JP2003017853A - Manufacturing method of wiring board - Google Patents

Manufacturing method of wiring board

Info

Publication number
JP2003017853A
JP2003017853A JP2001195875A JP2001195875A JP2003017853A JP 2003017853 A JP2003017853 A JP 2003017853A JP 2001195875 A JP2001195875 A JP 2001195875A JP 2001195875 A JP2001195875 A JP 2001195875A JP 2003017853 A JP2003017853 A JP 2003017853A
Authority
JP
Japan
Prior art keywords
layer
conductor
hole
insulating resin
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001195875A
Other languages
Japanese (ja)
Other versions
JP3792544B2 (en
Inventor
Hidetoshi Yugawa
英敏 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001195875A priority Critical patent/JP3792544B2/en
Publication of JP2003017853A publication Critical patent/JP2003017853A/en
Application granted granted Critical
Publication of JP3792544B2 publication Critical patent/JP3792544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a wiring board with high-density, wiring where the connection reliability between a through conductor and an inner-layer conductor is superior, without generating peeling in the through-conductor. SOLUTION: Laser machining is applied to an insulating resin plate 1, thus drilling a plurality of through-holes 4, where a carbonization layer 8 is formed on an inner wall, depositing a plating metal layer 13A for pretreatment to the carbonization layer 8, making the plating metal layer 13A for pretreatment to be subjected to etching removal with the carbonization layer 8, and depositing a through conductor 5 onto the inner surface of the through-hole 4, where the plating metal layer 13A for pretreatment and carbonization layer 8 have been removed.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、有機材料系の多層
配線基板の製造方法に関するものである。 【0002】 【従来の技術】従来、半導体素子を搭載するための有機
材料系の配線基板として、例えばガラス−エポキシ板か
らなる絶縁樹脂板の上下両面に銅箔から成る内層導体が
被着された両面銅張板の上下両面にエポキシ樹脂を主成
分とする絶縁樹脂層が被着されているとともにその絶縁
樹脂板および絶縁樹脂層を上下に貫通する複数の貫通孔
を有し、貫通孔内壁に貫通導体および絶縁樹脂層表面に
表層導体がそれぞれ無電解めっきおよび電解銅めっきに
より被着されて成る多層配線基板が用いられている。こ
の配線基板においては、貫通孔の内壁に被着させた貫通
導体を介して上下に位置する内層導体および表層導体を
電気的に接続することにより立体的な高密度配線が可能
となっている。 【0003】なお、このような有機材料系の多層配線基
板は、例えば厚みが0.35〜0.45mm程度のガラス−エポ
キシ板から成る絶縁樹脂板の上下両面に厚みが7〜12μ
m程度の銅箔から成る内層導体が被着形成された両面銅
張板の上下両面に厚みが25〜45μmの絶縁樹脂層を被着
させるとともに、その上面から下面にかけて直径が200
〜500μm程度の貫通孔をドリル加工により穿孔し、し
かる後、貫通孔内壁に厚みが15〜50μm程度の銅めっき
層から成る貫通導体および絶縁樹脂層表面に表層導体を
無電解めっき法および電解めっき法により被着させるこ
とによって製作されている。 【0004】 【発明が解決しようとする課題】ところで、このような
有機材料系の多層配線基板においては、その配線密度を
更に高めるために貫通孔の直径を例えば75〜130μm程
度の小さなものとする試みがなされている。このような
直径が75〜130μm程度の小さな貫通孔を形成するため
には例えば炭酸ガスレーザによる穿孔方法が採用され
る。 【0005】しかしながら、炭酸ガスレーザで穿孔した
場合には貫通孔の内壁にもろい炭化層が形成され、貫通
孔の内壁に銅めっき層からなる貫通導体を被着させた
後、貫通孔の壁面の炭化層を起点にして貫通導体に剥離
が発生してしまい、貫通導体と内層導体との間に導通不
良を起こしてしまうという問題があった。 【0006】本発明は、かかる従来の問題点に鑑み案出
されたものであり、その目的は、貫通導体に剥離が発生
することがなく、貫通導体と内層導体とが常に良好に接
続された極めて高密度な配線が可能な配線基板およびそ
の製造方法を提供することにある。 【0007】 【課題を解決するための手段】本発明の配線基板の製造
方法は、絶縁樹脂板にレーザ加工を施すことにより、内
壁に炭化層が形成された複数の貫通孔を穿孔する工程
と、次に前記炭化層上に前処理用めっき金属層を被着さ
せる工程と、次に前記前処理用めっき金属層を前記炭化
層とともにエッチング除去する工程と、次に前記前処理
めっき金属層および炭化層が除去された貫通孔内壁にめ
っき法により貫通導体を被着させる工程とを具備するこ
とを特徴とするものである。 【0008】本発明の配線基板の製造方法によれば、レ
ーザ加工により形成された貫通孔内壁の炭化層上に前処
理用めっき金属層を被着させた後、これを炭化層ととも
にエッチング除去し、更にこの前処理用めっき金属層お
よび炭化層が除去された貫通孔内壁にめっき法により貫
通導体を被着させることから、貫通導体が炭化層を起点
にして剥離するようなことはない。 【0009】 【発明の実施の形態】次に、本発明の配線基板の製造方
法について詳細に説明する。 【0010】図1は、本発明の製造方法によって製作さ
れる配線基板の実施形態の一例を示す部分断面図であ
る。図1において、1は絶縁樹脂板、2A・2Bは内層
導体、3A・3Bは絶縁樹脂層、4は貫通孔、5は貫通
導体、6A・6Bは表層導体であり、主として絶縁樹脂
板1の上下両面に内層導体2A・2Bおよび絶縁樹脂層
3A・3Bが被着されるとともに絶縁樹脂板1および内
層導体2A・2Bおよび絶縁樹脂層3A・3Bを貫通し
て複数の貫通孔4が設けられ、さらに貫通孔4の内壁に
貫通導体5が被着形成されるとともに絶縁樹脂層3A・
3Bの表面に表層導体6A・6Bが被着形成されること
により本発明の配線基板が構成されている。なお、本実
施形態例においては、貫通孔4内および絶縁樹脂層3A
・3B上にソルダレジスト7が設けられている。 【0011】絶縁樹脂板1は、配線基板のコア部材とし
て機能し、例えばガラスクロスやアラミドクロスにエポ
キシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニ
レンエーテル樹脂等の樹脂を含浸させた有機系絶縁材料
から成る厚みが0.35〜0.45mmの平板であり、その上下
両面に厚みが7〜12μmの銅箔から成る内層導体2A・
2Bが被着された、いわゆる両面銅張り板を構成してい
る。この絶縁樹脂板1は、その厚みが0.35mm未満では
その上下面に絶縁樹脂層3A・3Bを被着させたり、あ
るいは絶縁樹脂板1および内層導体2A・2Bおよび絶
縁樹脂層3A・3Bを貫通して複数の貫通孔4を形成し
たりする際等に熱や外力等の影響で配線基板に反りや変
形が発生して配線基板に要求される平坦度を確保できな
くなってしまう危険性が大きなものとなり、他方、0.45
mmを超えると、後述するように貫通孔4内壁に貫通導
体5を形成するとき、貫通孔4内にめっき液が浸入しに
くくなり、貫通導体5を良好に形成することが困難とな
る。したがって、絶縁樹脂板1の厚みは0.35〜0.45mm
の範囲が好ましい。 【0012】なお、絶縁樹脂板1は、ガラスクロスやア
ラミドクロスに含浸させるエポキシ樹脂やビスマレイミ
ドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹
脂中にシリカやアルミナあるいはアラミド樹脂等から成
るフィラーをガラスクロスやアラミドクロス等の繊維部
分と樹脂部分とでレーザ光の透過度が略同等となる程度
に含有させておけば、後述するように絶縁樹脂板1にレ
ーザ光で貫通孔4を穿孔する際に、貫通孔4を絶縁樹脂
板1に略均一な大きさで良好に形成することが可能とな
る。したがって、絶縁樹脂板1のガラスクロスやアラミ
ドクロスに含浸させるエポキシ樹脂やビスマレイミドト
リアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂中
にはシリカやアルミナあるいはアラミド樹脂等から成る
フィラーをガラスクロスやアラミドクロス等の繊維部分
と樹脂部分とでレーザ光の透過度が略同等となるように
含有させておくことが好ましい。 【0013】また、絶縁樹脂板1の上下面に被着された
内層導体2A・2Bは、銅箔から成り、主として電源層
やグランド層として機能する内層配線導体パターンWと
この内層配線導体パターンWから電気的に独立したダミ
ー導体パターンDとを有し、その厚みが7〜12μm、そ
の表面の中心線平均粗さRaが0.2〜2μm程度であ
る。内層導体2A・2Bは、その厚みが7μm未満の場
合、電源層やグランド層としての内層配線導体パターン
Wに対して十分な電気特性を付与することができず、他
方、12μmを超える場合、後述するように絶縁樹脂板1
と内層導体2A・2Bおよび絶縁樹脂層3A・3Bとを
貫通する貫通孔4をレーザ加工により穿孔する場合に、
貫通孔4を安定して形成することが困難となる。したが
って、内層導体2A・2Bの厚みは、7〜12μmの範囲
が好ましい。 【0014】なお、内層導体2A・2Bは、貫通孔4に
より貫通されるとともに後述する貫通導体5に接する内
層配線導体パターンWまたはダミー導体パターンDを全
ての貫通孔4に対応して有するように形成しておくと、
貫通孔4をレーザ加工により穿孔する際に全ての貫通孔
4においてレーザ光の吸収反射を略同じとして全ての貫
通孔4を略均一な大きさおよび形状に形成することがで
きる。したがって、内層導体2A・2Bは、貫通孔4に
より貫通される内層配線導体パターンWまたはダミー導
体パターンDを全ての貫通孔4に対応して有するように
形成しておくことが好ましい。この場合、ダミー導体パ
ターンDは、その直径が貫通孔4の直径よりも40〜100
μm程度大きな略円形のパターンとすればよく、内層配
線導体パターンWとの間に30〜60μm程度の幅の間隔を
設ければよい。ダミー導体パターンDの直径が貫通孔4
の直径よりも40μm未満大きな場合には、レーザ加工に
より貫通孔4を穿孔する際にダミー導体パターンDを正
確に貫通することが困難となり、他方、100μmを超え
て大きな場合には、内層配線導体パターンWの面積を広
く採ることが困難となる。また、ダミー導体パターンD
と内層配線導体パターンWとの間隔が30μm未満の場合
には、ダミー導体パターンDと内層配線導体パターンW
との間の電気的絶縁が良好に保てなくなる傾向にあり、
他方、60μmを超えると、内層配線導体パターンWの面
積を広く採ることが困難となる。 【0015】また、内層導体2A・2Bは、その表面の
中心線平均粗さRaが0.2μm未満の場合、内層導体2
A・2Bと絶縁樹脂層3A・3Bとが強固に密着せずに
内層導体2A・2Bと絶縁樹脂層3A・3Bとの間で剥
離が発生しやすくなる傾向にあり、他方2μmを超える
と、そのような粗い面を安定かつ効率良く形成すること
が困難となる傾向にある。したがって、内層導体2A・
2B表面の中心線平均粗さRaは0.2〜2μmの範囲が
好ましい。 【0016】また、絶縁樹脂板1の上下面に被着された
絶縁樹脂層3A・3Bはエポキシ樹脂やビスマレイミド
トリアジン樹脂・ポリフェニレンエーテル樹脂等の熱硬
化性樹脂から成り、レーザ光に対する分解度合いが絶縁
樹脂板1よりも大きく、その表面に表層導体6A・6B
が被着されている。絶縁樹脂層3A・3Bは、互いに絶
縁すべき内層導体2A・2Bと表層導体6A・6Bとを
電気的に絶縁するための絶縁間隔を提供するためのもの
であり、その厚みが内層導体2A・2B上で25〜45μm
である。この絶縁樹脂層3A・3Bは、その厚みが内層
導体2A・2B上で25μm未満の場合、互いに絶縁すべ
き内層導体2A・2Bと表層導体6A・6Bとを電気的
に良好に絶縁することができなくなり、他方、45μmを
超えると、絶縁樹脂板1および内層導体2A・2Bなら
びに絶縁樹脂層3A・3Bを貫通する貫通孔4をレーザ
加工により穿孔する際に貫通孔4を良好に形成すること
が困難となる。したがって、絶縁層3A・3Bの厚みは
内層導体2A・2B上で25〜45μmの範囲が好ましい。 【0017】表層導体6A・6Bは、厚みが8〜30μm
の銅めっき膜から成り、電源配線およびグランド配線お
よび信号配線を具備する表層配線パターンを形成してい
る。そして、例えば上面側の表層導体6Aの露出する一
部に図示しない電子部品の電極が半田を介して接続され
るとともに、下面側の表層導体6Bの露出する一部が図
示しない他の配線基板等に半田を介して接続される。 【0018】これらの表層導体6A・6Bは、その厚み
が8μm未満であると、表層配線パターンの電気抵抗が
高いものとなり、他方、30μmを超えると、表層配線パ
ターンを高密度に形成することが困難となる。したがっ
て、表層導体6A・6Bの厚みは、8〜30μmの範囲が
好ましい。 【0019】さらに、本発明の製造方法により製作され
る配線基板においては、絶縁樹脂板1および内層導体2
A・2Bおよび絶縁樹脂層3A・3Bを貫通して貫通孔
4がレーザ加工により形成されており、この貫通孔4の
内壁に貫通導体5が被着形成されている。貫通孔4は、
貫通導体5を絶縁樹脂層3Aの上面から絶縁樹脂層3B
の下面にかけて導出させるための導出路を提供するため
のものである。この貫通孔4は、レーザ加工によって形
成されることにより、絶縁樹脂板1においては直径が75
〜115μmでその内壁が略垂直であり、絶縁樹脂層3A
・3Bにおいてはその内壁が垂直方向から10〜30の角度
で傾いて外側に向けて拡径する形状となっている。この
場合、絶縁樹脂層3A・3Bはそのレーザ光に対する分
解度合いが絶縁樹脂板1よりも大きいことから、レーザ
加工の際に絶縁基体1よりも大きく分解されるので貫通
孔4の形状が絶縁樹脂層3A・3Bにおいて外側に向け
て拡径する形状となる。 【0020】このように、本発明の製造方法により製作
される配線基板によれば、貫通孔4はレーザ加工により
形成され、その直径が絶縁樹脂板1において75〜115μ
mと小さく、かつその内壁が絶縁樹脂層3A・3Bにお
いて垂直方向から10〜30の角度で傾いて外側に向けて拡
径する形状となっていることから、貫通導体5および表
層導体6A・6Bを高密度で配置することができ、それ
により極めて高密度な配線を有する配線基板を得ること
ができる。 【0021】また、貫通孔4はその直径が絶縁樹脂板1
において75〜115μmと小さいものの、その内壁が絶縁
樹脂板1においては略垂直でかつ絶縁樹脂層3A・3B
においては垂直方向から10〜30の角度で傾いて外側に向
けて拡径する形状となっていることから、後述するよう
に貫通孔4内壁に貫通導体5を被着形成する際に、貫通
導体5を形成するためのめっき液が貫通孔4の内部に良
好に入り込み、その結果、貫通孔4内に貫通導体5を良
好に形成することができる。 【0022】なお、絶縁樹脂板1における貫通孔4の直
径が75μm未満の場合、貫通孔4内壁に貫通導体5を被
着形成する際に、貫通導体5を形成するためのめっき液
が貫通孔4の内部に良好に入り込まずに貫通孔4内壁に
貫通導体5を良好に形成することが困難となり、他方、
115μmを超えると、貫通導体5および表層導体6A・
6Bを高密度で配置することが困難となる。したがっ
て、絶縁樹脂板1における貫通孔4の直径は、75〜115
μmの範囲が好ましい。 【0023】また、絶縁樹脂板1における貫通孔4の内
壁が略垂直でない場合、貫通孔4内壁に貫通導体5を被
着形成する際に貫通孔4の内部に気泡が取り残されやす
く、そのため貫通導体5を形成するためのめっき液が気
泡が取り残された部分に良好に届かずに貫通孔4内壁に
貫通導体5を良好に形成することが困難となる。したが
って、絶縁樹脂板1における貫通孔4の内壁は略垂直で
あることが好ましい。 【0024】また、貫通孔4の内壁が絶縁樹脂層3A・
3Bにおいて外側に向けて傾く角度が垂直方向から10度
未満の場合、貫通孔4内壁に貫通導体5を被着形成する
際に、貫通導体5を形成するためのめっき液が貫通孔4
の内部に良好に入り込まずに貫通孔4内壁に貫通導体5
を良好に形成することが困難となり、他方、30度を超え
るとそのような角度で内壁が拡がる貫通孔4を安定して
効率よく形成することが困難となる。したがって、貫通
孔4の内壁が絶縁樹脂層3A・3Bにおいて外側に向け
て傾く角度は、垂直方向から10〜30度の範囲が好まし
い。 【0025】貫通孔4の内壁に被着形成された貫通導体
5は、厚みが8〜25μm程度の銅めっき膜から成り、絶
縁樹脂板1および絶縁樹脂層3A・3Bを挟んで上下に
位置する内層導体2A・2Bおよび表層導体6A・6B
同士を互いに電気的に接続する接続導体として機能す
る。 【0026】貫通導体5は、その厚みが8μm未満で
は、貫通導体5の電気抵抗が高いものとなりすぎる傾向
にあり、他方、25μmを超えると、この貫通導体5が被
着された貫通孔4の内部に後述するソルダレジスト7を
良好に充填することが困難となる。したがって、貫通導
体5の厚みは、8〜25μmの範囲であることが好まし
い。 【0027】さらに、絶縁樹脂層3A・3Bの表面およ
び貫通孔4の内部には、エポキシ樹脂やビスマレイミド
トリアジン樹脂・ポリフェニレンエーテル樹脂等の熱硬
化性樹脂から成るソルダレジスト7が被着および充填さ
れている。ソルダレジスト7は、貫通導体5および表層
導体6A・6Bを保護するとともに表層導体6A・6B
における表層配線パターン同士を電気的に良好に絶縁す
るための保護層として機能し、表層導体6A・6Bの一
部を露出させる所定のパターンに被着形成されている。 【0028】なお、ソルダレジスト7は、その表層導体
6A・6B上における厚みが10μm未満であると、表層
導体6を良好に保護することができなくなるとともに表
層導体6A・6Bにおける表層配線パターン同士を電気
的に良好に絶縁することができなくなる傾向にあり、他
方、40μmを超えると、ソルダレジスト7を所定のパタ
ーンに形成することが困難となる傾向にある。したがっ
て、ソルダレジストの表層導体6A・6B上における厚
みは、10〜40μmの範囲が好ましい。 【0029】次に、図1に示した配線基板を本発明の製
造方法により製造する方法について図2(a)〜(h)
を参照して説明する。 【0030】まず、図2(a)に部分断面図で示すよう
に、例えばガラスクロスやアラミドクロスにエポキシ樹
脂やビスマレイミドトリアジン樹脂・ポリフェニレンエ
ーテル樹脂の樹脂を含浸させた有機系絶縁材料から成る
厚みが0.35〜0.45mmの絶縁樹脂板1の上下面に厚みが
7〜12μmの銅箔から成る内層導体2A・2Bが被着形
成された両面銅張板を準備する。なお、内層導体2A・
2Bはその表面の中心線平均粗さRaが0.2〜2μm程
度となるように、その表面を粗化しておく。 【0031】絶縁樹脂板1は、その厚みが0.35mm未満
ではその上下面に絶縁樹脂層3A・3Bを被着させた
り、あるいは絶縁樹脂板1および内層導体2A・2Bお
よび絶縁樹脂層3A・3Bを貫通して複数の貫通孔4を
形成する際等に熱や外力等の影響で配線基板に反りや変
形が発生して配線基板に要求される平坦度を確保できな
くなってしまう危険性が大きなものとなり、他方、0.45
mmを超えると、後述するように貫通孔4内壁に貫通導
体5を形成するとき、貫通孔4内にめっき液が浸入しに
くくなり、貫通導体5に断線が発生しやすくなる。した
がって、絶縁樹脂板1の厚みは0.35〜0.45mmの範囲が
好ましい。 【0032】また、内層導体2A・2Bは、その厚みが
7μm未満の場合、内層導体2A・2Bのパターンに電
源層やグランド層としての十分な電気特性を付与するこ
とができず、他方、12μmを超える場合、後述するよう
に絶縁樹脂板1と内層導体2A・2Bおよび絶縁樹脂層
3A・3Bとを貫通する貫通孔4をレーザ加工により穿
孔する場合に、直径が75〜130μmの貫通孔4を安定し
て形成することが困難となる。したがって、内層導体2
A・2Bの厚みは、7〜12μmの範囲が好ましい。 【0033】また、内層導体2A・2Bは、その表面の
中心線平均粗さRaが0.2μm未満の場合、後述するよ
うに、絶縁樹脂板1の上下面に絶縁樹脂層3A・3Bを
被着させる際に内層導体2A・2Bと絶縁樹脂層3A・
3Bとが強固に密着せずに内層導体2A・2Bと絶縁樹
脂層3A・3Bとの間で剥離が発生しやすくなる傾向に
あり、他方2μmを超えると、そのような粗い面を安定
かつ効率良く形成することが困難となる傾向にある。し
たがって、内層導体2A・2B表面の中心線平均粗さR
aは0.2〜2μmの範囲が好ましい。 【0034】さらに、内層導体2A・2Bは貫通孔4が
形成される位置に貫通孔4により貫通される導体パター
ンを全ての貫通孔4に対応して設けておくと、レーザ加
工により貫通孔4を形成する際に全ての貫通孔4におい
てレーザ光の吸収反射が均一となり、全ての貫通孔4を
略均一に形成することができる。したがって、内層導体
2A・2Bは貫通孔4が形成される位置に貫通孔4によ
り貫通される導体パターンを全ての貫通孔4に対応して
設けておくことが好ましい。 【0035】このような内層導体2A・2Bは、絶縁樹
脂板1の上下全面に厚みが8〜16μm程度の銅箔を貼着
するとともに、この銅箔上に感光性のドライフィルムレ
ジストを被着させ、次にこの感光性ドライフィルムレジ
ストを従来周知のフォトリソグラフィー技術により露光
・現像してパターン形成位置にドライフィルムレジスト
を有するエッチングマスクを形成し、次にエッチングマ
スクから露出した銅箔を塩化第2銅水溶液もしくは塩化
第2鉄水溶液から成るエッチング液を用いてエッチング
除去し、最後にエッチングマスクを剥離した後、塩化第
2銅水溶液に蟻酸が含有された粗化液を用いてその表面
をエッチングして粗化することによって形成される。 【0036】次に、図2(b)に部分断面図で示すよう
に、絶縁樹脂板1および内層導体2A・2Bから成る両
面銅張板の上下面にその厚みが内層導体2A・2B上で
25〜45μmの絶縁樹脂層3A・3Bを被着形成する。こ
の絶縁樹脂層3A・3Bはエポキシ樹脂やビスマレイミ
ドトリアジン樹脂・ポリフェニレンエーテル樹脂等の熱
硬化型の樹脂から成り、炭酸ガスレーザ等のレーザ光に
対する分解度合いが絶縁樹脂板1よりも大きい。 【0037】この絶縁樹脂層3A・3Bは、その厚みが
内層導体2A・2B上で25μm未満の場合、互いに絶縁
すべき内層導体2A・2Bと表層導体6A・6Bとを電
気的に良好に絶縁することができなくなり、他方、45μ
mを超えると、絶縁樹脂板1および内層導体2A・2B
ならびに絶縁樹脂層3A・3Bを貫通する貫通孔4をレ
ーザ加工により穿孔する際に直径が75〜130μmの貫通
孔4を良好に形成することが困難となる。したがって、
絶縁層3A・3Bの厚みは内層導体2A・2B上で25〜
45μmの範囲が好ましい。 【0038】なお、絶縁樹脂板1の上下面に内層導体2
A・2Bが被着されて成る両面銅張板の上下面に絶縁樹
脂層3A・3Bを被着形成するには、半硬化状態の熱硬
化性樹脂のフィルムを両面銅張板の上下両面に真空ラミ
ネータで仮圧着した後、これを熱処理して硬化させる方
法が採用される。 【0039】次に図2(c)に部分断面図で示すよう
に、レーザ加工により絶縁樹脂層3A・3Bおよび内層
導体2A・2Bおよび絶縁樹脂板1を貫通する直径が75
〜130μmの複数の貫通孔4を穿孔する。このとき、絶
縁樹脂層3A・3Bのレーザ光に対する分解度合いが絶
縁樹脂板1よりも大きいことから、貫通孔4は、絶縁樹
脂層3A・3Bにおいて外側に向けて拡径する形状とな
る。 【0040】このように、貫通孔4の直径を75〜130μ
mと小さいものとすることから、後述するように貫通導
体5および表層導体6A・6Bを形成する際に貫通導体
5および表層導体6A・6Bを高密度で配置することが
でき、それにより高密度な配線基板を得ることができ
る。また、貫通孔4の孔径が絶縁樹脂層3A・3Bの部
位で外側に向かって広がっていることから、後述するよ
うに貫通孔4内壁に貫通導体5を被着形成する際に、貫
通導体5を形成するためのめっき液が貫通孔4の内部に
良好に入り込み、その結果、貫通孔4内に貫通導体5を
良好に形成することができる。 【0041】なお、貫通孔4の孔径が75μm未満の場
合、貫通孔4内壁に貫通導体5を被着形成する際に、貫
通導体5を形成するためのめっき液が貫通孔4の内部に
良好に入り込まず、貫通孔4内壁に貫通導体5を良好に
形成することができなくなり、他方、130μmを超える
と、貫通導体5および表層導体6A・6Bを高密度で配
置することが困難となる。したがって、貫通孔4の直径
は、75〜130μmの範囲が好ましい。 【0042】また、貫通孔4の開口部における直径が絶
縁樹脂板1における直径よりも10μm未満大きい場合に
は、貫通孔4内壁に貫通導体5を被着形成する際に、貫
通導体5を形成するためのめっき液が貫通孔4の内部に
良好に入り込まずに貫通孔4内壁に貫通導体5を良好に
形成することが困難となり、他方、50μmを超えて大き
な場合には、そのような形状を有する貫通孔4を安定し
て形成することが困難となる。したがって、貫通孔4の
開口部における直径は、絶縁樹脂板1における直径より
も10〜50μm大きくしておくことが好ましい。 【0043】なお、絶縁樹脂層3A・3Bおよび内層導
体2A・2Bおよび絶縁樹脂板1に貫通孔4を形成する
には、絶縁樹脂層3A・3B上に例えばレーザ光のエネ
ルギーを良好に吸収する黒色もしくは黒色に近い色を有
する樹脂から成るレーザ加工用シートを貼着し、このレ
ーザ加工用シートの上から7〜12mJの出力の炭酸ガス
レーザ光を50〜500μ秒のパルス幅で所定の位置に照射
して貫通孔4を穿孔する方法が採用される。このとき、
炭酸ガスレーザ光の出力が7mJ未満だと貫通孔4を十
分な大きさに穿孔することが困難となる傾向にあり、他
方、12mJを超えると絶縁樹脂層3A・3Bにおける貫
通孔4の孔径が大きくなりすぎてしまう傾向にある。し
たがって、照射する炭酸ガスレーザ光は、その出力が7
〜12mJでパルス幅が50〜500μ秒の範囲であることが
好ましい。なお、レーザ加工用シートは、貫通孔4を穿
孔した後に剥離する。このように貫通孔4をレーザ加工
により形成することにより、直径が75〜130μmで、絶
縁樹脂層3A・3Bにおいて外側に向けて拡径する形状
の貫通孔4を容易に形成することができる。なお、この
場合、貫通孔4の内壁にはレーザ加工に伴なって厚みが
数μm以下程度の炭化層8が形成される。 【0044】次に、図2(d)に部分断面図で示すよう
に、貫通孔4内壁の炭化層8および絶縁樹脂層3A・3
Bの表面に厚みが1〜3μmの無電解銅めっき層から成
る前処理用めっき金属層13Aを被着させる。なお、前処
理用めっき金属層13Aを被着させるには、例えば塩化ア
ンモニウム系酢酸パラジウムを含有するパラジウム活性
液を使用して貫通孔4内壁および絶縁樹脂層3A・3B
の表面にパラジウム触媒を付着させるとともに、その上
に硫酸銅系の無電解銅めっき液を用いて前処理用めっき
金属層13Aを被着させればよい。このとき、貫通孔4
は、絶縁樹脂層3A・3Bにおいて外側に向けて拡径し
ていることから、貫通孔4内に無電解銅めっき液が良好
に浸入し、その結果、貫通孔4内壁の炭化層8および絶
縁樹脂層3A・3Bの表面に前処理用めっき金属層13A
を略均一な厚みに良好に被着させることができる。な
お、前処理用めっき金属層13Aを被着させる前に絶縁樹
脂層3A・3B表面および貫通孔4内壁を例えば過マン
ガン酸カリウム溶液や過マンガン酸ナトリウム溶液から
成る粗化液を用いて粗化しておくと前処理用めっき金属
層13Aを強固に被着させることができる。したがって、
前処理用めっき金属層13Aを被着させる前に絶縁樹脂層
3A・3B表面および貫通孔4内壁を例えば過マンガン
酸カリウム溶液や過マンガン酸ナトリウム溶液から成る
粗化液を用いて粗化しておくことが好ましい。 【0045】次に、図2(e)に部分断面図で示すよう
に、貫通孔4内壁の炭化層8上に被着された前処理用め
っき金属層13Aを炭化層8とともにエッチング除去す
る。なおこのエッチングに使用するエッチング液として
は、硫酸と過酸化水素水の混合溶液または塩化第2銅水
溶液または塩化第2鉄水溶液から成るエッチング液を用
いればよい。この場合、前処理用めっき金属層13A形成
時に前処理用めっき金属層13Aが炭化層8の微視的凹凸
内に入り込んで前処理用めっき金属層13Aの成膜時の応
力が炭化層8に良好に作用して炭化層8が剥離されやす
くなっている。したがって前処理用めっき金属層13Aを
エッチング除去する際に炭化層8が前処理用めっき金属
層13Aとともに良好に除去される。 【0046】次に、図2(f)に示すように、前処理用
めっき金属層13Aおよび炭化層8が除去された貫通孔4
内壁および絶縁樹脂層3A・3Bの表面に厚みが1〜3
μmの無電解銅めっきから成る無電解めっき金属層13B
を被着させる。なお、無電解銅めっきから成る無電解め
っき金属層13Bを被着させるには、例えば塩化アンモニ
ウム系酢酸パラジウムを含有するパラジウム活性液を使
用して貫通孔4内壁および絶縁樹脂層3A・3Bの表面
にパラジウム触媒を付着させるとともに、その上に硫酸
銅系の無電解銅めっき液を用いて無電解銅めっき層を被
着させればよい。このとき、貫通孔4は、絶縁樹脂層3
A・3Bにおいて外側に向けて拡径していることから、
貫通孔4内に無電解銅めっき液が良好に浸入し、その結
果、貫通孔4内壁および絶縁樹脂層3A・3Bの表面に
無電解めっき金属層13Bを略均一な厚みに良好に被着さ
せることができる。なお、無電解銅めっき膜から成る無
電解めっき金属層13Bを被着させる前に絶縁樹脂層3A
・3B表面および貫通孔4内壁を例えば過マンガン酸カ
リウム溶液や過マンガン酸ナトリウム溶液から成る粗化
液を用いてその中心線平均粗さRaが0.2〜2μm程度
になるように粗化しておくと無電解めっき金属膜13Bを
強固に被着させることができる。したがって、無電解め
っき金属層13Bを被着させる前に絶縁樹脂層3A・3B
表面および貫通孔4内壁を例えば過マンガン酸カリウム
溶液や過マンガン酸ナトリウム溶液から成る粗化液を用
いてその中心線平均粗さRaが0.2〜2μm程度になる
ように粗化しておくことが好ましい。このとき、貫通孔
4内壁は炭化層8が除去されていることから貫通孔4の
内壁で炭化層8を起点に無電解めっき金属層13Bが剥離
するようなことが無く、貫通孔4の内壁に対し無電解め
っき金属層13Bを強固に被着するすることができる。 【0047】次に、図2(g)に示すように絶縁層3A
・3B上の無電解銅めっき上にめっき用マスク14を被着
させるとともに、めっき用マスク14から露出した無電解
銅めっき上に厚みが10〜35μm程度の電解銅めっきを被
着させ、貫通孔4の内壁および絶縁樹脂層3A・3B表
面のパターン形成部位が選択的に厚く被着された無電解
めっきと電解銅めっきとから成るめっき膜13Cを形成す
る。 【0048】なお、めっき用マスク14は、例えば感光性
ドライフィルムレジストを絶縁樹脂層3A・3B上の無
電解銅めっき膜上に被着させるとともに、このドライフ
ィルムレジストをフォトリソグラフィー技術により露光
・現像して所定のパターンに加工することによって形成
する。 【0049】また、電解銅めっきを被着させるための電
解銅めっき液としては、例えば、硫酸銅系から成る電解
銅めっき液を用いればよい。このとき、貫通孔4は、絶
縁樹脂層3A・3Bにおいて外側に向けて拡径している
ことから、貫通孔4内に電解銅めっき液が良好に浸入
し、その結果、貫通孔4内壁および絶縁樹脂層3A・3
Bの表面に電解銅めっき膜が略均一な厚みに良好に被着
される。 【0050】次に、図2(h)に部分断面図で示すよう
に、めっきマスク14を剥離するとともにめっきマスク14
の下にあった無電解銅めっきが消滅するまで無電解銅め
っきおよび電解銅めっきをエッチングし、貫通孔4内壁
に貫通導体5を形成するとともに絶縁樹脂層3A・3B
の表面に表層導体6A・6Bを形成する。 【0051】なお、無電解銅めっき膜および電解銅めっ
き膜をエッチングするには、硫酸と過酸化水素水の混合
溶液または塩化第2銅水溶液または塩化第2鉄水溶液か
ら成るエッチング液を用いればよい。 【0052】このとき、貫通導体4の内壁は炭化層8が
除去されていることから、貫通導体5が炭化層8を起点
にして剥離してしまうようなことはない。したがって、
本発明の製造方法によると、貫通導体5と内層導体2A
・2Bとが常に良好に接続された、信頼性の高い高密度
配線の配線基板を得ることができる。 【0053】最後に、絶縁樹脂層3A・3Bの表面およ
び貫通孔4の内部にエポキシ樹脂やビスマレイミドトリ
アジン樹脂・ポリフェニレンエーテル等の熱硬化性樹脂
から成るソルダーレジスト7を被着および充填させるこ
とにより図1に示す本発明の配線基板が完成する。 【0054】なお、ソルダーレジスト7は、ソルダーレ
ジスト7用の感光性の樹脂ペーストを従来周知のスクリ
ーン印刷法を採用して絶縁層3A側および3B側から貫
通孔4を埋めるように印刷塗布し、これを従来周知のフ
ォトリソグラフィー技術を採用して所定のパターンに露
光・現像することによって形成される。このとき、貫通
孔4は、絶縁樹脂層3A・3Bにおいて外側に向けて拡
径していることから、貫通孔4内にソルダーレジスト7
用の樹脂ペーストが良好に浸入し、その結果、貫通孔4
内をソルダーレジスト7で良好に充填することができ
る。 【0055】 【発明の効果】本発明の配線基板の製造方法によれば、
レーザ加工により形成された貫通孔内壁の炭化層上に前
処理用めっき金属層を被着させた後、これを炭化層とと
もにエッチング除去し、更にこの前処理用めっき金属層
および炭化層が除去された貫通孔内壁にめっき法により
貫通導体を被着させることから、貫通導体が貫通孔内壁
の炭化層を起点にして剥離するようなことはなく、貫通
導体と内層導体間で導通不良が生じることがなくなる。
したがって貫通導体と内層導体との接続信頼性に優れた
高密度配線の配線基板を得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic material-based multilayer.
The present invention relates to a method for manufacturing a wiring board. Conventionally, an organic material for mounting a semiconductor element is used.
For example, a glass-epoxy board as a material-based wiring board
Inner layer conductors made of copper foil are formed on both upper and lower surfaces of the insulating resin plate.
Epoxy resin is mainly formed on both upper and lower surfaces of the coated double-sided copper-clad board.
Insulating resin layer is applied and insulation
Multiple through holes that penetrate the resin plate and insulating resin layer vertically
On the inner wall of the through hole and on the surface of the through conductor and insulating resin layer
Surface layer conductors for electroless plating and electrolytic copper plating, respectively
A multi-layered wiring board that is more deposited is used. This
In the wiring board, the penetration that is attached to the inner wall of the through hole
Inner layer conductor and surface layer conductor positioned above and below the conductor
Three-dimensional high-density wiring is possible by electrical connection
It has become. It is to be noted that such an organic material-based multilayer wiring board is used.
The plate is, for example, a glass-epoxy having a thickness of about 0.35 to 0.45 mm.
Thickness 7-12μ on both upper and lower surfaces of insulating resin plate
Double-sided copper with inner layer conductor made of copper foil
Insulating resin layers with a thickness of 25 to 45 μm are applied to the upper and lower surfaces of the tension plate.
The diameter is 200 from the upper surface to the lower surface.
Drill through holes of ~ 500μm by drilling
Then, copper plating with a thickness of about 15-50μm on the inner wall of the through hole
A surface conductor on the surface of the through-conductor and insulating resin layer
Deposit by electroless plating and electrolytic plating
It is produced by. However, such a problem is to be solved.
For organic material-based multilayer wiring boards, the wiring density
To further increase the diameter of the through hole, for example, about 75 to 130 μm
Attempts have been made to make it small. like this
To form small through holes with a diameter of about 75 to 130 μm
For example, a carbon dioxide laser drilling method is used.
The However, drilling was performed with a carbon dioxide laser.
In some cases, a brittle carbonized layer is formed on the inner wall of the through-hole,
A through conductor made of a copper plating layer was deposited on the inner wall of the hole.
Afterwards, peeling to the through conductor starting from the carbonized layer on the wall surface of the through hole
Occurs, and conduction failure occurs between the through conductor and the inner layer conductor.
There was a problem of causing good. The present invention has been devised in view of such conventional problems.
The purpose of this is to peel off the through conductor
The through conductor and the inner conductor are always in good contact with each other.
Wiring board capable of extremely high density wiring
It is in providing the manufacturing method of. SUMMARY OF THE INVENTION Manufacturing of a wiring board of the present invention
The method uses laser processing on the insulating resin plate to
Drilling a plurality of through-holes having a carbonized layer formed on a wall
And then depositing a pretreatment plating metal layer on the carbonized layer
And then carbonizing the pretreatment plating metal layer.
Etching together with the layer, and then the pretreatment
The inner wall of the through-hole from which the plated metal layer and carbonized layer have been removed
And a step of depositing the through conductor by a plating method.
It is characterized by. According to the method for manufacturing a wiring board of the present invention,
On the carbonized layer of the inner wall of the through-hole formed by laser processing
After depositing the scientific plating metal layer,
Etching is removed, and the pretreatment plating metal layer is further removed.
The inner wall of the through-hole from which the carbonized layer has been removed is penetrated by plating.
Since the conductor is deposited, the through conductor starts from the carbonized layer.
And will not peel off. DETAILED DESCRIPTION OF THE INVENTION Next, a method for manufacturing a wiring board according to the present invention.
The method will be described in detail. FIG. 1 shows a manufacturing method according to the present invention.
It is a fragmentary sectional view showing an example of an embodiment of a wiring board
The In FIG. 1, 1 is an insulating resin plate, 2A and 2B are inner layers
Conductor, 3A and 3B are insulating resin layers, 4 is through-holes, and 5 is through-holes
Conductors, 6A and 6B are surface conductors, mainly insulating resin
Inner layer conductors 2A and 2B and insulating resin layers on the upper and lower surfaces of the plate 1
3A and 3B are attached and the insulating resin plate 1 and the inside
It penetrates the layer conductors 2A and 2B and the insulating resin layers 3A and 3B.
A plurality of through-holes 4 are formed on the inner wall of the through-holes 4.
The through conductor 5 is deposited and the insulating resin layer 3A.
Surface layer conductors 6A and 6B are deposited on the surface of 3B.
Thus, the wiring board of the present invention is configured. Actually
In the embodiment, the inside of the through hole 4 and the insulating resin layer 3A
-Solder resist 7 is provided on 3B. The insulating resin plate 1 is used as a core member of a wiring board.
E.g. glass cloth or aramid cloth
Xy resin, bismaleimide triazine resin, polypheny
Organic insulating material impregnated with resin such as lenether resin
Is a flat plate with a thickness of 0.35 to 0.45 mm
Inner layer conductor 2A made of copper foil with a thickness of 7-12μm on both sides
It constitutes a so-called double-sided copper-clad board with 2B attached
The This insulating resin plate 1 has a thickness of less than 0.35 mm.
Insulating resin layers 3A and 3B are applied to the upper and lower surfaces,
Or insulating resin plate 1 and inner layer conductors 2A and 2B
A plurality of through holes 4 are formed through the edge resin layers 3A and 3B.
When the circuit board is warped or deformed by the influence of heat or external force.
The flatness required for the wiring board cannot be secured due to the shape.
On the other hand, the risk of becoming
If it exceeds mm, it will penetrate to the inner wall of the through hole 4 as will be described later.
When forming the body 5, the plating solution enters the through-hole 4.
It becomes difficult to form the through conductor 5 well.
The Therefore, the thickness of the insulating resin plate 1 is 0.35 to 0.45 mm.
The range of is preferable. The insulating resin plate 1 is made of glass cloth or aluminum.
Epoxy resin or bismaleimi impregnated into ramid cloth
Trees such as dotriazine resin and polyphenylene ether resin
Made of silica, alumina, or aramid resin in the fat
Filler fiber parts such as glass cloth and aramid cloth
To the extent that the transmittance of the laser beam is approximately equal between the minute and the resin part
If it is contained in the insulating resin plate 1 as described later,
When the through hole 4 is drilled with the laser beam, the through hole 4 is insulated with resin.
It becomes possible to form on the plate 1 with a substantially uniform size.
The Therefore, glass cloth and aramid of the insulating resin plate 1
Epoxy resin or bismaleimide to be impregnated into the cloth
In resin such as lyazine resin and polyphenylene ether resin
Consists of silica, alumina or aramid resin
Filler fiber parts such as glass cloth and aramid cloth
And the resin part so that the laser beam transmittance is almost equal
It is preferable to make it contain. Also, the insulating resin plate 1 was attached to the upper and lower surfaces.
Inner layer conductors 2A and 2B are made of copper foil, and are mainly power supply layers.
And inner-layer wiring conductor pattern W that functions as a ground layer
Dummy electrically independent from the inner layer wiring conductor pattern W
-Conductor pattern D, with a thickness of 7-12 μm,
The centerline average roughness Ra of the surface is about 0.2-2 μm
The The inner layer conductors 2A and 2B have a thickness of less than 7 μm.
Inner layer wiring conductor pattern as power supply layer and ground layer
Unable to give sufficient electrical properties to W, etc.
On the other hand, if it exceeds 12 μm, the insulating resin plate 1 will be described later.
And inner layer conductors 2A and 2B and insulating resin layers 3A and 3B
When penetrating through-hole 4 by laser processing,
It becomes difficult to form the through holes 4 stably. But
Therefore, the thickness of the inner layer conductors 2A and 2B is in the range of 7 to 12 μm.
Is preferred. The inner layer conductors 2A and 2B are formed in the through holes 4.
The inner part is further penetrated and is in contact with a through conductor 5 described later.
All layer wiring conductor pattern W or dummy conductor pattern D
If it is formed so as to correspond to all the through holes 4,
All through-holes when drilling through-holes 4 by laser processing
In FIG. 4, the absorption and reflection of the laser beam is substantially the same,
The through holes 4 can be formed in a substantially uniform size and shape.
Yes. Therefore, the inner layer conductors 2A and 2B are formed in the through holes 4.
Inner layer wiring conductor pattern W or dummy conductor penetrated more
To have body pattern D corresponding to all through holes 4
It is preferable to form it. In this case, dummy conductor pads
The diameter of the turn D is 40 to 100 than the diameter of the through hole 4
What is necessary is just a substantially circular pattern of about μm, and the inner layer arrangement
An interval with a width of about 30-60 μm between the line conductor pattern W
What is necessary is just to provide. The diameter of the dummy conductor pattern D is the through hole 4
If it is less than 40μm larger than the diameter of
When the through-hole 4 is drilled, the dummy conductor pattern D is
It becomes difficult to penetrate accurately, on the other hand, it exceeds 100μm
If it is large, increase the area of the inner-layer wiring conductor pattern W.
Difficult to take. Dummy conductor pattern D
When the distance between the wiring pattern and the inner wiring pattern W is less than 30μm
Includes a dummy conductor pattern D and an inner wiring conductor pattern W.
Tend to be unable to maintain good electrical insulation between
On the other hand, if it exceeds 60 μm, the surface of the inner layer wiring conductor pattern W
It becomes difficult to take products widely. The inner layer conductors 2A and 2B have surface
When the center line average roughness Ra is less than 0.2 μm, the inner layer conductor 2
A ・ 2B and insulating resin layers 3A ・ 3B are not firmly attached
Strip between inner layer conductors 2A and 2B and insulating resin layers 3A and 3B
Tends to be separated, and exceeds 2 μm
And to form such rough surfaces stably and efficiently
Tend to be difficult. Therefore, the inner layer conductor 2A.
The center line average roughness Ra of the 2B surface is in the range of 0.2-2 μm.
preferable. Also, the insulating resin plate 1 was attached to the upper and lower surfaces.
Insulating resin layers 3A and 3B are epoxy resin and bismaleimide
Thermosetting of triazine resin, polyphenylene ether resin, etc.
It is made of a curable resin, and the degree of decomposition against laser light is insulated.
It is larger than the resin plate 1, and the surface conductors 6A and 6B are on the surface.
Is attached. The insulating resin layers 3A and 3B are mutually insulated.
The inner layer conductors 2A and 2B and the surface layer conductors 6A and 6B to be bordered
For providing an insulation interval for electrical insulation
And the thickness is 25 to 45 μm on the inner layer conductors 2A and 2B.
It is. The insulating resin layers 3A and 3B have an inner layer thickness.
If conductors are less than 25μm on conductors 2A and 2B, they should be insulated from each other.
Electrical connection between inner layer conductors 2A and 2B and surface layer conductors 6A and 6B
On the other hand, 45 μm
If it exceeds, insulation resin plate 1 and inner layer conductors 2A and 2B
And through holes 4 that penetrate through the insulating resin layers 3A and 3B.
Forming the through-hole 4 well when drilling by machining
It becomes difficult. Therefore, the thickness of the insulating layers 3A and 3B is
The range of 25 to 45 μm is preferable on the inner layer conductors 2A and 2B. The surface conductors 6A and 6B have a thickness of 8 to 30 μm.
Power copper wiring and ground wiring.
And a surface wiring pattern including signal wiring is formed.
The For example, one surface layer conductor 6A on the upper surface side is exposed.
The electrode of the electronic component (not shown) is connected to the part via solder.
In addition, the exposed part of the surface layer conductor 6B on the lower surface side is shown in FIG.
It is connected to other wiring boards not shown via solder. These surface layer conductors 6A and 6B have a thickness of
Is less than 8 μm, the electrical resistance of the surface layer wiring pattern is
On the other hand, if the thickness exceeds 30 μm, the surface wiring layer
It becomes difficult to form turns with high density. Therefore
The thickness of the surface layer conductors 6A and 6B is in the range of 8 to 30 μm.
preferable. Furthermore, it is manufactured by the manufacturing method of the present invention.
In the wiring board, the insulating resin plate 1 and the inner layer conductor 2
Through-holes through A · 2B and insulating resin layers 3A · 3B
4 is formed by laser processing.
A through conductor 5 is formed on the inner wall. The through hole 4 is
The through conductor 5 is insulated from the upper surface of the insulating resin layer 3A by the insulating resin layer 3B.
To provide a lead-out path for the lead-out
belongs to. This through hole 4 is formed by laser processing.
As a result, the insulating resin plate 1 has a diameter of 75.
The inner wall is approximately vertical at ˜115 μm, and the insulating resin layer 3A
・ In 3B, the inner wall has an angle of 10-30 from the vertical direction.
It becomes the shape which inclines and expands toward the outside. this
In this case, the insulating resin layers 3A and 3B are separated from the laser beam.
Since the solution level is larger than that of the insulating resin plate 1, the laser
Since it is disassembled larger than the insulating base 1 during processing, it penetrates
The shape of the hole 4 faces outward in the insulating resin layers 3A and 3B.
The shape expands. Thus, it is manufactured by the manufacturing method of the present invention.
According to the printed wiring board, the through hole 4 is formed by laser processing.
Formed and its diameter is 75 to 115 μm in the insulating resin plate 1.
m and the inner wall of the insulating resin layers 3A and 3B
Inclined at an angle of 10-30 from the vertical direction and expanded outward
Because of the shape of the diameter, the through conductor 5 and the surface
The layer conductors 6A and 6B can be arranged with high density,
To obtain a wiring board having extremely high density wiring
Can do. Further, the diameter of the through hole 4 is the insulating resin plate 1.
The inner wall is insulated at 75 to 115 μm.
In the resin plate 1, the insulating resin layers 3A and 3B are substantially vertical.
At an angle of 10-30 from the vertical direction
Since it has a shape that expands in diameter, as will be described later
When the through conductor 5 is deposited on the inner wall of the through hole 4,
Plating solution for forming conductor 5 is good inside through hole 4
As a result, the through conductor 5 is good in the through hole 4.
It can be formed well. It should be noted that the through hole 4 in the insulating resin plate 1 is directly
When the diameter is less than 75 μm, the through conductor 5 is covered with the inner wall of the through hole 4.
Plating solution for forming through conductors 5 when forming
Does not enter the inside of the through-hole 4 well, and the inner wall of the through-hole 4
It becomes difficult to form the through conductor 5 well,
If it exceeds 115 μm, the through conductor 5 and the surface layer conductor 6A.
It becomes difficult to arrange 6B at a high density. Therefore
The diameter of the through hole 4 in the insulating resin plate 1 is 75 to 115.
The range of μm is preferable. Further, the inside of the through hole 4 in the insulating resin plate 1
When the wall is not substantially vertical, the through conductor 5 is covered on the inner wall of the through hole 4.
Air bubbles are easily left inside the through-holes 4 during the formation.
Therefore, the plating solution for forming the through conductor 5 is
On the inner wall of the through-hole 4 without reaching well where the foam is left
It becomes difficult to form the through conductor 5 satisfactorily. But
Thus, the inner wall of the through hole 4 in the insulating resin plate 1 is substantially vertical.
Preferably there is. The inner wall of the through-hole 4 has an insulating resin layer 3A.
The angle of inclination toward the outside in 3B is 10 degrees from the vertical direction.
If it is less, the through conductor 5 is deposited on the inner wall of the through hole 4.
At this time, the plating solution for forming the through conductor 5 is formed in the through hole 4.
The through conductor 5 does not penetrate into the inside of the through hole 4 in the inner wall.
Is difficult to form well, on the other hand, over 30 degrees
Then, the through-hole 4 whose inner wall expands at such an angle is stabilized.
It becomes difficult to form efficiently. Therefore, penetrating
The inner wall of the hole 4 faces outward in the insulating resin layers 3A and 3B
The tilt angle is preferably in the range of 10-30 degrees from the vertical direction.
Yes. A through conductor formed on the inner wall of the through hole 4
5 is made of a copper plating film having a thickness of about 8 to 25 μm.
Up and down across the edge resin plate 1 and insulating resin layers 3A and 3B
Positioned inner layer conductors 2A and 2B and surface layer conductors 6A and 6B
Functions as a connection conductor that electrically connects each other
The The through conductor 5 has a thickness of less than 8 μm.
Tends to be too high in electrical resistance of the through conductor 5
On the other hand, if it exceeds 25 μm, the through conductor 5 is covered.
A solder resist 7 to be described later is placed inside the attached through hole 4.
It becomes difficult to fill well. Therefore, the penetration
The thickness of the body 5 is preferably in the range of 8-25 μm.
Yes. Furthermore, the surfaces of the insulating resin layers 3A and 3B and
And through-holes 4 have epoxy resin and bismaleimide inside.
Thermosetting of triazine resin, polyphenylene ether resin, etc.
Solder resist 7 made of curable resin is deposited and filled
It is. The solder resist 7 includes the through conductor 5 and the surface layer.
Protects conductors 6A and 6B, and surface conductors 6A and 6B
Electrically insulates the surface wiring patterns from each other
Function as a protective layer for the surface conductors 6A and 6B
It is formed in a predetermined pattern that exposes the portion. The solder resist 7 is composed of a surface layer conductor.
When the thickness on 6A and 6B is less than 10 μm, the surface layer
The conductor 6 cannot be well protected and
Electricity between the surface wiring patterns of the layer conductors 6A and 6B
Tend to be unable to insulate well
On the other hand, when the thickness exceeds 40 μm, the solder resist 7 is set to a predetermined pattern.
Tends to be difficult to form. Therefore
The thickness of the solder resist on the surface conductors 6A and 6B
Is preferably in the range of 10 to 40 μm. Next, the wiring board shown in FIG. 1 is manufactured according to the present invention.
2 (a) to 2 (h) regarding the manufacturing method by the manufacturing method.
Will be described with reference to FIG. First, as shown in a partial cross-sectional view in FIG.
For example, epoxy resin on glass cloth or aramid cloth
Fat, bismaleimide triazine resin, polyphenylene ether
-Made of organic insulating material impregnated with resin of resin
Thickness on the upper and lower surfaces of insulating resin plate 1 with a thickness of 0.35-0.45 mm
Inner layer conductors 2A and 2B made of 7-12 μm copper foil are attached.
Prepare a double-sided copper-clad board. Inner layer conductor 2A
2B has a surface centerline average roughness Ra of about 0.2 to 2 μm.
The surface is roughened so as to obtain a degree. The insulating resin plate 1 has a thickness of less than 0.35 mm.
Then, insulating resin layers 3A and 3B were deposited on the upper and lower surfaces.
Or insulating resin plate 1 and inner layer conductors 2A and 2B
And a plurality of through holes 4 penetrating the insulating resin layers 3A and 3B.
Warping or deformation of the wiring board due to the effects of heat, external force, etc.
The flatness required for the wiring board cannot be secured due to the shape.
On the other hand, the risk of becoming
If it exceeds mm, it will penetrate to the inner wall of the through hole 4 as will be described later.
When forming the body 5, the plating solution enters the through-hole 4.
As a result, disconnection is likely to occur in the through conductor 5. did
Therefore, the thickness of the insulating resin plate 1 is in the range of 0.35 to 0.45 mm.
preferable. The inner layer conductors 2A and 2B have a thickness of
If the thickness is less than 7 μm, the pattern of the inner conductors 2A and 2B
Provide sufficient electrical properties as a source layer or ground layer
If it exceeds 12 μm, it will be described later.
Insulating resin plate 1, inner layer conductors 2A and 2B, and insulating resin layer
Drilling through-hole 4 that penetrates 3A and 3B by laser processing
When drilling, the through hole 4 with a diameter of 75 to 130 μm is stabilized.
It becomes difficult to form. Therefore, the inner layer conductor 2
The thickness of A · 2B is preferably in the range of 7 to 12 μm. The inner layer conductors 2A and 2B are formed on the surface thereof.
When the center line average roughness Ra is less than 0.2 μm, it will be described later.
Insulating resin layers 3A and 3B are formed on the upper and lower surfaces of insulating resin plate 1.
Inner layer conductors 2A and 2B and insulating resin layer 3A
Inner layer conductors 2A and 2B and insulation tree without being in close contact with 3B
In a tendency that peeling easily occurs between the oil layers 3A and 3B.
Yes, if it exceeds 2μm, such rough surface is stable
And it tends to be difficult to form efficiently. Shi
Therefore, the centerline average roughness R of the surface of the inner layer conductors 2A and 2B
a is preferably in the range of 0.2 to 2 μm. Further, the inner layer conductors 2A and 2B have through holes 4.
Conductor putter penetrated by the through hole 4 at the position to be formed
If a hole is provided corresponding to all the through-holes 4, laser processing is performed.
When the through holes 4 are formed by work, all the through holes 4
As a result, the absorption and reflection of the laser light becomes uniform, and all the through holes 4
It can be formed substantially uniformly. Therefore, inner layer conductor
2A and 2B are formed at the positions where the through holes 4 are formed.
Corresponding conductor patterns that penetrate through all through holes 4
It is preferable to provide it. Such inner layer conductors 2A and 2B are made of insulating trees.
A copper foil having a thickness of about 8 to 16 μm is pasted on the entire upper and lower surfaces of the fat plate 1.
At the same time, a photosensitive dry film
This is the photosensitive dry film register.
Exposure of strikes using conventional photolithography techniques
・ Develop and dry film resist at pattern formation position
An etching mask having
Copper foil exposed from the disc is cupric chloride aqueous solution or chloride
Etching with etchant consisting of ferric aqueous solution
After removing and finally removing the etching mask,
The surface using a roughening solution containing formic acid in a 2 copper aqueous solution
It is formed by etching and roughening. Next, as shown in a partial sectional view in FIG.
And both of the insulating resin plate 1 and the inner layer conductors 2A and 2B.
Thickness on the upper and lower surfaces of the surface copper-clad plate on the inner layer conductors 2A and 2B
Insulating resin layers 3A and 3B of 25 to 45 μm are deposited. This
The insulating resin layers 3A and 3B are made of epoxy resin or bismale
Heat of dotriazine resin, polyphenylene ether resin, etc.
Made of curable resin, for laser light such as carbon dioxide laser
The degree of decomposition is larger than that of the insulating resin plate 1. The insulating resin layers 3A and 3B have a thickness of
Insulating each other when less than 25μm on inner layer conductors 2A and 2B
The inner layer conductors 2A and 2B and the surface layer conductors 6A and 6B to be
Cannot be insulated well and, on the other hand, 45μ
If m is exceeded, insulating resin plate 1 and inner layer conductors 2A and 2B
In addition, the through hole 4 penetrating the insulating resin layers 3A and 3B
-When drilling by laser processing, the diameter is 75-130μm
It becomes difficult to form the holes 4 well. Therefore,
The thickness of the insulating layers 3A and 3B is 25 to 25 on the inner conductors 2A and 2B.
A range of 45 μm is preferred. The inner layer conductor 2 is formed on the upper and lower surfaces of the insulating resin plate 1.
Insulating trees on the upper and lower surfaces of double-sided copper-clad plates with A and 2B attached
In order to deposit the oil layers 3A and 3B, semi-cured thermosetting
Vacuum laminating film of curable resin on both upper and lower surfaces of double-sided copper-clad board
One that is temporarily bonded with a nota and then heat-treated to cure.
The law is adopted. Next, as shown in a partial sectional view in FIG.
Insulating resin layers 3A and 3B and inner layer by laser processing
The diameter penetrating the conductors 2A and 2B and the insulating resin plate 1 is 75.
A plurality of through-holes 4 of ~ 130 μm are drilled. At this time
Decomposition degree of edge resin layers 3A and 3B with respect to laser light is absolutely
Since it is larger than the edge resin plate 1, the through-hole 4 is made of an insulating tree.
In the fat layers 3A and 3B, the diameter increases toward the outside.
The Thus, the diameter of the through hole 4 is 75 to 130 μm.
Since it is as small as m, it will penetrate as described later.
When forming the body 5 and the surface conductors 6A and 6B, the through conductor
5 and surface conductors 6A and 6B can be arranged at high density
That can provide a high-density wiring board
The Moreover, the hole diameter of the through hole 4 is a portion of the insulating resin layers 3A and 3B.
It will be described later because it spreads outward
When the through conductor 5 is deposited on the inner wall of the through hole 4,
A plating solution for forming the conductor 5 is formed in the through hole 4.
As a result, the through conductor 5 is inserted into the through hole 4 as a result.
It can be formed satisfactorily. It should be noted that when the hole diameter of the through hole 4 is less than 75 μm
When the through conductor 5 is deposited on the inner wall of the through hole 4,
A plating solution for forming the conductor 5 is formed in the through hole 4.
The penetration conductor 5 does not penetrate well and the penetration conductor 5 is favorably formed on the inner wall of the penetration hole 4.
Can not be formed, on the other hand, exceeds 130μm
The through conductor 5 and the surface conductors 6A and 6B are arranged with high density.
Difficult to place. Therefore, the diameter of the through hole 4
Is preferably in the range of 75 to 130 μm. In addition, the diameter at the opening of the through hole 4 is completely different.
When the diameter is larger than the diameter of the edge resin plate 1 by less than 10 μm
When the through conductor 5 is deposited on the inner wall of the through hole 4,
A plating solution for forming the conductor 5 is formed in the through hole 4.
Improve penetration conductor 5 on inner wall of through hole 4 without entering well
Difficult to form, but larger than 50μm
In such a case, the through-hole 4 having such a shape is stabilized.
It becomes difficult to form. Therefore, the through-hole 4
The diameter at the opening is larger than the diameter at the insulating resin plate 1.
Is preferably 10 to 50 μm larger. The insulating resin layers 3A and 3B and the inner layer conductor
The through holes 4 are formed in the bodies 2A and 2B and the insulating resin plate 1.
For example, the energy of the laser beam is formed on the insulating resin layers 3A and 3B.
Has black or near black color that absorbs luge well
A laser processing sheet made of resin
-Carbon dioxide with an output of 7-12mJ from the top of the sheet for processing
Irradiate a laser beam at a predetermined position with a pulse width of 50 to 500 microseconds
Then, a method of drilling the through hole 4 is employed. At this time,
If the output of the carbon dioxide laser beam is less than 7 mJ, the through hole 4 will be
Tend to be difficult to perforate
On the other hand, if it exceeds 12 mJ, it will penetrate through the insulating resin layers 3A and 3B.
The hole diameter of the through hole 4 tends to be too large. Shi
Therefore, the carbon dioxide laser light to be irradiated has an output of 7
~ 12mJ and pulse width should be in the range of 50 ~ 500μs
preferable. The laser processing sheet is provided with a through hole 4.
It peels after making a hole. In this way, the through hole 4 is laser processed.
With a diameter of 75 to 130 μm,
In the edge resin layers 3A and 3B, the shape expands toward the outside.
The through-hole 4 can be easily formed. In addition, this
In this case, the inner wall of the through-hole 4 has a thickness due to laser processing.
A carbonized layer 8 of about several μm or less is formed. Next, as shown in a partial sectional view in FIG.
The carbonized layer 8 on the inner wall of the through hole 4 and the insulating resin layers 3A and 3
The surface of B is composed of an electroless copper plating layer with a thickness of 1 to 3 μm.
A pretreatment plating metal layer 13A is deposited. The predecessor
In order to deposit the theoretical plating metal layer 13A, for example, chloride
Palladium activity containing ammonium-based palladium acetate
Using the liquid, the inner wall of the through hole 4 and the insulating resin layers 3A and 3B
A palladium catalyst is attached to the surface of the
Pretreatment plating with copper sulfate based electroless copper plating solution
A metal layer 13A may be deposited. At this time, the through hole 4
The diameter of the insulating resin layers 3A and 3B increases toward the outside.
Therefore, the electroless copper plating solution is good in the through hole 4
As a result, the carbonized layer 8 on the inner wall of the through hole 4 and the
Pretreatment plating metal layer 13A on the surface of the edge resin layers 3A and 3B
Can be satisfactorily applied to a substantially uniform thickness. Na
Before applying the pretreatment plating metal layer 13A
The surface of the oil layers 3A and 3B and the inner wall of the through hole 4 are, for example, excessive
From potassium ganate solution or sodium permanganate solution
Pre-treated plating metal after roughening with a roughening solution consisting of
The layer 13A can be firmly applied. Therefore,
Before applying the pretreatment plating metal layer 13A, insulating resin layer
The surface of 3A and 3B and the inner wall of the through hole 4 are, for example, permanganese
Consists of potassium acid solution and sodium permanganate solution
It is preferable to roughen using a roughening liquid. Next, as shown in a partial sectional view in FIG.
In addition, a pretreatment coating deposited on the carbonized layer 8 on the inner wall of the through-hole 4
Etching and removing the precious metal layer 13A together with the carbonized layer 8
The As an etchant used for this etching
Is a mixed solution of sulfuric acid and hydrogen peroxide or cupric chloride
Use an etchant consisting of a solution or aqueous ferric chloride solution
It only has to be. In this case, the pretreatment plating metal layer 13A is formed.
Sometimes the pretreatment plating metal layer 13A is microscopic unevenness of the carbonized layer 8
When the metal layer 13A for pretreatment is deposited,
The force acts well on the carbonized layer 8 and the carbonized layer 8 is easily peeled off.
It has become. Therefore, pretreatment plating metal layer 13A
When removing by etching, the carbonized layer 8 is pre-plated metal.
It is well removed with the layer 13A. Next, as shown in FIG.
Through hole 4 from which plating metal layer 13A and carbonized layer 8 have been removed
The inner wall and the surface of the insulating resin layers 3A and 3B have a thickness of 1 to 3
Electroless plated metal layer 13B composed of μm electroless copper plating
Adhere. In addition, electroless plating made of electroless copper plating
To deposit the plated metal layer 13B, for example, ammonium chloride
Palladium active solution containing palladium
Use the inner walls of the through holes 4 and the surfaces of the insulating resin layers 3A and 3B.
A palladium catalyst is attached to
Cover the electroless copper plating layer with a copper-based electroless copper plating solution.
Just wear it. At this time, the through hole 4 is formed of the insulating resin layer 3.
Because A.3B is expanding toward the outside,
Electroless copper plating solution penetrates well into the through hole 4 and
As a result, on the inner walls of the through holes 4 and the surfaces of the insulating resin layers 3A and 3B
Electroless plating metal layer 13B is deposited with a uniform thickness.
Can be made. In addition, the non-electrolytic copper plating film
Before applying the electroplating metal layer 13B, the insulating resin layer 3A
-The 3B surface and the inner wall of the through hole 4 are, for example, permanganate
Roughening consisting of sodium and sodium permanganate solutions
The center line average roughness Ra is about 0.2 to 2 μm.
If it is roughened to become electroless plating metal film 13B
It can be firmly attached. Therefore, electroless
Before applying the plated metal layer 13B, the insulating resin layers 3A and 3B
The surface and the inner wall of the through hole 4 are, for example, potassium permanganate
Use roughening solution consisting of solution or sodium permanganate solution
And the center line average roughness Ra is about 0.2 to 2 μm.
It is preferable to roughen as described above. At this time, the through hole
4 Since the carbonized layer 8 is removed from the inner wall,
The electroless plating metal layer 13B peels off from the carbonized layer 8 on the inner wall.
No electrolysis with respect to the inner wall of the through hole 4
The plated metal layer 13B can be firmly applied. Next, as shown in FIG. 2 (g), the insulating layer 3A
・ Plating mask 14 is deposited on electroless copper plating on 3B
Electroless exposed from the plating mask 14
Electrolytic copper plating with a thickness of about 10 to 35 μm is coated on the copper plating.
The inner wall of the through hole 4 and the insulating resin layers 3A and 3B table
Electroless with selective thick deposition of surface patterning sites
Plating film 13C consisting of plating and electrolytic copper plating is formed
The The plating mask 14 is, for example, photosensitive.
No dry film resist on insulating resin layers 3A and 3B
It is deposited on the electrolytic copper plating film and
Film resist exposure using photolithography technology
・ Forming by developing and processing into a predetermined pattern
To do. Also, an electrode for depositing electrolytic copper plating is used.
For example, an electrolytic solution made of copper sulfate
A copper plating solution may be used. At this time, the through hole 4 is completely closed.
In the edge resin layers 3A and 3B, the diameter is increased toward the outside.
Therefore, the electrolytic copper plating solution penetrates well into the through hole 4
As a result, the inner wall of the through hole 4 and the insulating resin layers 3A and 3
Electrolytic copper plating film is deposited on the surface of B with a uniform thickness.
Is done. Next, as shown in a partial sectional view in FIG.
In addition, the plating mask 14 is peeled off and the plating mask 14 is removed.
Electroless copper plating until the electroless copper plating underneath disappeared
Etching plating and electrolytic copper plating, through hole 4 inner wall
A through conductor 5 is formed on the insulating resin layers 3A and 3B.
Surface layer conductors 6A and 6B are formed on the surface of the substrate. Incidentally, the electroless copper plating film and the electrolytic copper plating film.
To etch the film, a mixture of sulfuric acid and hydrogen peroxide
Solution or cupric chloride aqueous solution or ferric chloride aqueous solution
An etching solution comprising the following may be used. At this time, the carbonized layer 8 is formed on the inner wall of the through conductor 4.
The through conductor 5 starts from the carbonized layer 8 because it is removed.
And will not peel off. Therefore,
According to the manufacturing method of the present invention, the through conductor 5 and the inner layer conductor 2A
・ High reliability and high density with 2B always connected well
A wiring board for wiring can be obtained. Finally, the surfaces of the insulating resin layers 3A and 3B and
Epoxy resin or bismaleimide tri
Thermosetting resins such as azine resin and polyphenylene ether
Depositing and filling a solder resist 7 comprising
Thus, the wiring board of the present invention shown in FIG. 1 is completed. It should be noted that the solder resist 7 is a solder resist.
A photosensitive resin paste for GIST 7
Insulating layer 3A side and 3B side penetrating
Print and apply so as to fill the through-hole 4, and apply this to the well-known film.
Adopt photolithographic technology to expose the pattern.
It is formed by light and development. At this time, penetration
The holes 4 expand outward in the insulating resin layers 3A and 3B.
Due to the diameter, the solder resist 7 is placed in the through hole 4.
Resin paste penetrated well, and as a result, through-hole 4
The inside can be filled well with the solder resist 7.
The According to the method for manufacturing a wiring board of the present invention,
Previously on the carbonized layer of the inner wall of the through hole formed by laser processing
After depositing the plating metal layer for treatment,
Etching is removed, and this pretreatment plating metal layer
And the inner wall of the through hole with the carbonized layer removed
Because the through conductor is deposited, the through conductor is the inner wall of the through hole.
Penetration without starting from the carbonized layer
A conduction failure does not occur between the conductor and the inner layer conductor.
Therefore, the connection reliability between the through conductor and the inner layer conductor is excellent.
A high-density wiring board can be obtained.

【図面の簡単な説明】 【図1】本発明の製造方法により製作される配線基板の
実施形態の一例を示す部分断面図である。 【図2】(a)〜(h)は、本発明の配線基板の製造方
法を説明するための工程毎の部分断面図である。 【符号の説明】 1・・・・・・・絶縁樹脂板 2A・2B・・・内層導体 3A・3B・・・絶縁樹脂層 4・・・・・・・貫通孔 5・・・・・・・貫通導体 6A・6B・・・表層導体 8・・・・・・・炭化層 13A・・・・・・前処理用めっき金属層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial cross-sectional view showing an example of an embodiment of a wiring board manufactured by a manufacturing method of the present invention. FIGS. 2A to 2H are partial cross-sectional views for each process for explaining a method of manufacturing a wiring board according to the present invention. FIGS. [Explanation of symbols] 1 .... Insulating resin plates 2A, 2B ... Inner conductors 3A, 3B ... Insulating resin layer 4 ... Through holes 5 ...・ Penetration conductor 6A ・ 6B ・ ・ ・ Surface conductor 8 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Carbide layer 13A ・ ・ ・ ・ ・ ・ Plating metal layer for pretreatment

Claims (1)

【特許請求の範囲】 【請求項1】 絶縁樹脂板にレーザ加工を施すことによ
り、内壁に炭化層が形成された複数の貫通孔を穿孔する
工程と、次に前記炭化層上に前処理用めっき金属層を被
着させる工程と、次に前記前処理用めっき金属層を前記
炭化層とともにエッチング除去する工程と、次に前記前
処理用めっき金属層および炭化層が除去された貫通孔内
壁にめっき法により貫通導体を被着させる工程とを具備
することを特徴とする配線基板の製造方法。
What is claimed is: 1. A step of drilling a plurality of through holes each having a carbonized layer formed on an inner wall by laser processing an insulating resin plate; A step of depositing a plating metal layer, a step of etching and removing the pretreatment plating metal layer together with the carbonized layer, and then a through hole inner wall from which the pretreatment plating metal layer and the carbonization layer have been removed. And a step of depositing the through conductor by a plating method.
JP2001195875A 2001-06-28 2001-06-28 Wiring board manufacturing method Expired - Fee Related JP3792544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001195875A JP3792544B2 (en) 2001-06-28 2001-06-28 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001195875A JP3792544B2 (en) 2001-06-28 2001-06-28 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2003017853A true JP2003017853A (en) 2003-01-17
JP3792544B2 JP3792544B2 (en) 2006-07-05

Family

ID=19033781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001195875A Expired - Fee Related JP3792544B2 (en) 2001-06-28 2001-06-28 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP3792544B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110430669A (en) * 2019-08-13 2019-11-08 福建世卓电子科技有限公司 Circuit board and production technology based on laser drill tungsten carbide/conductive substrate surfaces hole

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110430669A (en) * 2019-08-13 2019-11-08 福建世卓电子科技有限公司 Circuit board and production technology based on laser drill tungsten carbide/conductive substrate surfaces hole

Also Published As

Publication number Publication date
JP3792544B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
US5243142A (en) Printed wiring board and process for producing the same
US6571467B2 (en) Method for producing a doublesided wiring board
JP2004311736A (en) Method for manufacturing built-up multilayer wiring board incorporating chip comp0nents
JPS61176193A (en) Manufacture of wiring board
JP2003188541A (en) Method of manufacturing wiring board
JP2000077809A (en) Printed wiring board having plated, sealed and taper shaped through hole and manufacture therefor
JP2001156453A (en) Forming method for embedded via at printed wiring board
JP2003017853A (en) Manufacturing method of wiring board
JP2003046226A (en) Wiring board and its manufacturing method
JP2001135750A (en) Method for manufacturing semiconductor package substrate
JP3881528B2 (en) Wiring board and manufacturing method thereof
JP4480693B2 (en) Wiring board and manufacturing method thereof
JP3934883B2 (en) Wiring board and manufacturing method thereof
JP3881523B2 (en) Wiring board and manufacturing method thereof
JP2004228534A (en) Punching method by laser to mother board for multi-cavity wiring board
JP2004228362A (en) Method of manufacturing wiring board
JP2006287251A (en) Wiring board and method for manufacturing it
JP2003008222A (en) High-density multilayer build-up wiring board and method of manufacturing the same
JP2002237679A (en) Printed circuit board and its manufacturing method
JP2004228360A (en) Method of manufacturing wiring board
JPH1168291A (en) Printed wiring board and production thereof
JP2508981B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2005005285A (en) Wiring board and its producing process
JP2004179526A (en) Wiring board, and manufacturing method thereof
JP2006295204A (en) Wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees