JP3792544B2 - Wiring board manufacturing method - Google Patents

Wiring board manufacturing method Download PDF

Info

Publication number
JP3792544B2
JP3792544B2 JP2001195875A JP2001195875A JP3792544B2 JP 3792544 B2 JP3792544 B2 JP 3792544B2 JP 2001195875 A JP2001195875 A JP 2001195875A JP 2001195875 A JP2001195875 A JP 2001195875A JP 3792544 B2 JP3792544 B2 JP 3792544B2
Authority
JP
Japan
Prior art keywords
insulating resin
hole
conductor
layer
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001195875A
Other languages
Japanese (ja)
Other versions
JP2003017853A (en
Inventor
英敏 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001195875A priority Critical patent/JP3792544B2/en
Publication of JP2003017853A publication Critical patent/JP2003017853A/en
Application granted granted Critical
Publication of JP3792544B2 publication Critical patent/JP3792544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機材料系の多層配線基板の製造方法に関するものである。
【0002】
【従来の技術】
従来、半導体素子を搭載するための有機材料系の配線基板として、例えばガラス−エポキシ板からなる絶縁樹脂板の上下両面に銅箔から成る内層導体が被着された両面銅張板の上下両面にエポキシ樹脂を主成分とする絶縁樹脂層が被着されているとともにその絶縁樹脂板および絶縁樹脂層を上下に貫通する複数の貫通孔を有し、貫通孔内壁に貫通導体および絶縁樹脂層表面に表層導体がそれぞれ無電解めっきおよび電解銅めっきにより被着されて成る多層配線基板が用いられている。この配線基板においては、貫通孔の内壁に被着させた貫通導体を介して上下に位置する内層導体および表層導体を電気的に接続することにより立体的な高密度配線が可能となっている。
【0003】
なお、このような有機材料系の多層配線基板は、例えば厚みが0.35〜0.45mm程度のガラス−エポキシ板から成る絶縁樹脂板の上下両面に厚みが7〜12μm程度の銅箔から成る内層導体が被着形成された両面銅張板の上下両面に厚みが25〜45μmの絶縁樹脂層を被着させるとともに、その上面から下面にかけて直径が200〜500μm程度の貫通孔をドリル加工により穿孔し、しかる後、貫通孔内壁に厚みが15〜50μm程度の銅めっき層から成る貫通導体および絶縁樹脂層表面に表層導体を無電解めっき法および電解めっき法により被着させることによって製作されている。
【0004】
【発明が解決しようとする課題】
ところで、このような有機材料系の多層配線基板においては、その配線密度を更に高めるために貫通孔の直径を例えば75〜130μm程度の小さなものとする試みがなされている。このような直径が75〜130μm程度の小さな貫通孔を形成するためには例えば炭酸ガスレーザによる穿孔方法が採用される。
【0005】
しかしながら、炭酸ガスレーザで穿孔した場合には貫通孔の内壁にもろい炭化層が形成され、貫通孔の内壁に銅めっき層からなる貫通導体を被着させた後、貫通孔の壁面の炭化層を起点にして貫通導体に剥離が発生してしまい、貫通導体と内層導体との間に導通不良を起こしてしまうという問題があった。
【0006】
本発明は、かかる従来の問題点に鑑み案出されたものであり、その目的は、貫通導体に剥離が発生することがなく、貫通導体と内層導体とが常に良好に接続された極めて高密度な配線が可能な配線基板およびその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の配線基板の製造方法は、絶縁樹脂板にレーザ加工を施すことにより、内壁に炭化層が形成された複数の貫通孔を穿孔する工程と、次に前記炭化層上に前処理用めっき金属層を被着させる工程と、次に前記前処理用めっき金属層を前記炭化層とともにエッチング除去する工程と、次に前記前処理めっき金属層および炭化層が除去された貫通孔内壁にめっき法により貫通導体を被着させる工程とを具備することを特徴とするものである。
【0008】
本発明の配線基板の製造方法によれば、レーザ加工により形成された貫通孔内壁の炭化層上に前処理用めっき金属層を被着させた後、これを炭化層とともにエッチング除去し、更にこの前処理用めっき金属層および炭化層が除去された貫通孔内壁にめっき法により貫通導体を被着させることから、貫通導体が炭化層を起点にして剥離するようなことはない。
【0009】
【発明の実施の形態】
次に、本発明の配線基板の製造方法について詳細に説明する。
【0010】
図1は、本発明の製造方法によって製作される配線基板の実施形態の一例を示す部分断面図である。図1において、1は絶縁樹脂板、2A・2Bは内層導体、3A・3Bは絶縁樹脂層、4は貫通孔、5は貫通導体、6A・6Bは表層導体であり、主として絶縁樹脂板1の上下両面に内層導体2A・2Bおよび絶縁樹脂層3A・3Bが被着されるとともに絶縁樹脂板1および内層導体2A・2Bおよび絶縁樹脂層3A・3Bを貫通して複数の貫通孔4が設けられ、さらに貫通孔4の内壁に貫通導体5が被着形成されるとともに絶縁樹脂層3A・3Bの表面に表層導体6A・6Bが被着形成されることにより本発明の配線基板が構成されている。なお、本実施形態例においては、貫通孔4内および絶縁樹脂層3A・3B上にソルダレジスト7が設けられている。
【0011】
絶縁樹脂板1は、配線基板のコア部材として機能し、例えばガラスクロスやアラミドクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂を含浸させた有機系絶縁材料から成る厚みが0.35〜0.45mmの平板であり、その上下両面に厚みが7〜12μmの銅箔から成る内層導体2A・2Bが被着された、いわゆる両面銅張り板を構成している。この絶縁樹脂板1は、その厚みが0.35mm未満ではその上下面に絶縁樹脂層3A・3Bを被着させたり、あるいは絶縁樹脂板1および内層導体2A・2Bおよび絶縁樹脂層3A・3Bを貫通して複数の貫通孔4を形成したりする際等に熱や外力等の影響で配線基板に反りや変形が発生して配線基板に要求される平坦度を確保できなくなってしまう危険性が大きなものとなり、他方、0.45mmを超えると、後述するように貫通孔4内壁に貫通導体5を形成するとき、貫通孔4内にめっき液が浸入しにくくなり、貫通導体5を良好に形成することが困難となる。したがって、絶縁樹脂板1の厚みは0.35〜0.45mmの範囲が好ましい。
【0012】
なお、絶縁樹脂板1は、ガラスクロスやアラミドクロスに含浸させるエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂中にシリカやアルミナあるいはアラミド樹脂等から成るフィラーをガラスクロスやアラミドクロス等の繊維部分と樹脂部分とでレーザ光の透過度が略同等となる程度に含有させておけば、後述するように絶縁樹脂板1にレーザ光で貫通孔4を穿孔する際に、貫通孔4を絶縁樹脂板1に略均一な大きさで良好に形成することが可能となる。したがって、絶縁樹脂板1のガラスクロスやアラミドクロスに含浸させるエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂中にはシリカやアルミナあるいはアラミド樹脂等から成るフィラーをガラスクロスやアラミドクロス等の繊維部分と樹脂部分とでレーザ光の透過度が略同等となるように含有させておくことが好ましい。
【0013】
また、絶縁樹脂板1の上下面に被着された内層導体2A・2Bは、銅箔から成り、主として電源層やグランド層として機能する内層配線導体パターンWとこの内層配線導体パターンWから電気的に独立したダミー導体パターンDとを有し、その厚みが7〜12μm、その表面の中心線平均粗さRaが0.2〜2μm程度である。内層導体2A・2Bは、その厚みが7μm未満の場合、電源層やグランド層としての内層配線導体パターンWに対して十分な電気特性を付与することができず、他方、12μmを超える場合、後述するように絶縁樹脂板1と内層導体2A・2Bおよび絶縁樹脂層3A・3Bとを貫通する貫通孔4をレーザ加工により穿孔する場合に、貫通孔4を安定して形成することが困難となる。したがって、内層導体2A・2Bの厚みは、7〜12μmの範囲が好ましい。
【0014】
なお、内層導体2A・2Bは、貫通孔4により貫通されるとともに後述する貫通導体5に接する内層配線導体パターンWまたはダミー導体パターンDを全ての貫通孔4に対応して有するように形成しておくと、貫通孔4をレーザ加工により穿孔する際に全ての貫通孔4においてレーザ光の吸収反射を略同じとして全ての貫通孔4を略均一な大きさおよび形状に形成することができる。したがって、内層導体2A・2Bは、貫通孔4により貫通される内層配線導体パターンWまたはダミー導体パターンDを全ての貫通孔4に対応して有するように形成しておくことが好ましい。この場合、ダミー導体パターンDは、その直径が貫通孔4の直径よりも40〜100μm程度大きな略円形のパターンとすればよく、内層配線導体パターンWとの間に30〜60μm程度の幅の間隔を設ければよい。ダミー導体パターンDの直径が貫通孔4の直径よりも40μm未満大きな場合には、レーザ加工により貫通孔4を穿孔する際にダミー導体パターンDを正確に貫通することが困難となり、他方、100μmを超えて大きな場合には、内層配線導体パターンWの面積を広く採ることが困難となる。また、ダミー導体パターンDと内層配線導体パターンWとの間隔が30μm未満の場合には、ダミー導体パターンDと内層配線導体パターンWとの間の電気的絶縁が良好に保てなくなる傾向にあり、他方、60μmを超えると、内層配線導体パターンWの面積を広く採ることが困難となる。
【0015】
また、内層導体2A・2Bは、その表面の中心線平均粗さRaが0.2μm未満の場合、内層導体2A・2Bと絶縁樹脂層3A・3Bとが強固に密着せずに内層導体2A・2Bと絶縁樹脂層3A・3Bとの間で剥離が発生しやすくなる傾向にあり、他方2μmを超えると、そのような粗い面を安定かつ効率良く形成することが困難となる傾向にある。したがって、内層導体2A・2B表面の中心線平均粗さRaは0.2〜2μmの範囲が好ましい。
【0016】
また、絶縁樹脂板1の上下面に被着された絶縁樹脂層3A・3Bはエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の熱硬化性樹脂から成り、レーザ光に対する分解度合いが絶縁樹脂板1よりも大きく、その表面に表層導体6A・6Bが被着されている。絶縁樹脂層3A・3Bは、互いに絶縁すべき内層導体2A・2Bと表層導体6A・6Bとを電気的に絶縁するための絶縁間隔を提供するためのものであり、その厚みが内層導体2A・2B上で25〜45μmである。この絶縁樹脂層3A・3Bは、その厚みが内層導体2A・2B上で25μm未満の場合、互いに絶縁すべき内層導体2A・2Bと表層導体6A・6Bとを電気的に良好に絶縁することができなくなり、他方、45μmを超えると、絶縁樹脂板1および内層導体2A・2Bならびに絶縁樹脂層3A・3Bを貫通する貫通孔4をレーザ加工により穿孔する際に貫通孔4を良好に形成することが困難となる。したがって、絶縁層3A・3Bの厚みは内層導体2A・2B上で25〜45μmの範囲が好ましい。
【0017】
表層導体6A・6Bは、厚みが8〜30μmの銅めっき膜から成り、電源配線およびグランド配線および信号配線を具備する表層配線パターンを形成している。そして、例えば上面側の表層導体6Aの露出する一部に図示しない電子部品の電極が半田を介して接続されるとともに、下面側の表層導体6Bの露出する一部が図示しない他の配線基板等に半田を介して接続される。
【0018】
これらの表層導体6A・6Bは、その厚みが8μm未満であると、表層配線パターンの電気抵抗が高いものとなり、他方、30μmを超えると、表層配線パターンを高密度に形成することが困難となる。したがって、表層導体6A・6Bの厚みは、8〜30μmの範囲が好ましい。
【0019】
さらに、本発明の製造方法により製作される配線基板においては、絶縁樹脂板1および内層導体2A・2Bおよび絶縁樹脂層3A・3Bを貫通して貫通孔4がレーザ加工により形成されており、この貫通孔4の内壁に貫通導体5が被着形成されている。貫通孔4は、貫通導体5を絶縁樹脂層3Aの上面から絶縁樹脂層3Bの下面にかけて導出させるための導出路を提供するためのものである。この貫通孔4は、レーザ加工によって形成されることにより、絶縁樹脂板1においては直径が75〜115μmでその内壁が略垂直であり、絶縁樹脂層3A・3Bにおいてはその内壁が垂直方向から10〜30の角度で傾いて外側に向けて拡径する形状となっている。この場合、絶縁樹脂層3A・3Bはそのレーザ光に対する分解度合いが絶縁樹脂板1よりも大きいことから、レーザ加工の際に絶縁基体1よりも大きく分解されるので貫通孔4の形状が絶縁樹脂層3A・3Bにおいて外側に向けて拡径する形状となる。
【0020】
このように、本発明の製造方法により製作される配線基板によれば、貫通孔4はレーザ加工により形成され、その直径が絶縁樹脂板1において75〜115μmと小さく、かつその内壁が絶縁樹脂層3A・3Bにおいて垂直方向から10〜30の角度で傾いて外側に向けて拡径する形状となっていることから、貫通導体5および表層導体6A・6Bを高密度で配置することができ、それにより極めて高密度な配線を有する配線基板を得ることができる。
【0021】
また、貫通孔4はその直径が絶縁樹脂板1において75〜115μmと小さいものの、その内壁が絶縁樹脂板1においては略垂直でかつ絶縁樹脂層3A・3Bにおいては垂直方向から10〜30の角度で傾いて外側に向けて拡径する形状となっていることから、後述するように貫通孔4内壁に貫通導体5を被着形成する際に、貫通導体5を形成するためのめっき液が貫通孔4の内部に良好に入り込み、その結果、貫通孔4内に貫通導体5を良好に形成することができる。
【0022】
なお、絶縁樹脂板1における貫通孔4の直径が75μm未満の場合、貫通孔4内壁に貫通導体5を被着形成する際に、貫通導体5を形成するためのめっき液が貫通孔4の内部に良好に入り込まずに貫通孔4内壁に貫通導体5を良好に形成することが困難となり、他方、115μmを超えると、貫通導体5および表層導体6A・6Bを高密度で配置することが困難となる。したがって、絶縁樹脂板1における貫通孔4の直径は、75〜115μmの範囲が好ましい。
【0023】
また、絶縁樹脂板1における貫通孔4の内壁が略垂直でない場合、貫通孔4内壁に貫通導体5を被着形成する際に貫通孔4の内部に気泡が取り残されやすく、そのため貫通導体5を形成するためのめっき液が気泡が取り残された部分に良好に届かずに貫通孔4内壁に貫通導体5を良好に形成することが困難となる。したがって、絶縁樹脂板1における貫通孔4の内壁は略垂直であることが好ましい。
【0024】
また、貫通孔4の内壁が絶縁樹脂層3A・3Bにおいて外側に向けて傾く角度が垂直方向から10度未満の場合、貫通孔4内壁に貫通導体5を被着形成する際に、貫通導体5を形成するためのめっき液が貫通孔4の内部に良好に入り込まずに貫通孔4内壁に貫通導体5を良好に形成することが困難となり、他方、30度を超えるとそのような角度で内壁が拡がる貫通孔4を安定して効率よく形成することが困難となる。したがって、貫通孔4の内壁が絶縁樹脂層3A・3Bにおいて外側に向けて傾く角度は、垂直方向から10〜30度の範囲が好ましい。
【0025】
貫通孔4の内壁に被着形成された貫通導体5は、厚みが8〜25μm程度の銅めっき膜から成り、絶縁樹脂板1および絶縁樹脂層3A・3Bを挟んで上下に位置する内層導体2A・2Bおよび表層導体6A・6B同士を互いに電気的に接続する接続導体として機能する。
【0026】
貫通導体5は、その厚みが8μm未満では、貫通導体5の電気抵抗が高いものとなりすぎる傾向にあり、他方、25μmを超えると、この貫通導体5が被着された貫通孔4の内部に後述するソルダレジスト7を良好に充填することが困難となる。したがって、貫通導体5の厚みは、8〜25μmの範囲であることが好ましい。
【0027】
さらに、絶縁樹脂層3A・3Bの表面および貫通孔4の内部には、エポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の熱硬化性樹脂から成るソルダレジスト7が被着および充填されている。ソルダレジスト7は、貫通導体5および表層導体6A・6Bを保護するとともに表層導体6A・6Bにおける表層配線パターン同士を電気的に良好に絶縁するための保護層として機能し、表層導体6A・6Bの一部を露出させる所定のパターンに被着形成されている。
【0028】
なお、ソルダレジスト7は、その表層導体6A・6B上における厚みが10μm未満であると、表層導体6を良好に保護することができなくなるとともに表層導体6A・6Bにおける表層配線パターン同士を電気的に良好に絶縁することができなくなる傾向にあり、他方、40μmを超えると、ソルダレジスト7を所定のパターンに形成することが困難となる傾向にある。したがって、ソルダレジストの表層導体6A・6B上における厚みは、10〜40μmの範囲が好ましい。
【0029】
次に、図1に示した配線基板を本発明の製造方法により製造する方法について図2(a)〜(h)を参照して説明する。
【0030】
まず、図2(a)に部分断面図で示すように、例えばガラスクロスやアラミドクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂の樹脂を含浸させた有機系絶縁材料から成る厚みが0.35〜0.45mmの絶縁樹脂板1の上下面に厚みが7〜12μmの銅箔から成る内層導体2A・2Bが被着形成された両面銅張板を準備する。なお、内層導体2A・2Bはその表面の中心線平均粗さRaが0.2〜2μm程度となるように、その表面を粗化しておく。
【0031】
絶縁樹脂板1は、その厚みが0.35mm未満ではその上下面に絶縁樹脂層3A・3Bを被着させたり、あるいは絶縁樹脂板1および内層導体2A・2Bおよび絶縁樹脂層3A・3Bを貫通して複数の貫通孔4を形成する際等に熱や外力等の影響で配線基板に反りや変形が発生して配線基板に要求される平坦度を確保できなくなってしまう危険性が大きなものとなり、他方、0.45mmを超えると、後述するように貫通孔4内壁に貫通導体5を形成するとき、貫通孔4内にめっき液が浸入しにくくなり、貫通導体5に断線が発生しやすくなる。したがって、絶縁樹脂板1の厚みは0.35〜0.45mmの範囲が好ましい。
【0032】
また、内層導体2A・2Bは、その厚みが7μm未満の場合、内層導体2A・2Bのパターンに電源層やグランド層としての十分な電気特性を付与することができず、他方、12μmを超える場合、後述するように絶縁樹脂板1と内層導体2A・2Bおよび絶縁樹脂層3A・3Bとを貫通する貫通孔4をレーザ加工により穿孔する場合に、直径が75〜130μmの貫通孔4を安定して形成することが困難となる。したがって、内層導体2A・2Bの厚みは、7〜12μmの範囲が好ましい。
【0033】
また、内層導体2A・2Bは、その表面の中心線平均粗さRaが0.2μm未満の場合、後述するように、絶縁樹脂板1の上下面に絶縁樹脂層3A・3Bを被着させる際に内層導体2A・2Bと絶縁樹脂層3A・3Bとが強固に密着せずに内層導体2A・2Bと絶縁樹脂層3A・3Bとの間で剥離が発生しやすくなる傾向にあり、他方2μmを超えると、そのような粗い面を安定かつ効率良く形成することが困難となる傾向にある。したがって、内層導体2A・2B表面の中心線平均粗さRaは0.2〜2μmの範囲が好ましい。
【0034】
さらに、内層導体2A・2Bは貫通孔4が形成される位置に貫通孔4により貫通される導体パターンを全ての貫通孔4に対応して設けておくと、レーザ加工により貫通孔4を形成する際に全ての貫通孔4においてレーザ光の吸収反射が均一となり、全ての貫通孔4を略均一に形成することができる。したがって、内層導体2A・2Bは貫通孔4が形成される位置に貫通孔4により貫通される導体パターンを全ての貫通孔4に対応して設けておくことが好ましい。
【0035】
このような内層導体2A・2Bは、絶縁樹脂板1の上下全面に厚みが8〜16μm程度の銅箔を貼着するとともに、この銅箔上に感光性のドライフィルムレジストを被着させ、次にこの感光性ドライフィルムレジストを従来周知のフォトリソグラフィー技術により露光・現像してパターン形成位置にドライフィルムレジストを有するエッチングマスクを形成し、次にエッチングマスクから露出した銅箔を塩化第2銅水溶液もしくは塩化第2鉄水溶液から成るエッチング液を用いてエッチング除去し、最後にエッチングマスクを剥離した後、塩化第2銅水溶液に蟻酸が含有された粗化液を用いてその表面をエッチングして粗化することによって形成される。
【0036】
次に、図2(b)に部分断面図で示すように、絶縁樹脂板1および内層導体2A・2Bから成る両面銅張板の上下面にその厚みが内層導体2A・2B上で25〜45μmの絶縁樹脂層3A・3Bを被着形成する。この絶縁樹脂層3A・3Bはエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の熱硬化型の樹脂から成り、炭酸ガスレーザ等のレーザ光に対する分解度合いが絶縁樹脂板1よりも大きい。
【0037】
この絶縁樹脂層3A・3Bは、その厚みが内層導体2A・2B上で25μm未満の場合、互いに絶縁すべき内層導体2A・2Bと表層導体6A・6Bとを電気的に良好に絶縁することができなくなり、他方、45μmを超えると、絶縁樹脂板1および内層導体2A・2Bならびに絶縁樹脂層3A・3Bを貫通する貫通孔4をレーザ加工により穿孔する際に直径が75〜130μmの貫通孔4を良好に形成することが困難となる。したがって、絶縁層3A・3Bの厚みは内層導体2A・2B上で25〜45μmの範囲が好ましい。
【0038】
なお、絶縁樹脂板1の上下面に内層導体2A・2Bが被着されて成る両面銅張板の上下面に絶縁樹脂層3A・3Bを被着形成するには、半硬化状態の熱硬化性樹脂のフィルムを両面銅張板の上下両面に真空ラミネータで仮圧着した後、これを熱処理して硬化させる方法が採用される。
【0039】
次に図2(c)に部分断面図で示すように、レーザ加工により絶縁樹脂層3A・3Bおよび内層導体2A・2Bおよび絶縁樹脂板1を貫通する直径が75〜130μmの複数の貫通孔4を穿孔する。このとき、絶縁樹脂層3A・3Bのレーザ光に対する分解度合いが絶縁樹脂板1よりも大きいことから、貫通孔4は、絶縁樹脂層3A・3Bにおいて外側に向けて拡径する形状となる。
【0040】
このように、貫通孔4の直径を75〜130μmと小さいものとすることから、後述するように貫通導体5および表層導体6A・6Bを形成する際に貫通導体5および表層導体6A・6Bを高密度で配置することができ、それにより高密度な配線基板を得ることができる。また、貫通孔4の孔径が絶縁樹脂層3A・3Bの部位で外側に向かって広がっていることから、後述するように貫通孔4内壁に貫通導体5を被着形成する際に、貫通導体5を形成するためのめっき液が貫通孔4の内部に良好に入り込み、その結果、貫通孔4内に貫通導体5を良好に形成することができる。
【0041】
なお、貫通孔4の孔径が75μm未満の場合、貫通孔4内壁に貫通導体5を被着形成する際に、貫通導体5を形成するためのめっき液が貫通孔4の内部に良好に入り込まず、貫通孔4内壁に貫通導体5を良好に形成することができなくなり、他方、130μmを超えると、貫通導体5および表層導体6A・6Bを高密度で配置することが困難となる。したがって、貫通孔4の直径は、75〜130μmの範囲が好ましい。
【0042】
また、貫通孔4の開口部における直径が絶縁樹脂板1における直径よりも10μm未満大きい場合には、貫通孔4内壁に貫通導体5を被着形成する際に、貫通導体5を形成するためのめっき液が貫通孔4の内部に良好に入り込まずに貫通孔4内壁に貫通導体5を良好に形成することが困難となり、他方、50μmを超えて大きな場合には、そのような形状を有する貫通孔4を安定して形成することが困難となる。したがって、貫通孔4の開口部における直径は、絶縁樹脂板1における直径よりも10〜50μm大きくしておくことが好ましい。
【0043】
なお、絶縁樹脂層3A・3Bおよび内層導体2A・2Bおよび絶縁樹脂板1に貫通孔4を形成するには、絶縁樹脂層3A・3B上に例えばレーザ光のエネルギーを良好に吸収する黒色もしくは黒色に近い色を有する樹脂から成るレーザ加工用シートを貼着し、このレーザ加工用シートの上から7〜12mJの出力の炭酸ガスレーザ光を50〜500μ秒のパルス幅で所定の位置に照射して貫通孔4を穿孔する方法が採用される。このとき、炭酸ガスレーザ光の出力が7mJ未満だと貫通孔4を十分な大きさに穿孔することが困難となる傾向にあり、他方、12mJを超えると絶縁樹脂層3A・3Bにおける貫通孔4の孔径が大きくなりすぎてしまう傾向にある。したがって、照射する炭酸ガスレーザ光は、その出力が7〜12mJでパルス幅が50〜500μ秒の範囲であることが好ましい。なお、レーザ加工用シートは、貫通孔4を穿孔した後に剥離する。このように貫通孔4をレーザ加工により形成することにより、直径が75〜130μmで、絶縁樹脂層3A・3Bにおいて外側に向けて拡径する形状の貫通孔4を容易に形成することができる。なお、この場合、貫通孔4の内壁にはレーザ加工に伴なって厚みが数μm以下程度の炭化層8が形成される。
【0044】
次に、図2(d)に部分断面図で示すように、貫通孔4内壁の炭化層8および絶縁樹脂層3A・3Bの表面に厚みが1〜3μmの無電解銅めっき層から成る前処理用めっき金属層13Aを被着させる。なお、前処理用めっき金属層13Aを被着させるには、例えば塩化アンモニウム系酢酸パラジウムを含有するパラジウム活性液を使用して貫通孔4内壁および絶縁樹脂層3A・3Bの表面にパラジウム触媒を付着させるとともに、その上に硫酸銅系の無電解銅めっき液を用いて前処理用めっき金属層13Aを被着させればよい。このとき、貫通孔4は、絶縁樹脂層3A・3Bにおいて外側に向けて拡径していることから、貫通孔4内に無電解銅めっき液が良好に浸入し、その結果、貫通孔4内壁の炭化層8および絶縁樹脂層3A・3Bの表面に前処理用めっき金属層13Aを略均一な厚みに良好に被着させることができる。なお、前処理用めっき金属層13Aを被着させる前に絶縁樹脂層3A・3B表面および貫通孔4内壁を例えば過マンガン酸カリウム溶液や過マンガン酸ナトリウム溶液から成る粗化液を用いて粗化しておくと前処理用めっき金属層13Aを強固に被着させることができる。したがって、前処理用めっき金属層13Aを被着させる前に絶縁樹脂層3A・3B表面および貫通孔4内壁を例えば過マンガン酸カリウム溶液や過マンガン酸ナトリウム溶液から成る粗化液を用いて粗化しておくことが好ましい。
【0045】
次に、図2(e)に部分断面図で示すように、貫通孔4内壁の炭化層8上に被着された前処理用めっき金属層13Aを炭化層8とともにエッチング除去する。なおこのエッチングに使用するエッチング液としては、硫酸と過酸化水素水の混合溶液または塩化第2銅水溶液または塩化第2鉄水溶液から成るエッチング液を用いればよい。この場合、前処理用めっき金属層13A形成時に前処理用めっき金属層13Aが炭化層8の微視的凹凸内に入り込んで前処理用めっき金属層13Aの成膜時の応力が炭化層8に良好に作用して炭化層8が剥離されやすくなっている。したがって前処理用めっき金属層13Aをエッチング除去する際に炭化層8が前処理用めっき金属層13Aとともに良好に除去される。
【0046】
次に、図2(f)に示すように、前処理用めっき金属層13Aおよび炭化層8が除去された貫通孔4内壁および絶縁樹脂層3A・3Bの表面に厚みが1〜3μmの無電解銅めっきから成る無電解めっき金属層13Bを被着させる。なお、無電解銅めっきから成る無電解めっき金属層13Bを被着させるには、例えば塩化アンモニウム系酢酸パラジウムを含有するパラジウム活性液を使用して貫通孔4内壁および絶縁樹脂層3A・3Bの表面にパラジウム触媒を付着させるとともに、その上に硫酸銅系の無電解銅めっき液を用いて無電解銅めっき層を被着させればよい。このとき、貫通孔4は、絶縁樹脂層3A・3Bにおいて外側に向けて拡径していることから、貫通孔4内に無電解銅めっき液が良好に浸入し、その結果、貫通孔4内壁および絶縁樹脂層3A・3Bの表面に無電解めっき金属層13Bを略均一な厚みに良好に被着させることができる。なお、無電解銅めっき膜から成る無電解めっき金属層13Bを被着させる前に絶縁樹脂層3A・3B表面および貫通孔4内壁を例えば過マンガン酸カリウム溶液や過マンガン酸ナトリウム溶液から成る粗化液を用いてその中心線平均粗さRaが0.2〜2μm程度になるように粗化しておくと無電解めっき金属膜13Bを強固に被着させることができる。したがって、無電解めっき金属層13Bを被着させる前に絶縁樹脂層3A・3B表面および貫通孔4内壁を例えば過マンガン酸カリウム溶液や過マンガン酸ナトリウム溶液から成る粗化液を用いてその中心線平均粗さRaが0.2〜2μm程度になるように粗化しておくことが好ましい。このとき、貫通孔4内壁は炭化層8が除去されていることから貫通孔4の内壁で炭化層8を起点に無電解めっき金属層13Bが剥離するようなことが無く、貫通孔4の内壁に対し無電解めっき金属層13Bを強固に被着するすることができる。
【0047】
次に、図2(g)に示すように絶縁層3A・3B上の無電解銅めっき上にめっき用マスク14を被着させるとともに、めっき用マスク14から露出した無電解銅めっき上に厚みが10〜35μm程度の電解銅めっきを被着させ、貫通孔4の内壁および絶縁樹脂層3A・3B表面のパターン形成部位が選択的に厚く被着された無電解めっきと電解銅めっきとから成るめっき膜13Cを形成する。
【0048】
なお、めっき用マスク14は、例えば感光性ドライフィルムレジストを絶縁樹脂層3A・3B上の無電解銅めっき膜上に被着させるとともに、このドライフィルムレジストをフォトリソグラフィー技術により露光・現像して所定のパターンに加工することによって形成する。
【0049】
また、電解銅めっきを被着させるための電解銅めっき液としては、例えば、硫酸銅系から成る電解銅めっき液を用いればよい。このとき、貫通孔4は、絶縁樹脂層3A・3Bにおいて外側に向けて拡径していることから、貫通孔4内に電解銅めっき液が良好に浸入し、その結果、貫通孔4内壁および絶縁樹脂層3A・3Bの表面に電解銅めっき膜が略均一な厚みに良好に被着される。
【0050】
次に、図2(h)に部分断面図で示すように、めっきマスク14を剥離するとともにめっきマスク14の下にあった無電解銅めっきが消滅するまで無電解銅めっきおよび電解銅めっきをエッチングし、貫通孔4内壁に貫通導体5を形成するとともに絶縁樹脂層3A・3Bの表面に表層導体6A・6Bを形成する。
【0051】
なお、無電解銅めっき膜および電解銅めっき膜をエッチングするには、硫酸と過酸化水素水の混合溶液または塩化第2銅水溶液または塩化第2鉄水溶液から成るエッチング液を用いればよい。
【0052】
このとき、貫通導体4の内壁は炭化層8が除去されていることから、貫通導体5が炭化層8を起点にして剥離してしまうようなことはない。したがって、本発明の製造方法によると、貫通導体5と内層導体2A・2Bとが常に良好に接続された、信頼性の高い高密度配線の配線基板を得ることができる。
【0053】
最後に、絶縁樹脂層3A・3Bの表面および貫通孔4の内部にエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル等の熱硬化性樹脂から成るソルダーレジスト7を被着および充填させることにより図1に示す本発明の配線基板が完成する。
【0054】
なお、ソルダーレジスト7は、ソルダーレジスト7用の感光性の樹脂ペーストを従来周知のスクリーン印刷法を採用して絶縁層3A側および3B側から貫通孔4を埋めるように印刷塗布し、これを従来周知のフォトリソグラフィー技術を採用して所定のパターンに露光・現像することによって形成される。このとき、貫通孔4は、絶縁樹脂層3A・3Bにおいて外側に向けて拡径していることから、貫通孔4内にソルダーレジスト7用の樹脂ペーストが良好に浸入し、その結果、貫通孔4内をソルダーレジスト7で良好に充填することができる。
【0055】
【発明の効果】
本発明の配線基板の製造方法によれば、レーザ加工により形成された貫通孔内壁の炭化層上に前処理用めっき金属層を被着させた後、これを炭化層とともにエッチング除去し、更にこの前処理用めっき金属層および炭化層が除去された貫通孔内壁にめっき法により貫通導体を被着させることから、貫通導体が貫通孔内壁の炭化層を起点にして剥離するようなことはなく、貫通導体と内層導体間で導通不良が生じることがなくなる。したがって貫通導体と内層導体との接続信頼性に優れた高密度配線の配線基板を得ることができる。
【図面の簡単な説明】
【図1】本発明の製造方法により製作される配線基板の実施形態の一例を示す部分断面図である。
【図2】(a)〜(h)は、本発明の配線基板の製造方法を説明するための工程毎の部分断面図である。
【符号の説明】
1・・・・・・・絶縁樹脂板
2A・2B・・・内層導体
3A・3B・・・絶縁樹脂層
4・・・・・・・貫通孔
5・・・・・・・貫通導体
6A・6B・・・表層導体
8・・・・・・・炭化層
13A・・・・・・前処理用めっき金属層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an organic material-based multilayer wiring board.
[0002]
[Prior art]
Conventionally, as an organic material-based wiring board for mounting a semiconductor element, for example, on both upper and lower surfaces of a double-sided copper-clad plate in which inner layer conductors made of copper foil are attached to upper and lower surfaces of an insulating resin plate made of glass-epoxy plate, for example. An insulating resin layer mainly composed of an epoxy resin is attached and has a plurality of through holes penetrating up and down the insulating resin plate and the insulating resin layer. A multilayer wiring board is used in which surface conductors are deposited by electroless plating and electrolytic copper plating, respectively. In this wiring board, three-dimensional high-density wiring is possible by electrically connecting an inner layer conductor and a surface layer conductor positioned above and below via a through conductor attached to the inner wall of the through hole.
[0003]
Such an organic material-based multilayer wiring board has, for example, inner layer conductors made of copper foil having a thickness of about 7 to 12 μm on both upper and lower surfaces of an insulating resin plate made of a glass-epoxy plate having a thickness of about 0.35 to 0.45 mm. An insulating resin layer having a thickness of 25 to 45 μm is deposited on both upper and lower surfaces of the double-sided copper-clad plate thus formed, and through holes having a diameter of about 200 to 500 μm are drilled from the upper surface to the lower surface by drilling. Thereafter, the surface conductor is manufactured by electroless plating and electrolytic plating on the surface of the through conductor and the insulating resin layer made of a copper plating layer having a thickness of about 15 to 50 μm on the inner wall of the through hole.
[0004]
[Problems to be solved by the invention]
By the way, in such an organic material-based multilayer wiring board, an attempt has been made to make the diameter of the through hole as small as about 75 to 130 μm in order to further increase the wiring density. In order to form such a small through hole having a diameter of about 75 to 130 μm, for example, a carbon dioxide laser drilling method is employed.
[0005]
However, when drilled with a carbon dioxide laser, a brittle carbonized layer is formed on the inner wall of the through hole, and a through conductor made of a copper plating layer is deposited on the inner wall of the through hole, and then the carbonized layer on the wall surface of the through hole is the starting point. As a result, there is a problem that peeling occurs in the through conductor, resulting in poor conduction between the through conductor and the inner layer conductor.
[0006]
The present invention has been devised in view of such conventional problems, and an object of the present invention is to provide an extremely high density in which peeling does not occur in the through conductor and the through conductor and the inner layer conductor are always well connected. It is an object of the present invention to provide a wiring board capable of wiring and a manufacturing method thereof.
[0007]
[Means for Solving the Problems]
The method for manufacturing a wiring board according to the present invention includes a step of drilling a plurality of through holes each having a carbonized layer formed on an inner wall by laser processing an insulating resin plate, and then a pretreatment plating on the carbonized layer. A step of depositing a metal layer, a step of etching and removing the pretreatment plating metal layer together with the carbonized layer, and a plating method on the inner wall of the through hole from which the pretreatment plating metal layer and the carbonized layer have been removed. And the step of depositing the through conductor.
[0008]
According to the method for manufacturing a wiring board of the present invention, after depositing a pretreatment plating metal layer on the carbonized layer of the inner wall of the through hole formed by laser processing, this is removed by etching together with the carbonized layer. Since the through conductor is deposited by plating on the inner wall of the through hole from which the pretreatment plating metal layer and the carbonized layer have been removed, the through conductor does not peel off starting from the carbonized layer.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the manufacturing method of the wiring board of this invention is demonstrated in detail.
[0010]
FIG. 1 is a partial cross-sectional view showing an example of an embodiment of a wiring board manufactured by the manufacturing method of the present invention. In FIG. 1, 1 is an insulating resin plate, 2A and 2B are inner layer conductors, 3A and 3B are insulating resin layers, 4 is a through hole, 5 is a through conductor, and 6A and 6B are surface layer conductors. Inner layer conductors 2A and 2B and insulating resin layers 3A and 3B are attached to both upper and lower surfaces, and a plurality of through holes 4 are provided through insulating resin plate 1, inner layer conductors 2A and 2B, and insulating resin layers 3A and 3B. Furthermore, the through conductor 5 is formed on the inner wall of the through hole 4, and the surface layer conductors 6A and 6B are formed on the surfaces of the insulating resin layers 3A and 3B, whereby the wiring board of the present invention is configured. . In this embodiment, a solder resist 7 is provided in the through hole 4 and on the insulating resin layers 3A and 3B.
[0011]
The insulating resin plate 1 functions as a core member of a wiring board. For example, a glass cloth or an aramid cloth made of an organic insulating material impregnated with a resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin has a thickness of 0.35 to It is a 0.45 mm flat plate, and constitutes a so-called double-sided copper-clad plate in which inner layer conductors 2A and 2B made of copper foil having a thickness of 7 to 12 μm are deposited on both upper and lower surfaces. If the thickness of the insulating resin plate 1 is less than 0.35 mm, the insulating resin layers 3A and 3B are attached to the upper and lower surfaces thereof, or the insulating resin plate 1, the inner layer conductors 2A and 2B, and the insulating resin layers 3A and 3B are penetrated. When the plurality of through holes 4 are formed, the wiring board is warped or deformed due to the influence of heat, external force, etc., and the flatness required for the wiring board cannot be secured. On the other hand, if the thickness exceeds 0.45 mm, when the through conductor 5 is formed on the inner wall of the through hole 4 as will be described later, the plating solution is less likely to enter the through hole 4 and the through conductor 5 is formed well. It becomes difficult. Therefore, the thickness of the insulating resin plate 1 is preferably in the range of 0.35 to 0.45 mm.
[0012]
The insulating resin plate 1 is made of a glass cloth, an aramid cloth, or the like made of silica, alumina, an aramid resin or the like in an epoxy resin, bismaleimide triazine resin, polyphenylene ether resin, or the like impregnated into a glass cloth or an aramid cloth. If the fiber portion and the resin portion are contained so that the transmittance of the laser beam is substantially equal, the through-hole 4 is formed when the through-hole 4 is drilled in the insulating resin plate 1 with the laser beam as described later. It is possible to satisfactorily form the insulating resin plate 1 with a substantially uniform size. Therefore, a filler made of silica, alumina, aramid resin, or the like is added to a glass cloth, aramid cloth, or the like in an epoxy resin, bismaleimide triazine resin, or polyphenylene ether resin impregnated in the glass cloth or aramid cloth of the insulating resin plate 1. It is preferable that the fiber portion and the resin portion are contained so that the transmittance of the laser beam is substantially equal.
[0013]
The inner layer conductors 2A and 2B attached to the upper and lower surfaces of the insulating resin plate 1 are made of copper foil, and are electrically connected to the inner layer wiring conductor pattern W mainly functioning as a power supply layer and a ground layer and the inner layer wiring conductor pattern W. And an independent dummy conductor pattern D, having a thickness of 7 to 12 μm and a center line average roughness Ra of the surface of about 0.2 to 2 μm. When the thickness of the inner layer conductors 2A and 2B is less than 7 μm, sufficient electrical characteristics cannot be imparted to the inner layer wiring conductor pattern W as the power supply layer or the ground layer, and when the thickness exceeds 12 μm, As described above, when the through hole 4 penetrating the insulating resin plate 1 and the inner layer conductors 2A and 2B and the insulating resin layers 3A and 3B is drilled by laser processing, it is difficult to stably form the through hole 4. . Therefore, the thickness of the inner layer conductors 2A and 2B is preferably in the range of 7 to 12 μm.
[0014]
The inner layer conductors 2A and 2B are formed so as to have inner layer wiring conductor patterns W or dummy conductor patterns D penetrating through the through holes 4 and in contact with the later described through conductors 5 corresponding to all the through holes 4. In this case, when the through holes 4 are drilled by laser processing, the absorption and reflection of the laser beam can be made substantially the same in all the through holes 4 so that all the through holes 4 can be formed in a substantially uniform size and shape. Therefore, the inner layer conductors 2 </ b> A and 2 </ b> B are preferably formed so as to have the inner layer wiring conductor pattern W or the dummy conductor pattern D penetrating through the through holes 4 corresponding to all the through holes 4. In this case, the dummy conductor pattern D may be a substantially circular pattern whose diameter is approximately 40-100 μm larger than the diameter of the through-hole 4, and an interval with a width of approximately 30-60 μm between the inner conductor pattern W. May be provided. When the diameter of the dummy conductor pattern D is larger than the diameter of the through-hole 4 by less than 40 μm, it becomes difficult to accurately penetrate the dummy conductor pattern D when the through-hole 4 is drilled by laser processing. If it is too large, it is difficult to increase the area of the inner layer wiring conductor pattern W. In addition, when the distance between the dummy conductor pattern D and the inner layer wiring conductor pattern W is less than 30 μm, there is a tendency that electrical insulation between the dummy conductor pattern D and the inner layer wiring conductor pattern W cannot be maintained well. On the other hand, if it exceeds 60 μm, it is difficult to increase the area of the inner layer wiring conductor pattern W.
[0015]
Further, when the inner-layer conductors 2A and 2B have a center line average roughness Ra of less than 0.2 μm, the inner-layer conductors 2A and 2B do not firmly adhere to the inner-layer conductors 2A and 2B and the inner-layer conductors 2A and 2B. And the insulating resin layers 3A and 3B tend to be peeled off. On the other hand, when the thickness exceeds 2 μm, it tends to be difficult to form such a rough surface stably and efficiently. Accordingly, the center line average roughness Ra of the inner layer conductors 2A and 2B is preferably in the range of 0.2 to 2 μm.
[0016]
The insulating resin layers 3A and 3B attached to the upper and lower surfaces of the insulating resin plate 1 are made of a thermosetting resin such as epoxy resin, bismaleimide triazine resin or polyphenylene ether resin, and the degree of decomposition with respect to laser light is the insulating resin plate. The surface conductors 6A and 6B are deposited on the surface thereof. The insulating resin layers 3A and 3B are provided to provide an insulating interval for electrically insulating the inner layer conductors 2A and 2B and the surface layer conductors 6A and 6B to be insulated from each other. 25-45 μm on 2B. When the thickness of the insulating resin layers 3A and 3B is less than 25 μm on the inner layer conductors 2A and 2B, the inner layer conductors 2A and 2B and the surface layer conductors 6A and 6B to be insulated from each other can be electrically well insulated. On the other hand, if the thickness exceeds 45 μm, the through hole 4 is formed well when the through hole 4 penetrating the insulating resin plate 1 and the inner layer conductors 2A and 2B and the insulating resin layers 3A and 3B is drilled by laser processing. It becomes difficult. Therefore, the thickness of the insulating layers 3A and 3B is preferably in the range of 25 to 45 μm on the inner layer conductors 2A and 2B.
[0017]
The surface conductors 6A and 6B are made of a copper plating film having a thickness of 8 to 30 μm, and form a surface layer wiring pattern including a power supply wiring, a ground wiring, and a signal wiring. For example, an electrode of an electronic component (not shown) is connected to an exposed part of the surface layer conductor 6A on the upper surface side via solder, and an exposed part of the surface layer conductor 6B on the lower surface side is connected to another wiring board (not shown). Connected via solder.
[0018]
If the thickness of the surface conductors 6A and 6B is less than 8 μm, the electrical resistance of the surface layer wiring pattern is high. On the other hand, if the thickness exceeds 30 μm, it is difficult to form the surface layer wiring pattern at a high density. . Therefore, the thickness of the surface conductors 6A and 6B is preferably in the range of 8 to 30 μm.
[0019]
Furthermore, in the wiring board manufactured by the manufacturing method of the present invention, the through-hole 4 is formed by laser processing through the insulating resin plate 1, the inner layer conductors 2A and 2B, and the insulating resin layers 3A and 3B. A through conductor 5 is deposited on the inner wall of the through hole 4. The through hole 4 is for providing a lead-out path for leading the through conductor 5 from the upper surface of the insulating resin layer 3A to the lower surface of the insulating resin layer 3B. The through holes 4 are formed by laser processing, so that the diameter of the insulating resin plate 1 is 75 to 115 μm and the inner walls thereof are substantially vertical, and the inner walls of the insulating resin layers 3A and 3B are 10 It has a shape that is inclined at an angle of ˜30 and expands toward the outside. In this case, since the insulating resin layers 3A and 3B have a higher degree of decomposition with respect to the laser light than the insulating resin plate 1, the insulating resin layers 3A and 3B are decomposed larger than the insulating substrate 1 during laser processing, so the shape of the through hole 4 is the insulating resin. The layers 3A and 3B have a shape that expands toward the outside.
[0020]
Thus, according to the wiring board manufactured by the manufacturing method of the present invention, the through hole 4 is formed by laser processing, the diameter thereof is as small as 75 to 115 μm in the insulating resin plate 1, and the inner wall thereof is the insulating resin layer. In 3A and 3B, the through conductor 5 and the surface layer conductors 6A and 6B can be arranged at a high density because it has a shape that inclines at an angle of 10 to 30 from the vertical direction and expands toward the outside. Thus, a wiring board having extremely high density wiring can be obtained.
[0021]
The through-hole 4 has a small diameter of 75 to 115 μm in the insulating resin plate 1 but has an inner wall that is substantially vertical in the insulating resin plate 1 and 10 to 30 degrees from the vertical direction in the insulating resin layers 3A and 3B. The plating solution for forming the through conductor 5 penetrates when the through conductor 5 is deposited on the inner wall of the through hole 4 as described later. As a result, the through conductor 5 can be formed well in the through hole 4.
[0022]
When the diameter of the through hole 4 in the insulating resin plate 1 is less than 75 μm, the plating solution for forming the through conductor 5 is formed inside the through hole 4 when the through conductor 5 is deposited on the inner wall of the through hole 4. It is difficult to form the through conductor 5 on the inner wall of the through hole 4 without entering the through hole 4 on the other hand. On the other hand, if it exceeds 115 μm, it is difficult to arrange the through conductor 5 and the surface layer conductors 6A and 6B at high density. Become. Therefore, the diameter of the through hole 4 in the insulating resin plate 1 is preferably in the range of 75 to 115 μm.
[0023]
In addition, when the inner wall of the through hole 4 in the insulating resin plate 1 is not substantially vertical, bubbles are likely to be left inside the through hole 4 when the through conductor 5 is deposited on the inner wall of the through hole 4. It is difficult to form the through conductor 5 on the inner wall of the through hole 4 without the plating solution for forming well reaching the part where the bubbles are left. Therefore, it is preferable that the inner wall of the through hole 4 in the insulating resin plate 1 is substantially vertical.
[0024]
Further, when the angle at which the inner wall of the through hole 4 is inclined outward in the insulating resin layers 3A and 3B is less than 10 degrees from the vertical direction, the through conductor 5 is formed when the through conductor 5 is deposited on the inner wall of the through hole 4. The plating solution for forming the metal does not enter the inside of the through-hole 4 well, and it becomes difficult to form the through-conductor 5 on the inner wall of the through-hole 4 on the other hand. It is difficult to stably and efficiently form the through-hole 4 in which the swell spreads. Therefore, the angle at which the inner wall of the through hole 4 is inclined outward in the insulating resin layers 3A and 3B is preferably in the range of 10 to 30 degrees from the vertical direction.
[0025]
The through conductor 5 deposited on the inner wall of the through hole 4 is made of a copper plating film having a thickness of about 8 to 25 μm, and the inner layer conductor 2A is positioned above and below the insulating resin plate 1 and the insulating resin layers 3A and 3B. 2B and surface layer conductors 6A and 6B function as connecting conductors that electrically connect each other.
[0026]
When the thickness of the through conductor 5 is less than 8 μm, the electrical resistance of the through conductor 5 tends to be too high. On the other hand, when the thickness exceeds 25 μm, the through conductor 5 is disposed inside the through hole 4 to which the through conductor 5 is attached. It becomes difficult to fill the solder resist 7 to be satisfactorily. Therefore, the thickness of the through conductor 5 is preferably in the range of 8 to 25 μm.
[0027]
Further, a solder resist 7 made of a thermosetting resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin is deposited and filled in the surfaces of the insulating resin layers 3A and 3B and the inside of the through holes 4. The solder resist 7 functions as a protective layer for protecting the through conductor 5 and the surface layer conductors 6A and 6B and electrically insulating the surface layer wiring patterns in the surface layer conductors 6A and 6B. It is formed in a predetermined pattern that exposes a part.
[0028]
When the thickness of the solder resist 7 on the surface conductors 6A and 6B is less than 10 μm, the surface conductor 6 cannot be protected well and the surface wiring patterns in the surface conductors 6A and 6B are electrically connected to each other. On the other hand, when it exceeds 40 μm, it tends to be difficult to form the solder resist 7 in a predetermined pattern. Therefore, the thickness of the solder resist on the surface conductors 6A and 6B is preferably in the range of 10 to 40 μm.
[0029]
Next, a method for manufacturing the wiring board shown in FIG. 1 by the manufacturing method of the present invention will be described with reference to FIGS.
[0030]
First, as shown in a partial cross-sectional view in FIG. 2A, for example, a glass cloth or an aramid cloth made of an organic insulating material impregnated with an epoxy resin, a resin such as a bismaleimide triazine resin or a polyphenylene ether resin has a thickness of 0.35 to A double-sided copper-clad plate is prepared in which inner layer conductors 2A and 2B made of copper foil having a thickness of 7 to 12 μm are deposited on the upper and lower surfaces of a 0.45 mm insulating resin plate 1. The inner layer conductors 2A and 2B have their surfaces roughened so that the center line average roughness Ra of the surfaces is about 0.2 to 2 μm.
[0031]
If the thickness of the insulating resin plate 1 is less than 0.35 mm, the insulating resin layers 3A and 3B are attached to the upper and lower surfaces of the insulating resin plate 1 or penetrate the insulating resin plate 1, the inner layer conductors 2A and 2B, and the insulating resin layers 3A and 3B. When the plurality of through holes 4 are formed, the wiring board is warped or deformed due to the influence of heat or external force, and the flatness required for the wiring board cannot be secured. On the other hand, when the thickness exceeds 0.45 mm, when the through conductor 5 is formed on the inner wall of the through hole 4 as will be described later, the plating solution is less likely to enter the through hole 4, and disconnection is likely to occur in the through conductor 5. Therefore, the thickness of the insulating resin plate 1 is preferably in the range of 0.35 to 0.45 mm.
[0032]
In addition, when the thickness of the inner layer conductors 2A and 2B is less than 7 μm, the pattern of the inner layer conductors 2A and 2B cannot give sufficient electrical characteristics as a power supply layer or a ground layer, and on the other hand, when the thickness exceeds 12 μm As will be described later, when the through hole 4 penetrating the insulating resin plate 1 and the inner layer conductors 2A and 2B and the insulating resin layers 3A and 3B is drilled by laser processing, the through hole 4 having a diameter of 75 to 130 μm is stabilized. It becomes difficult to form. Therefore, the thickness of the inner layer conductors 2A and 2B is preferably in the range of 7 to 12 μm.
[0033]
Further, when the center line average roughness Ra of the inner layer conductors 2A and 2B is less than 0.2 μm, the insulating resin layers 3A and 3B are deposited on the upper and lower surfaces of the insulating resin plate 1 as described later. The inner layer conductors 2A and 2B and the insulating resin layers 3A and 3B are not firmly adhered to each other, and the inner layer conductors 2A and 2B and the insulating resin layers 3A and 3B tend to be peeled off, and the other exceeds 2 μm. And it tends to be difficult to form such a rough surface stably and efficiently. Accordingly, the center line average roughness Ra of the inner layer conductors 2A and 2B is preferably in the range of 0.2 to 2 μm.
[0034]
Further, if the inner layer conductors 2A and 2B are provided with a conductor pattern penetrating through the through holes 4 at positions where the through holes 4 are formed corresponding to all the through holes 4, the through holes 4 are formed by laser processing. At this time, the absorption and reflection of the laser light is uniform in all the through holes 4, and all the through holes 4 can be formed substantially uniformly. Therefore, the inner layer conductors 2 </ b> A and 2 </ b> B are preferably provided with conductor patterns penetrating through the through holes 4 at positions where the through holes 4 are formed corresponding to all the through holes 4.
[0035]
Such inner layer conductors 2A and 2B have a copper foil having a thickness of about 8 to 16 μm adhered to the entire upper and lower surfaces of the insulating resin plate 1, and a photosensitive dry film resist is deposited on the copper foil. Then, this photosensitive dry film resist is exposed and developed by a conventionally well-known photolithography technique to form an etching mask having the dry film resist at a pattern forming position, and then the copper foil exposed from the etching mask is used as a cupric chloride aqueous solution. Alternatively, etching is removed using an etching solution made of a ferric chloride aqueous solution, and finally the etching mask is peeled off, and then the surface is etched and roughened using a roughening solution containing formic acid in a cupric chloride aqueous solution. Formed.
[0036]
Next, as shown in a partial cross-sectional view in FIG. 2 (b), the upper and lower surfaces of the double-sided copper clad plate composed of the insulating resin plate 1 and the inner layer conductors 2A and 2B have a thickness of 25 to 45 μm on the inner layer conductors 2A and 2B. The insulating resin layers 3A and 3B are deposited. The insulating resin layers 3A and 3B are made of a thermosetting resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin, and the degree of decomposition with respect to a laser beam such as a carbon dioxide laser is larger than that of the insulating resin plate 1.
[0037]
When the thickness of the insulating resin layers 3A and 3B is less than 25 μm on the inner layer conductors 2A and 2B, the inner layer conductors 2A and 2B and the surface layer conductors 6A and 6B to be insulated from each other can be electrically well insulated. On the other hand, if the thickness exceeds 45 μm, the through-hole 4 having a diameter of 75 to 130 μm when the through-hole 4 penetrating the insulating resin plate 1 and the inner conductors 2A and 2B and the insulating resin layers 3A and 3B is drilled by laser processing. It becomes difficult to form the film well. Therefore, the thickness of the insulating layers 3A and 3B is preferably in the range of 25 to 45 μm on the inner layer conductors 2A and 2B.
[0038]
In order to deposit and form the insulating resin layers 3A and 3B on the upper and lower surfaces of the double-sided copper clad plate formed by coating the inner layer conductors 2A and 2B on the upper and lower surfaces of the insulating resin plate 1, the thermosetting property in a semi-cured state is used. A method is adopted in which a resin film is temporarily press-bonded on both upper and lower surfaces of a double-sided copper-clad plate with a vacuum laminator and then heat-treated to be cured.
[0039]
Next, as shown in a partial cross-sectional view in FIG. 2C, a plurality of through-holes 4 having a diameter of 75 to 130 μm that penetrate the insulating resin layers 3A and 3B, the inner conductors 2A and 2B, and the insulating resin plate 1 by laser processing. Perforate. At this time, since the degree of decomposition of the insulating resin layers 3A and 3B with respect to the laser beam is larger than that of the insulating resin plate 1, the through hole 4 has a shape that expands outward in the insulating resin layers 3A and 3B.
[0040]
As described above, since the diameter of the through hole 4 is as small as 75 to 130 μm, the through conductor 5 and the surface layer conductors 6A and 6B are made high when forming the through conductor 5 and the surface layer conductors 6A and 6B as described later. It can arrange | position with a density and, thereby, a high-density wiring board can be obtained. Further, since the hole diameter of the through hole 4 is widened outward at the portions of the insulating resin layers 3A and 3B, the through conductor 5 is formed when the through conductor 5 is deposited on the inner wall of the through hole 4 as will be described later. The plating solution for forming the metal penetrates into the through holes 4 favorably, and as a result, the through conductors 5 can be satisfactorily formed in the through holes 4.
[0041]
When the diameter of the through hole 4 is less than 75 μm, the plating solution for forming the through conductor 5 does not enter the inside of the through hole 4 when the through conductor 5 is deposited on the inner wall of the through hole 4. The through conductors 5 cannot be satisfactorily formed on the inner walls of the through holes 4, and on the other hand, when the thickness exceeds 130 μm, it is difficult to arrange the through conductors 5 and the surface layer conductors 6A and 6B at high density. Therefore, the diameter of the through hole 4 is preferably in the range of 75 to 130 μm.
[0042]
When the diameter of the opening of the through hole 4 is smaller than the diameter of the insulating resin plate 1 by less than 10 μm, the through conductor 5 is formed when the through conductor 5 is deposited on the inner wall of the through hole 4. If the plating solution does not enter the inside of the through-hole 4 and it is difficult to form the through-conductor 5 on the inner wall of the through-hole 4, it is difficult to form the through-conductor 5 on the inner wall. It becomes difficult to form the holes 4 stably. Therefore, it is preferable that the diameter of the opening of the through hole 4 is 10 to 50 μm larger than the diameter of the insulating resin plate 1.
[0043]
In order to form the through holes 4 in the insulating resin layers 3A and 3B, the inner layer conductors 2A and 2B, and the insulating resin plate 1, for example, black or black that absorbs energy of laser light satisfactorily on the insulating resin layers 3A and 3B. A laser processing sheet made of a resin having a color close to 1 is stuck, and a carbon dioxide laser beam with an output of 7 to 12 mJ is irradiated on a predetermined position with a pulse width of 50 to 500 μsec from the top of the laser processing sheet. A method of drilling the through hole 4 is employed. At this time, if the output of the carbon dioxide laser beam is less than 7 mJ, it tends to be difficult to drill the through-hole 4 to a sufficient size. On the other hand, if the output exceeds 12 mJ, the through-hole 4 of the insulating resin layers 3A and 3B The pore diameter tends to be too large. Therefore, it is preferable that the carbon dioxide laser light to be irradiated has an output of 7 to 12 mJ and a pulse width of 50 to 500 μsec. The laser processing sheet is peeled off after the through holes 4 are formed. By forming the through hole 4 by laser processing in this way, it is possible to easily form the through hole 4 having a diameter of 75 to 130 μm and a shape that expands outward in the insulating resin layers 3A and 3B. In this case, a carbonized layer 8 having a thickness of about several μm or less is formed on the inner wall of the through hole 4 due to laser processing.
[0044]
Next, as shown in a partial cross-sectional view in FIG. 2 (d), a pretreatment consisting of an electroless copper plating layer having a thickness of 1 to 3 μm on the surfaces of the carbonized layer 8 and the insulating resin layers 3A and 3B on the inner wall of the through hole 4 A plating metal layer 13A is deposited. In order to deposit the pretreatment plating metal layer 13A, a palladium catalyst is attached to the inner walls of the through holes 4 and the surfaces of the insulating resin layers 3A and 3B using, for example, a palladium active liquid containing ammonium chloride-based palladium acetate. In addition, a pretreatment plating metal layer 13A may be deposited thereon using a copper sulfate-based electroless copper plating solution. At this time, since the diameter of the through-hole 4 is increased outward in the insulating resin layers 3A and 3B, the electroless copper plating solution satisfactorily enters the through-hole 4, and as a result, the inner wall of the through-hole 4 The pretreatment plating metal layer 13A can be satisfactorily deposited on the surfaces of the carbonized layer 8 and the insulating resin layers 3A and 3B with a substantially uniform thickness. Before applying the pretreatment plating metal layer 13A, the surfaces of the insulating resin layers 3A and 3B and the inner walls of the through holes 4 are roughened by using a roughening solution made of, for example, a potassium permanganate solution or a sodium permanganate solution. If this is done, the pretreatment plating metal layer 13A can be firmly applied. Therefore, before depositing the pretreatment plating metal layer 13A, the surfaces of the insulating resin layers 3A and 3B and the inner walls of the through holes 4 are roughened using a roughening solution made of, for example, a potassium permanganate solution or a sodium permanganate solution. It is preferable to keep it.
[0045]
Next, as shown in a partial cross-sectional view in FIG. 2 (e), the pretreatment plating metal layer 13 </ b> A deposited on the carbonized layer 8 on the inner wall of the through hole 4 is removed by etching together with the carbonized layer 8. As an etchant used for this etching, an etchant composed of a mixed solution of sulfuric acid and hydrogen peroxide solution, or a cupric chloride aqueous solution or a ferric chloride aqueous solution may be used. In this case, when the pretreatment plating metal layer 13A is formed, the pretreatment plating metal layer 13A enters the microscopic irregularities of the carbonized layer 8, and the stress during the deposition of the pretreatment plating metal layer 13A is applied to the carbonization layer 8. It acts well and the carbonized layer 8 is easily peeled off. Therefore, when the pretreatment plating metal layer 13A is removed by etching, the carbonized layer 8 is well removed together with the pretreatment plating metal layer 13A.
[0046]
Next, as shown in FIG. 2 (f), the electroless metal having a thickness of 1 to 3 μm is formed on the inner wall of the through hole 4 from which the pretreatment plating metal layer 13A and the carbonized layer 8 have been removed and the surfaces of the insulating resin layers 3A and 3B. An electroless plating metal layer 13B made of copper plating is applied. In order to deposit the electroless plated metal layer 13B made of electroless copper plating, for example, a palladium active solution containing ammonium chloride-based palladium acetate is used to form the inner walls of the through holes 4 and the surfaces of the insulating resin layers 3A and 3B. A palladium catalyst may be attached to the electrode, and an electroless copper plating layer may be deposited thereon using a copper sulfate-based electroless copper plating solution. At this time, since the diameter of the through-hole 4 is increased outward in the insulating resin layers 3A and 3B, the electroless copper plating solution satisfactorily enters the through-hole 4, and as a result, the inner wall of the through-hole 4 In addition, the electroless plated metal layer 13B can be satisfactorily deposited on the surfaces of the insulating resin layers 3A and 3B with a substantially uniform thickness. The surface of the insulating resin layers 3A and 3B and the inner walls of the through holes 4 are roughened with, for example, a potassium permanganate solution or a sodium permanganate solution before the electroless plated metal layer 13B made of an electroless copper plating film is deposited. If the liquid is roughened so that the center line average roughness Ra is about 0.2 to 2 μm, the electroless plating metal film 13B can be firmly attached. Therefore, before depositing the electroless plating metal layer 13B, the surface of the insulating resin layers 3A and 3B and the inner walls of the through holes 4 are centered by using a roughening solution made of, for example, a potassium permanganate solution or a sodium permanganate solution. Roughening is preferably performed so that the average roughness Ra is about 0.2 to 2 μm. At this time, since the carbonized layer 8 is removed from the inner wall of the through hole 4, the inner wall of the through hole 4 does not peel off the electroless plating metal layer 13 </ b> B starting from the carbonized layer 8. On the other hand, the electroless plating metal layer 13B can be firmly applied.
[0047]
Next, as shown in FIG. 2G, a plating mask 14 is deposited on the electroless copper plating on the insulating layers 3A and 3B, and the thickness is formed on the electroless copper plating exposed from the plating mask 14. Electrolytic copper plating of about 10 to 35 μm is deposited, and the plating consists of electroless plating and electrolytic copper plating in which the inner wall of the through-hole 4 and the pattern formation sites on the surfaces of the insulating resin layers 3A and 3B are selectively deposited thickly A film 13C is formed.
[0048]
The plating mask 14 is formed by, for example, depositing a photosensitive dry film resist on the electroless copper plating film on the insulating resin layers 3A and 3B, and exposing and developing the dry film resist by a photolithography technique. It is formed by processing into a pattern.
[0049]
Moreover, as an electrolytic copper plating solution for depositing electrolytic copper plating, for example, an electrolytic copper plating solution made of a copper sulfate system may be used. At this time, since the diameter of the through-hole 4 is increased outward in the insulating resin layers 3A and 3B, the electrolytic copper plating solution satisfactorily penetrates into the through-hole 4, and as a result, the inner wall of the through-hole 4 and An electrolytic copper plating film is satisfactorily deposited on the surfaces of the insulating resin layers 3A and 3B with a substantially uniform thickness.
[0050]
Next, as shown in the partial cross-sectional view in FIG. 2 (h), the plating mask 14 is peeled off, and the electroless copper plating and the electrolytic copper plating are etched until the electroless copper plating under the plating mask 14 disappears. Then, the through conductor 5 is formed on the inner wall of the through hole 4 and the surface layer conductors 6A and 6B are formed on the surfaces of the insulating resin layers 3A and 3B.
[0051]
In order to etch the electroless copper plating film and the electrolytic copper plating film, an etching solution composed of a mixed solution of sulfuric acid and hydrogen peroxide solution, a cupric chloride aqueous solution or a ferric chloride aqueous solution may be used.
[0052]
At this time, since the carbonized layer 8 is removed from the inner wall of the through conductor 4, the through conductor 5 does not peel off starting from the carbonized layer 8. Therefore, according to the manufacturing method of the present invention, it is possible to obtain a highly reliable high-density wiring board in which the through conductor 5 and the inner layer conductors 2A and 2B are always well connected.
[0053]
Finally, a solder resist 7 made of a thermosetting resin such as epoxy resin, bismaleimide triazine resin, or polyphenylene ether is deposited and filled on the surfaces of the insulating resin layers 3A and 3B and the inside of the through holes 4 as shown in FIG. The wiring board of the present invention shown is completed.
[0054]
The solder resist 7 is printed and applied with a photosensitive resin paste for the solder resist 7 by using a conventionally known screen printing method so as to fill the through holes 4 from the insulating layer 3A side and the 3B side. It is formed by exposing and developing into a predetermined pattern using a well-known photolithography technique. At this time, since the diameter of the through-hole 4 is expanded outward in the insulating resin layers 3A and 3B, the resin paste for the solder resist 7 is satisfactorily infiltrated into the through-hole 4, and as a result, the through-hole 4 can be satisfactorily filled with the solder resist 7.
[0055]
【The invention's effect】
According to the method for manufacturing a wiring board of the present invention, after depositing a pretreatment plating metal layer on the carbonized layer of the inner wall of the through hole formed by laser processing, this is removed by etching together with the carbonized layer. Since the through conductor is deposited by plating on the inner wall of the through hole from which the pretreatment plating metal layer and the carbonized layer have been removed, the through conductor does not peel off starting from the carbonized layer on the inner wall of the through hole, A conduction failure does not occur between the through conductor and the inner layer conductor. Accordingly, it is possible to obtain a wiring board with high density wiring excellent in connection reliability between the through conductor and the inner layer conductor.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing an example of an embodiment of a wiring board manufactured by a manufacturing method of the present invention.
FIGS. 2A to 2H are partial cross-sectional views for each process for explaining a method of manufacturing a wiring board according to the present invention. FIGS.
[Explanation of symbols]
1. Insulating resin plate
2A ・ 2B ・ ・ ・ Inner layer conductor
3A ・ 3B ・ ・ ・ Insulating resin layer
4 .... Through hole
5 .... Penetration conductor
6A ・ 6B ・ ・ ・ Surface conductor
8 .... carbonized layer
13A ・ ・ ・ ・ ・ ・ Plating metal layer for pretreatment

Claims (1)

絶縁樹脂板にレーザ加工を施すことにより、内壁に炭化層が形成された複数の貫通孔を穿孔する工程と、次に前記炭化層上に前処理用めっき金属層を被着させる工程と、次に前記前処理用めっき金属層を前記炭化層とともにエッチング除去する工程と、次に前記前処理用めっき金属層および炭化層が除去された貫通孔内壁にめっき法により貫通導体を被着させる工程とを具備することを特徴とする配線基板の製造方法。A step of drilling a plurality of through holes each having a carbonized layer formed on the inner wall by applying laser processing to the insulating resin plate; and a step of depositing a pretreatment plating metal layer on the carbonized layer; and Removing the pretreatment plating metal layer together with the carbonized layer, and then depositing a through conductor on the inner wall of the through hole from which the pretreatment plating metal layer and the carbonized layer have been removed by plating. A method for manufacturing a wiring board, comprising:
JP2001195875A 2001-06-28 2001-06-28 Wiring board manufacturing method Expired - Fee Related JP3792544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001195875A JP3792544B2 (en) 2001-06-28 2001-06-28 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001195875A JP3792544B2 (en) 2001-06-28 2001-06-28 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2003017853A JP2003017853A (en) 2003-01-17
JP3792544B2 true JP3792544B2 (en) 2006-07-05

Family

ID=19033781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001195875A Expired - Fee Related JP3792544B2 (en) 2001-06-28 2001-06-28 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP3792544B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110430669A (en) * 2019-08-13 2019-11-08 福建世卓电子科技有限公司 Circuit board and production technology based on laser drill tungsten carbide/conductive substrate surfaces hole

Also Published As

Publication number Publication date
JP2003017853A (en) 2003-01-17

Similar Documents

Publication Publication Date Title
MY123228A (en) Manufacturing method of a multilayered printed circuit board having an opening made by a laser, and using electroless and electrolytic plating.
JP5254775B2 (en) Wiring board manufacturing method
JP3596374B2 (en) Manufacturing method of multilayer printed wiring board
JPH1187931A (en) Manufacture of printed circuit board
JP2000077809A (en) Printed wiring board having plated, sealed and taper shaped through hole and manufacture therefor
JP3792544B2 (en) Wiring board manufacturing method
JP2003188541A (en) Method of manufacturing wiring board
JP3881528B2 (en) Wiring board and manufacturing method thereof
JP4480693B2 (en) Wiring board and manufacturing method thereof
JP2003046226A (en) Wiring board and its manufacturing method
JP3934883B2 (en) Wiring board and manufacturing method thereof
US20020084244A1 (en) Method of making multilayer substrate
JP3881523B2 (en) Wiring board and manufacturing method thereof
JP4045120B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4160765B2 (en) Wiring board manufacturing method
JP2004228362A (en) Method of manufacturing wiring board
JPH1187886A (en) Production of printed wiring board
JP2006287251A (en) Wiring board and method for manufacturing it
KR100274662B1 (en) Method for manufacturing interlayer vias of multilayer printed circuit boards
JPH098458A (en) Printed-wiring board and manufacture thereof
JP4934901B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2006295204A (en) Wiring board and manufacturing method thereof
JP2004228360A (en) Method of manufacturing wiring board
JP2004063927A (en) Wiring circuit board and its manufacturing method
JPH1168291A (en) Printed wiring board and production thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees