JP4694349B2 - Printed wiring board using laser processing and manufacturing method thereof - Google Patents

Printed wiring board using laser processing and manufacturing method thereof Download PDF

Info

Publication number
JP4694349B2
JP4694349B2 JP2005322331A JP2005322331A JP4694349B2 JP 4694349 B2 JP4694349 B2 JP 4694349B2 JP 2005322331 A JP2005322331 A JP 2005322331A JP 2005322331 A JP2005322331 A JP 2005322331A JP 4694349 B2 JP4694349 B2 JP 4694349B2
Authority
JP
Japan
Prior art keywords
treatment
printed wiring
wiring board
copper foil
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005322331A
Other languages
Japanese (ja)
Other versions
JP2007129147A (en
Inventor
利則 川村
晴夫 赤星
邦夫 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Via Mechanics Ltd filed Critical Hitachi Via Mechanics Ltd
Priority to JP2005322331A priority Critical patent/JP4694349B2/en
Priority to KR1020060048419A priority patent/KR101277390B1/en
Priority to TW95119161A priority patent/TWI394504B/en
Priority to US11/443,013 priority patent/US7666320B2/en
Priority to CN2006100830968A priority patent/CN1874655B/en
Publication of JP2007129147A publication Critical patent/JP2007129147A/en
Application granted granted Critical
Publication of JP4694349B2 publication Critical patent/JP4694349B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、レーザビア加工によるプリント配線板の製造方法に関するものである。   The present invention relates to a method for manufacturing a printed wiring board by laser via processing.

近年、電子機器の小型軽量化に伴い、プリント配線板の高密度化が要求されており、プリント配線板の高多層化が進んでいる。多層化には、絶縁層を介して回路を形成した配線層間の導通確保が必要であり、層間接続は多層プリント配線板製造技術における重要な要素となっている。   In recent years, with the reduction in size and weight of electronic devices, there has been a demand for higher density of printed wiring boards, and the number of printed wiring boards is increasing. In order to increase the number of layers, it is necessary to ensure electrical continuity between wiring layers in which a circuit is formed via an insulating layer. Interlayer connection is an important factor in multilayer printed wiring board manufacturing technology.

配線層の層間接続方法としては、貫通穴であるスルーホールや非貫通穴のブラインドビアホール、インタースティシャルビアホールなどがある。この穴の形成方法には、ドリル加工法、レーザ加工法などがあるが、加工穴の小径化、高加工速度などの面からレーザ加工法が主流となっている。その中でも高レーザエネルギを有しているCO2レーザが最も普及している。CO2レーザの波長領域では、銅箔表面でレーザ光が反射されてしまうため、加工が困難である。そこで、予め穴形成周辺部の銅箔のみエッチング除去してから加工を行うラージウィンドウ法が採用されてきた。 As an interlayer connection method of the wiring layer, there are a through hole which is a through hole, a blind via hole which is a non-through hole, an interstitial via hole and the like. This hole forming method includes a drilling method, a laser processing method, and the like, but the laser processing method is mainly used from the viewpoint of reducing the diameter of the processing hole and increasing the processing speed. Among them, the CO 2 laser having high laser energy is most popular. In the wavelength region of the CO 2 laser, processing is difficult because the laser light is reflected on the surface of the copper foil. Therefore, a large window method has been employed in which only the copper foil around the hole forming periphery is removed by etching in advance.

しかし、ラージウィンドウ法では、銅箔のパターニング工程が必要とされることや、レーザ加工穴の位置ズレ補正のためレーザ径に対して約2倍の銅箔エッチング径を必要とすることから、配線設計の微細化が困難である。そこで、直接レーザで銅箔と絶縁層を同時に加工するダイレクトビア加工技術が検討されている。ダイレクトビア加工法は、銅箔表面を粗面化することによってレーザ光の吸収率を高め、銅箔の加工を可能とする方法である。銅箔表面の粗面化処理としては、針状結晶の銅酸化物膜を形成する黒化処理や、銅の粒界エッチングにより銅を直接粗化する処理などがある。   However, the large window method requires a copper foil patterning process and requires a copper foil etching diameter that is approximately twice the laser diameter to correct the laser beam hole misalignment. It is difficult to refine the design. Therefore, a direct via processing technique in which a copper foil and an insulating layer are simultaneously processed with a direct laser is being studied. The direct via processing method is a method that increases the absorption rate of laser light by roughening the surface of the copper foil and enables processing of the copper foil. Examples of the roughening treatment on the surface of the copper foil include a blackening treatment for forming a copper oxide film of needle-like crystals and a treatment for directly roughening copper by copper grain boundary etching.

特開2002−217551号公報JP 2002-217551 A

銅箔表面に粗面化処理を施した銅張積層板に、レーザを用いてダイレクトビア加工を行った際、ビア開口部周辺にレーザの熱により溶融したCuが飛散して凸状に付着する溶融飛散Cuの発生と、外層銅箔の穴径が絶縁層の穴径より小さくなる、所謂オーバーハングが発生する。図1は銅張積層板にダイレクトビア加工を行うことによって生じた溶融飛散Cu及びオーバーハングを示す概略図であり、図1(a)は上面図、図1(b)はそのAA断面図である。内層配線2を有する絶縁層1の上に外層銅箔3を形成し、その表面に銅酸化物膜4を形成した銅張積層板に、レーザ光を照射してビア加工すると、開口周辺部に溶融飛散Cu及びオーバーハング5が発生する。この溶融飛散Cuとオーバーハング5は、後工程において、ビアのめっきつきまわり性や積層時の平坦性を低下させるため、除去が必要である。除去方法としては、バフなどの物理研磨や、薬液による化学エッチングがある。ところが、溶融飛散Cu及びオーバーハングの除去処理により外層銅箔もしくは内層配線が研磨又は、エッチングされ、配線厚が減少してしまう問題がある。   When direct via processing is performed using a laser on a copper clad laminate with a roughened copper foil surface, Cu melted by the heat of the laser scatters and adheres in a convex shape around the via opening. Occurrence of melt scattering Cu and so-called overhang in which the hole diameter of the outer layer copper foil is smaller than the hole diameter of the insulating layer occur. Fig. 1 is a schematic diagram showing melt-sputtered Cu and overhang generated by performing direct via processing on a copper-clad laminate, Fig. 1 (a) is a top view, and Fig. 1 (b) is its AA cross-sectional view. is there. When an outer layer copper foil 3 is formed on an insulating layer 1 having an inner layer wiring 2 and a copper clad laminate having a copper oxide film 4 formed on the surface thereof is irradiated with laser light and via processing is performed, a peripheral portion of the opening is formed. Melt scattering Cu and overhang 5 occur. The molten scattering Cu and the overhang 5 need to be removed in the subsequent process in order to reduce the via throwing power of the via and the flatness during lamination. Removal methods include physical polishing such as buffing and chemical etching with a chemical solution. However, there is a problem that the outer layer copper foil or the inner layer wiring is polished or etched by the removal process of the molten scattered Cu and the overhang, and the wiring thickness is reduced.

本発明は、配線厚を減少させることなく溶融飛散Cu及びオーバーハングを除去することのできるダイレクトビア加工プロセスを提供することを目的とする。   An object of the present invention is to provide a direct via processing process capable of removing the melt-scattered Cu and overhang without reducing the wiring thickness.

本発明は、基材樹脂に銅箔を張り合わせた銅張積層板にレーザを用いてダイレクトに銅箔にブラインドビア加工を行うプリント配線板の製造方法において、レーザ加工時に外層銅箔のビア開口部周辺に発生する溶融飛散Cuとオーバーハングを選択的に除去することを特徴とする。具体的には、ブラインドビア加工工程を、銅箔の表面に酸化膜を形成する工程、レーザビア加工工程、前記レーザビア加工時のビア底の絶縁層残渣は残し、ビア壁面に発生する絶縁層由来の付着物を除去するアルカリ処理工程、溶融飛散Cuエッチング処理工程、ビア底の樹脂残渣を除去するデスミア処理工程をこの順序で行う。アルカリ処理工程では水酸化ナトリウム又は水酸化カリウムを含む処理液で処理を行うのが好ましい。pHは12以上が好ましい。溶融飛散Cuエッチング処理工程では、過硫酸アンモニウムを含む処理液、過硫酸ナトリウムを含む処理液、塩化第二鉄を含む処理液、アンモニアと過酸化水素を含む処理液、又はアンモニアと塩化銅を含む処理液で処理を行うことが好ましい。 The present invention relates to a method of manufacturing a printed wiring board in which a blind via process is directly performed on a copper foil using a laser on a copper clad laminate in which a copper foil is bonded to a base resin. It is characterized by selectively removing molten and scattered Cu and overhangs generated in the vicinity. Specifically, the blind via processing step is the step of forming an oxide film on the surface of the copper foil, the laser via processing step, the insulating layer residue on the bottom of the via at the time of the laser via processing, and the insulating layer generated on the via wall surface. An alkali treatment step for removing deposits , a melt-scattering Cu etching treatment step, and a desmear treatment step for removing resin residue on the via bottom are performed in this order. In the alkali treatment step, the treatment is preferably performed with a treatment solution containing sodium hydroxide or potassium hydroxide. The pH is preferably 12 or more. In the molten splash Cu etching process, a treatment solution containing ammonium persulfate, a treatment solution containing sodium persulfate, a treatment solution containing ferric chloride, a treatment solution containing ammonia and hydrogen peroxide, or a treatment containing ammonia and copper chloride. It is preferable to perform the treatment with a liquid.

本発明のプリント配線板製造方法によると、レーザビア形成前後における内層配線厚の減少を0.5μm以下に抑えることができる。また、レーザビア形成前後における外層銅箔厚の減少を1.0μm以下に抑えることができる。   According to the printed wiring board manufacturing method of the present invention, the decrease in the inner layer wiring thickness before and after the formation of the laser via can be suppressed to 0.5 μm or less. Further, the decrease in the thickness of the outer layer copper foil before and after the formation of the laser via can be suppressed to 1.0 μm or less.

本発明の製造方法によって製造されたプリント配線板は、典型的には、ビア端部における外層銅箔エッチング幅が20μm以下であり、外層回路とビアの位置ズレ率が5%以下であり、ビア部における内層配線厚の減少量が0.5μm以下である。   The printed wiring board manufactured by the manufacturing method of the present invention typically has an outer layer copper foil etching width of 20 μm or less at the end of the via, and a positional deviation rate between the outer layer circuit and the via of 5% or less. The reduction amount of the inner layer wiring thickness in the portion is 0.5 μm or less.

本発明のダイレクトビア加工プロセスを施すことにより、レーザ加工時に発生する溶融飛散Cuとオーバーハングを選択的に除去可能であり、プリント配線板のビア形状と配線寸法精度が向上する。   By applying the direct via processing process of the present invention, it is possible to selectively remove molten and scattered Cu and overhangs generated during laser processing, and the via shape and wiring dimension accuracy of the printed wiring board are improved.

以下、図面を参照して本発明の実施の形態を説明する。
本発明のプリント配線板製造方法における、ダイレクトビア加工プロセスは、図2に示すように、(a)銅箔表面酸化膜形成、(b)レーザビア加工、(c)アルカリ処理、(d)溶融飛散Cuエッチング処理、(e)デスミア処理であることが望ましい。溶融飛散Cuとオーバーハングを選択的に除去するためには、ダイレクトビア加工プロセスにおいて、銅箔表面に銅酸化物膜を形成し、溶融飛散Cuとオーバーハングを除去するまで、その銅酸化物膜を残しておくことが重要である。また、完全に溶融飛散Cuを除去するには、その処理の前にアルカリ処理にて絶縁層由来の付着物を除去しなければならない。
Embodiments of the present invention will be described below with reference to the drawings.
In the printed wiring board manufacturing method of the present invention, as shown in FIG. 2, the direct via processing process includes: (a) copper foil surface oxide film formation, (b) laser via processing, (c) alkali treatment, (d) melt scattering Cu etching treatment and (e) desmear treatment are desirable. In order to selectively remove molten and scattered Cu and overhangs, in the direct via processing process, a copper oxide film is formed on the surface of the copper foil until the molten and scattered Cu and overhang are removed. It is important to leave Further, in order to completely remove the molten scattered Cu, the deposits derived from the insulating layer must be removed by alkali treatment before the treatment.

銅箔表面酸化膜形成は、外層銅箔表面に厚さ0.5μm以上の銅酸化物膜を形成させる処理である。この銅酸化物膜厚が0.5μm以下の場合には、耐エッチング性が低下し、溶融飛散Cuと銅酸化物膜の選択性が低下する。本発明では、銅酸化物膜形成方法として、銅箔表面の粗面化と銅酸化物の形成が同時に得られる黒化処理を用いた。本発明における黒化処理液は特に限定はなく、市販されている処理液を用いた。   Copper foil surface oxide film formation is a process of forming a copper oxide film having a thickness of 0.5 μm or more on the surface of the outer layer copper foil. When this copper oxide film thickness is 0.5 μm or less, the etching resistance is lowered, and the selectivity between the molten scattered Cu and the copper oxide film is lowered. In the present invention, as a method for forming a copper oxide film, a blackening treatment that can simultaneously obtain roughening of the copper foil surface and formation of copper oxide is used. The blackening treatment liquid in the present invention is not particularly limited, and a commercially available treatment liquid is used.

レーザビア加工に用いるレーザは、紫外線、赤外線の波長領域に特に限定はないが、以下に説明する実施例ではレーザ光波長が9.3〜10.6μmのCO2レーザを用いた。 The laser used for laser via processing is not particularly limited in the wavelength range of ultraviolet rays and infrared rays, but in the examples described below, a CO 2 laser having a laser beam wavelength of 9.3 to 10.6 μm was used.

アルカリ処理は、レーザ加工時に発生する絶縁層由来の付着物を除去する処理である。レーザ加工時に絶縁層由来の付着物が溶融飛散Cuやオーバーハング部表面に付着し、エッチング時に溶融飛散Cuとオーバーハング部を保護してしまって完全に除去することができなくなる。そのため、エッチング処理の前にこのアルカリ処理を行って、溶融飛散Cuやオーバーハング部表面に付着した絶縁層由来の付着物を除去する必要がある。また、このアルカリ処理ではビア底の絶縁層残渣は除去されず、ビア壁面に発生する絶縁層由来の付着物のみを選択的に除去可能である。本発明におけるアルカリ処理液は、pH12以上の水酸化ナトリウム又は水酸化カリウムなどのアルカリ水溶液である。   The alkali treatment is a treatment for removing deposits derived from the insulating layer generated during laser processing. During laser processing, deposits derived from the insulating layer adhere to the surface of the molten scattering Cu and the overhang portion, and during etching, the molten scattering Cu and the overhang portion are protected and cannot be completely removed. Therefore, it is necessary to perform this alkali treatment before the etching treatment to remove the deposits derived from the insulating layer adhering to the surface of the molten scattered Cu and the overhang portion. Further, in this alkali treatment, the insulating layer residue on the bottom of the via is not removed, and only the deposit derived from the insulating layer generated on the via wall surface can be selectively removed. The alkaline treatment liquid in the present invention is an aqueous alkaline solution such as sodium hydroxide or potassium hydroxide having a pH of 12 or higher.

溶融飛散Cuエッチング処理は、溶融飛散Cuとオーバーハングを選択的に除去する処理であり、処理液は銅酸化物膜の溶解性は小さく、溶融飛散Cuの溶解性の大きいものが望ましい。本発明における溶融飛散Cuエッチング処理液は、塩化第二鉄液や過硫酸塩系及びアンモニア系のCuエッチング液である。   The melt-sputtered Cu etching process is a process for selectively removing the melt-scattered Cu and overhangs, and it is desirable that the treatment liquid has a low solubility of the copper oxide film and a high solubility of the melt-scattered Cu. The melt-sputtering Cu etching solution in the present invention is a ferric chloride solution, a persulfate-based or ammonia-based Cu etching solution.

デスミア処理は、レーザ加工時に取りきれないビア底の樹脂残渣を除去する処理である。処理工程は膨潤処理、酸化処理、中和処理により行う。本発明におけるデスミア処理液は特に限定はなく、市販されている処理液を用いた。   The desmear process is a process for removing a resin residue at the bottom of the via that cannot be completely removed during laser processing. The treatment process is performed by swelling treatment, oxidation treatment, and neutralization treatment. The desmear treatment liquid in the present invention is not particularly limited, and a commercially available treatment liquid is used.

本発明のプリント配線板は、特に限定はなく、樹脂又はガラス布を含む樹脂の両面又は片面に銅箔を有する一般に公知のリジットもしくはフレキシブルの回路基板である。   The printed wiring board of the present invention is not particularly limited, and is a generally known rigid or flexible circuit board having copper foil on both sides or one side of resin including resin or glass cloth.

図3は本発明によるプリント配線板製造プロセスを示す概略図であり、図3(a)〜図3(d)は内層回路形成プロセスを示し、図3(e)〜図3(h)は外層回路形成プロセスを示す。   FIG. 3 is a schematic diagram showing a printed wiring board manufacturing process according to the present invention, FIG. 3 (a) to FIG. 3 (d) show an inner layer circuit formation process, and FIG. 3 (e) to FIG. 3 (h) are outer layers. The circuit formation process is shown.

図3(a)は内層基材7の概略図である。本実施例では、日立化成株式会社製の銅張積層板MCL-E679を内層基材とし、図3(b)に示すように銅箔の上に内層回路レジストパターンを形成後、図3(c)に示すようにレジストをマスクとしてCuをエッチング除去し内層回路2を形成した。次に、図3(d)に示すように、内層回路2を形成した内層基材7に片面銅箔付ポリイミドシートをプレスにより積層し、4層の銅張積層板を作製した。ポリイミド層(絶縁層)1の厚さは30μmとし、外層銅箔3の厚さは6μmとした。次に、図3(e)に示すように、ダイレクトビア加工を行った。   FIG. 3A is a schematic view of the inner layer base material 7. In this example, Hitachi Chemical Co., Ltd. copper-clad laminate MCL-E679 was used as the inner layer base material, and after forming the inner layer circuit resist pattern on the copper foil as shown in FIG. As shown in FIG. 5B, Cu was removed by etching using the resist as a mask to form the inner layer circuit 2. Next, as shown in FIG. 3 (d), a single-sided copper foil-attached polyimide sheet was laminated on the inner layer base material 7 on which the inner layer circuit 2 was formed by pressing to prepare a four-layer copper-clad laminate. The thickness of the polyimide layer (insulating layer) 1 was 30 μm, and the thickness of the outer layer copper foil 3 was 6 μm. Next, direct via processing was performed as shown in FIG.

図3(e)に示したダイレクトビア加工プロセスについて、図2を参照して説明する。
1.銅箔表面酸化処理(図2(a))
最初に、上記の銅張積層板の外層銅箔3の表面の粗面化と銅酸化物膜4を形成させるために黒化処理を行った。黒化処理液はROHM and HAAS社製のプロポンド80を使用した。処理条件は、液温度80℃、処理時間5分とした。形成した銅酸化物膜厚は0.8μmである。
The direct via machining process shown in FIG. 3 (e) will be described with reference to FIG.
1. Copper foil surface oxidation treatment (Figure 2 (a))
First, a blackening treatment was performed to roughen the surface of the outer layer copper foil 3 of the copper-clad laminate and form the copper oxide film 4. As the blackening solution, Propond 80 manufactured by ROHM and HAAS was used. The treatment conditions were a liquid temperature of 80 ° C. and a treatment time of 5 minutes. The formed copper oxide film thickness is 0.8 μm.

2.レーザビア加工(図2(b))
次に、黒化処理した銅張積層板にCO2レーザでブラインドビア加工を行った。レーザエネルギを10mJとし、ビア径を100μmとした。このとき、ビア開口部周辺に溶融飛散Cuとオーバーハング5が形成され、また、ビア壁面に絶縁層由来の付着物6が発生した。
2. Laser via processing (Figure 2 (b))
Next, blind via processing was performed on the copper-clad laminate that had been blackened with a CO 2 laser. The laser energy was 10 mJ and the via diameter was 100 μm. At this time, molten scattering Cu and overhangs 5 were formed around the via opening, and deposits 6 derived from the insulating layer were generated on the via wall surfaces.

3.アルカリ処理(図2(c))
次に、レーザ加工時にビア壁面に発生する絶縁層由来の付着物6を除去するためにアルカリ処理を行った。アルカリ処理液は、水酸化ナトリウム濃度50g/lとし、処理条件は、液温度50℃、処理時間3分とした。
3. Alkali treatment (Figure 2 (c))
Next, an alkali treatment was performed to remove the deposit 6 derived from the insulating layer generated on the via wall surface during laser processing. The alkali treatment liquid had a sodium hydroxide concentration of 50 g / l, and the treatment conditions were a liquid temperature of 50 ° C. and a treatment time of 3 minutes.

4.溶融飛散Cuエッチング処理(図2(d))
次に、溶融飛散Cuとオーバーハング5を除去するためにエッチング処理を行った。エッチング液は、過硫酸アンモニウム200g/l、硫酸5ml/lとし、処理条件は、液温度30℃、処理時間3分とした。処理時間については、溶融飛散Cuとオーバーハング5を完全に除去するために必要な時間である。
4). Melt-sputtered Cu etching process (Figure 2 (d))
Next, an etching process was performed in order to remove the molten scattered Cu and the overhang 5. The etching solution was 200 g / l ammonium persulfate and 5 ml / l sulfuric acid, and the treatment conditions were a solution temperature of 30 ° C. and a treatment time of 3 minutes. About processing time, it is time required in order to remove molten scattering Cu and the overhang 5 completely.

5.デスミア処理(図2(e))
次に、ビア底の樹脂残渣を除去するためにデスミア処理を行った。デスミア処理では、膨潤液は、ROHM and HAAS社製のCircuposit Holeprep4125を使用し、液温度70℃、処理時間5分とした。酸化液は、ROHM and HAAS社製のCircuposit MLB Promoter213を使用し、液温度80℃、処理時間5分とした。中和液は、ROHM and HAAS社製のCircuposit MLB Neutralizer216-5を使用し、液温度40℃、処理時間5分とした。
5. Desmear treatment (Figure 2 (e))
Next, desmear treatment was performed to remove the resin residue at the bottom of the via. In the desmear treatment, the swelling solution used was Circum Holeprep 4125 manufactured by ROHM and HAAS, and the solution temperature was 70 ° C. and the treatment time was 5 minutes. As the oxidizing solution, Circuit MLB Promoter213 manufactured by ROHM and HAAS was used, and the solution temperature was 80 ° C. and the treatment time was 5 minutes. As the neutralization solution, Circuit MLB Neutralizer 216-5 manufactured by ROHM and HAAS was used, and the solution temperature was 40 ° C. and the treatment time was 5 minutes.

上記、ダイレクトビア加工プロセスの後、図3(f)〜図3(h)に示すように、外層回路を形成した。まず、図3(f)に示すように、加工したブラインドビアの層間導通形成のため、銅めっき膜9を15μm形成した。次に、図3(g)に示すように、銅めっき膜9の上に外層回路レジストパターン8を形成し、図3(h)に示すように、塩化第二鉄液にてエッチングして外層回路10を形成し、多層プリント配線板を作製した。   After the direct via process, an outer layer circuit was formed as shown in FIGS. 3 (f) to 3 (h). First, as shown in FIG. 3 (f), a copper plating film 9 was formed to have a thickness of 15 μm in order to form an interlayer conduction of the processed blind via. Next, as shown in FIG. 3 (g), the outer layer circuit resist pattern 8 is formed on the copper plating film 9, and the outer layer is etched with ferric chloride solution as shown in FIG. Circuit 10 was formed to produce a multilayer printed wiring board.

上記で作製した多層プリント配線板における溶融飛散Cuとオーバーハングの除去状態とエッチング処理による外層銅箔及び内層配線の厚さの減少幅を調べるために断面観察を行った。サンプルは、ダイレクトビア加工プロセスにおけるレーザビア加工後、デスミア処理後とした。結果を図4に示す。   A cross-sectional observation was performed in order to investigate the removal state of the melt-scattered Cu and overhangs in the multilayer printed wiring board produced above and the reduction width of the outer layer copper foil and the inner layer wiring by the etching process. The samples were processed after laser via processing in the direct via processing process and after desmear processing. The results are shown in FIG.

溶融飛散Cuとオーバーハングの除去結果では、レーザビア加工後、ビア周辺の外層銅箔に溶融飛散Cuとオーバーハングが発生していたが、デスミア処理後では、ビア周辺の溶融飛散Cuの発生した領域の外層銅箔が全て除去されていた。外観としてはラージウィンドウ法でレーザ加工前に外層銅箔をエッチングした形状と同様であり、加工ビア径よりやや大きく円周状に外層銅箔が全てエッチングされていた。そこで、図5に示すようにビア端部から外層銅箔端部の距離を外層銅箔エッチング幅Xとして測定を行った。結果は13μmであった。この外層銅箔エッチング幅が小さい程、外層回路のランド径の小径化が可能となる。   As a result of the removal of molten splash Cu and overhang, after laser via processing, molten splash Cu and overhang occurred on the outer copper foil around the via, but after desmear treatment, the area where molten splash Cu occurred around the via All of the outer layer copper foil was removed. The external appearance was the same as the shape obtained by etching the outer layer copper foil before laser processing by the large window method, and the outer layer copper foil was all etched slightly larger than the processed via diameter. Therefore, as shown in FIG. 5, the distance from the end of the via to the end of the outer layer copper foil was measured as the outer layer copper foil etching width X. The result was 13 μm. The smaller the outer layer copper foil etching width, the smaller the land diameter of the outer layer circuit.

外層銅箔厚は、レーザビア加工後の厚さに対し、デスミア処理後の厚さは0.5μm減少していた。内層配線厚は、レーザビア加工後の厚さに対し、デスミア処理後の厚さが0.5μm減少していた。   The thickness of the outer layer copper foil was reduced by 0.5 μm after desmearing compared to the thickness after laser via processing. Regarding the inner layer wiring thickness, the thickness after desmearing was reduced by 0.5 μm compared to the thickness after laser via processing.

このように、本発明のダイレクトビア加工プロセスを用いることにより、内層配線と外層銅箔の厚さをほとんど減少させることなく、溶融飛散Cuとオーバーハングを除去可能である。   As described above, by using the direct via processing process of the present invention, it is possible to remove the molten scattered Cu and the overhang without substantially reducing the thicknesses of the inner layer wiring and the outer layer copper foil.

更に4層の多層プリント配線板とした後、外層回路とビアの位置ズレ評価を行った。ビアの位置ズレ評価方法は、図6に示すようにビアの中心aから外層回路10の中心bの距離Sを測定し、ビア径をVrとして、ビア位置ズレ率=S/Vr×100%として評価を行った。結果は、測定したビア位置ズレ率の最大値を図4に示す。この結果、外層銅箔とビアを同時に加工するために、外層回路とビアの位置ズレ率は5%以下であった。また、ビア径100μmに対し外層回路のランド径Lrは210μmである。   Furthermore, after forming a multilayer printed wiring board having four layers, the positional deviation between the outer layer circuit and the via was evaluated. As shown in FIG. 6, the via misalignment evaluation method measures the distance S from the center a of the via to the center b of the outer layer circuit 10, and sets the via diameter as Vr, and the via misalignment rate = S / Vr × 100%. Evaluation was performed. As a result, the maximum value of the measured via position deviation rate is shown in FIG. As a result, in order to process the outer layer copper foil and the via simultaneously, the positional deviation rate between the outer layer circuit and the via was 5% or less. Further, the land diameter Lr of the outer layer circuit is 210 μm with respect to the via diameter of 100 μm.

ダイレクトビア加工プロセスにおける(c)アルカリ処理液の水酸化ナトリウム濃度を10〜100g/lの範囲で変化させ、実施例1と同様にプリント配線板を作製し、溶融飛散Cuとオーバーハングの除去状態と外層銅箔エッチング幅の測定、外層銅箔及び内層配線の厚さの減少幅評価を行った。結果を図4に示す。また、各アルカリ処理条件は、実施例2〜3として図7に示す。   (C) Sodium hydroxide concentration of alkali treatment solution in the direct via processing process was changed in the range of 10-100 g / l, printed wiring board was produced in the same way as in Example 1, and the molten scattered Cu and overhang were removed The outer layer copper foil etching width was measured, and the thickness of the outer layer copper foil and inner layer wiring was evaluated for the reduction width. The results are shown in FIG. Moreover, each alkali processing condition is shown in FIG. 7 as Examples 2-3.

各実施例ともにデスミア処理後、溶融飛散Cuとオーバーハングは全て除去されており、外層銅箔エッチング幅の測定結果は13〜17μmであった。外層銅箔厚の減少幅評価では、レーザビア加工後の厚さに対し、デスミア処理後の厚さは0.6〜0.8μm減少していた。内層配線厚の減少幅評価では、レーザビア加工後の厚さに対し、デスミア処理後の厚さは0.4〜0.5μm減少していた。   In each Example, after the desmear treatment, all of the molten scattered Cu and the overhang were removed, and the measurement result of the outer layer copper foil etching width was 13 to 17 μm. In the evaluation of the reduction width of the outer layer copper foil thickness, the thickness after desmearing was reduced by 0.6 to 0.8 μm with respect to the thickness after laser via processing. In the evaluation of the reduction width of the inner layer wiring thickness, the thickness after desmearing was reduced by 0.4 to 0.5 μm with respect to the thickness after laser via processing.

ダイレクトビア加工プロセスにおける(c)アルカリ処理の液温度を30〜80℃の範囲で変化させ、実施例1と同様にプリント配線板を作製し、溶融飛散Cuとオーバーハングの除去状態と外層銅箔エッチング幅の測定、外層銅箔及び内層配線の厚さの減少幅評価を行った。結果を図4に示す。各アルカリ処理条件は、実施例4〜5として図7に示す。   (C) Alkaline treatment liquid temperature in the direct via processing process was changed in the range of 30 to 80 ° C, and printed wiring board was produced in the same manner as in Example 1, and the molten and scattered Cu and overhangs were removed and the outer layer copper foil The etching width was measured, and the reduction width of the thickness of the outer layer copper foil and inner layer wiring was evaluated. The results are shown in FIG. Each alkali treatment condition is shown in FIG. 7 as Examples 4-5.

各実施例ともにデスミア処理後、溶融飛散Cuとオーバーハングは全て除去されており、外層銅箔エッチング幅の測定結果は14〜18μmであった。外層銅箔厚の減少幅評価では、レーザビア加工後の厚さに対し、デスミア処理後の厚さは0.5〜0.6μm減少していた。内層配線厚の減少幅評価では、レーザビア加工後の厚さに対し、デスミア処理後の厚さは0.5μm減少していた。   In each example, after the desmear treatment, all of the molten scattered Cu and the overhang were removed, and the measurement result of the outer layer copper foil etching width was 14 to 18 μm. In the evaluation of the reduction width of the outer layer copper foil thickness, the thickness after desmear treatment was reduced by 0.5 to 0.6 μm with respect to the thickness after laser via processing. In the evaluation of the reduction width of the inner layer wiring thickness, the thickness after desmearing was reduced by 0.5 μm compared to the thickness after laser via processing.

ダイレクトビア加工プロセスにおける(c)アルカリ処理液の組成を水酸化カリウムとして、実施例1と同様にプリント配線板を作製し、溶融飛散Cuとオーバーハングの除去状態と外層銅箔エッチング幅の測定、外層銅箔及び内層配線の厚さの減少幅評価を行った。結果を図4に示す。アルカリ処理条件は、実施例6として図7に示す。   (C) The composition of the alkaline treatment liquid in the direct via processing process is potassium hydroxide, and a printed wiring board is produced in the same manner as in Example 1, and the measurement of the removal state of the molten scattered Cu and overhang and the outer layer copper foil etching width is performed. The reduction width evaluation of the thickness of outer layer copper foil and inner layer wiring was performed. The results are shown in FIG. The alkali treatment conditions are shown in FIG.

デスミア処理後、溶融飛散Cuとオーバーハングは全て除去されていた。外層銅箔エッチング幅の測定結果は16μmであった。外層銅箔厚の減少幅評価では、レーザビア加工後の厚さに対し、デスミア処理後の厚さは0.8μm減少していた。内層配線厚の減少幅評価では、レーザビア加工後の厚さに対し、デスミア処理後の厚さは0.5μm減少していた。   After the desmear treatment, all of the molten splash Cu and overhangs were removed. The measurement result of the outer layer copper foil etching width was 16 μm. In the evaluation of the reduction width of the outer layer copper foil thickness, the thickness after desmearing was reduced by 0.8 μm compared to the thickness after laser via processing. In the evaluation of the reduction width of the inner layer wiring thickness, the thickness after desmearing was reduced by 0.5 μm compared to the thickness after laser via processing.

ダイレクトビア加工プロセスにおける(d)溶融飛散Cuエッチング処理液の組成を塩化第二鉄、過硫酸アンモニウム、過硫酸ナトリウム、アンモニア/過酸化水素、アンモニア/塩化銅として、実施例1と同様にプリント配線板を作製し、溶融飛散Cuとオーバーハングの除去状態と外層銅箔エッチング幅の測定、外層銅箔及び内層配線の厚さの減少幅評価を行った。結果を図4に示す。各溶融飛散Cuエッチング処理条件は、実施例7〜11として図7に示す。   Printed wiring board as in Example 1 with the composition of the (d) molten splash Cu etching solution in the direct via processing process as ferric chloride, ammonium persulfate, sodium persulfate, ammonia / hydrogen peroxide, ammonia / copper chloride The measurement of the removal state of the molten scattered Cu and the overhang and the etching width of the outer layer copper foil, and the evaluation of the reduction width of the thickness of the outer layer copper foil and the inner layer wiring were performed. The results are shown in FIG. Each melt-scattering Cu etching treatment condition is shown in FIG.

各実施例ともにデスミア処理後、溶融飛散Cuとオーバーハングは全て除去されており、外層銅箔エッチング幅の測定結果は12〜19μmであった。外層銅箔厚の減少幅評価では、レーザビア加工後の厚さに対し、デスミア処理後の厚さは0.5〜0.9μm減少していた。内層配線厚の減少幅評価では、レーザビア加工後の厚さに対し、デスミア処理後の厚さは0.4〜0.5μm減少していた。   In each Example, after the desmear treatment, all of the molten scattered Cu and the overhang were removed, and the measurement result of the outer layer copper foil etching width was 12 to 19 μm. In the evaluation of the reduction width of the outer layer copper foil thickness, the thickness after desmearing was reduced by 0.5 to 0.9 μm with respect to the thickness after laser via processing. In the evaluation of the reduction width of the inner layer wiring thickness, the thickness after desmearing was reduced by 0.4 to 0.5 μm with respect to the thickness after laser via processing.

これらの実施例1〜11の結果から、プリント配線板の製造方法において、本発明のダイレクトビア加工プロセスを用いることにより、内層配線の厚さの減少幅は0.5μm以下、外層銅箔の厚さの減少幅は1.0μm以下で溶融飛散Cuとオーバーハングを除去することが可能である。また、本発明によると、レーザビアの形状が良くなることで、層間接続の信頼性が高い多層プリント配線板を得ることができる。   From the results of these Examples 1 to 11, in the printed wiring board manufacturing method, by using the direct via processing process of the present invention, the thickness reduction of the inner layer wiring is 0.5 μm or less, the thickness of the outer layer copper foil It is possible to remove molten spatter Cu and overhangs with a decrease width of 1.0 μm or less. Further, according to the present invention, a multilayer printed wiring board with high reliability of interlayer connection can be obtained by improving the shape of the laser via.

[比較例1]
比較用として、アルカリ処理を行わない以外は、実施例1と同様の条件で処理を行って多層プリント配線板を作製した。
(1) 銅箔表面酸化処理
銅張積層板の外層銅箔表面の粗面化と銅酸化物膜を形成させるために、実施例1と同様にして黒化処理を行った。
(2) レーザビア加工
次に、黒化処理した銅張積層板に、実施例1と同様にしてCO2レーザでブラインドビア加工を行った。
(3)溶融飛散Cuエッチング処理
次に、溶融飛散Cuとオーバーハングを除去するために、実施例1と同様にしてエッチング処理を行った。
(4)デスミア処理
次に、ビア底の樹脂残渣を除去するために、実施例1と同様にしてデスミア処理を行った。
[Comparative Example 1]
For comparison, a multilayer printed wiring board was produced by performing the treatment under the same conditions as in Example 1 except that the alkali treatment was not performed.
(1) Copper foil surface oxidation treatment Blackening treatment was carried out in the same manner as in Example 1 in order to roughen the outer copper foil surface of the copper clad laminate and to form a copper oxide film.
(2) Laser via processing Next, the black via-treated copper clad laminate was subjected to blind via processing using a CO 2 laser in the same manner as in Example 1.
(3) Melt scattered Cu etching process Next, an etching process was performed in the same manner as in Example 1 in order to remove the melt scattered Cu and the overhang.
(4) Desmearing treatment Next, desmearing treatment was performed in the same manner as in Example 1 in order to remove the resin residue on the via bottom.

実施例1と同様に、作製したプリント配線板における溶融飛散Cuとオーバーハングの除去状態と外層銅箔エッチング幅の測定、外層銅箔及び内層配線の厚さの減少幅を調べるために断面観察を行った。サンプルは、ダイレクトビア加工プロセスにおけるレーザビア加工後、デスミア処理後とした。結果を図4に示す。   In the same manner as in Example 1, the cross-sectional observation was performed in order to investigate the reduction of the thickness of the outer layer copper foil and the inner layer wiring, the measurement of the outer layer copper foil and the inner layer wiring etching width, and the removal state of the molten scattered Cu and overhang in the produced printed wiring board. went. The samples were processed after laser via processing in the direct via processing process and after desmear processing. The results are shown in FIG.

溶融飛散Cuとオーバーハングの除去結果では、デスミア処理後、溶融飛散Cuとオーバーハングが残っていた。この原因としては、アルカリ処理を行わないためにレーザ加工時に溶融飛散Cuとオーバーハング部表面に絶縁層由来の付着物が残っており、エッチング液に触れなかったためであると考えられる。外層銅箔厚の減少幅評価では、レーザビア加工後の厚さに対し、デスミア処理後の厚さは0.5μm減少していた。内層配線厚の減少幅評価では、レーザビア加工後の厚さに対し、デスミア処理後の厚さの減少は0.5μmであった。   As a result of removing the molten splash Cu and overhang, the molten splash Cu and overhang remained after the desmear treatment. This is presumably because, because no alkali treatment was performed, deposits derived from the insulating layer remained on the surface of the melt-scattered Cu and the overhang portion during laser processing, and the etching solution was not touched. In the evaluation of the reduction width of the outer layer copper foil thickness, the thickness after desmearing was reduced by 0.5 μm compared to the thickness after laser via processing. In the evaluation of the reduction width of the inner layer wiring thickness, the thickness reduction after desmear processing was 0.5 μm compared to the thickness after laser via processing.

このように、溶融飛散Cuエッチング処理前に、アルカリ処理を行わなければ、完全に溶融飛散Cuとオーバーハングを除去することはできない。   Thus, if the alkali treatment is not performed before the melt-scattering Cu etching process, the melt-scattering Cu and the overhang cannot be completely removed.

[比較例2]
比較用として、溶融飛散Cuエッチング処理液を塩化第二銅液とした以外は、実施例1と同様の条件でダイレクトビア加工プロセスを行った。
(1) 銅箔表面酸化処理
銅張積層板の外層銅箔表面の粗面化と銅酸化物膜を形成させるために、実施例1と同様にして黒化処理を行った。
(2) レーザビア加工
次に、黒化処理した銅張積層板に、実施例1と同様にしてCO2レーザでブラインドビア加工を行った。
(3)アルカリ処理
次に、レーザ加工時にビア壁面に発生する絶縁層由来の付着物を除去するために、実施例1と同様にしてアルカリ処理を行った。
(4)溶融飛散Cuエッチング処理
次に、溶融飛散Cuとオーバーハングを除去するためにエッチング処理を行った。エッチング液は、塩化第二銅100g/lとし、処理条件は液温度30℃で行ったが、エッチング液に浸漬後すぐに銅酸化物膜が溶解した。
[Comparative Example 2]
For comparison, a direct via processing process was performed under the same conditions as in Example 1 except that the molten scattering Cu etching solution was changed to a cupric chloride solution.
(1) Copper foil surface oxidation treatment Blackening treatment was carried out in the same manner as in Example 1 in order to roughen the outer copper foil surface of the copper clad laminate and to form a copper oxide film.
(2) Laser via processing Next, the black via-treated copper clad laminate was subjected to blind via processing using a CO 2 laser in the same manner as in Example 1.
(3) Alkali treatment Next, alkali treatment was performed in the same manner as in Example 1 in order to remove deposits derived from the insulating layer generated on the via wall surface during laser processing.
(4) Melt scattered Cu etching process Next, an etching process was performed to remove the molten scattered Cu and the overhang. The etching solution was cupric chloride 100 g / l and the processing conditions were a solution temperature of 30 ° C., but the copper oxide film dissolved immediately after immersion in the etching solution.

この結果から、塩化第二銅液は銅酸化物を容易に溶解してしまうために、溶融飛散Cuエッチング液には適さないことがわかった。したがって、溶融飛散Cuエッチング液は、銅酸化物膜の溶解性が小さいものにしなければならない。   From this result, it was found that cupric chloride solution is not suitable for melt-sputtering Cu etching solution because it easily dissolves copper oxide. Therefore, the melt-sputtering Cu etching solution must have a low solubility of the copper oxide film.

[比較例3]
比較用として、ダイレクトビア加工プロセス順序を変更し、酸化膜除去処理とデスミア処理の後に溶融飛散Cuエッチング処理を行って、実施例1と同様の多層プリント配線板を作製した。
(1) 銅箔表面酸化処理
最初に、上記の銅張積層板の外層銅箔表面の粗面化と銅酸化物膜を形成させるために、実施例1と同様の条件で黒化処理を行った。
(2) レーザビア加工
次に、黒化処理した銅張積層板に、実施例1と同様の条件でCO2レーザでブラインドビア加工を行った。
(3)酸化銅膜除去処理
次に、外層銅箔上の銅酸化物膜を除去するためにエッチング処理を行った。エッチング液は、過硫酸アンモニウム200g/l、硫酸5ml/lとし、処理条件は、液温度30℃、処理時間1分とした。
(4)デスミア処理
次に、ビア底の樹脂残渣を除去するために、実施例1と同様の条件でデスミア処理を行った。
(5)溶融飛散Cuエッチング処理
次に、溶融飛散Cuとオーバーハングを除去するために、実施例1と同様の条件でエッチング処理を行った。
[Comparative Example 3]
For comparison, the direct via processing process sequence was changed, and the oxide film removal process and the desmear process were followed by a melt-scattered Cu etching process to produce a multilayer printed wiring board similar to that of Example 1.
(1) Copper foil surface oxidation treatment First, a blackening treatment was performed under the same conditions as in Example 1 in order to roughen the outer copper foil surface of the copper-clad laminate and form a copper oxide film. It was.
(2) Laser via processing Next, blind via processing was performed on the copper-clad laminate subjected to blackening treatment using a CO 2 laser under the same conditions as in Example 1.
(3) Copper oxide film removal process Next, the etching process was performed in order to remove the copper oxide film on an outer layer copper foil. The etching solution was 200 g / l ammonium persulfate and 5 ml / l sulfuric acid, and the treatment conditions were a solution temperature of 30 ° C. and a treatment time of 1 minute.
(4) Desmearing treatment Next, desmearing treatment was performed under the same conditions as in Example 1 in order to remove the resin residue at the bottom of the via.
(5) Melt scattered Cu etching process Next, an etching process was performed under the same conditions as in Example 1 in order to remove the melt scattered Cu and the overhang.

実施例1と同様に、作製したプリント配線板における溶融飛散Cuとオーバーハングの除去状態と外層銅箔エッチング幅の測定、外層銅箔及び内層配線の厚さの減少幅を調べるために断面観察を行った。サンプルは、ダイレクトビア加工プロセスにおけるレーザビア加工後、溶融飛散Cuエッチング処理後とした。結果を図4に示す。   In the same manner as in Example 1, the cross-sectional observation was performed in order to investigate the reduction of the thickness of the outer layer copper foil and the inner layer wiring, the measurement of the outer layer copper foil and the inner layer wiring etching width, and the removal state of the molten scattered Cu and overhang in the produced printed wiring board. went. The samples were processed after laser via processing in the direct via processing process and after melt-sputtered Cu etching processing. The results are shown in FIG.

デスミア処理後、溶融飛散Cuとオーバーハングは全て除去されており、外層銅箔エッチング幅の測定結果は3μmであった。しかし、外層銅箔厚の減少幅を評価したところ、レーザビア加工後の厚さに対し、溶融飛散Cuエッチング処理後の厚さは2.5μm減少していた。内層配線厚の減少幅評価では、レーザビア加工後の厚さに対し、溶融飛散Cuエッチング処理後の厚さは2.1μm減少していた。このように、酸化膜除去処理とデスミア処理の後に溶融飛散Cuエッチング処理を行った場合には、外層銅箔及び内層配線の厚さが大きく減少する。   After the desmear treatment, all of the molten scattered Cu and overhang were removed, and the measurement result of the outer layer copper foil etching width was 3 μm. However, when the reduction width of the outer layer copper foil was evaluated, the thickness after the melt-sputtering Cu etching process was reduced by 2.5 μm with respect to the thickness after the laser via processing. In the evaluation of the reduction width of the inner layer wiring thickness, the thickness after the melt-sputtering Cu etching processing was reduced by 2.1 μm with respect to the thickness after the laser via processing. As described above, when the melt scattering Cu etching process is performed after the oxide film removal process and the desmear process, the thicknesses of the outer layer copper foil and the inner layer wiring are greatly reduced.

これらの比較例1〜3の結果から、本発明のダイレクトビア加工プロセスにおけるアルカリ処理の必要性と溶融飛散Cuエッチング液の選択性及びプロセス順序の重要性が確認された。   From the results of these Comparative Examples 1 to 3, the necessity of alkali treatment in the direct via processing process of the present invention, the selectivity of the melt-sprayed Cu etching solution, and the importance of the process sequence were confirmed.

[比較例4]
従来のラージウィンドウ法を用いて実施例1と同様の4層プリント配線板を作製し、実施例1と同様に内層配線厚の減少幅とビアの位置ズレ評価を行った。
[Comparative Example 4]
Using the conventional large window method, a four-layer printed wiring board similar to that in Example 1 was manufactured, and the inner layer wiring thickness reduction width and the via misalignment evaluation were performed in the same manner as in Example 1.

ラージウィンドウ法によるプリント配線板の製造工程の一部を図8に示す。ダイレクトビア加工によるプリント配線板製造工程と異なる点は、レーザビア加工前に外層銅箔に酸化膜を形成させず、予めビア形成部の外層銅箔をエッチングすることである。したがって、外層銅箔表面には溶融飛散Cuとオーバーハングは発生しない。外層銅箔エッチング径は、レーザ径100μmに対し、外層銅箔エッチング幅を40μmとし180μmとした。   A part of the manufacturing process of the printed wiring board by the large window method is shown in FIG. The difference from the printed wiring board manufacturing process by direct via processing is that an oxide film is not formed on the outer layer copper foil before laser via processing, and the outer layer copper foil in the via forming portion is etched in advance. Therefore, no molten splash Cu and overhang are generated on the outer layer copper foil surface. The outer layer copper foil etching diameter was 180 μm, with the outer layer copper foil etching width being 40 μm with respect to the laser diameter of 100 μm.

図3(a)から図3(d)に示した処理を行って作製した4層銅張積層板に、図8(a)に示すように外層銅箔レジストパターンを形成し、図8(b)に示すようにビア形成部の外層銅箔をエッチングする。次に、図8(c)に示すようにレーザビア加工し、デスミア処理を行った。その後、図3(f)から図3(h)と同様にして外層回路を形成し、4層プリント配線板を作製した。   As shown in FIG. 8 (a), an outer layer copper foil resist pattern is formed on the four-layer copper clad laminate produced by performing the processes shown in FIGS. 3 (a) to 3 (d). ) Etch the outer layer copper foil in the via forming portion. Next, as shown in FIG. 8 (c), laser via processing was performed, and desmear processing was performed. Thereafter, an outer layer circuit was formed in the same manner as in FIGS. 3 (f) to 3 (h), and a four-layer printed wiring board was produced.

作製した4層プリント配線板における内層配線厚の減少幅とビア位置ズレ評価結果を図4に示す。内層配線厚の減少幅は0.5μmであり、ビア位置ズレ率は最大36%であった。また、外層回路のランド径Lrは280μmである。   FIG. 4 shows the reduction width of the inner layer wiring thickness and the via position deviation evaluation result in the manufactured four-layer printed wiring board. The decrease in inner layer wiring thickness was 0.5 μm, and the via misalignment rate was a maximum of 36%. Further, the land diameter Lr of the outer layer circuit is 280 μm.

このように、従来のラージウィンドウ法を用いた場合には、予め外層銅箔にパターンを形成後、ビア加工するために外層回路とビアの位置ズレが発生し、その位置ズレを補正するために外層回路ランド径も大きくなる。   As described above, when the conventional large window method is used, after the pattern is formed in the outer layer copper foil in advance, the positional deviation between the outer layer circuit and the via is generated in order to process the via, and the positional deviation is corrected. The outer layer circuit land diameter is also increased.

溶融飛散Cu及びオーバーハングを表す概略図。Schematic showing a molten scattering Cu and overhang. ダイレクトビア加工プロセスを表す概略図。Schematic showing a direct via processing process. プリント配線板製造プロセスを表す概略図。Schematic showing a printed wiring board manufacturing process. 溶融飛散Cu除去状態と配線厚の減少率及びビア位置ズレ評価の結果を示す図。The figure which shows the result of a molten scattering Cu removal state, the reduction | decrease rate of wiring thickness, and via position shift evaluation. 外層銅箔エッチング幅の評価方法を表す概略図。Schematic showing the evaluation method of outer layer copper foil etching width. 外層回路とビア位置ズレの評価方法を表す概略図。Schematic showing the evaluation method of an outer layer circuit and via position gap. アルカリ処理と溶融飛散Cuエッチング処理の組成・濃度と処理条件を示す図。The figure which shows a composition, density | concentration, and process conditions of an alkali process and a melt-scattering Cu etching process. ラージウィンドウ法によるプリント配線板製造プロセスを表す概略図。Schematic showing the printed wiring board manufacturing process by the large window method.

符号の説明Explanation of symbols

1 絶縁層
2 内層配線
3 外層銅箔
4 銅酸化物膜
5 溶融飛散Cu及びオーバーハング部
6 絶縁層由来の付着物
7 内層基材
8 レジスト
9 銅めっき膜
10 外層回路
DESCRIPTION OF SYMBOLS 1 Insulating layer 2 Inner layer wiring 3 Outer layer copper foil 4 Copper oxide film 5 Melt scattering Cu and overhang part 6 Deposit from an insulating layer 7 Inner layer base material 8 Resist 9 Copper plating film 10 Outer circuit

Claims (6)

基材樹脂に銅箔を張り合わせた銅張積層板にレーザを用いてダイレクトに銅箔にブラインドビア加工を行うプリント配線板の製造方法において、
前記ブラインドビア加工工程が、前記銅箔の表面に酸化膜を形成する工程、レーザビア加工工程、前記レーザビア加工時のビア底の絶縁層残渣は残し、ビア壁面に発生する絶縁層由来の付着物を除去するアルカリ処理工程、溶融飛散Cuエッチング処理工程、ビア底の樹脂残渣を除去するデスミア処理工程をこの順序で行うことを特徴とするプリント配線板の製造方法。
In a method for manufacturing a printed wiring board in which blind via processing is directly performed on a copper foil using a laser on a copper clad laminate in which a copper foil is bonded to a base resin,
In the blind via processing step, an oxide film is formed on the surface of the copper foil, a laser via processing step, the insulating layer residue on the bottom of the via at the time of the laser via processing is left, and deposits derived from the insulating layer generated on the via wall surface A method for producing a printed wiring board, comprising performing an alkali treatment step to be removed , a melt-scattering Cu etching treatment step, and a desmear treatment step to remove a resin residue on a via bottom in this order.
請求項1に記載のプリント配線板の製造方法において、前記アルカリ処理工程では水酸化ナトリウム又は水酸化カリウムを含む処理液で処理を行うことを特徴とするプリント配線板の製造方法。   The method for manufacturing a printed wiring board according to claim 1, wherein in the alkali treatment step, the treatment is performed with a treatment liquid containing sodium hydroxide or potassium hydroxide. 請求項1に記載のプリント配線板の製造方法において、前記溶融飛散Cuエッチング処理工程では、過硫酸アンモニウムを含む処理液、過硫酸ナトリウムを含む処理液、塩化第二鉄を含む処理液、アンモニアと過酸化水素を含む処理液、又はアンモニアと塩化銅を含む処理液で処理を行うことを特徴とするプリント配線板の製造方法。   2. The printed wiring board manufacturing method according to claim 1, wherein in the melt-scattered Cu etching treatment step, a treatment solution containing ammonium persulfate, a treatment solution containing sodium persulfate, a treatment solution containing ferric chloride, A method for producing a printed wiring board, wherein the treatment is performed with a treatment liquid containing hydrogen oxide or a treatment liquid containing ammonia and copper chloride. 請求項1〜3のいずれか1項に記載のプリント配線板の製造方法において、レーザビア形成前後における内層配線厚の減少が0.5μm以下であることを特徴とするプリント配線板の製造方法。   The method for manufacturing a printed wiring board according to any one of claims 1 to 3, wherein the decrease in inner layer wiring thickness before and after the formation of the laser via is 0.5 μm or less. 請求項1〜3のいずれか1項に記載のプリント配線板の製造方法において、レーザビア形成前後における外層銅箔厚の減少が1.0μm以下であることを特徴とするプリント配線板の製造方法。   The method for manufacturing a printed wiring board according to any one of claims 1 to 3, wherein a decrease in the thickness of the outer layer copper foil before and after the formation of the laser via is 1.0 μm or less. 請求項1に記載のプリント配線板の製造方法によって製造されたプリント配線板であって、
ビア端部における外層銅箔エッチング幅が20μm以下であり、外層回路とビアの位置ズレ率が5%以下であり、ビア部における内層配線厚の減少量が0.5μm以下であることを特徴とするプリント配線板。
A printed wiring board manufactured by the method for manufacturing a printed wiring board according to claim 1,
Etching width of outer layer copper foil at the end of via is 20 μm or less, positional deviation rate between outer layer circuit and via is 5% or less, and decrease in inner layer wiring thickness at via is 0.5 μm or less Printed wiring board.
JP2005322331A 2005-05-31 2005-11-07 Printed wiring board using laser processing and manufacturing method thereof Expired - Fee Related JP4694349B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005322331A JP4694349B2 (en) 2005-11-07 2005-11-07 Printed wiring board using laser processing and manufacturing method thereof
KR1020060048419A KR101277390B1 (en) 2005-05-31 2006-05-30 Manufacturing method of printed wiring board, copper-clad laminate and treatment solutions used therefor
TW95119161A TWI394504B (en) 2005-05-31 2006-05-30 Manufacturing method of printed wiring board as well as copper-clad laminate and treatment solutions used therefor
US11/443,013 US7666320B2 (en) 2005-05-31 2006-05-31 Manufacturing method of printed wiring board as well as copper-clad laminate and treatment solutions used therefor
CN2006100830968A CN1874655B (en) 2005-05-31 2006-05-31 Manufacturing method of printed wiring board as well as copper-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005322331A JP4694349B2 (en) 2005-11-07 2005-11-07 Printed wiring board using laser processing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007129147A JP2007129147A (en) 2007-05-24
JP4694349B2 true JP4694349B2 (en) 2011-06-08

Family

ID=38151529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005322331A Expired - Fee Related JP4694349B2 (en) 2005-05-31 2005-11-07 Printed wiring board using laser processing and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4694349B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620713B2 (en) * 2007-09-28 2011-01-26 日立ビアメカニクス株式会社 Printed wiring board manufacturing method and electrolytic etching solution used in the manufacturing method
JP5171226B2 (en) * 2007-11-28 2013-03-27 京セラ株式会社 Wiring board manufacturing method
JP5062533B2 (en) * 2008-08-01 2012-10-31 新光電気工業株式会社 Wiring board manufacturing method
JP5676908B2 (en) 2010-04-21 2015-02-25 上村工業株式会社 Surface treatment method and surface treatment agent for printed wiring board
RU2474095C1 (en) * 2011-10-11 2013-01-27 Леонид Геннадьевич Менчиков Method for laser deposition of copper onto dielectric surface
JP6614696B2 (en) * 2015-08-26 2019-12-04 株式会社ディスコ Protective film forming resin agent and laser processing method
JP6622444B1 (en) * 2018-03-28 2019-12-18 三井金属鉱業株式会社 Manufacturing method of multilayer wiring board
CN117483962A (en) * 2019-09-26 2024-02-02 张立国 Method, system, device and equipment for laser drilling through hole
CN116477963B (en) * 2023-04-18 2023-12-26 福建华清电子材料科技有限公司 Method for producing ceramic copper-clad substrate with pins by using porous ceramic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044643A (en) * 1999-07-29 2001-02-16 Mitsubishi Gas Chem Co Inc Manufacture of high density multilayer printed wiring board
JP2001230517A (en) * 2000-02-16 2001-08-24 Mitsubishi Gas Chem Co Inc Method for forming hole by using carbon dioxide gas laser
JP2001244604A (en) * 2000-02-28 2001-09-07 Mitsubishi Gas Chem Co Inc Method of forming through-hole with carbon dioxide gas laser
JP2004319887A (en) * 2003-04-18 2004-11-11 Mitsubishi Gas Chem Co Inc Method for boring additive resin composition substrate by means of laser and process for producing printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044643A (en) * 1999-07-29 2001-02-16 Mitsubishi Gas Chem Co Inc Manufacture of high density multilayer printed wiring board
JP2001230517A (en) * 2000-02-16 2001-08-24 Mitsubishi Gas Chem Co Inc Method for forming hole by using carbon dioxide gas laser
JP2001244604A (en) * 2000-02-28 2001-09-07 Mitsubishi Gas Chem Co Inc Method of forming through-hole with carbon dioxide gas laser
JP2004319887A (en) * 2003-04-18 2004-11-11 Mitsubishi Gas Chem Co Inc Method for boring additive resin composition substrate by means of laser and process for producing printed wiring board

Also Published As

Publication number Publication date
JP2007129147A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
JP4694349B2 (en) Printed wiring board using laser processing and manufacturing method thereof
KR101277390B1 (en) Manufacturing method of printed wiring board, copper-clad laminate and treatment solutions used therefor
JP4620713B2 (en) Printed wiring board manufacturing method and electrolytic etching solution used in the manufacturing method
KR101805743B1 (en) Method for manufacturing printed wiring board and copper foil for laser processing
JP4831783B2 (en) Conductive layer, laminate using the same, and production method thereof
JP4528204B2 (en) Method for manufacturing printed wiring board
JP2003008199A (en) Method for roughening copper surface of printed wiring board and printed wiring board and its producing method
WO2009113396A1 (en) Method of treating surface of copper and method of treating surface of printed wiring board
JP5066427B2 (en) Method for manufacturing printed wiring board
WO2013042582A1 (en) Desmear solution and desmear method
JP2002060967A (en) Surface treating method for copper or copper alloy
JP2009041112A (en) Copper etching liquid and manufacturing method of printed wiring board using the same
JP2006186059A (en) Multilayer printed wiring board and its production process
JP2007116191A (en) Method for electrically connecting metal layers in both sides of polyimide film in laminated body having metal layers in both sides of polyimide film
JP2011061161A (en) Method of manufacturing printed circuit board
JP2000261149A (en) Mutilayer printed wiring board and manufacture thereof
JPH1187886A (en) Production of printed wiring board
JP3364933B2 (en) Multilayer printed wiring board and copper foil for inner layer electric circuit
JP2009246233A (en) Producing method of multi-layer circuit board
JP2002266087A (en) Etchant for copper and method for manufacturing printed circuit board using the same
JPH04334093A (en) Manufacture of multilayered wiring board
JPH0136997B2 (en)
JP3123108B2 (en) Method for manufacturing multilayer wiring board
JP6226537B2 (en) Method for manufacturing printed wiring board
JP4176105B2 (en) Printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees