JP2003046226A - Wiring board and its manufacturing method - Google Patents

Wiring board and its manufacturing method

Info

Publication number
JP2003046226A
JP2003046226A JP2001230640A JP2001230640A JP2003046226A JP 2003046226 A JP2003046226 A JP 2003046226A JP 2001230640 A JP2001230640 A JP 2001230640A JP 2001230640 A JP2001230640 A JP 2001230640A JP 2003046226 A JP2003046226 A JP 2003046226A
Authority
JP
Japan
Prior art keywords
insulating resin
layer
resin
hole
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001230640A
Other languages
Japanese (ja)
Inventor
Hidetoshi Yugawa
英敏 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001230640A priority Critical patent/JP2003046226A/en
Publication of JP2003046226A publication Critical patent/JP2003046226A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a wiring board which is high in reliability and kept free from cracks occurring between a resin rod in a through-hole and a surface solder resist layer. SOLUTION: Inner conductors 2A and 2B formed of copper foil are each deposited on the upper and lower surfaces of an insulating resin board 1 for the formation of a double-sided copper-plated board, insulating resin layers 3A and 3B are deposited on the upper and lower surface of the double-sided copper-plated board, through-holes 4 are bored in the double-sided copper-plated board and the insulating resin layers 3A and 3B, penetrating through them in a vertical direction, a through conductor 5 is deposited on the inner walls of the through-holes 4 by plating, surface conductors 6A and 6B are deposited on the surfaces of the insulating resin layers 3A and 3B by plating, the through- holes 4 are each filled up with a resin rod 7, a solder resist layer 8 partially coating the surface conductors 6A and 6B is deposited on the surfaces of the insulating resin layers 3A and 3B for the formation of a wiring board, and the resin rods 7 and the solder resist layer 8 are formed of resin of the same composition in one piece.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機材料系の多層
配線基板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an organic material-based multilayer wiring board.

【0002】[0002]

【従来の技術】従来、半導体素子を搭載するための有機
材料系の配線基板として、例えばガラス−エポキシ板か
らなる絶縁樹脂板の上下両面に銅箔から成る内層導体が
被着された両面銅張板の上下両面にエポキシ樹脂を主成
分とする絶縁樹脂層が被着されているとともにその絶縁
樹脂板および絶縁樹脂層を上下に貫通する複数の貫通孔
を有し、貫通孔内壁に貫通導体および絶縁樹脂層表面に
表層導体がそれぞれ無電解めっきおよび電解銅めっきに
より被着されて成る多層配線基板が用いられている。こ
の配線基板においては、貫通孔の内壁に被着させた貫通
導体を介して上下に位置する内層導体および表層導体を
電気的に接続することにより立体的な高密度配線が可能
となっている。
2. Description of the Related Art Conventionally, as a wiring board of an organic material type for mounting a semiconductor element, for example, a double-sided copper clad in which inner layer conductors made of copper foil are adhered on both upper and lower sides of an insulating resin plate made of, for example, a glass-epoxy plate. An insulating resin layer containing an epoxy resin as a main component is applied to both upper and lower surfaces of the plate, and the insulating resin plate and the insulating resin layer have a plurality of through-holes vertically penetrating therethrough, and a through conductor and an inner wall of the through-hole are provided. A multi-layer wiring board is used in which surface conductors are coated on the surface of an insulating resin layer by electroless plating and electrolytic copper plating, respectively. In this wiring board, three-dimensional high-density wiring is possible by electrically connecting the inner-layer conductor and the surface-layer conductor located above and below through the through-conductor attached to the inner wall of the through-hole.

【0003】なお、このような有機材料系の多層配線基
板は、例えば厚みが0.35〜0.45mm程度のガラス−エポ
キシ板から成る絶縁樹脂板の上下両面に厚みが7〜12μ
m程度の銅箔から成る内層導体が被着形成された両面銅
張板の上下両面に厚みが25〜45μmの絶縁樹脂層を被着
させるとともに、その上面から下面にかけて直径が200
〜500μm程度の貫通孔をドリル加工により穿孔し、し
かる後、貫通孔内壁におよび絶縁樹脂層表面に厚みが15
〜50μm程度の銅めっき層を無電解めっき法および電解
めっき法により被着させ、次に貫通孔にエポキシ樹脂や
ビスマレイミドトリアジン樹脂・ポリフェニレンエーテ
ル樹脂主成分とする未硬化の熱硬化型樹脂をスクリーン
印刷により充填した後、この樹脂を熱硬化させ貫通孔内
を硬化した樹脂から成る樹脂柱で埋め、次に絶縁樹脂層
表層に被着させた銅めっき層を所定のパターンにエッチ
ング加工して絶縁樹脂層表面に表層導体を形成し、そし
て最後に表層導体が形成された絶縁樹脂層上に例えばア
クリル変性させた感光性のエポキシ樹脂等から成る感光
性樹脂ペーストをスクリーン印刷により印刷塗布し、こ
れを露光・現像した後、熱硬化および光硬化させて絶縁
樹脂層上に表層導体の一部を被覆するソルダーレジスト
層を形成することによって製作されていた。
Such an organic material-based multilayer wiring board has a thickness of 7 to 12 .mu.m on both upper and lower sides of an insulating resin plate made of a glass-epoxy plate having a thickness of about 0.35 to 0.45 mm.
An insulating resin layer with a thickness of 25 to 45 μm is applied to both the upper and lower surfaces of a double-sided copper clad board on which an inner layer conductor made of copper foil of about m is adhered, and the diameter is 200 from the upper surface to the lower surface.
Approximately 500 μm through holes are drilled by drilling, then the inner wall of the through holes and the insulating resin layer surface have a thickness of 15
A copper plating layer of about 50 μm is deposited by electroless plating and electrolytic plating, and then an uncured thermosetting resin containing epoxy resin, bismaleimide triazine resin or polyphenylene ether resin as a main component is screened in the through holes. After filling by printing, the resin is thermally cured and the through holes are filled with resin columns made of cured resin, and then the copper plating layer adhered to the surface layer of the insulating resin layer is etched into a predetermined pattern for insulation. A surface layer conductor is formed on the surface of the resin layer, and finally, a photosensitive resin paste made of, for example, an acrylic modified photosensitive epoxy resin or the like is printed and applied by screen printing on the insulating resin layer on which the surface layer conductor is formed. After exposing and developing, heat-curing and photo-curing to form a solder resist layer that covers a part of the surface conductor on the insulating resin layer. Therefore it was produced.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この従
来の有機材料系の多層配線基板によれば、一般的に、貫
通孔に充填された樹脂柱を形成する熱硬化型樹脂と絶縁
樹脂層の表面に被着させたソルダーレジスト層を形成す
る感光性樹脂との熱膨張係数が異なることから、例え
ば、この多層配線基板上に半導体素子を搭載する際や半
導体素子が作動する際等に熱が印加されると、樹脂柱と
ソルダーレジスト層との熱膨張係数の違いによって発生
する応力によって樹脂柱とソルダーレジスト層との接着
部分よりクラックが発生してしまい、配線基板としての
長期信頼性が著しく低下してしまうという問題点を有し
ていた。
However, according to this conventional organic material-based multilayer wiring board, generally, the surfaces of the thermosetting resin and the insulating resin layer that form the resin columns filled in the through holes are formed. Since the coefficient of thermal expansion is different from that of the photosensitive resin that forms the solder resist layer deposited on the substrate, heat is applied, for example, when mounting a semiconductor element on this multilayer wiring board or when the semiconductor element operates. Then, the stress generated by the difference in the thermal expansion coefficient between the resin pillar and the solder resist layer causes cracks to occur at the bond between the resin pillar and the solder resist layer, significantly lowering the long-term reliability of the wiring board. It had a problem that it did.

【0005】さらに、この従来の有機材料系の多層配線
基板によれば、樹脂柱とソルダーレジスト層とがそれぞ
れ別々の工程により形成されており、そのため、配線基
板の製造が煩雑なものとなってしまうという問題点を有
していた。
Further, according to this conventional organic material-based multilayer wiring board, the resin column and the solder resist layer are formed in separate steps, which makes the manufacturing of the wiring board complicated. It had a problem that it would end up.

【0006】本発明は、係る従来の問題点に鑑み完成さ
れたものであり、その目的は、貫通孔内に充填された樹
脂柱と絶縁樹脂層の表面に被着されたソルダーレジスト
層との間にクラックが発生することがない長期信頼性の
高い有機材料系の多層配線基板を提供することにある。
さらに、本発明の別の目的は、多層配線基板の製造を簡
便なものとすることにある。
The present invention has been completed in view of such conventional problems, and an object thereof is to provide a resin column filled in the through hole and a solder resist layer adhered to the surface of the insulating resin layer. An object of the present invention is to provide an organic material-based multilayer wiring board having high long-term reliability in which cracks do not occur.
Furthermore, another object of the present invention is to simplify the manufacture of a multilayer wiring board.

【0007】[0007]

【課題を解決するための手段】本発明は、絶縁樹脂板の
上下両面に銅箔から成る内層導体が被着された両面銅張
板の上下両面に絶縁樹脂層が被着されているとともに、
これらの両面銅張板および絶縁樹脂層を上下に貫通する
複数の貫通孔が形成されており、この貫通孔内壁に貫通
導体および絶縁樹脂層の表面に表層導体がそれぞれめっ
きにより被着形成されているとともに貫通孔内が樹脂柱
で充填され、かつ絶縁樹脂層の表面に表層導体の一部を
被覆するソルダーレジスト層が被着されて成る配線基板
において、樹脂柱とソルダーレジスト層とは同一組成の
樹脂により一体形成されていることを特徴とするもので
ある。
According to the present invention, an insulating resin layer is applied to both upper and lower surfaces of a double-sided copper-clad board in which inner layer conductors made of copper foil are applied to upper and lower surfaces of an insulating resin plate.
A plurality of through-holes are formed vertically through the double-sided copper clad board and the insulating resin layer, and a through conductor is formed on the inner wall of the through hole and a surface layer conductor is formed by plating on the surface of the insulating resin layer. In the wiring board in which the through holes are filled with resin pillars and the surface of the insulating resin layer is covered with a solder resist layer that covers a part of the surface conductor, the resin pillars and the solder resist layer have the same composition. It is characterized by being integrally formed of the resin.

【0008】また本発明の製造方法は、絶縁樹脂板の上
下両面に銅箔から成る内層導体が被着された両面銅張板
の上下両面に絶縁樹脂層を被着させるとともに、これら
の両面銅張板および絶縁樹脂層を上下に貫通する複数の
貫通孔を形成し、次にこの貫通孔内壁に貫通導体および
絶縁樹脂層の表面に表層導体をそれぞれめっきにより被
着させ、次に貫通孔内および絶縁樹脂層表面にそれぞれ
同一組成の未硬化の樹脂を充填および塗布した後、その
樹脂を硬化させることにより貫通孔内に樹脂が硬化した
樹脂柱および絶縁樹脂層の表面に樹脂が硬化したソルダ
ーレジスト層を一体形成することを特徴とするものであ
る。
Further, according to the manufacturing method of the present invention, an insulating resin layer is adhered on both upper and lower sides of a double-sided copper clad plate in which inner layer conductors made of copper foil are adhered on the upper and lower sides of the insulating resin plate, respectively, and these double-sided copper layers are coated. Form a plurality of through-holes that vertically penetrate the tension plate and the insulating resin layer, then deposit the through-conductor and the surface-layer conductor on the surface of the insulating resin layer by plating on the inner wall of the through-hole, and then in the through-hole. And the insulating resin layer surface is filled and applied with an uncured resin of the same composition, respectively, and then the resin is cured so that the resin column is cured in the through hole and the resin is cured on the surface of the insulating resin layer. The resist layer is integrally formed.

【0009】本発明の多層配線基板によれば、貫通孔内
に充填させた樹脂柱と絶縁樹脂層の表面に被着させたソ
ルダーレジスト層とが同一組成の樹脂により一体形成さ
れていることから、樹脂柱とソルダーレジスト層との間
で両者の熱膨張係数の相違に起因するクラックが発生す
ることはない。
According to the multilayer wiring board of the present invention, the resin column filled in the through hole and the solder resist layer deposited on the surface of the insulating resin layer are integrally formed of the resin having the same composition. The cracks caused by the difference in thermal expansion coefficient between the resin column and the solder resist layer do not occur.

【0010】また、本発明の多層配線基板の製造方法に
よれば、貫通孔内の樹脂柱と表層のソルダーレジスト層
とを同一組成の樹脂で一体形成することから、樹脂柱と
ソルダーレジスト層との間にクラックが発生することの
ない信頼性の高い配線基板を極めて簡便な方法で提供す
ることができる。
Further, according to the method of manufacturing a multilayer wiring board of the present invention, since the resin pillar in the through hole and the surface solder resist layer are integrally formed of the resin having the same composition, the resin pillar and the solder resist layer are formed. It is possible to provide a highly reliable wiring board in which no crack is generated between the wiring boards by an extremely simple method.

【0011】[0011]

【発明の実施の形態】次に、本発明の配線基板の製造方
法について詳細に説明する。図1は、本発明の製造方法
によって製作される配線基板の実施形態の一例を示す部
分断面図である。図1において、1は絶縁樹脂板、2A
・2Bは内層導体、3A・3Bは絶縁樹脂層、4は貫通
孔、5は貫通導体、6A・6Bは表層導体、7は樹脂
柱、8はソルダーレジスト層であり、絶縁樹脂板1の上
下両面に内層導体2A・2Bおよび絶縁樹脂層3A・3
Bが被着されるとともに絶縁樹脂板1および内層導体2
A・2Bおよび絶縁樹脂層3A・3Bを貫通して複数の
貫通孔4が設けられ、貫通孔4の内壁に貫通導体5が被
着形成されるとともに絶縁樹脂層3A・3Bの表面に表
層導体6A・6Bが被着形成され、さらに貫通孔4内に
樹脂柱7が充填されているとともに絶縁樹脂層3A・3
B上にソルダーレジスト層8が設けられていることによ
り本発明の配線基板が構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a method for manufacturing a wiring board according to the present invention will be described in detail. FIG. 1 is a partial cross-sectional view showing an example of an embodiment of a wiring board manufactured by the manufacturing method of the present invention. In FIG. 1, 1 is an insulating resin plate, 2A
2B is an inner layer conductor, 3A and 3B are insulating resin layers, 4 is a through hole, 5 is a through conductor, 6A and 6B are surface layer conductors, 7 is a resin column, and 8 is a solder resist layer, which are above and below the insulating resin plate 1. Inner layer conductors 2A and 2B and insulating resin layers 3A and 3 on both sides
B is deposited and the insulating resin plate 1 and the inner layer conductor 2
A.2B and insulating resin layers 3A and 3B are penetrated by a plurality of through holes 4, a through conductor 5 is adhered to the inner wall of the through hole 4, and a surface conductor is formed on the surface of the insulating resin layers 3A and 3B. 6A and 6B are adhered and formed, the resin column 7 is filled in the through hole 4, and the insulating resin layers 3A and 3B are formed.
The wiring board of the present invention is configured by providing the solder resist layer 8 on B.

【0012】絶縁樹脂板1は、配線基板のコア部材とし
て機能し、例えばガラスクロスやアラミドクロスにエポ
キシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニ
レンエーテル樹脂等の樹脂を含浸させた有機系絶縁材料
から成る厚みが0.35〜0.45mmの平板であり、その上下
両面に厚みが7〜12μmの銅箔から成る内層導体2A・
2Bが被着された、いわゆる両面銅張り板を構成してい
る。この絶縁樹脂板1は、その厚みが0.35mm未満では
その上下面に絶縁樹脂層3A・3Bを被着させたり、あ
るいは絶縁樹脂板1および内層導体2A・2Bおよび絶
縁樹脂層3A・3Bを貫通して複数の貫通孔4を形成し
たりする際等に熱や外力等の影響で配線基板に反りや変
形が発生して配線基板に要求される平坦度を確保できな
くなってしまう危険性が大きなものとなり、他方、0.45
mmを超えると、後述するように貫通孔4内壁に貫通導
体5を形成するとき、貫通孔4内にめっき液が浸入しに
くくなり、貫通導体5を良好に形成することが困難とな
る。したがって、絶縁樹脂板1の厚みは0.35〜0.45mm
の範囲が好ましい。
The insulating resin plate 1 functions as a core member of a wiring board, and is made of, for example, an organic insulating material obtained by impregnating glass cloth or aramid cloth with a resin such as epoxy resin or bismaleimide triazine resin / polyphenylene ether resin. Is a flat plate with a thickness of 0.35 to 0.45 mm, and an inner layer conductor 2A consisting of copper foil with a thickness of 7 to 12 μm on both upper and lower surfaces.
2B is adhered to form a so-called double-sided copper-clad plate. If the thickness of the insulating resin plate 1 is less than 0.35 mm, the insulating resin layers 3A and 3B are attached to the upper and lower surfaces thereof, or the insulating resin plate 1 and the inner layer conductors 2A and 2B and the insulating resin layers 3A and 3B are penetrated. When forming a plurality of through-holes 4, there is a great risk that the wiring board will be warped or deformed due to the influence of heat or external force, and the flatness required for the wiring board cannot be secured. And, on the other hand, 0.45
If it exceeds mm, when the through conductor 5 is formed on the inner wall of the through hole 4 as described later, it is difficult for the plating solution to penetrate into the through hole 4, and it is difficult to form the through conductor 5 well. Therefore, the thickness of the insulating resin plate 1 is 0.35 to 0.45 mm
Is preferred.

【0013】なお、絶縁樹脂板1は、ガラスクロスやア
ラミドクロスに含浸させるエポキシ樹脂やビスマレイミ
ドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹
脂中にシリカやアルミナあるいはアラミド樹脂等から成
るフィラーをガラスクロスやアラミドクロス等の繊維部
分と樹脂部分とでレーザ光の透過度が略同等となる程度
に含有させておけば、後述するように絶縁樹脂板1にレ
ーザ光で貫通孔4を穿孔する際に、貫通孔4を絶縁樹脂
板1に略均一な大きさで良好に形成することが可能とな
る。したがって、絶縁樹脂板1のガラスクロスやアラミ
ドクロスに含浸させるエポキシ樹脂やビスマレイミドト
リアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂中
にはシリカやアルミナあるいはアラミド樹脂等から成る
フィラーをガラスクロスやアラミドクロス等の繊維部分
と樹脂部分とでレーザ光の透過度が略同等となるように
含有させておくことが好ましい。
The insulating resin plate 1 is made of a resin such as epoxy resin or bismaleimide triazine resin / polyphenylene ether resin impregnated in glass cloth or aramid cloth, and a filler made of silica, alumina or aramid resin in glass cloth or aramid resin. If the fiber portion such as the cloth and the resin portion are contained so that the laser light transmittance is substantially equal to each other, when the through holes 4 are formed in the insulating resin plate 1 by the laser light, as will be described later, the through holes 4 are penetrated. The holes 4 can be favorably formed in the insulating resin plate 1 with a substantially uniform size. Therefore, in the resin such as epoxy resin, bismaleimide triazine resin, polyphenylene ether resin, etc., which is impregnated in the glass cloth or aramid cloth of the insulating resin plate 1, a filler made of silica, alumina, aramid resin or the like is added to the resin such as glass cloth or aramid cloth. It is preferable that the fiber portion and the resin portion are contained so that the laser beam transmittances thereof are substantially equal to each other.

【0014】また、絶縁樹脂板1の上下面に被着された
内層導体2A・2Bは、銅箔から成り、主として電源層
やグランド層として機能する内層配線導体パターンWと
この内層配線導体パターンWから電気的に独立したダミ
ー導体パターンDとを有し、その厚みが7〜12μm、そ
の表面の中心線平均粗さRaが0.2〜2μm程度であ
る。内層導体2A・2Bは、その厚みが7μm未満の場
合、電源層やグランド層としての内層配線導体パターン
Wに対して十分な電気特性を付与することができず、他
方、12μmを超える場合、後述するように絶縁樹脂板1
と内層導体2A・2Bおよび絶縁樹脂層3A・3Bとを
貫通する貫通孔4をレーザ加工により穿孔する場合に、
貫通孔4を安定して形成することが困難となる。したが
って、内層導体2A・2Bの厚みは、7〜12μmの範囲
が好ましい。
The inner layer conductors 2A and 2B attached to the upper and lower surfaces of the insulating resin plate 1 are made of copper foil and mainly serve as a power source layer and a ground layer, and an inner layer wiring conductor pattern W and the inner layer wiring conductor pattern W. To a dummy conductor pattern D electrically independent of each other, the thickness thereof is 7 to 12 μm, and the center line average roughness Ra of the surface thereof is about 0.2 to 2 μm. When the thickness of the inner layer conductors 2A and 2B is less than 7 μm, sufficient electrical characteristics cannot be imparted to the inner layer wiring conductor pattern W as a power supply layer or a ground layer. Insulating resin plate 1
When the through hole 4 penetrating the inner layer conductors 2A and 2B and the insulating resin layers 3A and 3B is formed by laser processing,
It becomes difficult to stably form the through hole 4. Therefore, the thickness of the inner layer conductors 2A and 2B is preferably in the range of 7 to 12 μm.

【0015】なお、内層導体2A・2Bは、貫通孔4に
より貫通されるとともに後述する貫通導体5に接する内
層配線導体パターンWまたはダミー導体パターンDを全
ての貫通孔4に対応して有するように形成しておくと、
貫通孔4をレーザ加工により穿孔する際に全ての貫通孔
4においてレーザ光の吸収反射を略同じとして全ての貫
通孔4を略均一な大きさおよび形状に形成することがで
きる。したがって、内層導体2A・2Bは、貫通孔4に
より貫通される内層配線導体パターンWまたはダミー導
体パターンDを全ての貫通孔4に対応して有するように
形成しておくことが好ましい。この場合、ダミー導体パ
ターンDは、その直径が貫通孔4の直径よりも40〜100
μm程度大きな略円形のパターンとすればよく、内層配
線導体パターンWとの間に30〜60μm程度の幅の間隔を
設ければよい。ダミー導体パターンDの直径が貫通孔4
の直径よりも40μm未満大きな場合には、レーザ加工に
より貫通孔4を穿孔する際にダミー導体パターンDを正
確に貫通することが困難となり、他方、100μmを超え
て大きな場合には、内層配線導体パターンWの面積を広
く採ることが困難となる。また、ダミー導体パターンD
と内層配線導体パターンWとの間隔が30μm未満の場合
には、ダミー導体パターンDと内層配線導体パターンW
との間の電気的絶縁が良好に保てなくなる傾向にあり、
他方、60μmを超えると、内層配線導体パターンWの面
積を広く採ることが困難となる。
The inner layer conductors 2A and 2B are provided with inner layer wiring conductor patterns W or dummy conductor patterns D, which penetrate through the through holes 4 and contact the through conductors 5 which will be described later, corresponding to all the through holes 4. Once formed,
When the through holes 4 are drilled by laser processing, all the through holes 4 can be formed to have a substantially uniform size and shape by making the absorption and reflection of the laser light substantially the same in all the through holes 4. Therefore, the inner layer conductors 2A and 2B are preferably formed so as to have the inner layer wiring conductor pattern W or the dummy conductor pattern D which is penetrated by the through holes 4 corresponding to all the through holes 4. In this case, the diameter of the dummy conductor pattern D is 40 to 100 times larger than the diameter of the through hole 4.
The pattern may be a substantially circular pattern having a large size of about μm, and a space having a width of about 30 to 60 μm may be provided between the pattern and the inner layer wiring conductor pattern W. The diameter of the dummy conductor pattern D is the through hole 4
If the diameter is larger than 40 μm by less than 40 μm, it becomes difficult to accurately penetrate the dummy conductor pattern D when the through hole 4 is formed by laser processing. On the other hand, if it is larger than 100 μm, the inner layer wiring conductor is formed. It becomes difficult to take a large area of the pattern W. In addition, the dummy conductor pattern D
When the distance between the inner layer wiring conductor pattern W and the inner layer wiring conductor pattern W is less than 30 μm, the dummy conductor pattern D and the inner layer wiring conductor pattern W
Tends to lose good electrical insulation between the
On the other hand, when it exceeds 60 μm, it becomes difficult to take a large area of the inner layer wiring conductor pattern W.

【0016】また、内層導体2A・2Bは、その表面の
中心線平均粗さRaが0.2μm未満の場合、内層導体2
A・2Bと絶縁樹脂層3A・3Bとが強固に密着せずに
内層導体2A・2Bと絶縁樹脂層3A・3Bとの間で剥
離が発生しやすくなる傾向にあり、他方2μmを超える
と、そのような粗い面を安定かつ効率良く形成すること
が困難となる傾向にある。したがって、内層導体2A・
2B表面の中心線平均粗さRaは0.2〜2μmの範囲が
好ましい。
The inner layer conductors 2A and 2B have a center line average roughness Ra of less than 0.2 μm.
A.2B and the insulating resin layers 3A and 3B do not firmly adhere to each other, and peeling tends to occur between the inner layer conductors 2A and 2B and the insulating resin layers 3A and 3B. On the other hand, when the thickness exceeds 2 μm, It tends to be difficult to form such a rough surface stably and efficiently. Therefore, the inner layer conductor 2A
The center line average roughness Ra of the 2B surface is preferably in the range of 0.2 to 2 μm.

【0017】また、絶縁樹脂板1の上下面に被着された
絶縁樹脂層3A・3Bはエポキシ樹脂やビスマレイミド
トリアジン樹脂・ポリフェニレンエーテル樹脂等の熱硬
化性樹脂から成り、レーザ光に対する分解度合いが絶縁
樹脂板1よりも大きく、その表面に表層導体6A・6B
が被着されている。絶縁樹脂層3A・3Bは、互いに絶
縁すべき内層導体2A・2Bと表層導体6A・6Bとを
電気的に絶縁するための絶縁間隔を提供するためのもの
であり、その厚みが内層導体2A・2B上で25〜45μm
である。この絶縁樹脂層3A・3Bは、その厚みが内層
導体2A・2B上で25μm未満の場合、互いに絶縁すべ
き内層導体2A・2Bと表層導体6A・6Bとを電気的
に良好に絶縁することができなくなり、他方、45μmを
超えると、絶縁樹脂板1および内層導体2A・2Bなら
びに絶縁樹脂層3A・3Bを貫通する貫通孔4をレーザ
加工により穿孔する際に貫通孔4を良好に形成すること
が困難となる。したがって、絶縁樹脂層3A・3Bの厚
みは内層導体2A・2B上で25〜45μmの範囲が好まし
い。
The insulating resin layers 3A and 3B attached to the upper and lower surfaces of the insulating resin plate 1 are made of a thermosetting resin such as epoxy resin, bismaleimide triazine resin, polyphenylene ether resin, etc., and have a degree of decomposition with respect to laser light. It is larger than the insulating resin plate 1 and has surface conductors 6A and 6B on its surface.
Is being worn. The insulating resin layers 3A and 3B are provided to provide an insulating space for electrically insulating the inner layer conductors 2A and 2B and the surface layer conductors 6A and 6B that are to be insulated from each other, and the thickness thereof is the inner layer conductor 2A. 25-45 μm on 2B
Is. When the insulating resin layers 3A and 3B have a thickness of less than 25 μm on the inner layer conductors 2A and 2B, they can electrically insulate the inner layer conductors 2A and 2B and the surface layer conductors 6A and 6B that should be insulated from each other. On the other hand, if it exceeds 45 μm, on the other hand, when the through holes 4 penetrating the insulating resin plate 1, the inner layer conductors 2A and 2B, and the insulating resin layers 3A and 3B are drilled by laser processing, the through holes 4 should be well formed. Will be difficult. Therefore, the thickness of the insulating resin layers 3A and 3B is preferably 25 to 45 μm on the inner layer conductors 2A and 2B.

【0018】絶縁樹脂層3A・3Bの表面に形成された
表層導体6A・6Bは、厚みが8〜30μmの銅めっき膜
から成り、電源配線およびグランド配線および信号配線
を具備する表層配線パターンを形成している。そして、
例えば上面側の表層導体6Aの露出する一部に図示しな
い電子部品の電極が半田を介して接続されるとともに、
下面側の表層導体6Bの露出する一部が図示しない他の
配線基板等に半田を介して接続される。
The surface layer conductors 6A and 6B formed on the surfaces of the insulating resin layers 3A and 3B are made of a copper plating film having a thickness of 8 to 30 μm, and form a surface layer wiring pattern including power supply wiring, ground wiring and signal wiring. is doing. And
For example, an electrode of an electronic component (not shown) is connected to an exposed part of the surface layer conductor 6A on the upper surface side via solder, and
An exposed part of the surface layer conductor 6B on the lower surface side is connected to another wiring board (not shown) or the like via solder.

【0019】これらの表層導体6A・6Bは、その厚み
が8μm未満であると、表層配線パターンの電気抵抗が
高いものとなり、他方、30μmを超えると、表層配線パ
ターンを高密度に形成することが困難となる。したがっ
て、表層導体6A・6Bの厚みは、8〜30μmの範囲が
好ましい。
When the surface layer conductors 6A and 6B have a thickness of less than 8 μm, the surface layer wiring pattern has a high electric resistance. On the other hand, when the thickness exceeds 30 μm, the surface layer wiring pattern can be formed at a high density. It will be difficult. Therefore, the thickness of the surface layer conductors 6A and 6B is preferably in the range of 8 to 30 μm.

【0020】また、絶縁樹脂板1および内層導体2A・
2Bおよび絶縁樹脂層3A・3Bを貫通して貫通孔4が
レーザ加工により形成されており、この貫通孔4の内壁
に貫通導体5が被着形成されている。貫通孔4は、貫通
導体5を絶縁樹脂層3Aの上面から絶縁樹脂層3Bの下
面にかけて導出させるための導出路を提供するためのも
のである。この貫通孔4は、レーザ加工によって形成さ
れることにより、絶縁樹脂板1においては直径が75〜11
5μmでその内壁が略垂直であり、絶縁樹脂層3A・3
Bにおいてはその内壁が垂直方向から10〜30度の角度で
傾いて外側に向けて拡径する形状となっている。この場
合、絶縁樹脂層3A・3Bはそのレーザ光に対する分解
度合いが絶縁樹脂板1よりも大きいことから、レーザ加
工の際に絶縁基体1よりも大きく分解されるので貫通孔
4の形状が絶縁樹脂層3A・3Bにおいて外側に向けて
拡径する形状となる。
The insulating resin plate 1 and the inner layer conductor 2A
A through hole 4 is formed by laser processing so as to penetrate through 2B and the insulating resin layers 3A and 3B, and a through conductor 5 is adhered to the inner wall of the through hole 4. The through hole 4 is for providing a lead-out path for leading out the through conductor 5 from the upper surface of the insulating resin layer 3A to the lower surface of the insulating resin layer 3B. The through hole 4 has a diameter of 75 to 11 in the insulating resin plate 1 because it is formed by laser processing.
Insulating resin layer 3A ・ 3
In B, the inner wall has a shape inclining at an angle of 10 to 30 degrees from the vertical direction and expanding toward the outside. In this case, since the insulating resin layers 3A and 3B have a greater degree of decomposition with respect to the laser light than the insulating resin plate 1, the insulating resin layers 3A and 3B are decomposed more than the insulating substrate 1 during laser processing. In the layers 3A and 3B, the diameter is expanded outward.

【0021】このように、貫通孔4をその直径が絶縁樹
脂板1において75〜115μmと小さく、かつその内壁が
絶縁樹脂層3A・3Bにおいて垂直方向から10〜30度の
角度で外側に向けて拡がる形状としておくことによっ
て、貫通導体5および表層導体6A・6Bを高密度で配
置することができ、それにより極めて高密度な配線を有
する配線基板を得ることができる。
Thus, the diameter of the through hole 4 is as small as 75 to 115 μm in the insulating resin plate 1 and the inner wall of the insulating resin layer 3A, 3B is directed outward at an angle of 10 to 30 degrees from the vertical direction. By forming the expanding shape, the through conductors 5 and the surface layer conductors 6A and 6B can be arranged at a high density, whereby a wiring board having extremely high-density wiring can be obtained.

【0022】また、貫通孔4はその直径が絶縁樹脂板1
において75〜115μmと小さいものの、その内壁が絶縁
樹脂板1においては略垂直でかつ絶縁樹脂層3A・3B
においては垂直方向から10〜30度の角度で外側に向けて
拡がる形状となっていることから、後述するように貫通
孔4内壁に貫通導体5を被着形成する際に、貫通導体5
を形成するためのめっき液が貫通孔4の内部に良好に入
り込み、その結果、貫通孔4内に貫通導体5を良好に形
成することができるとともに、後述するように貫通孔4
内に樹脂柱7を形成する際に樹脂柱7を形成するための
樹脂ペーストが貫通孔4の内部に良好に入り込み、その
結果、貫通孔4内に樹脂柱7を良好に形成することがで
きる。
The diameter of the through hole 4 is different from that of the insulating resin plate 1.
, The inner wall is substantially vertical in the insulating resin plate 1 and the insulating resin layers 3A and 3B are small.
Has a shape that expands outward at an angle of 10 to 30 degrees from the vertical direction. Therefore, when the through conductor 5 is attached to the inner wall of the through hole 4 as described later, the through conductor 5
The plating solution for forming the satisfactorily enters the inside of the through-hole 4, and as a result, the through-conductor 5 can be satisfactorily formed in the through-hole 4, and as will be described later, the through-hole 4
When forming the resin pillars 7 therein, the resin paste for forming the resin pillars 7 satisfactorily enters the through holes 4, and as a result, the resin pillars 7 can be formed well in the through holes 4. .

【0023】なお、絶縁樹脂板1における貫通孔4の直
径が75μm未満の場合、貫通孔4内壁に貫通導体5を被
着形成する際に、貫通導体5を形成するためのめっき液
が貫通孔4の内部に良好に入り込まずに貫通孔4内壁に
貫通導体5を良好に形成することが困難となり、他方、
115μmを超えると、貫通導体5および表層導体6A・
6Bを高密度で配置することが困難となる。したがっ
て、絶縁樹脂板1における貫通孔4の直径は、75〜115
μmの範囲が好ましい。
When the diameter of the through hole 4 in the insulating resin plate 1 is less than 75 μm, when the through conductor 5 is formed on the inner wall of the through hole 4, a plating solution for forming the through conductor 5 is used. It is difficult to satisfactorily form the through conductor 5 on the inner wall of the through hole 4 without entering the inside of the through hole 4 well.
If it exceeds 115 μm, the through conductor 5 and the surface layer conductor 6A
It becomes difficult to arrange 6B at a high density. Therefore, the diameter of the through hole 4 in the insulating resin plate 1 is 75 to 115.
The range of μm is preferred.

【0024】また、絶縁樹脂板1における貫通孔4の内
壁が略垂直でない場合、貫通孔4内壁に貫通導体5を被
着形成する際に貫通孔4の内部に気泡が取り残されやす
く、そのため貫通導体5を形成するためのめっき液が気
泡が取り残された部分に良好に届かずに貫通孔4内壁に
貫通導体5を良好に形成することが困難となる。したが
って、絶縁樹脂板1における貫通孔4の内壁は略垂直で
あることが好ましい。
If the inner wall of the through hole 4 in the insulating resin plate 1 is not substantially vertical, air bubbles are likely to be left inside the through hole 4 when the through conductor 5 is adhered to the inner wall of the through hole 4, and therefore the through hole 4 is not penetrated. The plating solution for forming the conductor 5 does not reach the portion where the bubbles are left unsatisfactorily, and it becomes difficult to form the through conductor 5 on the inner wall of the through hole 4 well. Therefore, the inner wall of the through hole 4 in the insulating resin plate 1 is preferably substantially vertical.

【0025】また、貫通孔4の内壁が絶縁樹脂層3A・
3Bにおいて外側に向けて拡がる角度が垂直方向から10
度未満の場合、貫通孔4内壁に貫通導体5を被着形成す
る際に、貫通導体5を形成するためのめっき液が貫通孔
4の内部に良好に入り込まずに貫通孔4内壁に貫通導体
5を良好に形成することが困難となるとともに、貫通孔
4内に樹脂柱7を形成する際に、樹脂柱7を形成するた
めの樹脂ペーストが貫通孔4の内部に良好に入り込ま
ず、樹脂柱7を良好に形成することが困難となる傾向に
あり、他方、30度を超えるとそのような角度で内壁が拡
がる貫通孔4を安定して効率よく形成することが困難と
なる。したがって、貫通孔4の内壁が絶縁樹脂層3A・
3Bにおいて外側に向けて拡がる角度は、垂直方向から
10〜30度の範囲が好ましい。
Further, the inner wall of the through hole 4 has an insulating resin layer 3A.
In 3B, the angle that spreads outward is 10 from the vertical direction.
In the case of less than 10 degrees, when the through conductor 5 is formed on the inner wall of the through hole 4 by plating, the plating solution for forming the through conductor 5 does not well enter into the through hole 4 and the through conductor is formed on the inner wall of the through hole 4. 5 becomes difficult to form well, and when the resin pillar 7 is formed in the through hole 4, the resin paste for forming the resin pillar 7 does not well enter the inside of the through hole 4 and It tends to be difficult to form the pillar 7 satisfactorily. On the other hand, when it exceeds 30 degrees, it becomes difficult to stably and efficiently form the through hole 4 in which the inner wall expands at such an angle. Therefore, the inner wall of the through hole 4 has the insulating resin layer 3A.
The angle that spreads outward in 3B is from the vertical direction.
The range of 10 to 30 degrees is preferable.

【0026】貫通孔4の内壁に被着形成された貫通導体
5は、厚みが8〜25μm程度の銅めっき膜から成り、絶
縁樹脂板1および絶縁樹脂層3A・3Bを挟んで上下に
位置する内層導体2A・2Bおよび表層導体6A・6B
同士を互いに電気的に接続する接続導体として機能す
る。
The through conductor 5 adhered to the inner wall of the through hole 4 is made of a copper plating film having a thickness of about 8 to 25 μm, and is located above and below the insulating resin plate 1 and the insulating resin layers 3A and 3B. Inner layer conductors 2A and 2B and surface layer conductors 6A and 6B
It functions as a connecting conductor that electrically connects the two to each other.

【0027】貫通導体5は、その厚みが8μm未満で
は、貫通導体5の電気抵抗が高いものとなりすぎる傾向
にあり、他方、25μmを超えると、この貫通導体5が被
着された貫通孔4の内部に樹脂柱7を良好に形成するこ
とが困難となる。したがって、貫通導体5の厚みは、8
〜25μmの範囲であることが好ましい。
When the thickness of the through conductor 5 is less than 8 μm, the electrical resistance of the through conductor 5 tends to be too high. On the other hand, when the thickness exceeds 25 μm, the through hole 4 to which the through conductor 5 is attached is formed. It becomes difficult to favorably form the resin column 7 inside. Therefore, the thickness of the through conductor 5 is 8
It is preferably in the range of -25 μm.

【0028】さらに、本発明の配線基板においては、貫
通孔4の内部に例えばアクリル変性させた感光性のエポ
キシ樹脂を硬化させて成る樹脂柱7が充填されていると
ともに絶縁樹脂層3A・3Bの表面に同じくアクリル変
性させた感光性のエポキシ樹脂を硬化させて成るソルダ
ーレジスト層8が表層導体6A・6Bの一部を露出させ
る所定のパターンに被着されている。
Further, in the wiring board of the present invention, the through holes 4 are filled with resin pillars 7 formed by curing, for example, acrylic modified photosensitive epoxy resin, and the insulating resin layers 3A and 3B are formed. A solder resist layer 8 formed by curing a photosensitive epoxy resin which is also acrylic-modified is applied on the surface in a predetermined pattern exposing a part of the surface layer conductors 6A and 6B.

【0029】樹脂柱7およびソルダーレジスト層8は、
貫通導体5および表層導体6A・6Bを外部の環境より
保護するとともに表層導体6A・6Bにおける表層配線
パターン同士を電気的に良好に絶縁するための保護層と
して機能し、両者が同一組成の樹脂により一体形成され
ている。
The resin pillar 7 and the solder resist layer 8 are
The through conductor 5 and the surface layer conductors 6A and 6B function as a protective layer for protecting the surface layer wiring patterns of the surface layer conductors 6A and 6B from each other, while protecting them from the external environment. It is integrally formed.

【0030】このように、樹脂柱7とソルダーレジスト
層8とが同一組成の樹脂で一体形成されていることか
ら、樹脂柱7とソルダーレジスト層8との間に継ぎ目が
なくなるとともに両者の熱膨張係数が同じとなるので、
配線基板に半導体素子を搭載する際や半導体素子が作動
する際等に熱が印加されたとしても樹脂柱7とソルダー
レジスト層8との間でクラックが発生することはない。
したがって、本発明の配線基板によれば、極めて信頼性
の高い配線基板を提供することができる。
As described above, since the resin pillar 7 and the solder resist layer 8 are integrally formed of the resin having the same composition, there is no joint between the resin pillar 7 and the solder resist layer 8 and the thermal expansion of both is performed. Since the coefficients are the same,
Even when heat is applied when the semiconductor element is mounted on the wiring board or when the semiconductor element operates, cracks do not occur between the resin column 7 and the solder resist layer 8.
Therefore, according to the wiring board of the present invention, it is possible to provide a wiring board having extremely high reliability.

【0031】なお、表層のソルダーレジスト層8は、そ
の表層導体6A・6B上における厚みが10μm未満であ
ると、表層導体6を良好に保護することができなくなる
とともに表層導体6A・6Bにおける表層配線パターン
同士を電気的に良好に絶縁することができなくなる傾向
にあり、他方、40μmを超えると、ソルダーレジスト層
8を所定のパターンに形成することが困難となる傾向に
ある。したがって、ソルダーレジスト層8の表層導体6
A・6B上における厚みは、10〜40μmの範囲が好まし
い。
If the thickness of the surface solder resist layer 8 on the surface conductors 6A and 6B is less than 10 μm, the surface conductor 6 cannot be well protected and the surface wirings of the surface conductors 6A and 6B are not protected. It tends to be difficult to electrically insulate the patterns from each other, and when it exceeds 40 μm, it tends to be difficult to form the solder resist layer 8 in a predetermined pattern. Therefore, the surface conductor 6 of the solder resist layer 8
The thickness on A · 6B is preferably in the range of 10 to 40 μm.

【0032】次に、図1に示した配線基板を本発明の製
造方法により製造する方法について図2(a)〜(h)
を参照して説明する。
Next, a method for manufacturing the wiring board shown in FIG. 1 by the manufacturing method of the present invention will be described with reference to FIGS.
Will be described with reference to.

【0033】まず、図2(a)に部分断面図で示すよう
に、例えばガラスクロスやアラミドクロスにエポキシ樹
脂やビスマレイミドトリアジン樹脂・ポリフェニレンエ
ーテル樹脂等の樹脂を含浸させた有機系絶縁材料から成
る厚みが0.35〜0.45mmの絶縁樹脂板1の上下面に厚み
が7〜12μmの銅箔から成る内層導体2A・2Bが被着
形成された両面銅張板を準備する。なお、内層導体2A
・2Bはその表面の中心線平均粗さRaが0.2〜2μm
程度となるように、その表面を粗化しておく。
First, as shown in the partial cross-sectional view of FIG. 2A, for example, an organic insulating material obtained by impregnating glass cloth or aramid cloth with a resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin is used. A double-sided copper clad plate is prepared in which inner layer conductors 2A and 2B made of copper foil having a thickness of 7 to 12 μm are adhered to the upper and lower surfaces of the insulating resin plate 1 having a thickness of 0.35 to 0.45 mm. The inner layer conductor 2A
・ 2B has a center line average roughness Ra of its surface of 0.2 to 2 μm.
The surface is roughened to a certain degree.

【0034】絶縁樹脂板1は、その厚みが0.35mm未満
ではその上下面に絶縁樹脂層3A・3Bを被着させた
り、あるいは絶縁樹脂板1および内層導体2A・2Bお
よび絶縁樹脂層3A・3Bを貫通して複数の貫通孔4を
形成する際等に熱や外力等の影響で配線基板に反りや変
形が発生して配線基板に要求される平坦度を確保できな
くなってしまう危険性が大きなものとなり、他方、0.45
mmを超えると、後述するように貫通孔4内壁に貫通導
体5を形成するとき、貫通孔4内にめっき液が浸入しに
くくなり、貫通導体5に断線が発生しやすくなる。した
がって、絶縁樹脂板1の厚みは0.35〜0.45mmの範囲が
好ましい。
If the thickness of the insulating resin plate 1 is less than 0.35 mm, the insulating resin layers 3A and 3B are adhered to the upper and lower surfaces of the insulating resin plate 1, or the insulating resin plate 1 and the inner conductors 2A and 2B and the insulating resin layers 3A and 3B. There is a high risk that the wiring board may be warped or deformed due to the influence of heat, external force, or the like when the plurality of through holes 4 are penetrated through the wiring board 4 and the flatness required for the wiring board cannot be secured. And, on the other hand, 0.45
When it exceeds mm, when the through conductor 5 is formed on the inner wall of the through hole 4 as described later, it is difficult for the plating solution to enter the through hole 4, and the through conductor 5 is likely to be broken. Therefore, the thickness of the insulating resin plate 1 is preferably 0.35 to 0.45 mm.

【0035】また、内層導体2A・2Bは、その厚みが
7μm未満の場合、内層導体2A・2Bのパターンに電
源層やグランド層としての十分な電気特性を付与するこ
とができず、他方、12μmを超える場合、後述するよう
に絶縁樹脂板1と内層導体2A・2Bおよび絶縁樹脂層
3A・3Bとを貫通する貫通孔4をレーザー加工により
穿孔する場合に、貫通孔4を安定して形成することが困
難となる。したがって、内層導体2A・2Bの厚みは、
7〜12μmの範囲が好ましい。
When the thickness of the inner layer conductors 2A and 2B is less than 7 μm, the pattern of the inner layer conductors 2A and 2B cannot be provided with sufficient electric characteristics as a power source layer or a ground layer. In the case of exceeding, the through hole 4 is stably formed when the through hole 4 penetrating the insulating resin plate 1, the inner layer conductors 2A and 2B and the insulating resin layers 3A and 3B is formed by laser processing as described later. Becomes difficult. Therefore, the thickness of the inner layer conductors 2A and 2B is
The range of 7 to 12 μm is preferable.

【0036】また、内層導体2A・2Bは、その表面の
中心線平均粗さRaが0.2μm未満の場合、後述するよ
うに、絶縁樹脂板1の上下面に絶縁樹脂層3A・3Bを
被着させる際に内層導体2A・2Bと絶縁樹脂層3A・
3Bとが強固に密着せずに内層導体2A・2Bと絶縁樹
脂層3A・3Bとの間で剥離が発生しやすくなる傾向に
あり、他方2μmを超えると、そのような粗い面を安定
かつ効率良く形成することが困難となる傾向にある。し
たがって、内層導体2A・2B表面の中心線平均粗さR
aは0.2〜2μmの範囲が好ましい。
When the center line average roughness Ra of the surface of the inner layer conductors 2A and 2B is less than 0.2 μm, the insulating resin layers 3A and 3B are attached to the upper and lower surfaces of the insulating resin plate 1 as described later. The inner layer conductors 2A and 2B and the insulating resin layer 3A
3B does not firmly adhere to each other and peeling tends to occur between the inner layer conductors 2A and 2B and the insulating resin layers 3A and 3B. On the other hand, when it exceeds 2 μm, such a rough surface is stably and efficiently formed. It tends to be difficult to form well. Therefore, the center line average roughness R of the inner layer conductors 2A and 2B
The range of a is preferably 0.2 to 2 μm.

【0037】さらに、内層導体2A・2Bは貫通孔4が
形成される位置に貫通孔4により貫通されるパターンを
全ての貫通孔4に対応して設けておくと、レーザー加工
により貫通孔4を形成する際に全ての貫通孔4において
レーザー光の吸収反射が均一となり、全ての貫通孔4を
略均一に形成することができる。したがって、内層導体
2A・2Bは貫通孔4が形成される位置に貫通孔4によ
り貫通されるパターンを全ての貫通孔4に対応して設け
ておくことが好ましい。
Further, in the inner layer conductors 2A and 2B, if a pattern to be penetrated by the through holes 4 is provided at the position where the through holes 4 are formed corresponding to all the through holes 4, the through holes 4 are formed by laser processing. At the time of formation, the absorption and reflection of the laser light is uniform in all the through holes 4, and all the through holes 4 can be formed substantially uniformly. Therefore, it is preferable that the inner-layer conductors 2A and 2B be provided with patterns corresponding to all the through holes 4 at positions where the through holes 4 are formed.

【0038】このような内層導体2A・2Bは、絶縁樹
脂板1の上下全面に厚みが8〜16μm程度の銅箔を貼着
するとともに、この銅箔上に感光性のドライフィルムレ
ジストを被着させ、次にこの感光性ドライフィルムレジ
ストを従来周知のフォトリソグラフィー技術により露光
・現像してパターン形成位置にドライフィルムレジスト
を有するエッチングマスクを形成し、次にエッチングマ
スクから露出した銅箔を塩化第2銅水溶液もしくは塩化
第2鉄水溶液から成るエッチング液を用いてエッチング
除去し、最後にエッチングマスクを剥離した後、塩化第
2銅水溶液に蟻酸が含有された粗化液を用いてその表面
をエッチングして粗化することによって形成される。
In such inner layer conductors 2A and 2B, a copper foil having a thickness of about 8 to 16 μm is adhered on the entire upper and lower surfaces of the insulating resin plate 1, and a photosensitive dry film resist is applied on the copper foil. Then, this photosensitive dry film resist is exposed and developed by a conventionally known photolithography technique to form an etching mask having the dry film resist at a pattern forming position, and then the copper foil exposed from the etching mask is chlorinated. 2 Etch away using an etching solution consisting of an aqueous solution of copper or ferric chloride, and finally remove the etching mask, and then etch the surface with a roughening solution containing formic acid in an aqueous solution of cupric chloride. It is formed by roughening.

【0039】次に、図2(b)に部分断面図で示すよう
に、両面銅張板の上下面にその厚みが内層導体2A・2
B上で25〜45μmの絶縁樹脂層3A・3Bを被着形成す
る。この絶縁樹脂層3A・3Bはエポキシ樹脂やビスマ
レイミドトリアジン樹脂・ポリフェニレンエーテル樹脂
等の熱硬化型の樹脂から成り、炭酸ガスレーザー等のレ
ーザー光に対する分解度合いが絶縁樹脂板1よりも大き
い。
Next, as shown in the partial cross-sectional view of FIG. 2B, the inner layer conductors 2A.
Insulating resin layers 3A and 3B having a thickness of 25 to 45 .mu.m are deposited on B. The insulating resin layers 3A and 3B are made of a thermosetting resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin, and have a higher degree of decomposition than a laser beam such as a carbon dioxide gas laser than the insulating resin plate 1.

【0040】この絶縁樹脂層3A・3Bは、その厚みが
内層導体2A・2B上で25μm未満の場合、互いに絶縁
すべき内層導体2A・2Bと表層導体6A・6Bとを電
気的に良好に絶縁することができなくなり、他方、45μ
mを超えると、絶縁樹脂板1および内層導体2A・2B
ならびに絶縁樹脂層3A・3Bを貫通する貫通孔4をレ
ーザー加工により穿孔する際に貫通孔4を良好に形成す
ることが困難となる。したがって、絶縁層3A・3Bの
厚みは内層導体2A・2B上で25〜45μmの範囲が好ま
しい。
When the thickness of the insulating resin layers 3A and 3B is less than 25 μm on the inner layer conductors 2A and 2B, the inner layer conductors 2A and 2B and the surface layer conductors 6A and 6B which should be insulated from each other are electrically well insulated. Can not be, on the other hand, 45μ
If it exceeds m, insulating resin plate 1 and inner layer conductors 2A and 2B
In addition, it becomes difficult to satisfactorily form the through holes 4 when the through holes 4 penetrating the insulating resin layers 3A and 3B are formed by laser processing. Therefore, the thickness of the insulating layers 3A and 3B is preferably in the range of 25 to 45 μm on the inner layer conductors 2A and 2B.

【0041】なお、絶縁樹脂板1の上下面に内層導体2
A・2Bが被着されて成る両面銅張板の上下面に絶縁樹
脂層3A・3Bを被着形成するには、半硬化状態の熱硬
化性樹脂のフィルムを両面銅張板の上下両面に真空ラミ
ネーターで仮圧着した後、これを熱処理して硬化させる
方法が採用される。
The inner conductor 2 is formed on the upper and lower surfaces of the insulating resin plate 1.
To form the insulating resin layers 3A and 3B on the upper and lower surfaces of the double-sided copper-clad board formed by depositing A and 2B, a semi-cured thermosetting resin film is formed on both upper and lower surfaces of the double-sided copper-clad board. A method is employed in which after temporary pressure bonding with a vacuum laminator, this is heat treated to cure.

【0042】次に図2(c)に部分断面図で示すよう
に、レーザー加工により絶縁樹脂層3A・3Bおよび内
層導体2A・2Bおよび絶縁樹脂板1を貫通する複数の
貫通孔4を穿孔する。貫通孔4は絶縁樹脂板1においは
直径が75〜115μmでその内壁が略垂直であり、絶縁樹
脂層3A・3Bにおいてはその内壁が垂直方向から10〜
30度の角度で外側に向けて拡がった形状とする。この場
合、絶縁樹脂層3A・3Bのレーザー光に対する分解度
合いを絶縁樹脂板1よりも大きくしておくことで、貫通
孔4の内壁を絶縁樹脂板1においては略垂直で絶縁樹脂
層3A・3Bにおいては垂直方向から10〜30度の角度で
外側に向けて拡がった形状とすることができる。
Next, as shown in the partial sectional view of FIG. 2 (c), a plurality of through holes 4 penetrating the insulating resin layers 3A and 3B, the inner layer conductors 2A and 2B and the insulating resin plate 1 are formed by laser processing. . The through hole 4 has a diameter of 75 to 115 μm in the insulating resin plate 1 and its inner wall is substantially vertical. In the insulating resin layers 3A and 3B, the inner wall is 10 to 10 μm from the vertical direction.
The shape should be expanded outward at an angle of 30 degrees. In this case, the degree of decomposition of the insulating resin layers 3A and 3B with respect to the laser light is set to be larger than that of the insulating resin plate 1, so that the inner wall of the through hole 4 is substantially perpendicular to the insulating resin plate 1 and the insulating resin layers 3A and 3B. In, the shape can be expanded outward at an angle of 10 to 30 degrees from the vertical direction.

【0043】このように、貫通孔4の直径を絶縁樹脂板
1において75〜115μmと小さいものとするとともに貫
通孔4の内壁を絶縁樹脂層3A・3Bにおいて垂直方向
から10〜30度の角度で外側に向けて拡がった形状とする
と、後述するように貫通導体5および表層導体6A・6
Bを形成する際に貫通導体5および表層導体6A・6B
を高密度で配置することができ、それにより高密度な配
線基板を得ることができる。
As described above, the diameter of the through hole 4 is as small as 75 to 115 μm in the insulating resin plate 1, and the inner wall of the through hole 4 is formed in the insulating resin layers 3A and 3B at an angle of 10 to 30 degrees from the vertical direction. If the shape is expanded outward, as will be described later, the through conductor 5 and the surface conductors 6A and 6A
When forming B, the through conductor 5 and the surface layer conductors 6A and 6B
Can be arranged at a high density, whereby a high-density wiring board can be obtained.

【0044】また、貫通孔4はその直径が絶縁樹脂板1
において75〜115μmと小さいものの、その内壁が絶縁
樹脂板1においては略垂直でかつ絶縁樹脂層3A・3B
においては垂直方向から10〜30度の角度で外側に向けて
拡がる形状となっていることから、後述するように貫通
孔4内壁に貫通導体5を被着形成する際に、貫通導体5
を形成するためのめっき液が貫通孔4の内部に良好に入
り込み、その結果、貫通孔4内に貫通導体5を良好に形
成することができるとともに、後述するように貫通孔4
内に樹脂柱7を形成する際に、樹脂柱7を形成するため
の樹脂ペーストが貫通孔4の内部に良好に入り込み、そ
の結果、貫通孔4内に樹脂柱7を良好に形成することが
できる。
The diameter of the through hole 4 is the insulating resin plate 1
, The inner wall is substantially vertical in the insulating resin plate 1 and the insulating resin layers 3A and 3B are small.
Has a shape that expands outward at an angle of 10 to 30 degrees from the vertical direction. Therefore, when the through conductor 5 is attached to the inner wall of the through hole 4 as described later, the through conductor 5
The plating solution for forming the satisfactorily enters the inside of the through-hole 4, and as a result, the through-conductor 5 can be satisfactorily formed in the through-hole 4, and as will be described later, the through-hole 4
When the resin pillar 7 is formed in the resin pillar 7, the resin paste for forming the resin pillar 7 can enter the inside of the through hole 4 well, and as a result, the resin pillar 7 can be well formed in the through hole 4. it can.

【0045】なお、絶縁樹脂板1における貫通孔4の直
径が75μm未満の場合、貫通孔4内壁に貫通導体5を被
着形成する際に、貫通導体5を形成するためのめっき液
が貫通孔4の内部に良好に入り込まず、貫通孔4内壁に
貫通導体5を良好に形成することが困難となり、他方、
115μmを超えると、貫通導体5および表層導体6A・
6Bを高密度で配置することが困難となる。したがっ
て、絶縁樹脂板1における貫通孔4の直径は、75〜115
μmの範囲が好ましい。
When the diameter of the through hole 4 in the insulating resin plate 1 is less than 75 μm, when the through conductor 5 is formed on the inner wall of the through hole 4, a plating solution for forming the through conductor 5 is used. 4, it is difficult to form the through conductor 5 in the inner wall of the through hole 4 satisfactorily.
If it exceeds 115 μm, the through conductor 5 and the surface layer conductor 6A
It becomes difficult to arrange 6B at a high density. Therefore, the diameter of the through hole 4 in the insulating resin plate 1 is 75 to 115.
The range of μm is preferred.

【0046】また、絶縁樹脂板1における貫通孔4の内
壁が略垂直でない場合、貫通孔4内壁に貫通導体5を被
着形成する際に貫通孔4の内部に気泡が取り残されやす
く、そのため貫通導体5を形成するためのめっき液が気
泡が取り残された部分に良好に届かずに貫通孔4内壁に
貫通導体5を良好に形成することが困難となる。したが
って、絶縁樹脂板1における貫通孔4の内壁は略垂直で
あることが好ましい。
Further, when the inner wall of the through hole 4 in the insulating resin plate 1 is not substantially vertical, air bubbles are likely to be left inside the through hole 4 when the through conductor 5 is formed on the inner wall of the through hole 4, and therefore the through hole 4 is not penetrated. The plating solution for forming the conductor 5 does not reach the portion where the bubbles are left unsatisfactorily, and it becomes difficult to form the through conductor 5 on the inner wall of the through hole 4 well. Therefore, the inner wall of the through hole 4 in the insulating resin plate 1 is preferably substantially vertical.

【0047】また、貫通孔4の内壁が絶縁樹脂層3A・
3Bにおいて外側に向けて拡がる角度が垂直方向から10
度未満の場合、貫通孔4内壁に貫通導体5を被着形成す
る際に、貫通導体5を形成するためのめっき液が貫通孔
4の内部に良好に入り込まずに貫通孔4内壁に貫通導体
5を良好に形成することが困難となるとともに、貫通孔
4内に樹脂柱7を形成する際に、樹脂柱7を形成するた
めの樹脂ペーストが貫通孔4の内部に良好に入り込まず
に貫通孔4内に樹脂柱7を良好に形成することが困難と
なる傾向にあり、他方、30度を超えるとそのような角度
で内壁が拡がる貫通孔4を安定して効率よく形成するこ
とが困難となる。したがって、貫通孔4の内壁が絶縁樹
脂層3A・3Bにおいて外側に向けて拡がる角度は、垂
直方向から10〜30度の範囲が好ましい。
Further, the inner wall of the through hole 4 has an insulating resin layer 3A.
In 3B, the angle that spreads outward is 10 from the vertical direction.
In the case of less than 10 degrees, when the through conductor 5 is formed on the inner wall of the through hole 4 by plating, the plating solution for forming the through conductor 5 does not well enter into the through hole 4 and the through conductor is formed on the inner wall of the through hole 4. 5 becomes difficult to form well, and when the resin pillar 7 is formed in the through hole 4, the resin paste for forming the resin pillar 7 does not enter the inside of the through hole 4 well and penetrates the through hole 4. It tends to be difficult to satisfactorily form the resin column 7 in the hole 4, while if it exceeds 30 degrees, it is difficult to stably and efficiently form the through hole 4 in which the inner wall expands at such an angle. Becomes Therefore, the angle at which the inner wall of the through hole 4 expands outward in the insulating resin layers 3A and 3B is preferably in the range of 10 to 30 degrees from the vertical direction.

【0048】なお、絶縁樹脂層3A・3Bおよび内層導
体2A・2Bおよび絶縁樹脂板1に貫通孔4を形成する
には、絶縁樹脂層3A・3B上に例えばレーザー光のエ
ネルギーを良好に吸収する黒色もしくは黒色に近い色を
有する樹脂から成るレーザー加工用シートを貼着し、こ
のレーザー加工用シートの上から7〜12mJの出力の炭
酸ガスレーザー光を50〜500μ秒のパルス幅で所定の位
置に照射して貫通孔4を穿孔する方法が採用される。こ
のとき、炭酸ガスレーザー光の出力が7mJ未満だと貫
通孔4を十分な大きさに穿孔することが困難となる傾向
にあり、他方、12mJを超えると絶縁樹脂層3A・3B
における貫通孔4の孔径が大きくなりすぎてしまう傾向
にある。したがって、照射する炭酸ガスレーザー光は、
その出力が7〜12mJでパルス幅が50〜500μ秒の範囲
であることが好ましい。なお、レーザー加工用シート
は、貫通孔4を穿孔した後に剥離する。このように貫通
孔4をレーザー加工により形成することにより、絶縁樹
脂板1においては直径が75〜115μmでその内壁が略垂
直であり、かつ絶縁樹脂層3A・3Bにおいてその内壁
が垂直方向から10〜30度の角度で外側に向けて拡径する
形状の貫通孔4を容易に形成することができる。
In order to form the through holes 4 in the insulating resin layers 3A and 3B, the inner layer conductors 2A and 2B and the insulating resin plate 1, for example, the energy of laser light is favorably absorbed on the insulating resin layers 3A and 3B. A laser processing sheet made of a resin having a black color or a color close to black is attached, and a carbon dioxide laser beam with an output of 7 to 12 mJ is applied at a predetermined position with a pulse width of 50 to 500 μs from above the laser processing sheet. The method of irradiating the through holes to form the through holes 4 is adopted. At this time, if the output of carbon dioxide laser light is less than 7 mJ, it tends to be difficult to perforate the through-hole 4 to a sufficient size, while if it exceeds 12 mJ, the insulating resin layers 3A and 3B are formed.
There is a tendency that the hole diameter of the through hole 4 in the above becomes too large. Therefore, the carbon dioxide laser light to be applied is
It is preferable that the output is 7 to 12 mJ and the pulse width is in the range of 50 to 500 μsec. The laser processing sheet is peeled off after the through holes 4 are punched. By forming the through holes 4 by laser processing in this manner, the insulating resin plate 1 has a diameter of 75 to 115 μm and its inner wall is substantially vertical, and the insulating resin layers 3A and 3B have their inner walls extending from the vertical direction 10 It is possible to easily form the through hole 4 having a shape in which the diameter is expanded outward at an angle of -30 degrees.

【0049】次に、図2(d)に部分断面図で示すよう
に、貫通孔4内壁および絶縁樹脂層3A・3Bの表面に
厚みが1〜3μmの無電解銅めっき膜から成るめっき膜
13Aを被着させる。なお、無電解銅めっき膜から成るめ
っき膜13Aを被着させるには、例えば塩化アンモニウム
系酢酸パラジウムを含有するパラジウム活性液を使用し
て貫通孔4内壁および絶縁樹脂層3A・3Bの表面にパ
ラジウム触媒を付着させるとともに、その上に硫酸銅系
の無電解銅めっき液を用いて無電解銅めっき膜を被着さ
せればよい。このとき、貫通孔4は、絶縁樹脂層3A・
3Bにおいて外側に向けて拡径していることから、貫通
孔4内に無電解銅めっき液が良好に浸入し、その結果、
貫通孔4内壁および絶縁樹脂層3A・3Bの表面に無電
解銅めっき膜を略均一な厚みに良好に被着させることが
できる。なお、無電解銅めっき膜から成るめっき膜13A
を被着させる前に絶縁樹脂層3A・3B表面および貫通
孔4内壁を例えば過マンガン酸カリウム溶液や過マンガ
ン酸ナトリウム溶液から成る粗化液を用いてその中心線
平均粗さRaが0.2〜2μm程度になるように粗化して
おくと無電解銅めっき膜から成るめっき膜13Aを強固に
被着させることができる。したがって、無電解銅めっき
膜から成るめっき膜13Aを被着させる前に絶縁樹脂層3
A・3B表面および貫通孔4内壁を例えば過マンガン酸
カリウム溶液や過マンガン酸ナトリウム溶液から成る粗
化液を用いてその中心線平均粗さRaが0.2〜2μm程
度になるように粗化しておくことが好ましい。
Next, as shown in the partial cross-sectional view of FIG. 2D, a plating film made of an electroless copper plating film having a thickness of 1 to 3 μm is formed on the inner wall of the through hole 4 and the surfaces of the insulating resin layers 3A and 3B.
Apply 13A. In order to deposit the plating film 13A made of an electroless copper plating film, for example, a palladium activating solution containing ammonium chloride palladium acetate is used to form palladium on the inner walls of the through holes 4 and the surfaces of the insulating resin layers 3A and 3B. The catalyst may be attached, and an electroless copper plating film may be deposited on the catalyst using a copper sulfate-based electroless copper plating solution. At this time, the through hole 4 is formed by the insulating resin layer 3A.
Since the diameter is expanded outward in 3B, the electroless copper plating solution satisfactorily penetrates into the through hole 4, and as a result,
The electroless copper-plated film can be satisfactorily adhered to the inner wall of the through hole 4 and the surfaces of the insulating resin layers 3A and 3B in a substantially uniform thickness. The plating film 13A made of electroless copper plating film
Before depositing, the center line average roughness Ra of the insulating resin layers 3A and 3B and the inner wall of the through hole 4 is 0.2 to 2 μm by using a roughening liquid composed of, for example, potassium permanganate solution or sodium permanganate solution. By roughening to a certain degree, the plating film 13A made of an electroless copper plating film can be firmly adhered. Therefore, before applying the plating film 13A made of the electroless copper plating film, the insulating resin layer 3
The surfaces of A and 3B and the inner walls of the through holes 4 are roughened by using a roughening solution composed of, for example, a potassium permanganate solution or a sodium permanganate solution so that the center line average roughness Ra is about 0.2 to 2 μm. It is preferable.

【0050】次に、図2(e)に部分断面図で示すよう
に、絶縁層3A・3B上の無電解銅めっき膜上にめっき
用マスク14を被着させるとともに、めっき用マスク14か
ら露出した無電解銅めっき膜上に厚みが10〜35μm程度
の電解銅めっき膜を被着させ、貫通孔4の内壁および絶
縁樹脂層3A・3B表面のパターン形成部位が選択的に
厚く被着された無電解めっき膜と電解銅めっき膜とから
成るめっき膜13Bを形成する。
Next, as shown in the partial sectional view of FIG. 2 (e), a plating mask 14 is deposited on the electroless copper plating film on the insulating layers 3A and 3B and exposed from the plating mask 14. An electrolytic copper-plated film having a thickness of about 10 to 35 μm was deposited on the electroless copper-plated film, and the inner wall of the through-hole 4 and the pattern formation site on the surfaces of the insulating resin layers 3A and 3B were selectively thickly deposited. A plating film 13B including an electroless plating film and an electrolytic copper plating film is formed.

【0051】なお、めっき用マスク14は、例えば感光性
ドライフィルムレジストを絶縁樹脂層3A・3B上の無
電解銅めっき膜上に被着させるとともに、このドライフ
ィルムレジストをフォトリソグラフィー技術により露光
・現像して所定のパターンに加工することによって形成
する。
For the plating mask 14, for example, a photosensitive dry film resist is deposited on the electroless copper plating film on the insulating resin layers 3A and 3B, and this dry film resist is exposed and developed by a photolithography technique. Then, it is formed by processing into a predetermined pattern.

【0052】また、電解銅めっき膜を被着させるための
電解銅めっき液としては、例えば、硫酸銅系から成る電
解銅めっき液を用いればよい。このとき、貫通孔4は、
絶縁樹脂層3A・3Bにおいて外側に向けて拡径してい
ることから、貫通孔4内に電解銅めっき液が良好に浸入
し、その結果、貫通孔4内壁および絶縁樹脂層3A・3
Bの表面に電解銅めっき膜が略均一な厚みに良好に被着
される。
As the electrolytic copper plating solution for depositing the electrolytic copper plating film, for example, an electrolytic copper plating solution composed of copper sulfate can be used. At this time, the through hole 4 is
Since the diameters of the insulating resin layers 3A and 3B are expanded outward, the electrolytic copper plating solution satisfactorily penetrates into the through holes 4, resulting in the inner walls of the through holes 4 and the insulating resin layers 3A and 3B.
An electrolytic copper plating film is satisfactorily deposited on the surface of B in a substantially uniform thickness.

【0053】次に、図2(f)に部分断面図で示すよう
に、めっきマスク14を剥離するとともにめっきマスク14
の下にあった無電解銅めっき膜が消滅するまで無電解銅
めっき膜および電解銅めっき膜をエッチングし、貫通孔
4内壁に貫通導体5を形成するとともに絶縁樹脂層3A
・3Bの表面に表層導体6A・6Bを形成する。
Next, as shown in the partial sectional view of FIG. 2 (f), the plating mask 14 is removed and the plating mask 14 is removed.
The electroless copper-plated film and the electrolytic copper-plated film are etched until the electroless copper-plated film underneath disappears to form the through conductor 5 on the inner wall of the through hole 4 and the insulating resin layer 3A.
Form surface conductors 6A and 6B on the surface of 3B.

【0054】なお、無電解銅めっき膜および電解銅めっ
き膜をエッチングするには、塩化第2銅水溶液または塩
化第2鉄水溶液から成るエッチング液を用いればよい。
To etch the electroless copper-plated film and the electrolytic copper-plated film, an etching solution containing a cupric chloride aqueous solution or a ferric chloride aqueous solution may be used.

【0055】次に、図2(g)に部分断面図で示すよう
に、貫通孔4の内部および絶縁樹脂層3A・3Bの表面
の全面に例えばアクリル変性させた感光性のエポキシ樹
脂等から成る感光性樹脂ペースト15を充填および塗布す
る。
Next, as shown in the partial cross-sectional view of FIG. 2G, the inside of the through hole 4 and the entire surface of the insulating resin layers 3A and 3B are made of, for example, a photosensitive epoxy resin modified with acrylic. Fill and apply the photosensitive resin paste 15.

【0056】貫通孔4の内部および絶縁樹脂層3A・3
Bの表面の全面に例えばアクリル変性させた感光性のエ
ポキシ樹脂等から成る感光性樹脂ペースト15を充填およ
び塗布するには、所定の粘度に整えた感光性樹脂ペース
ト15をスクリーン印刷法を採用して絶縁層3A側および
3B側から例えばそれぞれ2回ずつ全面に印刷する方法
が採用される。このように2回ずつ印刷することによ
り、貫通孔4内に感光性樹脂ペースト15を極めて良好に
充填することができるとともに絶縁層3Aおよび3Bの
表面に均一な厚みで感光性樹脂ペースト15を塗布するこ
とができる。
Inside the through hole 4 and the insulating resin layers 3A, 3A
In order to fill and apply the photosensitive resin paste 15 made of, for example, an acrylic modified photosensitive epoxy resin on the entire surface of B, the photosensitive resin paste 15 adjusted to a predetermined viscosity is adopted by the screen printing method. For example, a method of printing the entire surface twice from the insulating layer 3A side and the insulating layer 3B side is adopted. By printing twice each time in this manner, the photosensitive resin paste 15 can be extremely well filled in the through holes 4, and the photosensitive resin paste 15 is applied to the surfaces of the insulating layers 3A and 3B with a uniform thickness. can do.

【0057】この場合、第1回目の印刷に用いる感光性
樹脂ペースト15の粘度は150〜280dPa・sとしておく
が望ましい。この範囲より低いあるいは高い粘度ではい
ずれも貫通孔4内に感光性樹脂ペースト15を良好に充填
することが困難となるとともに充填された感光性樹脂ペ
ースト15内に気泡が巻き込まれてしまう危険性が大きく
なってしまう。また、2回目の印刷に用いる感光性樹脂
ペースト15の粘度は印刷する厚み等に応じて例えば50〜
500dPa・s程度のものを採用すればよい。
In this case, it is desirable that the photosensitive resin paste 15 used for the first printing has a viscosity of 150 to 280 dPa · s. If the viscosity is lower or higher than this range, it becomes difficult to satisfactorily fill the through hole 4 with the photosensitive resin paste 15, and there is a risk that air bubbles may be caught in the filled photosensitive resin paste 15. It gets bigger. The viscosity of the photosensitive resin paste 15 used for the second printing is, for example, 50 to 50 depending on the thickness to be printed.
It is only necessary to adopt a material of about 500 dPa · s.

【0058】また、このとき貫通孔4は、絶縁樹脂層3
A・3Bにおいて外側に向けて拡径しているので、貫通
孔4内に樹脂柱7となる感光性樹脂ペースト15が良好に
浸入し、その結果、貫通孔4内を樹脂柱7となる感光性
樹脂ペースト15で良好に充填することができる。
At this time, the through holes 4 are formed in the insulating resin layer 3
Since the diameters of A and 3B are expanded toward the outside, the photosensitive resin paste 15 that becomes the resin pillars 7 is satisfactorily infiltrated into the through holes 4, and as a result, the photosensitive pillars 7 that become the resin pillars 7 are formed inside the through holes 4. The resinous resin paste 15 can be filled well.

【0059】そして最後に、図2(h)に部分断面図で
示すように、貫通孔4内および絶縁樹脂層3A・3B表
面に充填および塗布した感光性樹脂ペースト15を所定の
パターンに露光した後、現像・硬化させることにより図
1に示したような本発明の配線基板が完成する。
Finally, as shown in the partial sectional view of FIG. 2 (h), the photosensitive resin paste 15 filled and applied in the through holes 4 and on the surfaces of the insulating resin layers 3A and 3B is exposed in a predetermined pattern. After that, the wiring board of the present invention as shown in FIG. 1 is completed by developing and curing.

【0060】このように、本発明の配線基板の製造方法
によれば、樹脂柱7とソルダーレジスト層8とを同じ組
成の樹脂で同時に一体形成することから、樹脂柱7とソ
ルダーレジスト層8との間にクラックが発生することの
ない信頼性の高い配線基板を極めて簡便な方法で提供す
ることができる。
As described above, according to the method for manufacturing a wiring board of the present invention, the resin pillar 7 and the solder resist layer 8 are integrally formed of the resin having the same composition at the same time. It is possible to provide a highly reliable wiring board in which no crack is generated between the wiring boards by an extremely simple method.

【0061】[0061]

【発明の効果】以上説明したように、本発明の配線基板
によれば、貫通孔内に充填させた樹脂柱と絶縁樹脂層の
表面に被着させたソルダーレジスト層とが同一組成の樹
脂により一体形成されていることから、樹脂柱とソルダ
ーレジスト層との間で両者の熱膨張係数の相違に起因す
るクラックが発生することはない。したがって、信頼性
に優れた高密度の多層配線基板を提供することができ
る。
As described above, according to the wiring board of the present invention, the resin column filled in the through hole and the solder resist layer adhered to the surface of the insulating resin layer are made of the resin having the same composition. Since the resin pillar and the solder resist layer are integrally formed, no crack is generated due to the difference in thermal expansion coefficient between the resin pillar and the solder resist layer. Therefore, it is possible to provide a high-density multilayer wiring board having excellent reliability.

【0062】また、本発明の製造方法によれば、貫通孔
内の樹脂柱と表層のソルダーレジストを同一組成の樹脂
で一体形成することから、樹脂柱とソルダーレジスト層
との間にクラックが発生することのない信頼性の高い配
線基板を極めて簡便な方法で提供することができる。
Further, according to the manufacturing method of the present invention, since the resin pillar in the through hole and the surface solder resist are integrally formed of the resin having the same composition, a crack is generated between the resin pillar and the solder resist layer. It is possible to provide a highly reliable wiring board that does not require a very simple method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法により製作される配線基板の
実施形態の一例を示す部分断面図である。
FIG. 1 is a partial cross-sectional view showing an example of an embodiment of a wiring board manufactured by a manufacturing method of the present invention.

【図2】(a)〜(h)は、本発明の配線基板の製造方
法を説明するための工程毎の部分断面図である。
2A to 2H are partial cross-sectional views of respective steps for explaining the method for manufacturing a wiring board of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・・・絶縁樹脂板 2A・2B・・・内層導体 3A・3B・・・絶縁樹脂層 4・・・・・・・貫通孔 5・・・・・・・貫通導体 6A・6B・・・表層導体 7・・・・・・・樹脂柱 8・・・・・・・ソルダーレジスト層 1 ... Insulating resin plate 2A ・ 2B ・ ・ ・ Inner conductor 3A / 3B ... Insulating resin layer 4 ... through-hole 5 ・ ・ ・ ・ Penetrating conductor 6A, 6B ... Surface conductor 7 ... Resin columns 8 ...- Solder resist layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5E314 AA25 BB06 BB11 BB12 CC01 FF05 GG09 5E317 AA24 BB02 BB12 CC31 CD17 CD23 CD27 GG05 GG09 5E346 AA06 AA12 AA15 AA17 AA32 AA42 BB01 CC02 CC08 CC31 CC46 DD01 DD22 EE31 FF04 GG01 GG15 GG17 HH11 HH18   ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5E314 AA25 BB06 BB11 BB12 CC01                       FF05 GG09                 5E317 AA24 BB02 BB12 CC31 CD17                       CD23 CD27 GG05 GG09                 5E346 AA06 AA12 AA15 AA17 AA32                       AA42 BB01 CC02 CC08 CC31                       CC46 DD01 DD22 EE31 FF04                       GG01 GG15 GG17 HH11 HH18

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絶縁樹脂板の上下両面に銅箔から成る内
層導体が被着された両面銅張板の前記上下両面に絶縁樹
脂層が被着されているとともに、前記両面銅張板および
前記絶縁樹脂層を上下に貫通する複数の貫通孔が形成さ
れており、該貫通孔内壁に貫通導体および前記絶縁樹脂
層の表面に表層導体がそれぞれめっきにより被着形成さ
れているとともに前記貫通孔内が樹脂柱で充填され、か
つ前記絶縁樹脂層の表面に前記表層導体の一部を被覆す
るソルダーレジスト層が被着されて成る配線基板におい
て、前記樹脂柱と前記ソルダーレジスト層とは同一組成
の樹脂により一体形成されていることを特徴とする配線
基板。
1. A double-sided copper clad plate having inner and outer conductors made of copper foil adhered to both upper and lower sides of an insulating resin plate, and an insulating resin layer adhered to the upper and lower sides thereof, and said double-sided copper clad plate and said A plurality of through holes are formed vertically through the insulating resin layer, and a through conductor is formed on the inner wall of the through hole and a surface conductor is formed on the surface of the insulating resin layer by plating, and the inside of the through hole is formed. Is filled with a resin column, and the surface of the insulating resin layer is covered with a solder resist layer that covers a part of the surface layer conductor, and the resin column and the solder resist layer have the same composition. A wiring board which is integrally formed of resin.
【請求項2】 絶縁樹脂板の上下両面に銅箔から成る内
層導体が被着された両面銅張板の前記上下両面に絶縁樹
脂層を被着させるとともに、前記両面銅張板および前記
絶縁樹脂層を上下に貫通する複数の貫通孔を形成し、次
に前記貫通孔内壁に貫通導体および前記絶縁樹脂層の表
面に表層導体をそれぞれめっきにより被着させ、次に前
記貫通孔内および前記絶縁樹脂層表面にそれぞれ同一組
成の未硬化の樹脂を充填および塗布した後、該樹脂を硬
化させることにより前記貫通孔内に前記樹脂が硬化した
樹脂柱および前記絶縁樹脂層の表面に前記樹脂が硬化し
たソルダーレジスト層を一体形成することを特徴とする
配線基板の製造方法。
2. A double-sided copper clad board having inner layer conductors made of copper foil adhered to the upper and lower sides of the insulating resin board, and an insulating resin layer applied to the upper and lower sides thereof, and the double-sided copper clad board and the insulating resin. Forming a plurality of through-holes penetrating vertically through the layer, then depositing a through-conductor on the inner wall of the through-hole and a surface conductor on the surface of the insulating resin layer by plating, respectively, and then depositing the through-hole and the insulating layer After the uncured resin having the same composition is filled and applied to the surface of the resin layer, the resin is cured to cure the resin pillar in the through hole and the resin is cured on the surface of the insulating resin layer. A method for manufacturing a wiring board, wherein the solder resist layer is integrally formed.
JP2001230640A 2001-07-30 2001-07-30 Wiring board and its manufacturing method Pending JP2003046226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001230640A JP2003046226A (en) 2001-07-30 2001-07-30 Wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001230640A JP2003046226A (en) 2001-07-30 2001-07-30 Wiring board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003046226A true JP2003046226A (en) 2003-02-14

Family

ID=19062817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001230640A Pending JP2003046226A (en) 2001-07-30 2001-07-30 Wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003046226A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7025358B2 (en) 2002-04-04 2006-04-11 Japan Metal Gasket Co., Ltd. Metallic gasket
JP2010182778A (en) * 2009-02-04 2010-08-19 Denso Corp Printed board, and method for manufacturing the same
JP2012015209A (en) * 2010-06-29 2012-01-19 Advantest Corp Through-wiring board and manufacturing method thereof
JP2012039143A (en) * 2011-09-22 2012-02-23 Sanei Kagaku Kk Planarized resin-coated printed circuit board
JP2016048788A (en) * 2010-12-08 2016-04-07 味の素株式会社 Resin composition
CN111988920A (en) * 2020-10-27 2020-11-24 智恩电子(大亚湾)有限公司 Solder-resisting hole plugging method for BMU printed circuit board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7025358B2 (en) 2002-04-04 2006-04-11 Japan Metal Gasket Co., Ltd. Metallic gasket
JP2010182778A (en) * 2009-02-04 2010-08-19 Denso Corp Printed board, and method for manufacturing the same
JP2012015209A (en) * 2010-06-29 2012-01-19 Advantest Corp Through-wiring board and manufacturing method thereof
JP2016048788A (en) * 2010-12-08 2016-04-07 味の素株式会社 Resin composition
JP2012039143A (en) * 2011-09-22 2012-02-23 Sanei Kagaku Kk Planarized resin-coated printed circuit board
CN111988920A (en) * 2020-10-27 2020-11-24 智恩电子(大亚湾)有限公司 Solder-resisting hole plugging method for BMU printed circuit board

Similar Documents

Publication Publication Date Title
JP5955023B2 (en) Printed wiring board with built-in component and manufacturing method thereof
US6599617B2 (en) Adhesion strength between conductive paste and lands of printed wiring board, and manufacturing method thereof
KR100897650B1 (en) Fabricating Method of Multi Layer Printed Circuit Board
KR100704920B1 (en) Pcb and it's manufacturing method used bump board
JP2003046226A (en) Wiring board and its manufacturing method
JP2002314254A (en) Multilayer printed wiring board and its manufacturing method
JP2003188541A (en) Method of manufacturing wiring board
JP2003124632A (en) Multilayer printed wiring board and its manufacturing method
JPH10261854A (en) Printed wiring board and manufacturing method thereof
JP4480693B2 (en) Wiring board and manufacturing method thereof
JP3881528B2 (en) Wiring board and manufacturing method thereof
JP3934883B2 (en) Wiring board and manufacturing method thereof
JP3881523B2 (en) Wiring board and manufacturing method thereof
JP3792544B2 (en) Wiring board manufacturing method
JP2006287251A (en) Wiring board and method for manufacturing it
JP2004228362A (en) Method of manufacturing wiring board
JP2004228534A (en) Punching method by laser to mother board for multi-cavity wiring board
KR20000025528A (en) Method of electrical interlayer connection of multi-layered printed circuit board
JP2006295204A (en) Wiring board and manufacturing method thereof
JP2005005285A (en) Wiring board and its producing process
JP2006229255A (en) Wiring board and manufacturing method therefor
JP3283573B2 (en) Multilayer printed wiring board
JP2003078247A (en) Wiring substrate and method of manufacturing the same
JP2003224364A (en) Multilayer printed wiring board
JP2508981B2 (en) Multilayer printed wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Effective date: 20060123

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060428