JPH1187886A - Production of printed wiring board - Google Patents

Production of printed wiring board

Info

Publication number
JPH1187886A
JPH1187886A JP26791597A JP26791597A JPH1187886A JP H1187886 A JPH1187886 A JP H1187886A JP 26791597 A JP26791597 A JP 26791597A JP 26791597 A JP26791597 A JP 26791597A JP H1187886 A JPH1187886 A JP H1187886A
Authority
JP
Japan
Prior art keywords
layer
hole
copper
board
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26791597A
Other languages
Japanese (ja)
Inventor
Makoto Origuchi
誠 折口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP26791597A priority Critical patent/JPH1187886A/en
Publication of JPH1187886A publication Critical patent/JPH1187886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate open circuit or short circuit incident to formation of a through hole by hot pressing metal foils having two layer structure of a copper layer and a different metal layer to the opposite sides of a resin board, making a through hole in the integrated resin board and then removing the different metal by etching. SOLUTION: A metal foil 4 having two layer structure of a copper layer 2 and an aluminum layer 3 for forming a wiring layer is hot pressed to the surface of a board 1 with the copper side directing toward the insulating board 1 and a through hole 5 is made in the integrated board 1. Subsequently, the aluminum layer 3 is dissolved by an aqueous solution of sodium hydroxide and removed to expose the copper layer 2 and an electroless plating layer 6 is formed on the wiring layer and the inner wall face of the through hole 5 followed by formation of an electrolytic copper plating layer 7. Since burrs and residual carbon are removed simultaneously with foreign metals, open circuit clue to defective plating around the through hole or inter-wiring short circuit due to carbon does not take place in a printed wiring board thus obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として積み上げ
方式やラミネート方式で製造されるプリント配線板の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a printed wiring board manufactured mainly by a stacking method or a laminating method.

【0002】[0002]

【従来の技術】近年、プリント配線板は電子機器の進展
に伴い、配線の高密度化や多層化が行われている。従来
のプリント配線板の製造方法は以下のようであった。ま
ず、ガラス布に絶縁樹脂を含浸した絶縁基板(コア基
板)に銅箔を重ねて一体化した銅張り積層板を製作す
る。該銅張り積層板にドリルやレーザーを利用して穴あ
け加工した後、発生したバリやレーザー加工時に発生・
付着したカーボン残さを薬液を用いて除去する。次いで
貫通穴の内壁面と銅箔表面全体に無電解メッキを行なっ
て、必要ならばさらに電解メッキを行なって、配線層と
して必要な厚さとした後、不要な部分をエッチング除去
して配線層の形成を行なう。必要に応じて絶縁層と配線
層の積層を繰り返し、多層化を行なう。
2. Description of the Related Art In recent years, with the development of electronic devices, printed wiring boards have been provided with higher density wiring and multilayer wiring. The conventional method for manufacturing a printed wiring board was as follows. First, a copper-clad laminate is manufactured by laminating a copper foil on an insulating substrate (core substrate) in which an insulating resin is impregnated into a glass cloth. After drilling using a drill or laser on the copper-clad laminate, the burrs generated during laser processing and laser processing
The attached carbon residue is removed using a chemical solution. Next, electroless plating is performed on the inner wall surface of the through hole and the entire surface of the copper foil, and if necessary, further electrolytic plating is performed to obtain a required thickness as a wiring layer. Perform formation. If necessary, the lamination of the insulating layer and the wiring layer is repeated to perform multi-layering.

【0003】[0003]

【発明が解決しようとする課題】銅張り積層板への貫通
穴あけ加工にはドリルやレーザーを用いるが、加工後の
貫通穴周辺のエッジ部にはバリが発生しやすく、これが
後のメッキ工程で銅箔面と貫通穴のメッキ導体との間で
断線を引き起こす原因となっていた。更に、レーザーを
用いた場合、貫通穴周辺にはカーボン残さの付着がでや
すく、後のメッキ工程で該カーボン残さ上にメッキがの
ってしまい、微細配線間に短絡を引き起こす原因の一つ
となっていた。また、貫通穴の直径が50μm以下にな
ってくると、デスミア工程での薬液が該留め穴の中に入
りにくくなるため、貫通穴の内部に残った樹脂が除去し
ずらくなり、後のメッキ工程で断線不良が発生してい
た。
A drill or a laser is used for drilling a through hole in a copper-clad laminate, but burrs are likely to be generated at an edge portion around the through hole after the processing, and this is a problem in a later plating step. This causes disconnection between the copper foil surface and the plated conductor in the through hole. Furthermore, when a laser is used, carbon residue is likely to adhere around the through-hole, and plating is deposited on the carbon residue in a later plating process, which is one of the causes of a short circuit between fine wirings. I was Further, when the diameter of the through hole becomes 50 μm or less, it becomes difficult for the chemical solution in the desmearing process to enter the retaining hole, so that the resin remaining inside the through hole becomes difficult to be removed, and the subsequent plating is performed. Disconnection failure occurred in the process.

【0004】係る問題を解決する方法として、銅張り基
板上の貫通穴を形成する予定の領域の銅箔を予めエッチ
ング除去してから貫通穴を形成することで銅箔のバリや
カエリを防止する方法が特開平1−228196号に開
示されている。しかし、貫通穴の直径が50μm以下に
なったりピッチが小さくなると、銅箔上にあけたエッチ
ング穴に合わせて貫通穴を穿つのが困難になってくる。
As a method of solving such a problem, a copper foil in a region where a through-hole is to be formed on a copper-clad substrate is removed by etching before forming a through-hole, thereby preventing burrs and burrs on the copper foil. The method is disclosed in JP-A-1-228196. However, when the diameter of the through hole becomes 50 μm or less or the pitch becomes small, it becomes difficult to form the through hole in accordance with the etching hole formed on the copper foil.

【0005】本発明では、これらの貫通穴の形成にまつ
わる断線や短絡等の不具合を解決したプリント配線板の
製造方法を提供することを目的とする。
It is an object of the present invention to provide a method for manufacturing a printed wiring board which solves the problems such as disconnection and short circuit involved in forming these through holes.

【0006】[0006]

【課題を解決するための手段】上記問題を解決するため
に、本発明に係るプリント配線板の製造方法は以下の様
な工程を有する事を特徴とする。
Means for Solving the Problems In order to solve the above problems, a method for manufacturing a printed wiring board according to the present invention is characterized by including the following steps.

【0007】コア基板の製造方法を例にして本発明を説
明する。まず樹脂基板(コア基板)の両面に配線回路と
なる銅層とエッチングにて除去される異種金属層の2層
構造からなる金属箔を、樹脂面に銅面側を向けた状態で
ホットプレスして一体化する。所定の位置にドリルやレ
ーザーを用いて貫通穴を形成した後、該異種金属層上に
発生したバリや付着したカーボン残さを、該異種金属層
をエッチング除去して同時に取り去る。
The present invention will be described by taking a method of manufacturing a core substrate as an example. First, a metal foil having a two-layer structure of a copper layer to be a wiring circuit and a dissimilar metal layer to be removed by etching on both surfaces of a resin substrate (core substrate) is hot-pressed with the copper surface facing the resin surface. And unite. After a through hole is formed at a predetermined position using a drill or a laser, burrs generated on the dissimilar metal layer and carbon residue attached thereto are removed by etching the dissimilar metal layer at the same time.

【0008】ここで異種金属層としては、例えばアルミ
ニウム、スズ又はニッケルからなる金属箔がよく用いら
れる。このような異種金属層と銅層との2層構造からな
る金属箔は、アルミニウム箔の片面に銅箔を圧着した
り、又は、アルミニウム箔の片面に銅メッキをかけた
り、あるいは銅箔にスズメッキやニッケルメッキをかけ
ることで形成することができる。もちろん、通常の銅箔
を張った後、銅箔面にスズメッキやニッケルメッキをか
けてみよい。特に異種金属層をメッキで形成する場合、
下地となる配線回路は銅箔に限らず、無電解メッキによ
る形成や無電解メッキと電解メッキとの組合わせによる
形成手段を取ることができる。異種金属材はアルミニウ
ムやスズやニッケルに限定されない。銅に対して選択的
にエッチング除去可能な金属であればアルミニウムやス
ズやニッケル以外でも利用できる。
Here, as the dissimilar metal layer, a metal foil made of, for example, aluminum, tin or nickel is often used. Such a metal foil having a two-layer structure of a dissimilar metal layer and a copper layer is obtained by pressing a copper foil on one side of an aluminum foil, plating copper on one side of an aluminum foil, or tinning a copper foil. Or nickel plating. Of course, after the usual copper foil is applied, the surface of the copper foil may be plated with tin or nickel. Especially when forming a dissimilar metal layer by plating,
The wiring circuit serving as the base is not limited to the copper foil, and may be formed by electroless plating or a combination of electroless plating and electrolytic plating. The dissimilar metal material is not limited to aluminum, tin or nickel. Any metal other than aluminum, tin, and nickel can be used as long as it is a metal that can be selectively etched away from copper.

【0009】前記2層構造の金属箔を張った基板にドリ
ルやレーザーを用いて貫通穴を形成する。ここでレーザ
ーは、CO2レーザー、エキシマレーザーあるいはYA
Gレーザーの中から選択できる。最表層の異種金属層面
に形成された貫通穴のエッジ周辺にはバリあるいはカー
ボン残さが発生する。その後、該異種金属層をエッチン
グ除去して、貫通穴のエッジ周辺のバリあるいはカーボ
ン残さを該異種金属層と同時に取り除く。こうして留め
穴のエッジ周辺や留め穴底部にバリあるいはカーボン残
さのない銅張り基板が得られる。
[0009] Through holes are formed in the substrate on which the metal foil of the two-layer structure is stretched by using a drill or a laser. Here, laser is CO 2 laser, excimer laser or YA
You can select from G lasers. Burrs or carbon residues are generated around the edges of the through holes formed on the surface of the dissimilar metal layer on the outermost layer. Thereafter, the dissimilar metal layer is removed by etching to remove burrs or carbon residues around the edges of the through holes simultaneously with the dissimilar metal layer. In this way, a copper-clad substrate free of burrs or carbon residue around the edges of the retaining holes and the bottom of the retaining holes is obtained.

【0010】その後、貫通穴の内壁面を含む基板全面に
無電解メッキをかける。更に該無電解メッキ面にレジス
ト層を形成した後、フォトマスクを介して配線パターン
を露光・現像して形成する。該配線パターンの無電解メ
ッキ面に電解メッキをかけて、所定の導体厚みにした
後、レジスト層を剥離する。そして無電解メッキ層と電
解メッキ層の表層近傍を化学的にエッチング除去して、
配線回路の形成を完了する。前述したように、発生した
バリや付着したカーボン残さを異種金属層と同時に除去
してあるので、得られたプリント配線板には、貫通穴ま
わりのメッキ不具合による断線や、カーボンによる配線
間の短絡といった不具合が発生しない。
Thereafter, electroless plating is applied to the entire surface of the substrate including the inner wall surface of the through hole. Further, after a resist layer is formed on the electroless plating surface, the wiring pattern is formed by exposing and developing the wiring pattern via a photomask. After the electroless plating surface of the wiring pattern is electroplated to have a predetermined conductor thickness, the resist layer is peeled off. And chemically remove the vicinity of the surface of the electroless plating layer and the electrolytic plating layer,
The formation of the wiring circuit is completed. As described above, the generated burrs and attached carbon residues are removed at the same time as the dissimilar metal layer, so the resulting printed wiring board has disconnections due to plating defects around the through holes and shorts between wires due to carbon. Such a trouble does not occur.

【0011】[0011]

【発明の実施の形態】以下に、本発明の実施の形態を図
面とともに説明する。 (実施例1)図1(a)に示すように、BT(ビスマレ
イミド−トリアジン)樹脂−ガラス複合材からなる絶縁
基板1の表面に配線層になる厚み5μmの銅層2と厚み
40μmのアルミニウム層3の2層構造をなす金属箔4
を、銅側が該絶縁基板1に向いた状態で熱プレスして一
体化した。
Embodiments of the present invention will be described below with reference to the drawings. (Example 1) As shown in FIG. 1 (a), a copper layer 2 having a thickness of 5 μm to be a wiring layer and an aluminum layer having a thickness of 40 μm were formed on the surface of an insulating substrate 1 made of a BT (bismaleimide-triazine) resin-glass composite material. Metal foil 4 having a two-layer structure of layer 3
Were integrated by hot pressing with the copper side facing the insulating substrate 1.

【0012】図1(b)に示すように、アルミニウム層
3からYAGレーザーを照射(図示省略)して、所定の
位置に直径50μmの貫通穴5を形成した。
As shown in FIG. 1B, a YAG laser was irradiated (not shown) from the aluminum layer 3 to form a through hole 5 having a diameter of 50 μm at a predetermined position.

【0013】次いで図1(c)に示すように、アルミニ
ウム層3を水酸化ナトリウム水溶液で溶解除去して、配
線層になる銅層2を露出させた。
Next, as shown in FIG. 1C, the aluminum layer 3 was dissolved and removed with an aqueous solution of sodium hydroxide to expose the copper layer 2 serving as a wiring layer.

【0014】そして図1(d)に示すように、配線層2
および貫通穴5の内壁面にまず無電解銅メッキ層6を厚
み0.5μm施し、次いで電解銅メッキ層7を厚み12
μm施した。
[0014] Then, as shown in FIG.
First, an electroless copper plating layer 6 having a thickness of 0.5 μm is applied to the inner wall surface of the through hole 5, and then an electroless copper plating layer 7 having a thickness of 12 μm.
μm.

【0015】そして図2(a)に示すように、配線層に
なる電解銅メッキ層7上にレジスト層8をホットラミネ
ーターを用いて貼った後、フォトマスク9を介して露光
・現像し、パターン形成を行う。
Then, as shown in FIG. 2A, after a resist layer 8 is stuck on an electrolytic copper plating layer 7 to be a wiring layer by using a hot laminator, the resist layer 8 is exposed and developed through a photomask 9 to form a pattern. Perform formation.

【0016】図2(b)に示す状態で、露出した銅層を
塩化第二鉄主体のエッチング剤で処理して、レジスト層
8に保護された配線回路以外の銅層を全て除去する。
In the state shown in FIG. 2B, the exposed copper layer is treated with an etching agent mainly composed of ferric chloride to remove all the copper layers other than the wiring circuit protected by the resist layer 8.

【0017】残ったレジスト層8を剥離して、図2
(c)に示すような配線回路の形成を完成する。
The remaining resist layer 8 is peeled off, and FIG.
The formation of the wiring circuit as shown in (c) is completed.

【0018】(実施例2)図3(a)に示すように、B
T(ビスマレイミド−トリアジン)樹脂−ガラス複合材
からなる絶縁基板10の表面に配線層になる厚み5μm
の銅層11と厚み40μmのアルミニウム層12の2層
構造をなす金属箔13を、銅側が該絶縁基板10に向い
た状態で熱プレスして一体化した。
(Embodiment 2) As shown in FIG.
5 μm thick to become a wiring layer on the surface of insulating substrate 10 made of T (bismaleimide-triazine) resin-glass composite material
The metal foil 13 having a two-layer structure of the copper layer 11 and the aluminum layer 12 having a thickness of 40 μm was integrated by hot pressing with the copper side facing the insulating substrate 10.

【0019】図3(b)に示すように、ドリルを用いて
(図示省略)、所定の位置に直径250μmの貫通穴1
4を形成した。
As shown in FIG. 3B, a through hole 1 having a diameter of 250 μm is formed at a predetermined position using a drill (not shown).
4 was formed.

【0020】次いで図3(c)に示すように、アルミニ
ウム層12を水酸化ナトリウム水溶液で溶解除去して、
配線層になる銅層11を露出させた。
Next, as shown in FIG. 3C, the aluminum layer 12 is dissolved and removed with an aqueous sodium hydroxide solution.
The copper layer 11 serving as a wiring layer was exposed.

【0021】そして図3(d)に示すように、配線層1
1および貫通穴14の内壁面にまず無電解銅メッキ層1
5を厚み0.5μm施し、次いで電解銅メッキ層16を
厚み12μm施した。
Then, as shown in FIG.
First, the electroless copper plating layer 1
5 was applied in a thickness of 0.5 μm, and then an electrolytic copper plating layer 16 was applied in a thickness of 12 μm.

【0022】そして図4(a)に示すように、配線層に
なる電解銅メッキ層16上にレジスト層17をホットラ
ミネーターを用いて貼った後、フォトマスク18を介し
て露光・現像し、パターン形成を行う。
Then, as shown in FIG. 4A, after a resist layer 17 is stuck on an electrolytic copper plating layer 16 to be a wiring layer by using a hot laminator, the resist layer 17 is exposed and developed through a photomask 18 to form a pattern. Perform formation.

【0023】図4(b)に示す状態で、露出した銅層を
塩化第二鉄主体のエッチング剤で処理して、レジスト層
17に保護された配線回路以外の銅層を全て除去する。
In the state shown in FIG. 4B, the exposed copper layer is treated with an etching agent mainly composed of ferric chloride to remove all copper layers other than the wiring circuit protected by the resist layer 17.

【0024】残ったレジスト層17を剥離して、図4
(c)に示すような配線回路の形成を完成する。
The remaining resist layer 17 is peeled off, and FIG.
The formation of the wiring circuit as shown in (c) is completed.

【0025】(比較例1)図5(a)に示すように、B
T(ビスマレイミド−トリアジン)樹脂−ガラス複合材
からなる絶縁基板19の両面に、厚み18μmの銅箔2
0を熱プレスして一体化する。
Comparative Example 1 As shown in FIG.
18 μm thick copper foil 2 on both surfaces of an insulating substrate 19 made of T (bismaleimide-triazine) resin-glass composite material
0 is hot-pressed and integrated.

【0026】そして図5(b)に示すように、所定の位
置にYAGレーザーを照射(図示省略)して、直径50
μmの貫通穴21を形成する。
Then, as shown in FIG. 5B, a predetermined position is irradiated with a YAG laser (not shown), and a diameter of 50 mm is applied.
A through hole 21 of μm is formed.

【0027】次いで図5(c)に示すように、銅層20
および貫通穴21の内壁面にまず無電解銅メッキ層22
を厚み0.5μm施し、次いで電解銅メッキ層23を厚
み12μm施した。
Next, as shown in FIG.
And an electroless copper plating layer 22 on the inner wall surface of the through hole 21.
Was applied in a thickness of 0.5 μm, and then an electrolytic copper plating layer 23 was applied in a thickness of 12 μm.

【0028】そして図6(a)に示すように、電解銅メ
ッキ層23上にレジスト層24をホットラミネーターを
用いて貼った後、フォトマスク24を介して露光・現像
し、パターン形成を行う。
Then, as shown in FIG. 6A, a resist layer 24 is stuck on the electrolytic copper plating layer 23 using a hot laminator, and then exposed and developed through a photomask 24 to form a pattern.

【0029】図6(b)に示す状態で、露出した銅層を
塩化第二鉄主体のエッチング剤で処理して、レジスト層
24に保護された配線回路以外の銅層を全て除去する。
In the state shown in FIG. 6B, the exposed copper layer is treated with an etching agent mainly composed of ferric chloride to remove all the copper layers other than the wiring circuit protected by the resist layer 24.

【0030】残ったレジスト層を剥離して、図6(c)
に示すような配線回路の形成を完成する。
The remaining resist layer is peeled off, and FIG.
The formation of the wiring circuit shown in FIG.

【0031】(比較例2)図7(a)に示すように、B
T(ビスマレイミド−トリアジン)樹脂−ガラス複合材
からなる絶縁基板26の両面に厚み12μmの銅箔27
を熱プレスして一体化する。
Comparative Example 2 As shown in FIG.
12 μm thick copper foil 27 on both sides of an insulating substrate 26 made of T (bismaleimide-triazine) resin-glass composite material
Are hot-pressed and integrated.

【0032】そして、図7(b)に示すように、所定の
位置にドリルを用いて(図示省略)、直径250μmの
貫通穴28を形成する。
Then, as shown in FIG. 7B, a through hole 28 having a diameter of 250 μm is formed at a predetermined position using a drill (not shown).

【0033】次いで図7(c)に示すように、銅層27
および貫通穴28の内壁面にまず無電解銅メッキ層29
を厚み0.5μm施し、次いで電解銅メッキ層30を厚
み12μm施した。
Next, as shown in FIG.
And an electroless copper plating layer 29 on the inner wall surface of the through hole 28.
Was applied in a thickness of 0.5 μm, and then an electrolytic copper plating layer 30 was applied in a thickness of 12 μm.

【0034】そして図8(a)に示すように、電解銅メ
ッキ層30上にレジスト層31をホットラミネーターを
用いて貼った後、フォトマスク32を介して露光・現像
し、パターン形成を行う。
Then, as shown in FIG. 8A, after a resist layer 31 is stuck on the electrolytic copper plating layer 30 by using a hot laminator, it is exposed and developed through a photomask 32 to form a pattern.

【0035】図8(b)に示す状態で、露出した銅層を
塩化第二鉄主体のエッチング剤で処理して、レジスト層
31に保護された配線回路以外の銅層を全て除去する。
In the state shown in FIG. 8B, the exposed copper layer is treated with an etching agent mainly composed of ferric chloride to remove all the copper layers other than the wiring circuit protected by the resist layer 31.

【0036】残ったレジスト層を剥離して、図8(c)
に示すような配線回路の形成を完成する。
The remaining resist layer is peeled off, and FIG.
The formation of the wiring circuit shown in FIG.

【0037】上記の実施例1、2及び比較例1、2の方
法を用いて、図9に示す断面構造を有する留め穴テスト
用プリント配線板33を100個製作しその留め穴部に
おける断線の有無を導通検査計34を用いて検査し、製
作方法別の断線発生率の比較を行なった。
Using the methods of the first and second embodiments and the first and second comparative examples, 100 printed circuit boards 33 for a hole test having the cross-sectional structure shown in FIG. 9 were manufactured. The presence / absence was inspected using the continuity tester 34, and the disconnection rates were compared for each manufacturing method.

【0038】図10に示すように、本発明の実施例1、
2を用いたサンプルでは共に断線発生率は0%であっ
た。一方、比較例1、2を用いたサンプルでは、それぞ
れの断線発生率は12%、20%であった。
As shown in FIG. 10, Embodiment 1 of the present invention
In both of the samples using No. 2, the disconnection occurrence rate was 0%. On the other hand, in the samples using Comparative Examples 1 and 2, the disconnection occurrence rates were 12% and 20%, respectively.

【0039】[0039]

【発明の効果】以上記述したように、本発明のプリント
配線板の製造方法によれば、レーザーやドリルを用いて
貫通穴を形成した時のバリの発生やカーボンの付着が原
因となる貫通穴まわりの断線や短絡といった不具合の発
生を効果的に抑えることができる。
As described above, according to the method for manufacturing a printed wiring board of the present invention, when a through-hole is formed by using a laser or a drill, the formation of a burr or adhesion of carbon causes the through-hole. It is possible to effectively suppress the occurrence of troubles such as disconnection and short circuit around.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に係るプリント配線板の製造
方法を示す説明図である。
FIG. 1 is an explanatory diagram illustrating a method for manufacturing a printed wiring board according to Example 1 of the present invention.

【図2】本発明の実施例1に係るプリント配線板の製造
方法を示す説明図である。
FIG. 2 is an explanatory diagram illustrating a method for manufacturing a printed wiring board according to Embodiment 1 of the present invention.

【図3】本発明の実施例2に係るプリント配線板の製造
方法を示す説明図である。
FIG. 3 is an explanatory view illustrating a method for manufacturing a printed wiring board according to Embodiment 2 of the present invention.

【図4】本発明の実施例2に係るプリント配線板の製造
方法を示す説明図である。
FIG. 4 is an explanatory view illustrating a method for manufacturing a printed wiring board according to Embodiment 2 of the present invention.

【図5】本発明の比較例1に係るプリント配線板の製造
方法を示す説明図である。
FIG. 5 is an explanatory view illustrating a method for manufacturing a printed wiring board according to Comparative Example 1 of the present invention.

【図6】本発明の比較例1に係るプリント配線板の製造
方法を示す説明図である。
FIG. 6 is an explanatory view illustrating a method for manufacturing a printed wiring board according to Comparative Example 1 of the present invention.

【図7】本発明の比較例2に係るプリント配線板の製造
方法を示す説明図である。
FIG. 7 is an explanatory view illustrating a method for manufacturing a printed wiring board according to Comparative Example 2 of the present invention.

【図8】本発明の比較例2に係るプリント配線板の製造
方法を示す説明図である。
FIG. 8 is an explanatory view illustrating a method for manufacturing a printed wiring board according to Comparative Example 2 of the present invention.

【図9】貫通穴導通テスト用のプリント配線板の断面構
造を示す図である。
FIG. 9 is a diagram showing a cross-sectional structure of a printed wiring board for a through-hole continuity test.

【図10】貫通穴導通テストによる各工法別の断線発生
率のまとめを示す図である。
FIG. 10 is a diagram showing a summary of a disconnection rate for each method by a through-hole continuity test.

【符号の説明】[Explanation of symbols]

1:絶縁基板 2:銅箔層 3:アルミニウム箔層 4:2層構造金属箔 5:貫通穴 6:無電解メッキ層 7:電解メッキ層 8:レジスト層 9:フォトマスク 1: Insulating substrate 2: Copper foil layer 3: Aluminum foil layer 4: Two-layer metal foil 5: Through hole 6: Electroless plating layer 7: Electrolytic plating layer 8: Resist layer 9: Photomask

フロントページの続き (51)Int.Cl.6 識別記号 FI H05K 3/46 H05K 3/46 X Continued on the front page (51) Int.Cl. 6 Identification code FI H05K 3/46 H05K 3/46 X

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 樹脂基板の両面に銅層と異種金属層の2
層構造からなる金属箔を、樹脂面に銅面側を向けた状態
でホットプレスして一体化した基板に貫通穴を形成した
後、前記異種金属層をエッチングにより除去する工程を
含む事を特徴とするプリント配線板の製造方法。
1. A resin layer comprising a copper layer and a dissimilar metal layer on both sides of a resin substrate.
After forming a through hole in the integrated substrate by hot pressing the metal foil having a layer structure with the copper surface facing the resin surface to form a through hole, the method includes a step of removing the dissimilar metal layer by etching. Manufacturing method of a printed wiring board.
【請求項2】 上記異種金属層が銅よりも化学エッチン
グで除去されやすい金属で形成されることを特徴とする
請求項1記載のプリント配線板の製造方法。
2. The method for manufacturing a printed wiring board according to claim 1, wherein said dissimilar metal layer is formed of a metal which is more easily removed by chemical etching than copper.
【請求項3】 上記異種金属層がアルミニウムで形成さ
れることを特徴とする請求項1記載のプリント配線板の
製造方法。
3. The method for manufacturing a printed wiring board according to claim 1, wherein said dissimilar metal layer is formed of aluminum.
【請求項4】 上記異種金属層がスズで形成されること
を特徴とする請求項1及び請求項1記載のプリント配線
板の製造方法。
4. The method according to claim 1, wherein said dissimilar metal layer is formed of tin.
【請求項5】 上記異種金属層がニッケルで形成される
ことを特徴とする請求項1記載のプリント配線板の製造
方法。
5. The method according to claim 1, wherein said dissimilar metal layer is formed of nickel.
【請求項6】 上記貫通穴をドリルで形成することを特
徴とする請求項1記載のプリント配線板の製造方法。
6. The method according to claim 1, wherein the through hole is formed by a drill.
【請求項7】 上記貫通穴をレーザーで形成することを
特徴とする請求項1記載のプリント配線板の製造方法。
7. The method for manufacturing a printed wiring board according to claim 1, wherein said through holes are formed by a laser.
JP26791597A 1997-09-11 1997-09-11 Production of printed wiring board Pending JPH1187886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26791597A JPH1187886A (en) 1997-09-11 1997-09-11 Production of printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26791597A JPH1187886A (en) 1997-09-11 1997-09-11 Production of printed wiring board

Publications (1)

Publication Number Publication Date
JPH1187886A true JPH1187886A (en) 1999-03-30

Family

ID=17451396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26791597A Pending JPH1187886A (en) 1997-09-11 1997-09-11 Production of printed wiring board

Country Status (1)

Country Link
JP (1) JPH1187886A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007477A (en) * 1999-06-17 2001-01-12 Mitsubishi Gas Chem Co Inc Manufacture of multilayer printed circuit board having through hole by carbon dioxide gas laser processing
EP1594352A1 (en) * 2004-05-07 2005-11-09 Nitto Denko Corporation Method for manufacturing double-sided printed circuit board
CN103974563A (en) * 2013-01-30 2014-08-06 Si弗莱克斯有限公司 PTH plating method of printed circuit boards
CN104219890A (en) * 2014-09-04 2014-12-17 金悦通电子(翁源)有限公司 Decoppering and desulphurizing method for PCB (printed circuit board) lead-free hot air solder leveling process
US20150021072A1 (en) * 2012-04-05 2015-01-22 Tyco Electronics Amp Korea Ltd. Printed Circuit Board and Manufacture Method Thereof
CN105357880A (en) * 2015-11-30 2016-02-24 成都市天目电子设备有限公司 Clamping device for integrated circuit board

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007477A (en) * 1999-06-17 2001-01-12 Mitsubishi Gas Chem Co Inc Manufacture of multilayer printed circuit board having through hole by carbon dioxide gas laser processing
EP1594352A1 (en) * 2004-05-07 2005-11-09 Nitto Denko Corporation Method for manufacturing double-sided printed circuit board
US7281327B2 (en) 2004-05-07 2007-10-16 Nitto Denko Corporation Method for manufacturing double-sided printed circuit board
US20150021072A1 (en) * 2012-04-05 2015-01-22 Tyco Electronics Amp Korea Ltd. Printed Circuit Board and Manufacture Method Thereof
US9510446B2 (en) * 2012-04-05 2016-11-29 Tyco Electronics Amp Korea Ltd. Printed circuit board and manufacture method thereof
CN103974563A (en) * 2013-01-30 2014-08-06 Si弗莱克斯有限公司 PTH plating method of printed circuit boards
CN104219890A (en) * 2014-09-04 2014-12-17 金悦通电子(翁源)有限公司 Decoppering and desulphurizing method for PCB (printed circuit board) lead-free hot air solder leveling process
CN105357880A (en) * 2015-11-30 2016-02-24 成都市天目电子设备有限公司 Clamping device for integrated circuit board

Similar Documents

Publication Publication Date Title
JP4520392B2 (en) Printed circuit board manufacturing method
US20060137906A1 (en) Printed wiring board and method of manufacturing the same
JP2009231770A (en) Multilayer flexible printed wiring board and its manufacturing method
JP4624217B2 (en) Circuit board manufacturing method
JP5066427B2 (en) Method for manufacturing printed wiring board
JPH1187931A (en) Manufacture of printed circuit board
TWI252721B (en) Method of manufacturing double-sided printed circuit board
JP3596374B2 (en) Manufacturing method of multilayer printed wiring board
JPH1187886A (en) Production of printed wiring board
JP4137279B2 (en) Printed wiring board and manufacturing method thereof
JP2006186059A (en) Multilayer printed wiring board and its production process
JP4045120B2 (en) Multilayer printed wiring board and manufacturing method thereof
JPH06132630A (en) Manufacture of flexible circuit board
JPH098458A (en) Printed-wiring board and manufacture thereof
JP2000124615A (en) Multilayer printed wiring board and its manufacture
JPH05211386A (en) Printed wiring board and manufacture thereof
JP3217563B2 (en) Manufacturing method of printed wiring board
JPH08148810A (en) Manufacture of printed wiring board
JP6884333B2 (en) Manufacturing method of flexible printed wiring board
JP3077255B2 (en) Wiring board and its manufacturing method
JP2647007B2 (en) Manufacturing method of printed wiring board
JP3747897B2 (en) Manufacturing method of tape carrier for semiconductor device and semiconductor device using the same
JP3984092B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP3817291B2 (en) Printed wiring board
JP3792544B2 (en) Wiring board manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A02 Decision of refusal

Effective date: 20060314

Free format text: JAPANESE INTERMEDIATE CODE: A02