. Influence of Si (100) surface flattening process on nonvolatile memory characteristics of Hf-based MONOS structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

R150 Certificate of patent or registration of utility model

Ref document number: 4703116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees