JP2006287251A - Wiring board and method for manufacturing it - Google Patents

Wiring board and method for manufacturing it Download PDF

Info

Publication number
JP2006287251A
JP2006287251A JP2006148995A JP2006148995A JP2006287251A JP 2006287251 A JP2006287251 A JP 2006287251A JP 2006148995 A JP2006148995 A JP 2006148995A JP 2006148995 A JP2006148995 A JP 2006148995A JP 2006287251 A JP2006287251 A JP 2006287251A
Authority
JP
Japan
Prior art keywords
insulating resin
conductor
hole
layer
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2006148995A
Other languages
Japanese (ja)
Inventor
Hidetoshi Yugawa
英敏 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006148995A priority Critical patent/JP2006287251A/en
Publication of JP2006287251A publication Critical patent/JP2006287251A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board which enables very high density wiring in which the disconnection of a through conductor is not caused even if the diameter of a through hole is as small as 75 to 130 μm, and to provide a method for manufacturing the wiring board. <P>SOLUTION: The upper and lower surfaces of an insulating resin board 1 consist of a copper foil. Internal layer conductors 2A and 2B, which has an internal layer wiring conductor pattern W and a dummy conductor pattern D which is electrically independent from the internal layer wiring conductor pattern W, are deposited in the upper and lower surfaces of a double-sided copper clad board, and insulating resin layers 3A and 3B, in which decomposition degree by laser beam irradiation is higher than that of the insulating resin board 1, are deposited in the upper and lower surfaces of the double-sided copper clad board. A plurality of through holes 4, which penetrate vertically through the insulating resin board 1, the internal layer conductors 2A and 2B, and the insulating resin layers 3A and 3B, and expand outward in the insulating resin layers 3A and 3B, are formed by laser processing. A through conductor 5, which is connected to the internal layer conductors 2A and 2B, is deposited and formed in the inner wall of the through hole 4, and surface layer conductors 6A and 6B, which are connected to the surfaces of the insulating resin layers 3A and 3B are deposited and formed in the surfaces of the resin layers 3A and 3B by plating, respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

発明は、有機材料系の多層配線基板およびその製造方法に関するものである。   The present invention relates to an organic material-based multilayer wiring board and a method for manufacturing the same.

従来、半導体素子を搭載するための有機材料系の配線基板として、例えば両面または片面に銅箔から成る配線導体を有するガラス−エポキシ板から成る複数の絶縁層を同じくガラス−エポキシ板から成る接着層を介して積層して成る多層配線基板が用いられている。   Conventionally, as an organic material-based wiring board for mounting a semiconductor element, for example, a plurality of insulating layers made of glass-epoxy plates having wiring conductors made of copper foil on both sides or one side are also adhesive layers made of glass-epoxy plates. A multilayer wiring board is used which is laminated through the two.

この有機材料系の多層配線基板においては、その上面から下面にかけて複数の貫通孔が設けられており、貫通孔内壁には各絶縁層を挟んで上下に位置する配線導体同士を電気的に接続するための銅めっき膜から成る貫通導体が被着形成されており、それにより立体的な高密度配線が可能となっている。   In this organic material-based multilayer wiring board, a plurality of through holes are provided from the upper surface to the lower surface, and the wiring conductors positioned above and below are electrically connected to the inner wall of the through hole with each insulating layer interposed therebetween. For this reason, a through conductor made of a copper plating film is deposited to enable three-dimensional high-density wiring.

なお、このような有機材料系の多層配線基板は、両面または片面に厚みが15〜50μm程度の銅箔から成る配線導体が被着形成された厚みが0.1〜0.5mm程度のガラス−エポキシ板から成る複数の絶縁板を厚みが0.1〜0.2mm程度のガラス−エポキシ板から成る接着層を介して積層した後、その上面から下面にかけて直径が200〜500μm程度の貫通孔をドリル加工により穿孔し、しかる後、貫通孔内壁に厚みが15〜50μm程度の銅めっき膜から成る貫通導体を無電解めっき法および電解めっき法により被着させることによって製作されている。   In addition, such an organic material-based multilayer wiring board is formed from a glass-epoxy plate having a thickness of about 0.1 to 0.5 mm in which wiring conductors made of copper foil having a thickness of about 15 to 50 μm are deposited on both sides or one side. After laminating a plurality of insulating plates through an adhesive layer made of a glass-epoxy plate having a thickness of about 0.1 to 0.2 mm, a through hole having a diameter of about 200 to 500 μm is drilled from the upper surface to the lower surface by drilling, Thereafter, a through conductor made of a copper plating film having a thickness of about 15 to 50 μm is deposited on the inner wall of the through hole by an electroless plating method and an electrolytic plating method.

ところで、このような有機材料系の多層配線基板においては、その配線密度を更に高めるために貫通孔の直径を例えば75〜130μm程度の小さなものとする試みがなされている。   By the way, in such an organic material-based multilayer wiring board, an attempt has been made to make the diameter of the through hole as small as about 75 to 130 μm in order to further increase the wiring density.

このような直径が75〜130μm程度の小さな貫通孔を形成するためには例えばレーザーによる穿孔方法が採用される。   In order to form such a small through hole having a diameter of about 75 to 130 μm, for example, a laser drilling method is employed.

しかしながら、従来の有機材料系の多層配線基板においては、各絶縁板および接着層の厚みが0.1〜0.5mm程度と厚いことから、各絶縁板および接着層を貫通する貫通孔の直径を例えば75〜130μm程度の小さなものとすると、この貫通孔の内壁に銅めっき膜から成る貫通導体を被着させる際、貫通導体を被着させるためのめっき液が貫通孔内に良好に入り込みにくくなり、そのため貫通導体が良好に被着されずに貫通導体に断線が発生してしまいやすいという問題点を有していた。   However, in the conventional organic material-based multilayer wiring board, since the thickness of each insulating plate and the adhesive layer is as thick as about 0.1 to 0.5 mm, the diameter of the through-hole penetrating each insulating plate and the adhesive layer is, for example, 75 to If it is as small as about 130 μm, when depositing a through conductor made of a copper plating film on the inner wall of this through hole, the plating solution for depositing the through conductor is less likely to penetrate into the through hole. There has been a problem that the conductor is not satisfactorily deposited and breakage of the through conductor is likely to occur.

本発明は、かかる従来の問題点に鑑み案出されたものであり、その目的は、貫通孔の直径を例えば75〜130μm程度の小さいものとしても貫通導体に断線が発生することがない極めて高密度な配線が可能な配線基板およびその製造方法を提供することにある。   The present invention has been devised in view of such conventional problems, and an object of the present invention is extremely high in that no breakage occurs in the through conductor even when the diameter of the through hole is small, for example, about 75 to 130 μm. It is an object of the present invention to provide a wiring board capable of high-density wiring and a manufacturing method thereof.

本発明の配線基板は、絶縁樹脂板の上下両面に銅箔から成り、内層配線導体パターンおよび該内層配線導体パターンから電気的に独立したダミー導体パターンを有する内層導体が被着された両面銅張板の前記上下両面に前記絶縁樹脂板よりもレーザ光の照射による分解度合いが大きな絶縁樹脂層が被着されているとともに、前記絶縁樹脂板、前記内層導体および前記絶縁樹脂層を上下に貫通し、かつ前記絶縁樹脂層において外側に向けて拡径する複数の貫通孔がレーザ加工により形成され、該貫通孔内壁に前記内層導体に接続された貫通導体および前記絶縁樹脂層の表面に前記貫通導体に接続された表層導体がそれぞれめっきにより被着形成されて成ることを特徴とするものである。   The wiring board of the present invention comprises a double-sided copper-clad wire comprising copper foil on both upper and lower surfaces of an insulating resin plate, and an inner-layer wiring conductor pattern and an inner-layer conductor having a dummy conductor pattern electrically independent from the inner-layer wiring conductor pattern. The upper and lower surfaces of the plate are covered with an insulating resin layer having a higher degree of decomposition by laser light irradiation than the insulating resin plate, and penetrates the insulating resin plate, the inner layer conductor and the insulating resin layer vertically. And a plurality of through-holes that expand toward the outside in the insulating resin layer are formed by laser processing, a through-conductor connected to the inner-layer conductor on the inner wall of the through-hole, and the through-conductor on the surface of the insulating resin layer The surface layer conductors connected to each are formed by being deposited by plating.

また、本発明の配線基板の製造方法は、絶縁樹脂板の上下両面に銅箔から成り、内層配線導体パターンおよび該内層配線導体パターンから電気的に独立したダミー導体パターンを有する内層導体が被着された両面銅張板の前記上下両面に前記絶縁樹脂板よりもレーザ光の照射による分解度合いが大きな絶縁樹脂層を被着させるとともに、前記絶縁樹脂板、前記内層導体および前記絶縁樹脂層を上下に貫通し、かつ前記絶縁樹脂層において外側に向けて拡径する複数の貫通孔をレーザ加工により形成し、次に前記貫通孔内壁に前記内層導体に接続された貫通導体および前記絶縁樹脂層の表面に前記貫通導体に接続された表層導体をそれぞれめっきにより被着させることを特徴とするものである。   Also, the method for manufacturing a wiring board according to the present invention is such that an inner layer conductor having an inner layer wiring conductor pattern and a dummy conductor pattern electrically independent from the inner layer wiring conductor pattern is deposited on both upper and lower surfaces of the insulating resin plate. An insulating resin layer having a higher degree of decomposition due to laser light irradiation than the insulating resin plate is attached to the upper and lower surfaces of the double-sided copper-clad plate, and the insulating resin plate, the inner layer conductor, and the insulating resin layer are A plurality of through holes that extend through the insulating resin layer and expand toward the outside in the insulating resin layer by laser processing, and then the through conductor connected to the inner layer conductor on the inner wall of the through hole and the insulating resin layer A surface layer conductor connected to the through conductor is deposited on the surface by plating.

本発明の配線基板によれば、上述の構成としたことから、貫通孔内壁に貫通導体を被着させる際、貫通導体を被着させるためのめっき液が貫通孔内に良好に入り込み、その結果、貫通孔内壁に貫通導体が良好に形成される。   According to the wiring board of the present invention, since the above-described configuration is employed, when the through conductor is deposited on the inner wall of the through hole, the plating solution for depositing the through conductor enters the through hole satisfactorily. The through conductor is formed well on the inner wall of the through hole.

また、本発明の配線基板の製造方法によれば、上述の構成としたことから、貫通孔内壁に貫通導体を被着させる際、貫通導体を被着させるためのめっき液が貫通孔内に良好に入り込み、その結果、貫通孔内壁に貫通導体が良好に形成された配線基板を得ることができる。   Further, according to the method for manufacturing a wiring board of the present invention, since the above-described configuration is adopted, when the through conductor is deposited on the inner wall of the through hole, the plating solution for depositing the through conductor is good in the through hole. As a result, it is possible to obtain a wiring board in which through conductors are well formed on the inner walls of the through holes.

次に、本発明の配線基板について詳細に説明する。図1は、本発明の配線基板の実施形態の一例を示す部分断面図である。図1において、1は絶縁樹脂板、2A・2Bは内層導体、3A・3Bは絶縁樹脂層、4は貫通孔、5は貫通導体、6A・6Bは表層導体であり、主として絶縁樹脂板1の上下両面に内層導体2A・2Bおよび絶縁樹脂層3A・3Bが被着されるとともに絶縁樹脂板1および内層導体2A・2Bおよび絶縁樹脂層3A・3Bを貫通して複数の貫通孔4が設けられ、さらに貫通孔4の内壁に貫通導体5が被着形成されるとともに絶縁樹脂層3A・3Bの表面に表層導体6A・6Bが被着形成されることにより本発明の配線基板が構成されている。   Next, the wiring board of the present invention will be described in detail. FIG. 1 is a partial cross-sectional view showing an example of an embodiment of a wiring board according to the present invention. In FIG. 1, 1 is an insulating resin plate, 2A and 2B are inner layer conductors, 3A and 3B are insulating resin layers, 4 is a through hole, 5 is a through conductor, and 6A and 6B are surface layer conductors. Inner layer conductors 2A and 2B and insulating resin layers 3A and 3B are attached to both upper and lower surfaces, and a plurality of through holes 4 are provided through insulating resin plate 1, inner layer conductors 2A and 2B, and insulating resin layers 3A and 3B. Furthermore, the through conductor 5 is formed on the inner wall of the through hole 4, and the surface layer conductors 6A and 6B are formed on the surfaces of the insulating resin layers 3A and 3B, whereby the wiring board of the present invention is configured. .

なお、本実施形態例においては、貫通孔4内および絶縁樹脂層3A・3B上にソルダレジスト7が設けられている。   In this embodiment, a solder resist 7 is provided in the through hole 4 and on the insulating resin layers 3A and 3B.

絶縁樹脂板1は、本発明の配線基板のコア部材として機能し、例えばガラスクロスやアラミドクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂を含浸させた有機系絶縁材料から成る厚みが0.35〜0.45mmの平板であり、その上下両面に厚みが7〜12μmの銅箔から成る内層導体2A・2Bが被着された、いわゆる両面銅張り板を構成している。   The insulating resin plate 1 functions as a core member of the wiring board of the present invention. For example, a thickness made of an organic insulating material in which a glass cloth or an aramid cloth is impregnated with a resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin. Is a flat plate having a thickness of 0.35 to 0.45 mm, and constitutes a so-called double-sided copper-clad plate in which inner layer conductors 2A and 2B made of copper foil having a thickness of 7 to 12 μm are deposited on both upper and lower surfaces.

この絶縁樹脂板1は、その厚みが0.35mm未満ではその上下面に絶縁樹脂層3A・3Bを被着させたり、あるいは絶縁樹脂板1および内層導体2A・2Bおよび絶縁樹脂層3A・3Bを貫通して複数の貫通孔4を形成したりする際等に熱や外力等の影響で配線基板に反りや変形が発生して配線基板に要求される平坦度を確保できなくなってしまう危険性が大きなものとなり、他方、0.45mmを超えると、後述するように貫通孔4内壁に貫通導体5を形成するとき、貫通孔4内にめっき液が浸入しにくくなり、貫通導体5を良好に形成することが困難となる。したがって、絶縁樹脂板1の厚みは0.35〜0.45mmの範囲が好ましい。   If the thickness of the insulating resin plate 1 is less than 0.35 mm, the insulating resin layers 3A and 3B are attached to the upper and lower surfaces thereof, or the insulating resin plate 1, the inner layer conductors 2A and 2B, and the insulating resin layers 3A and 3B are penetrated. When the plurality of through holes 4 are formed, the wiring board is warped or deformed due to the influence of heat, external force, etc., and the flatness required for the wiring board cannot be secured. On the other hand, if the thickness exceeds 0.45 mm, when the through conductor 5 is formed on the inner wall of the through hole 4 as will be described later, the plating solution is less likely to enter the through hole 4 and the through conductor 5 is formed well. It becomes difficult. Therefore, the thickness of the insulating resin plate 1 is preferably in the range of 0.35 to 0.45 mm.

なお、絶縁樹脂板1は、ガラスクロスやアラミドクロスに含浸させるエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂中にシリカやアルミナあるいはアラミド樹脂等から成るフィラーをガラスクロスやアラミドクロス等の繊維部分と樹脂部分とでレーザ光の透過度が略同等となる程度に含有させておけば、後述するように絶縁樹脂板1にレーザ光で貫通孔4を穿孔する際に、貫通孔4を絶縁樹脂板1に略均一な大きさで良好に形成することが可能となる。   The insulating resin plate 1 is made of an epoxy resin, bismaleimide triazine resin, polyphenylene ether resin or the like impregnated into glass cloth or aramid cloth. If the fiber portion and the resin portion are contained so that the laser beam transmittance is substantially equal, the through-hole 4 is formed when the through-hole 4 is drilled in the insulating resin plate 1 with the laser beam as described later. It is possible to satisfactorily form the insulating resin plate 1 with a substantially uniform size.

したがって、絶縁樹脂板1のガラスクロスやアラミドクロスに含浸させるエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂中にはシリカやアルミナあるいはアラミド樹脂等から成るフィラーをガラスクロスやアラミドクロス等の繊維部分と樹脂部分とでレーザ光の透過度が略同等となるように含有させておくことが好ましい。   Therefore, a filler made of silica, alumina, aramid resin, or the like is added to a glass cloth, aramid cloth, or the like in an epoxy resin, bismaleimide triazine resin, or polyphenylene ether resin impregnated in the glass cloth or aramid cloth of the insulating resin plate 1. It is preferable that the fiber portion and the resin portion are contained so that the transmittance of the laser beam is substantially equal.

また、絶縁樹脂板1の上下面に被着された内層導体2A・2Bは、銅箔から成り、主として電源層やグランド層として機能する内層配線導体パターンWとこの内層配線導体パターンWから電気的に独立したダミー導体パターンDとを有し、その厚みが7〜12μm、その表面の中心線平均粗さRaが0.2〜2μm程度である。   The inner layer conductors 2A and 2B attached to the upper and lower surfaces of the insulating resin plate 1 are made of copper foil, and are electrically connected to the inner layer wiring conductor pattern W mainly functioning as a power supply layer and a ground layer and the inner layer wiring conductor pattern W. And an independent dummy conductor pattern D, having a thickness of 7 to 12 μm and a center line average roughness Ra of the surface of about 0.2 to 2 μm.

内層導体2A・2Bは、その厚みが7μm未満の場合、電源層やグランド層としての内層配線導体パターンWに対して十分な電気特性を付与することができず、他方、12μmを超える場合、後述するように絶縁樹脂板1と内層導体2A・2Bおよび絶縁樹脂層3A・3Bとを貫通する貫通孔4をレーザ加工により穿孔する場合に、貫通孔4を安定して形成することが困難となる。したがって、内層導体2A・2Bの厚みは、7〜12μmの範囲が好ましい。   When the thickness of the inner layer conductors 2A and 2B is less than 7 μm, sufficient electrical characteristics cannot be imparted to the inner layer wiring conductor pattern W as the power supply layer or the ground layer, and when the thickness exceeds 12 μm, As described above, when the through hole 4 penetrating the insulating resin plate 1 and the inner layer conductors 2A and 2B and the insulating resin layers 3A and 3B is drilled by laser processing, it is difficult to stably form the through hole 4. . Therefore, the thickness of the inner layer conductors 2A and 2B is preferably in the range of 7 to 12 μm.

なお、内層導体2A・2Bは、貫通孔4により貫通されるとともに後述する貫通導体5に接する内層配線導体パターンWまたはダミー導体パターンDを全ての貫通孔4に対応して有するように形成しておくと、貫通孔4をレーザ加工により穿孔する際に全ての貫通孔4においてレーザ光の吸収反射を略同じとして全ての貫通孔4を略均一な大きさおよび形状に形成することができる。したがって、内層導体2A・2Bは、貫通孔4により貫通される内層配線導体パターンWまたはダミー導体パターンDを全ての貫通孔4に対応して有するように形成しておくことが好ましい。   The inner layer conductors 2A and 2B are formed so as to have inner layer wiring conductor patterns W or dummy conductor patterns D penetrating through the through holes 4 and in contact with the later described through conductors 5 corresponding to all the through holes 4. In this case, when the through holes 4 are drilled by laser processing, the absorption and reflection of the laser beam can be made substantially the same in all the through holes 4 so that all the through holes 4 can be formed in a substantially uniform size and shape. Therefore, the inner layer conductors 2 </ b> A and 2 </ b> B are preferably formed so as to have the inner layer wiring conductor pattern W or the dummy conductor pattern D penetrating through the through holes 4 corresponding to all the through holes 4.

この場合、ダミー導体パターンDは、その直径が貫通孔4の直径よりも40〜100μm程度大きな略円形のパターンとすればよく、内層配線導体パターンWとの間に30〜60μm程度の幅の間隔を設ければよい。   In this case, the dummy conductor pattern D may be a substantially circular pattern whose diameter is approximately 40-100 μm larger than the diameter of the through-hole 4, and an interval with a width of approximately 30-60 μm between the inner conductor pattern W. May be provided.

ダミー導体パターンDの直径が貫通孔4の直径よりも40μm未満大きな場合には、レーザ加工により貫通孔4を穿孔する際にダミー導体パターンDを正確に貫通することが困難となり、他方、100μmを超えて大きな場合には、内層配線導体パターンWの面積を広く採ることが困難となる。   When the diameter of the dummy conductor pattern D is larger than the diameter of the through-hole 4 by less than 40 μm, it becomes difficult to accurately penetrate the dummy conductor pattern D when the through-hole 4 is drilled by laser processing. If it is too large, it is difficult to increase the area of the inner layer wiring conductor pattern W.

また、ダミー導体パターンDと内層配線導体パターンWとの間隔が30μm未満の場合には、ダミー導体パターンDと内層配線導体パターンWとの間の電気的絶縁が良好に保てなくなる傾向にあり、他方、60μmを超えると、内層配線導体パターンWの面積を広く採ることが困難となる。   In addition, when the distance between the dummy conductor pattern D and the inner layer wiring conductor pattern W is less than 30 μm, there is a tendency that electrical insulation between the dummy conductor pattern D and the inner layer wiring conductor pattern W cannot be maintained well. On the other hand, if it exceeds 60 μm, it is difficult to increase the area of the inner layer wiring conductor pattern W.

また、内層導体2A・2Bは、その表面の中心線平均粗さRaが0.2μm未満の場合、内層導体2A・2Bと絶縁樹脂層3A・3Bとが強固に密着せずに内層導体2A・2Bと絶縁樹脂層3A・3Bとの間で剥離が発生しやすくなる傾向にあり、他方2μmを超えると、そのような粗い面を安定かつ効率良く形成することが困難となる傾向にある。   Further, when the inner-layer conductors 2A and 2B have a center line average roughness Ra of less than 0.2 μm, the inner-layer conductors 2A and 2B do not firmly adhere to the inner-layer conductors 2A and 2B and the inner-layer conductors 2A and 2B. And the insulating resin layers 3A and 3B tend to be peeled off. On the other hand, when the thickness exceeds 2 μm, it tends to be difficult to form such a rough surface stably and efficiently.

したがって、内層導体2A・2B表面の中心線平均粗さRaは0.2〜2μmの範囲が好ましい。 Accordingly, the center line average roughness Ra of the inner layer conductors 2A and 2B is preferably in the range of 0.2 to 2 μm.

また、絶縁樹脂板1の上下面に被着された絶縁樹脂層3A・3Bはエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の熱硬化性樹脂から成り、レーザ光に対する分解度合いが絶縁樹脂板1よりも大きく、その表面に表層導体6A・6Bが被着されている。   The insulating resin layers 3A and 3B attached to the upper and lower surfaces of the insulating resin plate 1 are made of a thermosetting resin such as epoxy resin, bismaleimide triazine resin or polyphenylene ether resin, and the degree of decomposition with respect to laser light is the insulating resin plate. The surface conductors 6A and 6B are deposited on the surface thereof.

絶縁樹脂層3A・3Bは、互いに絶縁すべき内層導体2A・2Bと表層導体6A・6Bとを電気的に絶縁するための絶縁間隔を提供するためのものであり、その厚みが内層導体2A・2B上で25〜45μmである。   The insulating resin layers 3A and 3B are provided to provide an insulating interval for electrically insulating the inner layer conductors 2A and 2B and the surface layer conductors 6A and 6B to be insulated from each other. 25-45 μm on 2B.

この絶縁樹脂層3A・3Bは、その厚みが内層導体2A・2B上で25μm未満の場合、互いに絶縁すべき内層導体2A・2Bと表層導体6A・6Bとを電気的に良好に絶縁することができなくなり、他方、45μmを超えると、絶縁樹脂板1および内層導体2A・2Bならびに絶縁樹脂層3A・3Bを貫通する貫通孔4をレーザ加工により穿孔する際に貫通孔4を良好に形成することが困難となる。したがって、絶縁層3A・3Bの厚みは内層導体2A・2B上で25〜45μmの範囲が好ましい。   When the thickness of the insulating resin layers 3A and 3B is less than 25 μm on the inner layer conductors 2A and 2B, the inner layer conductors 2A and 2B and the surface layer conductors 6A and 6B to be insulated from each other can be electrically well insulated. On the other hand, if the thickness exceeds 45 μm, the through hole 4 is formed well when the through hole 4 penetrating the insulating resin plate 1 and the inner layer conductors 2A and 2B and the insulating resin layers 3A and 3B is drilled by laser processing. Becomes difficult. Therefore, the thickness of the insulating layers 3A and 3B is preferably in the range of 25 to 45 μm on the inner layer conductors 2A and 2B.

表層導体6A・6Bは、厚みが8〜30μmの銅めっき膜から成り、電源配線およびグランド配線および信号配線を具備する表層配線パターンを形成している。そして、例えば上面側の表層導体6Aの露出する一部に図示しない電子部品の電極が半田を介して接続されるとともに、下面側の表層導体6Bの露出する一部が図示しない他の配線基板等に半田を介して接続される。   The surface conductors 6A and 6B are made of a copper plating film having a thickness of 8 to 30 μm, and form a surface layer wiring pattern including a power supply wiring, a ground wiring, and a signal wiring. For example, an electrode of an electronic component (not shown) is connected to an exposed part of the surface layer conductor 6A on the upper surface side via solder, and an exposed part of the surface layer conductor 6B on the lower surface side is connected to another wiring board (not shown). Connected via solder.

これらの表層導体6A・6Bは、その厚みが8μm未満であると、表層配線パターンの電気抵抗が高いものとなり、他方、30μmを超えると、表層配線パターンを高密度に形成することが困難となる。したがって、表層導体6A・6Bの厚みは、8〜30μmの範囲が好ましい。   If the thickness of the surface conductors 6A and 6B is less than 8 μm, the electrical resistance of the surface layer wiring pattern is high. On the other hand, if the thickness exceeds 30 μm, it is difficult to form the surface layer wiring pattern at a high density. . Therefore, the thickness of the surface conductors 6A and 6B is preferably in the range of 8 to 30 μm.

さらに、本発明の配線基板においては、絶縁樹脂板1および内層導体2A・2Bおよび絶縁樹脂層3A・3Bを貫通して貫通孔4がレーザ加工により形成されており、この貫通孔4の内壁に貫通導体5が被着形成されている。   Further, in the wiring board of the present invention, the through hole 4 is formed by laser processing through the insulating resin plate 1, the inner layer conductors 2A and 2B, and the insulating resin layers 3A and 3B. The through conductor 5 is formed to be deposited.

貫通孔4は、貫通導体5を絶縁樹脂層3Aの上面から絶縁樹脂層3Bの下面にかけて導出させるための導出路を提供するためのものである。   The through hole 4 is for providing a lead-out path for leading the through conductor 5 from the upper surface of the insulating resin layer 3A to the lower surface of the insulating resin layer 3B.

この貫通孔4は、レーザ加工によって形成されることにより、絶縁樹脂板1においては直径が75〜115μmでその内壁が略垂直であり、絶縁樹脂層3A・3Bにおいてはその内壁が垂直方向から10〜30の角度で傾いて外側に向けて拡径する形状となっている。   The through holes 4 are formed by laser processing, so that the diameter of the insulating resin plate 1 is 75 to 115 μm and the inner walls thereof are substantially vertical, and the inner walls of the insulating resin layers 3A and 3B are 10 It has a shape that is inclined at an angle of ˜30 and expands toward the outside.

この場合、絶縁樹脂層3A・3Bはそのレーザ光の照射による分解度合いが絶縁樹脂板1よりも大きいことから、レーザ加工の際に絶縁基体1よりも大きく分解されるので貫通孔4の形状が絶縁樹脂層3A・3Bにおいて外側に向けて拡径する形状となる。   In this case, since the insulating resin layers 3A and 3B are decomposed more than the insulating resin plate 1 by the laser light irradiation, the insulating resin layers 3A and 3B are decomposed larger than the insulating substrate 1 during laser processing, so that the shape of the through hole 4 is reduced. The insulating resin layers 3A and 3B have a shape that increases in diameter toward the outside.

このように、本発明の配線基板によれば、貫通孔4はレーザ加工により形成され、その直径が絶縁樹脂板1において75〜115μmと小さく、かつその内壁が絶縁樹脂層3A・3Bにおいて垂直方向から10〜30の角度で傾いて外側に向けて拡径する形状となっていることから、貫通導体5および表層導体6A・6Bを高密度で配置することができ、それにより極めて高密度な配線を有する配線基板を得ることができる。   Thus, according to the wiring board of the present invention, the through hole 4 is formed by laser processing, the diameter thereof is as small as 75 to 115 μm in the insulating resin plate 1, and the inner wall thereof is perpendicular to the insulating resin layers 3A and 3B. The through conductor 5 and the surface layer conductors 6A and 6B can be arranged at a high density because the shape is inclined at an angle of 10 to 30 and expanded toward the outside. Can be obtained.

また、貫通孔4はその直径が絶縁樹脂板1において75〜115μmと小さいものの、その内壁が絶縁樹脂板1においては略垂直でかつ絶縁樹脂層3A・3Bにおいては垂直方向から10〜30の角度で傾いて外側に向けて拡径する形状となっていることから、後述するように貫通孔4内壁に貫通導体5を被着形成する際に、貫通導体5を形成するためのめっき液が貫通孔4の内部に良好に入り込み、その結果、貫通孔4内に貫通導体5を良好に形成することができる。   The through-hole 4 has a small diameter of 75 to 115 μm in the insulating resin plate 1 but has an inner wall that is substantially vertical in the insulating resin plate 1 and 10 to 30 degrees from the vertical direction in the insulating resin layers 3A and 3B. The plating solution for forming the through conductor 5 penetrates when the through conductor 5 is deposited on the inner wall of the through hole 4 as described later. As a result, the through conductor 5 can be formed well in the through hole 4.

なお、絶縁樹脂板1における貫通孔4の直径が75μm未満の場合、貫通孔4内壁に貫通導体5を被着形成する際に、貫通導体5を形成するためのめっき液が貫通孔4の内部に良好に入り込まずに貫通孔4内壁に貫通導体5を良好に形成することが困難となり、他方、115μmを超えると、貫通導体5および表層導体6A・6Bを高密度で配置することが困難となる。したがって、絶縁樹脂板1における貫通孔4の直径は、75〜115μmの範囲が好ましい。   When the diameter of the through hole 4 in the insulating resin plate 1 is less than 75 μm, the plating solution for forming the through conductor 5 is formed inside the through hole 4 when the through conductor 5 is deposited on the inner wall of the through hole 4. It is difficult to form the through conductor 5 on the inner wall of the through hole 4 without entering the through hole 4 on the other hand. On the other hand, if it exceeds 115 μm, it is difficult to arrange the through conductor 5 and the surface layer conductors 6A and 6B at high density. Become. Therefore, the diameter of the through hole 4 in the insulating resin plate 1 is preferably in the range of 75 to 115 μm.

また、絶縁樹脂板1における貫通孔4の内壁が略垂直でない場合、貫通孔4内壁に貫通導体5を被着形成する際に貫通孔4の内部に気泡が取り残されやすく、そのため貫通導体5を形成するためのめっき液が気泡が取り残された部分に良好に届かずに貫通孔4内壁に貫通導体5を良好に形成することが困難となる。したがって、絶縁樹脂板1における貫通孔4の内壁は略垂直であることが好ましい。   In addition, when the inner wall of the through hole 4 in the insulating resin plate 1 is not substantially vertical, bubbles are likely to be left inside the through hole 4 when the through conductor 5 is deposited on the inner wall of the through hole 4. It is difficult to form the through conductor 5 on the inner wall of the through hole 4 without the plating solution for forming well reaching the part where the bubbles are left. Therefore, it is preferable that the inner wall of the through hole 4 in the insulating resin plate 1 is substantially vertical.

また、貫通孔4の内壁が絶縁樹脂層3A・3Bにおいて外側に向けて傾く角度が垂直方向から10度未満の場合、貫通孔4内壁に貫通導体5を被着形成する際に、貫通導体5を形成するためのめっき液が貫通孔4の内部に良好に入り込まずに貫通孔4内壁に貫通導体5を良好に形成することが困難となり、他方、30度を超えるとそのような角度で内壁が拡がる貫通孔4を安定して効率よく形成することが困難となる。したがって、貫通孔4の内壁が絶縁樹脂層3A・3Bにおいて外側に向けて傾く角度は、垂直方向から10〜30度の範囲が好ましい。   Further, when the angle at which the inner wall of the through hole 4 is inclined outward in the insulating resin layers 3A and 3B is less than 10 degrees from the vertical direction, the through conductor 5 is formed when the through conductor 5 is deposited on the inner wall of the through hole 4. The plating solution for forming the metal does not enter the inside of the through-hole 4 well, and it becomes difficult to form the through-conductor 5 on the inner wall of the through-hole 4 on the other hand. It is difficult to stably and efficiently form the through-hole 4 in which the swell spreads. Therefore, the angle at which the inner wall of the through hole 4 is inclined outward in the insulating resin layers 3A and 3B is preferably in the range of 10 to 30 degrees from the vertical direction.

貫通孔4の内壁に被着形成された貫通導体5は、厚みが8〜25μm程度の銅めっき膜から成り、絶縁樹脂板1および絶縁樹脂層3A・3Bを挟んで上下に位置する内層導体2A・2Bおよび表層導体6A・6B同士を互いに電気的に接続する接続導体として機能する。   The through conductor 5 deposited on the inner wall of the through hole 4 is made of a copper plating film having a thickness of about 8 to 25 μm, and the inner layer conductor 2A is positioned above and below the insulating resin plate 1 and the insulating resin layers 3A and 3B. 2B and surface layer conductors 6A and 6B function as connecting conductors that electrically connect each other.

貫通導体5は、その厚みが8μm未満では、貫通導体5の電気抵抗が高いものとなりすぎる傾向にあり、他方、25μmを超えると、この貫通導体5が被着された貫通孔4の内部に後述するソルダレジスト7を良好に充填することが困難となる。したがって、貫通導体5の厚みは、8〜25μmの範囲であることが好ましい。   When the thickness of the through conductor 5 is less than 8 μm, the electrical resistance of the through conductor 5 tends to be too high. On the other hand, when the thickness exceeds 25 μm, the through conductor 5 is disposed inside the through hole 4 to which the through conductor 5 is attached. It becomes difficult to fill the solder resist 7 to be satisfactorily. Therefore, the thickness of the through conductor 5 is preferably in the range of 8 to 25 μm.

さらに、絶縁樹脂層3A・3Bの表面および貫通孔4の内部には、エポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の熱硬化性樹脂から成るソルダレジスト7が被着および充填されている。   Further, a solder resist 7 made of a thermosetting resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin is deposited and filled in the surfaces of the insulating resin layers 3A and 3B and the inside of the through holes 4.

ソルダレジスト7は、貫通導体5および表層導体6A・6Bを保護するとともに表層導体6A・6Bにおける表層配線パターン同士を電気的に良好に絶縁するための保護層として機能し、表層導体6A・6Bの一部を露出させる所定のパターンに被着形成されている。   The solder resist 7 functions as a protective layer for protecting the through conductor 5 and the surface layer conductors 6A and 6B and electrically insulating the surface layer wiring patterns in the surface layer conductors 6A and 6B. It is formed in a predetermined pattern that exposes a part.

なお、ソルダレジスト7は、その表層導体6A・6B上における厚みが10μm未満であると、表層導体6を良好に保護することができなくなるとともに表層導体6A・6Bにおける表層配線パターン同士を電気的に良好に絶縁することができなくなる傾向にあり、他方、40μmを超えると、ソルダレジスト7を所定のパターンに形成することが困難となる傾向にある。したがって、ソルダレジストの表層導体6A・6B上における厚みは、10〜40μmの範囲が好ましい。   When the thickness of the solder resist 7 on the surface conductors 6A and 6B is less than 10 μm, the surface conductor 6 cannot be protected well and the surface wiring patterns in the surface conductors 6A and 6B are electrically connected to each other. On the other hand, when it exceeds 40 μm, it tends to be difficult to form the solder resist 7 in a predetermined pattern. Therefore, the thickness of the solder resist on the surface conductors 6A and 6B is preferably in the range of 10 to 40 μm.

かくして、本発明の配線基板によれば、貫通孔4内に貫通導体5を良好に形成することができ、それにより貫通導体5に断線が発生することのない極めて高密度な配線の配線基板を提供することができる。   Thus, according to the wiring board of the present invention, the through conductor 5 can be satisfactorily formed in the through hole 4, and thereby a wiring board having an extremely high density wiring that does not cause the breakage of the through conductor 5 can be obtained. Can be provided.

次に、図1に示した配線基板を本発明の製造方法により製造する方法について図2(a)〜(f)を参照して説明する。   Next, a method for manufacturing the wiring board shown in FIG. 1 by the manufacturing method of the present invention will be described with reference to FIGS.

まず、図2(a)に部分断面図で示すように、例えばガラスクロスやアラミドクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂を含浸させた有機系絶縁材料から成る厚みが0.35〜0.45mmの絶縁樹脂板1の上下面に厚みが7〜12μmの銅箔から成る内層導体2A・2Bが被着形成された両面銅張板を準備する。   First, as shown in a partial cross-sectional view in FIG. 2A, for example, a glass cloth or an aramid cloth made of an organic insulating material impregnated with a resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin has a thickness of 0.35. A double-sided copper-clad plate is prepared in which inner layer conductors 2A and 2B made of copper foil having a thickness of 7 to 12 μm are deposited on the upper and lower surfaces of an insulating resin plate 1 having a thickness of 0.45 mm.

なお、内層導体2A・2Bはその表面の中心線平均粗さRaが0.2〜2μm程度となるように、その表面を粗化しておく。   The inner layer conductors 2A and 2B have their surfaces roughened so that the center line average roughness Ra of the surfaces is about 0.2 to 2 μm.

絶縁樹脂板1は、その厚みが0.35mm未満ではその上下面に絶縁樹脂層3A・3Bを被着させたり、あるいは絶縁樹脂板1および内層導体2A・2Bおよび絶縁樹脂層3A・3Bを貫通して複数の貫通孔4を形成する際等に熱や外力等の影響で配線基板に反りや変形が発生して配線基板に要求される平坦度を確保できなくなってしまう危険性が大きなものとなり、他方、0.45mmを超えると、後述するように貫通孔4内壁に貫通導体5を形成するとき、貫通孔4内にめっき液が浸入しにくくなり、貫通導体5に断線が発生しやすくなる。したがって、絶縁樹脂板1の厚みは0.35〜0.45mmの範囲が好ましい。   If the thickness of the insulating resin plate 1 is less than 0.35 mm, the insulating resin layers 3A and 3B are attached to the upper and lower surfaces of the insulating resin plate 1 or penetrate the insulating resin plate 1, the inner layer conductors 2A and 2B, and the insulating resin layers 3A and 3B. When the plurality of through holes 4 are formed, the wiring board is warped or deformed due to the influence of heat or external force, and the flatness required for the wiring board cannot be secured. On the other hand, when the thickness exceeds 0.45 mm, when the through conductor 5 is formed on the inner wall of the through hole 4 as will be described later, the plating solution is less likely to enter the through hole 4, and disconnection is likely to occur in the through conductor 5. Therefore, the thickness of the insulating resin plate 1 is preferably in the range of 0.35 to 0.45 mm.

また、内層導体2A・2Bは、その厚みが7μm未満の場合、内層導体2A・2Bの導体パターンに電源層やグランド層としての十分な電気特性を付与することができず、他方、12μmを超える場合、後述するように絶縁樹脂板1と内層導体2A・2Bおよび絶縁樹脂層3A・3Bとを貫通する貫通孔4をレーザ加工により穿孔する場合に、貫通孔4を安定して形成することが困難となる。したがって、内層導体2A・2Bの厚みは、7〜12μmの範囲が好ましい。   Further, when the thickness of the inner layer conductors 2A and 2B is less than 7 μm, the conductor pattern of the inner layer conductors 2A and 2B cannot give sufficient electric characteristics as a power supply layer or a ground layer, and on the other hand, the thickness exceeds 12 μm. In this case, as will be described later, when the through hole 4 penetrating the insulating resin plate 1 and the inner layer conductors 2A and 2B and the insulating resin layers 3A and 3B is drilled by laser processing, the through hole 4 can be stably formed. It becomes difficult. Therefore, the thickness of the inner layer conductors 2A and 2B is preferably in the range of 7 to 12 μm.

また、内層導体2A・2Bは、その表面の中心線平均粗さRaが0.2μm未満の場合、後述するように、絶縁樹脂板1の上下面に絶縁樹脂層3A・3Bを被着させる際に内層導体2A・2Bと絶縁樹脂層3A・3Bとが強固に密着せずに内層導体2A・2Bと絶縁樹脂層3A・3Bとの間で剥離が発生しやすくなる傾向にあり、他方2μmを超えると、そのような粗い面を安定かつ効率良く形成することが困難となる傾向にある。したがって、内層導体2A・2B表面の中心線平均粗さRaは0.2〜2μmの範囲が好ましい。   Further, when the center line average roughness Ra of the inner layer conductors 2A and 2B is less than 0.2 μm, the insulating resin layers 3A and 3B are deposited on the upper and lower surfaces of the insulating resin plate 1 as described later. The inner layer conductors 2A and 2B and the insulating resin layers 3A and 3B are not firmly adhered to each other, and the inner layer conductors 2A and 2B and the insulating resin layers 3A and 3B tend to be peeled off, and the other exceeds 2 μm. And it tends to be difficult to form such a rough surface stably and efficiently. Accordingly, the center line average roughness Ra of the inner layer conductors 2A and 2B is preferably in the range of 0.2 to 2 μm.

さらに、内層導体2A・2Bは貫通孔4が形成される位置に貫通孔4により貫通されるとともに後述する貫通導体5に接する導体パターンを全ての貫通孔4に対応して設けておくと、レーザ加工により貫通孔4を形成する際に全ての貫通孔4においてレーザ光の吸収反射が均一となり、全ての貫通孔4を略均一に形成することができる。したがって、内層導体2A・2Bは貫通孔4が形成される位置に貫通孔4により貫通される導体パターンを全ての貫通孔4に対応して設けておくことが好ましい。   Furthermore, the inner layer conductors 2A and 2B are penetrated by the through holes 4 at positions where the through holes 4 are formed, and a conductor pattern in contact with the through conductors 5 to be described later is provided corresponding to all the through holes 4, so that the laser When the through holes 4 are formed by processing, the absorption and reflection of the laser light is uniform in all the through holes 4, and all the through holes 4 can be formed substantially uniformly. Therefore, the inner layer conductors 2 </ b> A and 2 </ b> B are preferably provided with a conductor pattern penetrating through the through holes 4 at positions where the through holes 4 are formed corresponding to all the through holes 4.

このような内層導体2A・2Bは、絶縁樹脂板1の上下全面に厚みが8〜16μm程度の銅箔を貼着するとともに、この銅箔上に感光性のドライフィルムレジストを被着させ、次にこの感光性ドライフィルムレジストを従来周知のフォトリソグラフィー技術により露光・現像して導体パターン形成位置にドライフィルムレジストを有するエッチングマスクを形成し、次にエッチングマスクから露出した銅箔を塩化第2銅水溶液もしくは塩化第2鉄水溶液から成るエッチング液を用いてエッチング除去し、最後にエッチングマスクを剥離した後、塩化第2銅水溶液に蟻酸が含有された粗化液を用いてその表面をエッチングして粗化することによって形成される。   Such inner layer conductors 2A and 2B have a copper foil having a thickness of about 8 to 16 μm adhered to the entire upper and lower surfaces of the insulating resin plate 1, and a photosensitive dry film resist is deposited on the copper foil. Then, this photosensitive dry film resist is exposed and developed by a well-known photolithography technique to form an etching mask having the dry film resist at the conductive pattern forming position, and then the copper foil exposed from the etching mask is cupric chloride. Etching is removed using an etching solution composed of an aqueous solution or ferric chloride aqueous solution, and finally the etching mask is peeled off, and then the surface is etched using a roughening solution containing formic acid in a cupric chloride aqueous solution. Formed by roughening.

次に、図2(b)に部分断面図で示すように、両面銅張板11の上下面にその厚みが内層導体2A・2B上で25〜45μmの絶縁樹脂層3A・3Bを被着形成する。この絶縁樹脂層3A・3Bはエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の熱硬化型の樹脂から成り、炭酸ガスレーザ等のレーザ光に対する分解度合いが絶縁樹脂板1よりも大きい。   Next, as shown in a partial cross-sectional view in FIG. 2B, the insulating resin layers 3A and 3B having a thickness of 25 to 45 μm are formed on the upper and lower surfaces of the double-sided copper-clad plate 11 on the inner conductors 2A and 2B. To do. The insulating resin layers 3A and 3B are made of a thermosetting resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin, and the degree of decomposition with respect to a laser beam such as a carbon dioxide laser is larger than that of the insulating resin plate 1.

この絶縁樹脂層3A・3Bは、その厚みが内層導体2A・2B上で25μm未満の場合、互いに絶縁すべき内層導体2A・2Bと表層導体6A・6Bとを電気的に良好に絶縁することができなくなり、他方、45μmを超えると、絶縁樹脂板1および内層導体2A・2Bならびに絶縁樹脂層3A・3Bを貫通する貫通孔4をレーザ加工により穿孔する際に貫通孔4を良好に形成することが困難となる。したがって、絶縁層3A・3Bの厚みは内層導体2A・2B上で25〜45μmの範囲が好ましい。   When the thickness of the insulating resin layers 3A and 3B is less than 25 μm on the inner layer conductors 2A and 2B, the inner layer conductors 2A and 2B and the surface layer conductors 6A and 6B to be insulated from each other can be electrically well insulated. On the other hand, if the thickness exceeds 45 μm, the through hole 4 is formed well when the through hole 4 penetrating the insulating resin plate 1 and the inner layer conductors 2A and 2B and the insulating resin layers 3A and 3B is drilled by laser processing. Becomes difficult. Therefore, the thickness of the insulating layers 3A and 3B is preferably in the range of 25 to 45 μm on the inner layer conductors 2A and 2B.

なお、絶縁樹脂板1の上下面に内層導体2A・2Bが被着されて成る両面銅張板の上下面に絶縁樹脂層3A・3Bを被着形成するには、半硬化状態の熱硬化性樹脂のフィルムを両面銅張板の上下両面に真空ラミネータで仮圧着した後、これを熱処理して硬化させる方法が採用される。   In order to deposit and form the insulating resin layers 3A and 3B on the upper and lower surfaces of the double-sided copper clad plate formed by coating the inner layer conductors 2A and 2B on the upper and lower surfaces of the insulating resin plate 1, the thermosetting property in a semi-cured state is used. A method is adopted in which a resin film is temporarily press-bonded on both upper and lower surfaces of a double-sided copper-clad plate with a vacuum laminator and then heat-treated to be cured.

次に図2(c)に部分断面図で示すように、レーザ加工により絶縁樹脂層3A・3Bおよび内層導体2A・2Bおよび絶縁樹脂板1を貫通する複数の貫通孔4を穿孔する。   Next, as shown in a partial cross-sectional view in FIG. 2C, a plurality of through holes 4 penetrating the insulating resin layers 3A and 3B, the inner layer conductors 2A and 2B, and the insulating resin plate 1 are drilled by laser processing.

貫通孔4は、絶縁樹脂板1においては直径が75〜115μmでその内壁が略垂直であり、絶縁樹脂層3A・3Bにおいてはその内壁が垂直方向から10〜30度の角度で傾いて外側に向けて拡径した形状とする。 The through-hole 4 has a diameter of 75 to 115 μm in the insulating resin plate 1 and an inner wall that is substantially vertical. In the insulating resin layers 3A and 3B, the inner wall is inclined outward at an angle of 10 to 30 degrees from the vertical direction. The shape is increased in diameter.

この場合、絶縁樹脂層3A・3Bのレーザ光の照射による分解度合いが絶縁樹脂板1よりも大きいことから、絶縁樹脂層3A・3Bがレーザ加工により絶縁樹脂板1よりも大きく分解されるので貫通孔4の内壁を絶縁樹脂板1においては略垂直で絶縁樹脂層3A・3Bにおいては垂直方向から10〜30度の角度で傾いて外側に向けて拡径する形状とすることができる。   In this case, since the degree of decomposition of the insulating resin layers 3A and 3B due to the laser light irradiation is greater than that of the insulating resin plate 1, the insulating resin layers 3A and 3B are decomposed to a greater extent than the insulating resin plate 1 by laser processing. The inner wall of the hole 4 can be formed into a shape that is substantially vertical in the insulating resin plate 1 and is inclined toward the outside by inclining at an angle of 10 to 30 degrees from the vertical direction in the insulating resin layers 3A and 3B.

このように、貫通孔4の直径を絶縁樹脂板1において75〜115μmと小さいものとするとともに貫通孔4の内壁を絶縁樹脂層3A・3Bにおいて垂直方向から10〜30度の角度で傾いて外側に向けて拡径する形状とすることから、後述するように貫通導体5および表層導体6A・6Bを形成する際に貫通導体5および表層導体6A・6Bを高密度で配置することができ、それにより高密度な配線基板を得ることができる。   As described above, the diameter of the through hole 4 is made as small as 75 to 115 μm in the insulating resin plate 1 and the inner wall of the through hole 4 is inclined outward at an angle of 10 to 30 degrees from the vertical direction in the insulating resin layers 3A and 3B. Since the shape increases toward the surface, the through conductor 5 and the surface layer conductors 6A and 6B can be arranged at a high density when forming the through conductor 5 and the surface layer conductors 6A and 6B as described later. Thus, a high-density wiring board can be obtained.

また、貫通孔4はその直径が絶縁樹脂板1において75〜115μmと小さいものの、その内壁が絶縁樹脂板1においては略垂直でかつ絶縁樹脂層3A・3Bにおいては垂直方向から10〜30の角度で傾いて外側に向けて拡径する形状となっていることから、後述するように貫通孔4内壁に貫通導体5を被着形成する際に、貫通導体5を形成するためのめっき液が貫通孔4の内部に良好に入り込み、その結果、貫通孔4内に貫通導体5を良好に形成することができる。   The through-hole 4 has a small diameter of 75 to 115 μm in the insulating resin plate 1 but has an inner wall that is substantially vertical in the insulating resin plate 1 and 10 to 30 degrees from the vertical direction in the insulating resin layers 3A and 3B. The plating solution for forming the through conductor 5 penetrates when the through conductor 5 is deposited on the inner wall of the through hole 4 as described later. As a result, the through conductor 5 can be formed well in the through hole 4.

なお、絶縁樹脂板1における貫通孔4の直径が75μm未満の場合、貫通孔4内壁に貫通導体5を被着形成する際に、貫通導体5を形成するためのめっき液が貫通孔4の内部に良好に入り込まず、貫通孔4内壁に貫通導体5を良好に形成することが困難となり、他方、115μmを超えると、貫通導体5および表層導体6A・6Bを高密度で配置することが困難となる。したがって、絶縁樹脂板1における貫通孔4の直径は、75〜115μmの範囲が好ましい。   When the diameter of the through hole 4 in the insulating resin plate 1 is less than 75 μm, the plating solution for forming the through conductor 5 is formed inside the through hole 4 when the through conductor 5 is deposited on the inner wall of the through hole 4. However, if the thickness exceeds 115 μm, it is difficult to dispose the through conductor 5 and the surface layer conductors 6A and 6B at a high density. Become. Therefore, the diameter of the through hole 4 in the insulating resin plate 1 is preferably in the range of 75 to 115 μm.

また、絶縁樹脂板1における貫通孔4の内壁が略垂直でない場合、貫通孔4内壁に貫通導体5を被着形成する際に貫通孔4の内部に気泡が取り残されやすく、そのため貫通導体5を形成するためのめっき液が気泡が取り残された部分に良好に届かずに貫通孔4内壁に貫通導体5を良好に形成することが困難となる。したがって、絶縁樹脂板1における貫通孔4の内壁は略垂直であることが好ましい。   In addition, when the inner wall of the through hole 4 in the insulating resin plate 1 is not substantially vertical, bubbles are likely to be left inside the through hole 4 when the through conductor 5 is deposited on the inner wall of the through hole 4. It is difficult to form the through conductor 5 on the inner wall of the through hole 4 without the plating solution for forming well reaching the part where the bubbles are left. Therefore, it is preferable that the inner wall of the through hole 4 in the insulating resin plate 1 is substantially vertical.

また、貫通孔4の内壁が絶縁樹脂層3A・3Bにおいて外側に向けて傾く角度が垂直方向から10度未満の場合、貫通孔4内壁に貫通導体5を被着形成する際に、貫通導体5を形成するためのめっき液が貫通孔4の内部に良好に入り込まずに貫通孔4内壁に貫通導体5を良好に形成することが困難となり、他方、30度を超えるとそのような角度で内壁が拡がる貫通孔4を安定して効率よく形成することが困難となる。したがって、貫通孔4の内壁が絶縁樹脂層3A・3Bにおいて外側に向けて傾く角度は、垂直方向から10〜30度の範囲が好ましい。   Further, when the angle at which the inner wall of the through hole 4 is inclined outward in the insulating resin layers 3A and 3B is less than 10 degrees from the vertical direction, the through conductor 5 is formed when the through conductor 5 is deposited on the inner wall of the through hole 4. The plating solution for forming the metal does not enter the inside of the through-hole 4 well, and it becomes difficult to form the through-conductor 5 on the inner wall of the through-hole 4 on the other hand. It is difficult to stably and efficiently form the through-hole 4 in which the swell spreads. Therefore, the angle at which the inner wall of the through hole 4 is inclined outward in the insulating resin layers 3A and 3B is preferably in the range of 10 to 30 degrees from the vertical direction.

なお、絶縁樹脂層3A・3Bおよび内層導体2A・2Bおよび絶縁樹脂板1に貫通孔4を形成するには、絶縁樹脂層3A・3B上に例えばレーザ光のエネルギーを良好に吸収する黒色もしくは黒色に近い色を有する樹脂から成るレーザ加工用シートを貼着し、このレーザ加工用シートの上から7〜12mJの出力の炭酸ガスレーザを50〜500μ秒のパルス幅で所定の位置に照射して貫通孔4を穿孔する方法が採用される。   In order to form the through holes 4 in the insulating resin layers 3A and 3B, the inner layer conductors 2A and 2B, and the insulating resin plate 1, for example, black or black that absorbs energy of laser light satisfactorily on the insulating resin layers 3A and 3B. A laser processing sheet made of resin having a color close to that of a laser beam is pasted, and a carbon dioxide laser with an output of 7 to 12 mJ is irradiated from above the laser processing sheet to a predetermined position with a pulse width of 50 to 500 μsec. A method of drilling the holes 4 is employed.

このとき、炭酸ガスレーザ光の出力が7mJ未満だと貫通孔4を十分な大きさに穿孔することが困難となる傾向にあり、他方、12mJを超えると絶縁樹脂層3A・3Bにおける貫通孔4の孔径が大きくなりすぎてしまう傾向にある。したがって、照射する炭酸ガスレーザ光は、その出力が7〜12mJでパルス幅が50〜500μ秒の範囲であることが好ましい。なお、レーザ加工用シートは、貫通孔4を穿孔した後に剥離する。   At this time, if the output of the carbon dioxide laser beam is less than 7 mJ, it tends to be difficult to drill the through-hole 4 to a sufficient size. On the other hand, if the output exceeds 12 mJ, the through-hole 4 of the insulating resin layers 3A and 3B The pore diameter tends to be too large. Therefore, it is preferable that the carbon dioxide laser light to be irradiated has an output of 7 to 12 mJ and a pulse width of 50 to 500 μsec. The laser processing sheet is peeled off after the through holes 4 are formed.

このように貫通孔4をレーザ加工により形成することにより、絶縁樹脂板1においては直径が75〜115μmでその内壁が略垂直であり、かつ絶縁樹脂層3A・3Bにおいてその内壁が垂直方向から10〜30度の角度で傾いて外側に向けて拡径する形状の貫通孔4を容易に形成することができる。   By forming the through hole 4 by laser processing in this way, the insulating resin plate 1 has a diameter of 75 to 115 μm and its inner wall is substantially vertical, and the inner walls of the insulating resin layers 3A and 3B are 10 It is possible to easily form the through-hole 4 having a shape that is inclined at an angle of ˜30 degrees and expands toward the outside.

次に、図2(d)に部分断面図で示すように、貫通孔4内壁および絶縁樹脂層3A・3Bの表面に厚みが1〜3μmの無電解銅めっき膜から成るめっき膜13Aを被着させる。なお、無電解めっき膜から成るめっき膜13Aを被着させるには、例えば塩化アンモニウム系酢酸パラジウムを含有するパラジウム活性液を使用して貫通孔4内壁および絶縁樹脂層3A・3Bの表面にパラジウム触媒を付着させるとともに、その上に硫酸銅系の無電解銅めっき液を用いて無電解銅めっき膜を被着させればよい。   Next, as shown in a partial sectional view in FIG. 2D, a plating film 13A made of an electroless copper plating film having a thickness of 1 to 3 μm is deposited on the inner wall of the through hole 4 and the surfaces of the insulating resin layers 3A and 3B. Let In order to deposit the plating film 13A made of an electroless plating film, for example, a palladium catalyst is used on the inner walls of the through holes 4 and the surfaces of the insulating resin layers 3A and 3B by using a palladium active solution containing ammonium chloride-based palladium acetate. And an electroless copper plating film may be deposited thereon using a copper sulfate-based electroless copper plating solution.

貫通孔4はその直径が絶縁樹脂板1において75〜115μmと小さいものの、その内壁が絶縁樹脂板1においては略垂直でかつ絶縁樹脂層3A・3Bにおいては垂直方向から10〜30の角度で外側に向けて拡径する形状となっているいことから、貫通孔4内に無電解銅めっき液が良好に浸入し、その結果、貫通孔4内壁および絶縁樹脂層3A・3Bの表面に無電解銅めっき膜を略均一な厚みに良好に被着させることができる。   Although the diameter of the through hole 4 is as small as 75 to 115 μm in the insulating resin plate 1, the inner wall thereof is substantially vertical in the insulating resin plate 1 and outside at an angle of 10 to 30 from the vertical direction in the insulating resin layers 3A and 3B. Therefore, the electroless copper plating solution penetrates well into the through-hole 4, and as a result, the electroless copper is formed on the inner wall of the through-hole 4 and the surfaces of the insulating resin layers 3A and 3B. The plating film can be satisfactorily deposited to a substantially uniform thickness.

なお、無電解銅めっき膜から成るめっき膜13Aを被着させる前に絶縁樹脂層3A・3B表面および貫通孔4内壁を例えば過マンガン酸カリウム溶液や過マンガン酸ナトリウム溶液から成る粗化液を用いてその中心線平均粗さRaが0.2〜2μm程度になるように粗化しておくと無電解銅めっき膜から成るめっき膜13Aを強固に被着させることができる。   Before the plating film 13A made of an electroless copper plating film is applied, the surface of the insulating resin layers 3A and 3B and the inner wall of the through hole 4 are made of a roughening solution made of, for example, a potassium permanganate solution or a sodium permanganate solution. If the surface roughness is made rough so that the center line average roughness Ra is about 0.2 to 2 μm, the plating film 13A made of an electroless copper plating film can be firmly applied.

したがって、無電解銅めっき膜から成るめっき膜13Aを被着させる前に絶縁樹脂層3A・3B表面および貫通孔4内壁を例えば過マンガン酸カリウム溶液や過マンガン酸ナトリウム溶液から成る粗化液を用いてその中心線平均粗さRaが0.2〜2μm程度になるように粗化しておくことが好ましい。   Therefore, before depositing the plating film 13A made of an electroless copper plating film, the surface of the insulating resin layers 3A and 3B and the inner wall of the through hole 4 are made of a roughening solution made of, for example, a potassium permanganate solution or a sodium permanganate solution. The center line average roughness Ra is preferably roughened to about 0.2 to 2 μm.

次に、図2(e)に部分断面図で示すように、絶縁層3A・3B上の無電解銅めっき膜上にめっき用マスク14を被着させるとともに、めっき用マスク14から露出した無電解銅めっき膜上に厚みが10〜35μm程度の電解銅めっき膜を被着させ、貫通孔4の内壁および絶縁樹脂層3A・3B表面の導体パターン形成部位が選択的に厚く被着された無電解めっき膜と電解銅めっき膜とから成るめっき膜13Bを形成する。   Next, as shown in a partial cross-sectional view in FIG. 2E, a plating mask 14 is deposited on the electroless copper plating film on the insulating layers 3A and 3B, and the electroless exposed from the plating mask 14 is applied. Electroless copper plating film having a thickness of about 10 to 35 μm is deposited on the copper plating film, and the inner wall of the through hole 4 and the conductive pattern formation sites on the surfaces of the insulating resin layers 3A and 3B are selectively deposited thickly. A plating film 13B composed of a plating film and an electrolytic copper plating film is formed.

なお、めっき用マスク14は、例えば感光性ドライフィルムレジストを絶縁樹脂層3A・3B上の無電解銅めっき膜上に被着させるとともに、このドライフィルムレジストをフォトリソグラフィー技術により露光・現像して所定のパターンに加工することによって形成する。   The plating mask 14 is formed by, for example, depositing a photosensitive dry film resist on the electroless copper plating film on the insulating resin layers 3A and 3B, and exposing and developing the dry film resist by a photolithography technique. It is formed by processing into a pattern.

また、電解銅めっき膜を被着させるための電解銅めっき液としては、例えば、硫酸銅系から成る電解銅めっき液を用いればよい。このとき、貫通孔4はその直径が絶縁樹脂板1において75〜115μmと小さいものの、その内壁が絶縁樹脂板1においては略垂直でかつ絶縁樹脂層3A・3Bにおいては垂直方向から10〜30の角度で外側に向けて拡径する形状となっていることから、貫通孔4内に電解銅めっき液が良好に浸入し、その結果、貫通孔4内壁および絶縁樹脂層3A・3Bの表面に電解銅めっき膜が略均一な厚みに良好に被着される。   Moreover, as an electrolytic copper plating solution for depositing an electrolytic copper plating film, for example, an electrolytic copper plating solution made of a copper sulfate system may be used. At this time, although the diameter of the through hole 4 is as small as 75 to 115 μm in the insulating resin plate 1, its inner wall is substantially vertical in the insulating resin plate 1 and 10 to 30 from the vertical direction in the insulating resin layers 3A and 3B. Since it has a shape that expands toward the outside at an angle, the electrolytic copper plating solution penetrates well into the through hole 4, and as a result, the inner wall of the through hole 4 and the surfaces of the insulating resin layers 3 </ b> A and 3 </ b> B are electrolyzed. The copper plating film is satisfactorily deposited to a substantially uniform thickness.

次に、図2(f)に部分断面図で示すように、めっきマスク14を剥離するとともにめっきマスク14の下にあった無電解銅めっき膜が消滅するまで無電解銅めっき膜および電解銅めっき膜をエッチングし、貫通孔4内壁に貫通導体5を形成するとともに絶縁樹脂層3A・3Bの表面に表層導体6A・6Bを形成する。   Next, as shown in a partial cross-sectional view in FIG. 2 (f), the electroless copper plating film and the electrolytic copper plating are removed until the plating mask 14 is peeled off and the electroless copper plating film under the plating mask 14 disappears. The film is etched to form the through conductor 5 on the inner wall of the through hole 4 and the surface conductors 6A and 6B on the surfaces of the insulating resin layers 3A and 3B.

なお、無電解銅めっき膜および電解銅めっき膜をエッチングするには、塩化第2銅水溶液または塩化第2鉄水溶液から成るエッチング液を用いればよい。   In order to etch the electroless copper plating film and the electrolytic copper plating film, an etching solution made of a cupric chloride aqueous solution or a ferric chloride aqueous solution may be used.

最後に、絶縁樹脂層3A・3Bの表面および貫通孔4の内部にエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の熱硬化性樹脂から成るソルダレジスト7を被着および充填させることにより図1に示す本発明の配線基板が完成する。   Finally, a solder resist 7 made of a thermosetting resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin is deposited and filled on the surfaces of the insulating resin layers 3A and 3B and the inside of the through holes 4 as shown in FIG. The wiring board of the present invention shown in FIG.

なお、ソルダレジスト7は、ソルダレジスト7用の感光性の樹脂ペーストを従来周知のスクリーン印刷法を採用して絶縁層3A側および3B側から貫通孔4を埋めるように印刷塗布し、これを従来周知のフォトリソグラフィー技術を採用して所定のパターンに露光・現像することによって形成される。   Note that the solder resist 7 is printed and applied with a photosensitive resin paste for the solder resist 7 by using a well-known screen printing method so as to fill the through holes 4 from the insulating layer 3A side and the 3B side. It is formed by exposing and developing into a predetermined pattern using a well-known photolithography technique.

このとき、貫通孔4は、絶縁樹脂層3A・3Bにおいてその内壁が垂直方向から10〜30度の角度で傾いて外側に向けて拡径する形状であることから、貫通孔4内にソルダレジスト7用の樹脂ペーストが良好に浸入し、その結果、貫通孔4内をソルダレジスト7で良好に充填することができる。   At this time, the through-hole 4 has a shape in which the inner wall of the insulating resin layers 3A and 3B is inclined at an angle of 10 to 30 degrees from the vertical direction and expands toward the outside. As a result, the through-hole 4 can be satisfactorily filled with the solder resist 7.

かくして、本発明の配線基板の製造方法によれば、貫通導体5に断線が発生することがなく、極めて高密度な配線が可能な配線基板を得ることができる。   Thus, according to the method for manufacturing a wiring board of the present invention, it is possible to obtain a wiring board capable of extremely high-density wiring without causing disconnection in the through conductor 5.

本発明の配線基板の実施形態の一例を示す部分断面図である。It is a fragmentary sectional view showing an example of an embodiment of a wiring board of the present invention. (a)〜(f)は、本発明の配線基板の製造方法を説明するための工程毎の部分断面図である。(A)-(f) is a fragmentary sectional view for every process for demonstrating the manufacturing method of the wiring board of this invention.

符号の説明Explanation of symbols

1・・・・・・・絶縁樹脂板
2A・2B・・・内層導体
3A・3B・・・絶縁樹脂層
4・・・・・・・貫通孔
5・・・・・・・貫通導体
6A・6B・・・表層導体
1. Insulating resin plates 2A, 2B ... Inner layer conductors 3A, 3B ... Insulating resin layer 4 ... Through holes 5 ... Through conductors 6A 6B ... Surface conductor

Claims (2)

絶縁樹脂板の上下両面に銅箔から成り、内層配線導体パターンおよび該内層配線導体パターンから電気的に独立したダミー導体パターンを有する内層導体が被着された両面銅張板の前記上下両面に前記絶縁樹脂板よりもレーザ光の照射による分解度合いが大きな絶縁樹脂層が被着されているとともに、前記絶縁樹脂板、前記内層導体および前記絶縁樹脂層を上下に貫通し、かつ前記絶縁樹脂層において外側に向けて拡径する複数の貫通孔がレーザ加工により形成され、該貫通孔内壁に前記内層導体に接続された貫通導体および前記絶縁樹脂層の表面に前記貫通導体に接続された表層導体がそれぞれめっきにより被着形成されて成ることを特徴とする配線基板。 On both upper and lower surfaces of a double-sided copper-clad plate comprising copper foil on both upper and lower surfaces of an insulating resin plate, and an inner-layer wiring conductor pattern and an inner-layer conductor having a dummy conductor pattern electrically independent from the inner-layer wiring conductor pattern, An insulating resin layer having a higher degree of decomposition due to laser light irradiation than that of the insulating resin plate is applied, and penetrates the insulating resin plate, the inner layer conductor and the insulating resin layer vertically, and in the insulating resin layer A plurality of through-holes whose diameter increases toward the outside are formed by laser processing, a through-conductor connected to the inner-layer conductor on the inner wall of the through-hole, and a surface layer conductor connected to the through-conductor on the surface of the insulating resin layer A wiring board characterized by being formed by being deposited by plating. 絶縁樹脂板の上下両面に銅箔から成り、内層配線導体パターンおよび該内層配線導体パターンから電気的に独立したダミー導体パターンを有する内層導体が被着された両面銅張板の前記上下両面に前記絶縁樹脂板よりもレーザ光の照射による分解度合いが大きな絶縁樹脂層を被着させるとともに、前記絶縁樹脂板、前記内層導体および前記絶縁樹脂層を上下に貫通し、かつ前記絶縁樹脂層において外側に向けて拡径する複数の貫通孔をレーザ加工により形成し、次に前記貫通孔内壁に前記内層導体に接続された貫通導体および前記絶縁樹脂層の表面に前記貫通導体に接続された表層導体をそれぞれめっきにより被着させることを特徴とする配線基板の製造方法。 On both upper and lower surfaces of a double-sided copper-clad plate comprising copper foil on both upper and lower surfaces of an insulating resin plate, and an inner-layer wiring conductor pattern and an inner-layer conductor having a dummy conductor pattern electrically independent from the inner-layer wiring conductor pattern, An insulating resin layer having a higher degree of decomposition due to laser light irradiation than that of the insulating resin plate is applied, penetrates the insulating resin plate, the inner layer conductor, and the insulating resin layer vertically and outwards in the insulating resin layer. A plurality of through-holes that expand toward the surface are formed by laser processing, and then a through-conductor connected to the inner layer conductor on the inner wall of the through-hole and a surface layer conductor connected to the through-conductor on the surface of the insulating resin layer A method of manufacturing a wiring board, characterized in that each is deposited by plating.
JP2006148995A 2006-05-29 2006-05-29 Wiring board and method for manufacturing it Ceased JP2006287251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148995A JP2006287251A (en) 2006-05-29 2006-05-29 Wiring board and method for manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006148995A JP2006287251A (en) 2006-05-29 2006-05-29 Wiring board and method for manufacturing it

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001161687A Division JP3881528B2 (en) 2001-05-30 2001-05-30 Wiring board and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006287251A true JP2006287251A (en) 2006-10-19

Family

ID=37408733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148995A Ceased JP2006287251A (en) 2006-05-29 2006-05-29 Wiring board and method for manufacturing it

Country Status (1)

Country Link
JP (1) JP2006287251A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7397419B1 (en) * 2023-06-02 2023-12-13 Jsr株式会社 Radiation sensitive composition, cured film and method for producing the same, semiconductor element and display element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7397419B1 (en) * 2023-06-02 2023-12-13 Jsr株式会社 Radiation sensitive composition, cured film and method for producing the same, semiconductor element and display element

Similar Documents

Publication Publication Date Title
JP2009260204A (en) Printed circuit board and method of manufacturing the same
JP2008311612A (en) Multilayer printed circuit board, and method of manufacturing the same
KR100752017B1 (en) Manufacturing Method of Printed Circuit Board
JP2020057767A (en) Printed wiring board
JP2003124637A (en) Multilayer wiring board
JP3881528B2 (en) Wiring board and manufacturing method thereof
JP2003188541A (en) Method of manufacturing wiring board
JP4480693B2 (en) Wiring board and manufacturing method thereof
JP2003046226A (en) Wiring board and its manufacturing method
JP2006287251A (en) Wiring board and method for manufacturing it
JP3881523B2 (en) Wiring board and manufacturing method thereof
JP3934883B2 (en) Wiring board and manufacturing method thereof
JP3792544B2 (en) Wiring board manufacturing method
JP2010129997A (en) Printed-circuit board with embedded pattern, and its manufacturing method
JP2006295204A (en) Wiring board and manufacturing method thereof
JP2006229255A (en) Wiring board and manufacturing method therefor
JP2004228362A (en) Method of manufacturing wiring board
JP2010262954A (en) Method for manufacturing wiring board
JP2004228534A (en) Punching method by laser to mother board for multi-cavity wiring board
JP2002359468A (en) Multilayered printed wiring board having filled via hole structure and manufacturing method therefor
JP2005005285A (en) Wiring board and its producing process
JP2004063927A (en) Wiring circuit board and its manufacturing method
KR20000025528A (en) Method of electrical interlayer connection of multi-layered printed circuit board
JP2004179526A (en) Wiring board, and manufacturing method thereof
JP2001189536A (en) Wiring substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090327

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090331

Free format text: JAPANESE INTERMEDIATE CODE: A01

AA92 Notification of invalidation

Free format text: JAPANESE INTERMEDIATE CODE: A971092

Effective date: 20090421