JP2004228534A - Punching method by laser to mother board for multi-cavity wiring board - Google Patents

Punching method by laser to mother board for multi-cavity wiring board Download PDF

Info

Publication number
JP2004228534A
JP2004228534A JP2003018023A JP2003018023A JP2004228534A JP 2004228534 A JP2004228534 A JP 2004228534A JP 2003018023 A JP2003018023 A JP 2003018023A JP 2003018023 A JP2003018023 A JP 2003018023A JP 2004228534 A JP2004228534 A JP 2004228534A
Authority
JP
Japan
Prior art keywords
wiring board
wiring
hole
board
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003018023A
Other languages
Japanese (ja)
Inventor
Tadashi Fujiwara
藤原  正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003018023A priority Critical patent/JP2004228534A/en
Publication of JP2004228534A publication Critical patent/JP2004228534A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate a big deviation among through hole forming positions punched in each wiring substrate area in a punching method by laser to a mother substrate for a multi-cavity wiring board. <P>SOLUTION: In the punching method by laser to the mother board for the multi-cavity wiring board, a copper foil 12 to become a wiring conductor 2 is covered on an upper and a lower faces of an insulated resin plate 11 formed by impregnating the resin into a heat resistant fiber substrate. A lot of wiring board areas 21 to become each wiring board after splitting form the through hole 3 by irradiating a laser light to each wiring board area 21 by turns not to be adjacent lengthwise and crosswise each other to each of the wiring board 21 to the mother board 10 arranged in lengthwise and crosswise lines. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、多数の配線基板領域が縦横の並びに配列形成された母基板に対し、レーザ光を照射して貫通孔を形成する多数個取り配線基板用母基板へのレーザによる穿孔方法に関する。
【0002】
【従来の技術】
従来、半導体素子等の電子部品を搭載するために用いられる小型の配線基板として、ガラスクロスに熱硬化性樹脂を含浸させた有機材料から成り、上下面に銅箔および銅めっき層から成る配線導体を有する絶縁基板の上面から下面にかけてレーザ光の照射により穿孔された多数の貫通孔が形成されており、それらの貫通孔内に絶縁基板の上下面の配線導体同士を電気的に接続する銅めっき層から成る貫通導体を被着させて成る配線基板が使用されている。
【0003】
このような小型の配線基板は、例えば先ず、ガラスクロスに熱硬化性樹脂を含浸させて成る絶縁樹脂板の上下面に配線導体となる銅箔が被着されており、かつ分割後に各々が配線基板となる多数の配線基板領域が縦横の並びに配列された母基板に対し、各配線基板領域にその上面から下面にかけて多数の貫通孔をレーザ光の照射により穿孔し、次にそれらの貫通孔の内面に無電解めっき法および電解めっき法を採用して銅めっき層を被着させて貫通導体を形成するとともに銅箔の表面に銅めっき層を被着させ、次に各配線基板領域の上下面の銅箔およびその表面の銅めっき層をフォトリソグラフィー技術により所定のパターンにエッチングすることによって各配線基板領域の上下面に配線導体を形成し、しかる後、母基板を各配線基板領域の境界で切断して分割することによって多数個が同時集約的に製作されている。
【0004】
なお、各配線基板領域にレーザ光を照射して多数の貫通孔を穿孔する場合、貫通孔は各配線基板領域毎に母基板の一端側から互いに縦横に隣接する配線基板領域の順で穿孔されており、各配線基板領域においては、各貫通孔の穿孔位置に対してあらかじめ設定した数のパルスを連続的に照射して穿孔する方法と、各配線基板領域内におけるすべての貫通孔の穿孔位置に1パルスずつ順次レーザ光を照射し、これを設定した回数繰り返して穿孔する方法とがある。
【0005】
【特許文献1】
特開平11−97821号公報
【0006】
【発明が解決しようとする課題】
しかしながら、近年、電子部品を搭載する配線基板の小型・高密度化に伴い、各配線基板領域における貫通孔の数が多くなり、かつ貫通孔同士の配置間隔も狭くなってきている。そのため、レーザ光の照射時に貫通孔の周辺に発生する熱が母基板から放散されにくくなり、各配線基板領域にレーザ光を照射して貫通孔を穿孔する際に貫通孔が穿孔される配線基板領域の順に従って母基板がその一端側から熱膨張して大きく変形し、その結果、各配線基板領域における貫通孔の形成位置に大きなずれが生じ、それらの貫通孔内に被着される貫通導体とそれに接続される配線導体とが正常に接続されずに両者間に断線が発生したり、隣接する配線導体間が貫通導体により電気的に短絡したりしやすいという問題点を誘発していた。
【0007】
本発明は、かかる従来技術の問題点に鑑み完成されたものであり、その目的は、母基板に縦横の並びに配列形成された各配線基板領域にレーザ光を照射して貫通孔を形成する際に、各配線基板領域に穿孔される貫通孔の形成位置に大きなずれが発生することがなく、それにより各配線基板領域における貫通導体とそれに接続される配線導体とが正常に接続され、貫通導体と配線導体との間に断線が発生したり、隣接する配線導体同士が貫通導体により短絡したりすることがない多数個取り配線基板用母基板へのレーザによる穿孔方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明の多数個取り配線基板用母基板へのレーザによる穿孔方法は、耐熱性繊維基材に樹脂を含浸させて成る絶縁樹脂板の上下面に配線導体となる銅箔が被着されており、かつ分割後に各々が配線基板となる多数の配線基板領域が縦横の並びに配列された母基板に対し、前記配線基板領域の各々に、それぞれ互いに縦横に隣接しない順序で前記配線基板領域毎に、レーザ光を照射して貫通孔を形成することを特徴とするものである。
【0009】
本発明の多数個取り配線基板用母基板へのレーザによる穿孔方法によれば、配線基板領域の各々に、それぞれ互いに縦横に隣接しない順序で配線基板領域毎に、レーザ光を照射して貫通孔を形成することから、貫通孔を形成するために照射したレーザ光により発生する熱を母基板から良好に放散でき、その結果、レーザ光を照射して貫通孔を形成する際に、母基板がその一端側から熱膨張して大きく変形することが低減され、それにより各配線基板領域に形成される貫通孔の形成位置に大きなずれが発生することはない。
【0010】
また、本発明の多数個取り配線基板用母基板へのレーザによる穿孔方法は、上記構成において、前記レーザ光の照射による前記貫通孔の形成を、前記母基板の外周側に位置する前記配線基板領域から中央側に位置する前記配線基板領域へと渦巻状の順序で行なうことを特徴とするものである。
【0011】
本発明の多数個取り配線基板母基板へのレーザによる穿孔方法によれば、上記構成において、レーザ光の照射による貫通孔の形成を、母基板の外周側に位置する配線基板領域から中央側に位置する配線基板領域へと渦巻状の順序で行なった場合には、熱膨張の影響を一番受けやすい母基板の外周側に位置する配線基板領域における貫通孔の形成位置のずれを極めて小さいものとすることができる。
【0012】
【発明の実施の形態】
次に、本発明の多数個取り配線基板用母基板へのレーザによる穿孔方法を添付の図面に基づいて詳細に説明する。
図1は、本発明の多数個取り配線基板用母基板へのレーザによる穿孔方法を採用して製作される配線基板の一実施を示す部分断面図であり、1は絶縁基板、2は配線導体、3は貫通孔、4は貫通導体、5はソルダーレジストである。なお、本例では絶縁基板1の上下面および貫通孔3の内部にソルダーレジスト5を設けているが、ソルダーレジスト5は必ずしも必要ではない。
【0013】
絶縁基板1は、配線基板のコア部材として機能し、例えばガラスクロスやアラミドクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂を含浸させた有機材料系の厚みが0.2〜0.8mmの平板であり、その上下両面に厚みが3〜12μmの銅箔12およびその上に施されためっき金属層13から成る配線導体2が被着された、いわゆる両面銅張り板を構成している。
【0014】
絶縁基板1は、その厚みが0.2mm未満では、後述するように、絶縁基板1および配線導体2用の銅箔を貫通して多数の貫通孔3を形成する際等に熱や外力等の影響で配線基板に反りや変形が発生して配線基板に要求される平坦度を確保できなくなってしまう危険性が大きなものとなり、他方、0.8mmを超えると、後述するように、貫通孔3内面に貫通導体4を形成するとき、貫通孔3内にめっき液が浸入しにくくなるため、貫通導体4を良好に形成することが困難となる傾向がある。したがって、絶縁基板1の厚みは0.2〜0.8mmの範囲が好ましい。
【0015】
なお、絶縁基板1は、ガラスクロスやアラミドクロスに含浸させるエポキシ樹脂やビスマレイミドトリアジン樹脂、ポリフェニレンエーテル樹脂等の樹脂中にシリカやアルミナあるいはジルコニアのフィラーをガラスクロスやアラミドクロス等の繊維部分と樹脂部分とでレーザ光の透過度が略同等となる程度に含有させておけば、後述するように、絶縁基板1にレーザ光を照射して貫通孔3を穿孔する際に、貫通孔3を絶縁基板1に略均一な大きさで良好に形成することが可能となる。したがって、絶縁基板1のガラスクロスやアラミドクロスに含浸させるエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂中にはシリカやアルミナあるいはジルコニア等のフィラーをガラスクロスやアラミドクロス等の繊維部分と樹脂部分とでレーザ光の透過度が略同等となるように含有させておくことが好ましい。
【0016】
また、配線導体2は、厚みが3〜12μmの銅箔12上に銅めっき等のめっき金属層13を被着させて成り、配線基板に搭載される電子部品(図示せず)の電極を外部電気回路基板の配線導体(図示せず)に電気的に接続するための導電路の一部として機能し、上面側の配線導体2には、電子部品の電極が半田等の導電性接合部材を介して接続される電子部品接続パッドおよびこの電子部品接続パッドから引き回される配線パターン等が形成されており、下面側の配線導体2には、外部電気回路基板の配線導体に半田等の導電性接合部材を介して接続される外部接続パッド等が形成されている。
【0017】
なお、配線導体2を構成する銅箔12は、その厚みが3μm未満の場合、後述するように、配線導体2用の銅箔12に貫通孔3を形成した後に行なわれるマイクロエッチング時に銅箔12がエッチングされて銅箔12のピンホールまたは欠損を生じやすく、銅箔12上へのめっき金属層13の付き周り性や密着力が弱くなる傾向があり、他方、12μmを超える場合、後述するように、絶縁基板1と配線導体2用の銅箔12とを貫通する貫通孔3をレーザ光の照射により穿孔する場合に、直径が70〜130μmの貫通孔3を安定して形成することが困難となる。したがって、配線導体2を構成する銅箔12の厚みは、3〜12μmの範囲が好ましい。
【0018】
また、配線導体2は、これらを構成する銅箔12とその上のめっき金属層13との合計の厚みが8μm未満であると、配線導体2の電気抵抗が高いものとなり、他方、30μmを超えると、配線導体2を高密度のパターンに形成することが困難となる。したがって、配線導体2を構成する銅箔12とその上のめっき金属層13との合計の厚みは、8〜30μmの範囲が好ましい。
【0019】
さらに、本発明によって製作される配線基板においては、絶縁基板1および配線導体2を貫通して直径が70〜130μmの多数の貫通孔3が形成されており、この貫通孔3の内面に貫通導体4が被着形成されている。貫通孔3は、貫通導体4を絶縁基板1の上面から下面にかけて導出させるための導出路を提供するためのものであり、レーザ光の照射により穿孔されている。この貫通孔3は、その直径が絶縁基板1の厚み方向の略中央部においては70〜110μmであり、絶縁基板1の上下面で90〜130μmとなるように外側に向かって拡径させておく、すなわち絶縁基板1の上下面近傍で外側になるほど直径が大きくなるようにしておくことが好ましい。
【0020】
このように、貫通孔3の孔径が70〜130μmと小さいことから、貫通導体4を高密度で配置することができ、それにより極めて高密度な配線を有する配線基板を得ることができる。また、貫通孔3は、その直径が絶縁基板1の外側に向かって拡径させておくと、後述するように、貫通孔3の内面に貫通導体4を被着する際に、貫通導体4を形成するためのめっき液が貫通孔3の内部に良好に入り込み、その結果、貫通孔3内に貫通導体4を良好に形成することができる。
【0021】
なお、貫通孔3の直径が70μm未満の場合、貫通孔3の内面に貫通導体4を被着する際に、貫通導体4を形成するためのめっき液が貫通孔3の内部に良好に入り込まずに貫通孔3の内面に貫通導体4を良好に形成することが困難となり、他方、130μmを超えると、貫通導体4および配線導体2を高密度で配置することが困難となる。したがって、貫通孔3の直径は、70〜130μmの範囲が好ましい。
【0022】
また、絶縁基板1の上下面における貫通孔3の直径が絶縁基板1の厚み方向の略中央部における直径よりも10μm未満大きい場合には、貫通孔3の内面に貫通導体4を被着する際に、貫通導体4を形成するためのめっき液が貫通孔3の内部に良好に入り込まずに、貫通孔3の内面に貫通導体4を良好に被着形成することが困難となり、他方、50μmを超えて大きな場合には、そのような形状を有する貫通孔3を安定して形成することが困難となる。したがって、絶縁基板1の上下面における貫通孔3の直径は、絶縁基板1の厚み方向の略中央部における直径よりも10〜50μm大きいことが好ましい。
【0023】
なお、貫通孔3を外側に向けて拡径する形状とするには、後述するように、レーザ光を照射して貫通孔3を穿孔する際に、レーザ光の1パルス当たりのエネルギーや照射するショット数を調整することにより可能となる。
【0024】
また、貫通孔3の内面に被着された貫通導体4は、無電解銅めっき層および電解銅めっき層を積層した厚みが8〜25μm程度のめっき金属層13から成り、絶縁基板1を挟んで上下に位置する配線導体2同士を電気的に接続する接続導体として機能する。
【0025】
なお、貫通導体4は、その厚みが8μm未満では、貫通導体4の電気抵抗が高いものとなりすぎる傾向にあり、他方、25μmを超えると、この貫通導体4が被着された貫通孔3の内部に後述するソルダーレジスト5を充填する場合に良好に充填することが困難となる。したがって、貫通導体4の厚みは、8〜25μmの範囲であることが好ましい。
【0026】
さらに、配線導体2が被着された絶縁基板1の表面および貫通孔3の内部には、エポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の熱硬化性樹脂から成るソルダーレジスト5が被着および充填されている。ソルダーレジスト5は、貫通導体4および配線導体2を保護するとともに配線導体2における各パターン同士を電気的に良好に絶縁するための保護層として機能し、配線導体2の一部を露出させる所定のパターンに被着形成されている。
【0027】
なお、ソルダーレジスト5は、配線導体2上における厚みが10μm未満であると、配線導体2を良好に保護することができなくなるとともに配線導体2におけるパターン同士を電気的に良好に絶縁することができなくなる傾向にあり、他方、40μmを超えると、ソルダーレジスト5を所定のパターンに形成することが困難となる傾向にある。したがって、ソルダーレジスト5の厚みは配線導体2上において10〜40μmの範囲であることが好ましい。
【0028】
次に、図1に示した配線基板を本発明の穿孔方法を用いて製造する方法について図2(a)〜(e)、図3、図4、図5(a)〜(c)を参照して詳細に説明する。
なお、図2(a)〜(e)は、本発明の多数個取り配線基板用母基板へのレーザによる穿孔方法を説明するための工程毎の部分断面図、図3は、多数の配線基板領域を縦横の並びに配列して成る母基板の一例の平面図、図4は本発明におけるレーザ光の照射順序を説明するための母基板の平面図、および図5(a)〜(c)は、レーザ光の照射により貫通孔を形成する方法を説明するための断面図である。
【0029】
まず、図2(a)に配線基板の部分断面図で示すように、例えばガラスクロスやアラミドクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂を含浸させた絶縁材料から成る厚みが0.2〜0.8mmの絶縁樹脂板11の上下面に厚みが3〜12μmの銅箔12が被着された有機材料系の母基板10を準備する。なお、母基板10には、図3に平面図で示すように配線基板となる多数の配線基板領域21が縦横の並びに配列されている。このような母基板10は、ガラスクロスやアラミドクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の未硬化の熱硬化性樹脂を含浸させるとともにその上下面に銅箔12を貼着し、しかる後、未硬化の熱硬化性樹脂を熱硬化させることによって製作される。
【0030】
次に、図2(b)に部分断面図で示すように、レーザ光の照射により銅箔12および絶縁樹脂板11を貫通する多数の貫通孔3を各配線基板領域21毎に穿孔する。このとき、本発明においては、レーザ光の照射により貫通孔3を形成する配線基板領域21の順序が重要である。本発明においては、レーザ光の照射による貫通孔3の形成は、図4に平面図で示すように、配線基板領域21の各々に、それぞれ互いに縦横に隣接しない順序で配線基板領域21毎に行なわれる。
【0031】
このように、レーザ光の照射による貫通孔3の形成が、配線基板領域21の各々に、それぞれ互いに縦横に隣接しない順序で配線基板領域21毎に行なわれることから、貫通孔3を穿孔するために照射したレーザ光により発生する熱を、そのレーザ光が照射された配線基板領域21に対して縦横に隣接する配線基板領域21から良好に放散でき、その結果、レーザ光の照射により貫通孔3を形成する際に、母基板10がその一端側から熱膨張して大きく変形することが低減され、それにより各配線基板領域21に形成される貫通孔3の形成位置に大きなずれが発生することはない。したがって、後述するように、これらの貫通孔3の内面にめっき金属層13を被着させて貫通導体4を形成した後、各配線基板領域21の上下面に配線導体2を形成すると、貫通導体4と配線導体2とが正常に接続され、その結果、貫通導体4と配線導体2との間に断線が発生したり、隣接する配線導体2同士が貫通導体4により短絡したりすることのない配線基板を提供することができる。
【0032】
さらに、レーザ光の照射による貫通孔3の形成を、母基板10の外周側に位置する配線基板領域21から中央側に位置する配線基板領域21へと渦巻状の順序で行なった場合には、熱膨張の影響を一番受けやすい母基板10の外周側に位置する配線基板領域21における貫通孔3の形成位置のずれを極めて小さいものとすることができる。したがって、レーザ光の照射による貫通孔3の形成は、母基板10の外周側に位置する配線基板領域21から中央側に位置する配線基板領域21へと渦巻状の順序で行なうことが好ましい。この場合、例えば母基板10に配列された配線基板領域21のうち、外周側に位置する一つ21Aから中央側に位置する一つ21Bに向けて互いに隣接しない渦巻き状の順序でレーザ光の照射による貫通孔3の形成を行なった後、同様にして外周側に位置する一つ21Cから中央側に位置する一つ21Dに向けて互いに隣接しない渦巻き状の順序でレーザ光を照射して貫通孔3の形成を行なえばよい。
【0033】
なお、図4には、レーザ光の照射による貫通孔3の形成を母基板10の外周側に位置する配線基板領域21から中央側に位置する配線基板領域21へ、配線基板領域21一つおきに形成した例を示しているが、二つおき、さらには三つおきに形成してもよい。
【0034】
また、母基板10の各配線基板領域21に貫通孔3を形成するには、母基板10上面の銅箔12上に例えばレーザ光のエネルギーを良好に吸収する黒色もしくは黒色に近い色を有する樹脂から成るレーザ加工用シートを貼着し、このレーザ加工用シートの上から0.2〜1J/cmの出力の炭酸ガスレーザ光を50〜500μ秒のパルス幅で所定の位置に5〜10ショット照射して貫通孔3を穿孔する方法が採用される。このとき、炭酸ガスレーザ光の出力が0.2J/cm未満では貫通孔3を十分な大きさに穿孔することが困難となる傾向にあり、他方、1J/cmを超えると貫通孔3の孔径が大きくなりすぎてしまう傾向にある。したがって、照射する炭酸ガスレーザ光は、その出力が0.2〜1J/cmでパルス幅が50〜500μ秒の範囲であり、一つの貫通孔3あたり5〜10ショット照射することが好ましい。なお、レーザ加工用シートは、貫通孔3を穿孔した後に剥離される。
【0035】
さらに、レーザ光の1パルス当たりのエネルギーやショット数等を調整することにより貫通孔3の形状を外側に向けて拡径する形状とすることが可能である。
貫通孔3の形状を外側に向けて拡径する形状とするには、例えば、まず図5(a)に要部拡大断面図で示すように、出力が0.2〜1J/cmでパルス幅が50〜500μ秒の数パルスのレーザ光を照射して銅箔12および絶縁樹脂板11を貫通し、絶縁樹脂板11の上面側で外側に向けて拡径する形状の貫通孔3を穿孔する。このとき絶縁樹脂板11の上面側ではレーザ光のエネルギーが下面側より多く印加されるので、貫通孔3は絶縁樹脂板11の上面側で外側に向けて拡径する形状となる。また、銅箔12は絶縁樹脂板11よりも穿孔されにくいので、貫通孔3はその直径が銅箔12の部位において絶縁樹脂板11の部位よりも小さく、銅箔12が内側に突き出た形状となる。
【0036】
次に、図5(b)に要部拡大断面図に示すように、さらに数パルスのレーザ光を照射する。それにより照射されたレーザ光の一部が絶縁樹脂板11の下面側において内側に突き出た下側の銅箔12で反射されて絶縁樹脂板11の下面側をえぐるので、貫通孔3は絶縁樹脂板11の上下で外側に向けて拡径する形状となる。
【0037】
次に、図5(c)に要部拡大断面図で示すように、銅箔12をマイクロエッチングしてその内側に突き出た部位を除去することにより、外側に向けて拡径する形状の貫通孔3を形成することができる。たとえば、厚みが0.4mmのガラス−エポキシ板から成る絶縁樹脂板11の上下面に厚みが7μmの銅箔12が被着された母基板10に炭酸ガスレーザを用いて貫通孔3を形成する場合には、レーザ光の1パルス当たりのパルス幅を100μ秒、出力を0.6J/cm、ショット数5〜8にすればよい。このとき、レーザ光照射のショット数が少なすぎると貫通孔3の下面側を外側に向けて良好に拡径することができなくなり、ショット数が多すぎると貫通孔3の下面側の径が大きくなりすぎてしまう。
【0038】
次に、図2(c)に部分断面図で示すように、貫通孔3の内面および銅箔12の表面に厚みが1〜3μmの無電解銅めっきおよび厚みが10〜35μm程度の電解銅めっきから成るめっき金属層13を被着させる。このとき、めっき金属層13により絶縁樹脂板11の上下面に被着された銅箔12同士を接続する貫通導体4が形成される。なお、無電解銅めっきを被着させるには、例えば塩化アンモニウム系酢酸パラジウムを含有するパラジウム活性液を使用して貫通孔3の内面および銅箔12の表面にパラジウム触媒を付着させるとともに、その上に硫酸銅系の無電解銅めっき液を用いて無電解銅めっきを被着させればよい。また電解銅めっきを被着させるための電解銅めっき液としては、例えば、硫酸銅系から成る電解銅めっき液を用いればよい。
【0039】
このとき、貫通孔3は外側に向けて拡径しているので、貫通孔3内に無電解銅めっき液や電解銅めっき液が良好に浸入し、その結果、貫通孔3内面および銅箔12の表面に無電解銅めっきおよび電解銅めっきから成るめっき金属層13を良好に被着させることができる。なお、めっき金属層13を被着させる前に、貫通孔3の内面を例えば過マンガン酸カリウム溶液や過マンガン酸ナトリウム溶液から成る粗化液を用いてその算術平均粗さRaが0.2〜2μm程度になるように粗化しておくと、めっき金属層13を貫通孔3の内面に強固に被着させることができる。したがって、めっき金属層13を被着させる前に貫通孔3の内面を例えば過マンガン酸カリウム溶液や過マンガン酸ナトリウム溶液から成る粗化液を用いてその算術平均粗さRaが0.2〜2μm程度になるように粗化しておくことが好ましい。
【0040】
次に図2(d)に部分断面図で示すように、銅箔12およびその上のめっき金属層13を従来周知のフォトリソグラフィー技術を採用して部分的にエッチングすることにより、各配線基板領域21の上下面に配線導体2を形成する。このとき、前述したように、各配線基板領域21における貫通孔3は、その形成位置に大きなずれがないことから、貫通導体4と配線導体2とが正常に接続され、その結果、貫通導体4と配線導体2との間に断線が発生したり、隣接する配線導体2同士が貫通導体4により短絡したりすることのない配線基板を提供することができる。
なお、エッチング液としては塩化第2銅水溶液もしく塩化第2鉄水溶液を用いればよい。
【0041】
そして最後に、図2(e)に部分断面図で示すように、配線導体2が形成された母基板10の表面および貫通孔3の内部にエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル等の熱硬化性樹脂から成るソルダーレジスト5を被着および充填させた後、母基板10を各配線基板領域21の境界に沿って切断して分割することにより図1に部分断面図で示した配線基板が完成する。
【0042】
なお、ソルダーレジスト5は、ソルダーレジスト5用の感光性の樹脂ペーストを従来周知のスクリーン印刷法を採用して母基板10の上下両面側から貫通孔3を埋めるように印刷塗布し、これを従来周知のフォトリソグラフィー技術を採用して所定のパターンに露光・現像することによって形成される。
【0043】
かくして、本発明の多数個取り配線基板用母基板へのレーザによる穿孔方法によれば、貫通導体4と配線導体2との間に断線が発生したり、隣接する配線導体2同士が貫通導体4により短絡したりすることがなく、極めて高密度な配線が可能な配線基板を得ることができる。
【0044】
なお、本発明は上述の実施の形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であることはいうまでもない。
【0045】
【発明の効果】
本発明の多数個取り配線基板用母基板へのレーザによる穿孔方法によれば、配線基板領域の各々に、それぞれ互いに縦横に隣接しない順序で配線基板領域毎に、レーザ光を照射して貫通孔を形成することから、貫通孔を形成するために照射したレーザ光により発生する熱を母基板から良好に放散でき、その結果、レーザ光を照射して貫通孔を形成する際に、母基板がその一端側から熱膨張して大きく変形することが低減され、それにより各配線基板領域に形成される貫通孔の形成位置に大きなずれが発生することはない。
【0046】
本発明の多数個取り配線基板母基板へのレーザによる穿孔方法によれば、上記構成において、レーザ光の照射による貫通孔の形成を、母基板の外周側に位置する配線基板領域から中央側に位置する配線基板領域へと渦巻状の順序で行なった場合には、熱膨張の影響を一番受けやすい母基板の外周側に位置する配線基板領域における貫通孔の形成位置のずれを極めて小さいものとすることができる。
【図面の簡単な説明】
【図1】本発明の多数個取り配線基板用母基板へのレーザによる穿孔方法を採用して製作される配線基板の一実施例を示す部分断面図である。
【図2】(a)〜(e)は、本発明の多数個取り配線基板用母基板へのレーザによる穿孔方法を説明するための工程毎の部分断面図である。
【図3】多数の配線基板領域を縦横の並びに配列して成る母基板の一例の平面図である。
【図4】本発明の多数個取り配線基板用母基板へのレーザによる穿孔方法におけるレーザ光の照射順序を説明するための母基板の平面図である。
【図5】(a)〜(c)は、レーザ光の照射により貫通孔を形成する方法を説明するための断面図である。
【符号の説明】
2・・・・・・・・・配線導体
3・・・・・・・・・貫通孔
4・・・・・・・・・貫通導体
10・・・・・・・・・母基板
11・・・・・・・・・絶縁樹脂板
12・・・・・・・・・銅箔
21・・・・・・・・・配線基板領域
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of piercing a mother board for a multi-cavity wiring board by irradiating a laser beam to a mother board in which a large number of wiring board regions are arranged vertically and horizontally to form through holes.
[0002]
[Prior art]
Conventionally, as a small-sized wiring board used to mount electronic components such as semiconductor elements, a wiring conductor made of an organic material in which a glass cloth is impregnated with a thermosetting resin, and a copper foil and a copper plating layer on upper and lower surfaces. A large number of through holes are formed by irradiating laser light from the upper surface to the lower surface of the insulating substrate having copper, and copper plating for electrically connecting the wiring conductors on the upper and lower surfaces of the insulating substrate in the through holes. A wiring board having a through conductor formed of a layer is used.
[0003]
In such a small-sized wiring board, for example, first, copper foil serving as a wiring conductor is adhered to upper and lower surfaces of an insulating resin plate formed by impregnating a thermosetting resin into a glass cloth, and each of the wirings is divided after being divided. A large number of through-holes are pierced from the upper surface to the lower surface of each wiring substrate region by irradiating a laser beam to the mother substrate in which a large number of wiring substrate regions serving as substrates are arranged vertically and horizontally. A copper plating layer is applied to the inner surface by electroless plating and electrolytic plating to form a through conductor and a copper plating layer is applied to the surface of the copper foil, and then the upper and lower surfaces of each wiring board area By etching the copper foil and the copper plating layer on the surface thereof into a predetermined pattern by photolithography technology, wiring conductors are formed on the upper and lower surfaces of each wiring board region. A large number by dividing by cutting in the field has been fabricated simultaneously intensive.
[0004]
When piercing a large number of through holes by irradiating laser light to each wiring substrate region, the through holes are drilled in the order of the wiring substrate regions vertically and horizontally adjacent to each other from one end side of the mother substrate for each wiring substrate region. In each wiring board area, a method of continuously irradiating a preset number of pulses to the drilling position of each through hole to perform drilling, and a drilling position of all through holes in each wiring board area. There is a method of sequentially irradiating a laser beam one pulse at a time, and piercing the laser beam by repeating this a set number of times.
[0005]
[Patent Document 1]
JP-A-11-97821
[0006]
[Problems to be solved by the invention]
However, in recent years, the number of through-holes in each wiring board region has increased and the arrangement interval between the through-holes has also become narrower as the size and density of wiring boards on which electronic components are mounted have been increased. Therefore, the heat generated around the through-holes during the irradiation of the laser light is less likely to be dissipated from the mother board, and the wiring board is irradiated with the laser light to form the through-holes when the wiring board is irradiated with the laser light. In accordance with the order of the regions, the mother substrate thermally expands from one end thereof and is greatly deformed. As a result, a large displacement occurs in the formation positions of the through holes in each wiring substrate region, and the through conductors adhered in the through holes are formed. And the wiring conductors connected to the wiring conductors are not properly connected, causing a disconnection between them, and causing a short circuit between the adjacent wiring conductors to be electrically short-circuited by the through conductor.
[0007]
The present invention has been completed in view of the problems of the prior art described above, and has an object to form a through hole by irradiating a laser beam to each of the wiring board regions arranged vertically and horizontally on the mother board. Therefore, there is no large shift in the formation positions of the through holes formed in the respective wiring board regions, whereby the through conductors in the respective wiring board regions and the wiring conductors connected thereto are connected normally, It is an object of the present invention to provide a method for drilling a mother board for a multi-cavity wiring board using a laser, in which a disconnection does not occur between the wiring board and the wiring conductor, and the adjacent wiring conductors are not short-circuited by the through conductor.
[0008]
[Means for Solving the Problems]
In the method of perforating a mother board for a multi-cavity wiring board with a laser according to the present invention, a copper foil serving as a wiring conductor is adhered to upper and lower surfaces of an insulating resin plate obtained by impregnating a heat-resistant fiber base material with a resin. A large number of wiring board regions, each of which becomes a wiring board after division, are arranged vertically and horizontally, and the motherboard is arranged in each of the wiring board regions. A through hole is formed by irradiating a laser beam.
[0009]
According to the method for punching a mother board for a multi-cavity wiring board using a laser according to the present invention, a laser beam is applied to each of the wiring board areas in a sequence that is not vertically and horizontally adjacent to each other. Is formed, the heat generated by the laser light irradiated to form the through hole can be radiated well from the mother substrate. As a result, when the laser light is irradiated to form the through hole, the mother substrate A large deformation due to thermal expansion from one end side is reduced, so that a large displacement does not occur in a formation position of a through hole formed in each wiring board region.
[0010]
Further, in the method of the present invention, the method of punching a mother board for a multi-cavity wiring board by using a laser may include forming the through hole by irradiating the laser beam with the wiring board positioned on an outer peripheral side of the mother board. The process is performed in a spiral order from a region to the wiring substrate region located on the center side.
[0011]
According to the method for piercing a multi-cavity wiring substrate mother board of the present invention with a laser, in the above-described configuration, the formation of the through hole by irradiating the laser beam is performed from the wiring board region located on the outer peripheral side of the mother board to the center side. When performed in a spiral order to the wiring board area located, the deviation of the through hole formation position in the wiring board area located on the outer peripheral side of the mother board which is most susceptible to thermal expansion is extremely small. It can be.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a method of perforating a mother board for a multi-cavity wiring board according to the present invention using a laser will be described in detail with reference to the accompanying drawings.
FIG. 1 is a partial cross-sectional view showing one embodiment of a wiring board manufactured by using a laser drilling method on a mother board for a multi-cavity wiring board according to the present invention, wherein 1 is an insulating substrate, and 2 is a wiring conductor. Reference numeral 3 denotes a through hole, 4 denotes a through conductor, and 5 denotes a solder resist. In this example, the solder resist 5 is provided on the upper and lower surfaces of the insulating substrate 1 and inside the through hole 3, but the solder resist 5 is not always necessary.
[0013]
The insulating substrate 1 functions as a core member of a wiring board, and is made of, for example, an organic material obtained by impregnating a glass cloth or an aramid cloth with a resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin. 0.8 mm flat plate, on both upper and lower surfaces of which a copper foil 12 having a thickness of 3 to 12 μm and a wiring conductor 2 composed of a plated metal layer 13 applied thereon are so-called a double-sided copper-clad plate. ing.
[0014]
When the thickness of the insulating substrate 1 is less than 0.2 mm, as described later, heat and external force may be generated when a large number of through holes 3 are formed through the insulating substrate 1 and the copper foil for the wiring conductor 2. As a result, there is a great danger that the wiring board will be warped or deformed and the required flatness of the wiring board will not be able to be secured. When the through conductor 4 is formed on the inner surface, it is difficult for the plating solution to penetrate into the through hole 3, so that it tends to be difficult to form the through conductor 4 satisfactorily. Therefore, the thickness of the insulating substrate 1 is preferably in the range of 0.2 to 0.8 mm.
[0015]
The insulating substrate 1 is made of a resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin impregnated into a glass cloth or an aramid cloth, and a filler such as silica, alumina, or zirconia mixed with a fiber portion such as a glass cloth or an aramid cloth. If it is contained so that the transmittance of the laser light is substantially equal to that of the portion, as will be described later, when the insulating substrate 1 is irradiated with the laser light to form the through hole 3, the through hole 3 is insulated. It is possible to satisfactorily form the substrate 1 with a substantially uniform size. Therefore, in a resin such as an epoxy resin or a bismaleimide triazine resin or a polyphenylene ether resin to be impregnated into the glass cloth or the aramid cloth of the insulating substrate 1, a filler such as silica, alumina or zirconia is added to a fiber portion such as a glass cloth or an aramid cloth. It is preferable to include the resin portion so that the transmittance of the laser beam is substantially equal to that of the resin portion.
[0016]
The wiring conductor 2 is formed by depositing a plating metal layer 13 such as copper plating on a copper foil 12 having a thickness of 3 to 12 μm, and externally connecting electrodes of electronic components (not shown) mounted on the wiring board. It functions as a part of a conductive path for electrically connecting to a wiring conductor (not shown) of the electric circuit board, and an electrode of an electronic component is provided with a conductive joining member such as solder on the wiring conductor 2 on the upper surface side. An electronic component connecting pad connected through the electronic component connecting pad and a wiring pattern led from the electronic component connecting pad are formed, and the wiring conductor 2 on the lower surface side is connected to a wiring conductor of an external electric circuit board by a conductive material such as solder. An external connection pad or the like connected via a sex bonding member is formed.
[0017]
When the thickness of the copper foil 12 constituting the wiring conductor 2 is less than 3 μm, as described later, the copper foil 12 is formed by micro-etching performed after forming the through hole 3 in the copper foil 12 for the wiring conductor 2. Is likely to be etched to cause pinholes or defects in the copper foil 12, which tends to weaken the adherence and adhesion of the plated metal layer 13 on the copper foil 12. On the other hand, if it exceeds 12 μm, it will be described later. When the through-hole 3 penetrating the insulating substrate 1 and the copper foil 12 for the wiring conductor 2 is pierced by irradiating a laser beam, it is difficult to stably form the through-hole 3 having a diameter of 70 to 130 μm. It becomes. Therefore, the thickness of the copper foil 12 constituting the wiring conductor 2 is preferably in the range of 3 to 12 μm.
[0018]
If the total thickness of the copper foil 12 and the plated metal layer 13 on the wiring conductor 2 is less than 8 μm, the electrical resistance of the wiring conductor 2 becomes high, and on the other hand, it exceeds 30 μm. This makes it difficult to form the wiring conductor 2 in a high-density pattern. Therefore, the total thickness of the copper foil 12 constituting the wiring conductor 2 and the plated metal layer 13 thereon is preferably in the range of 8 to 30 μm.
[0019]
Further, in the wiring board manufactured according to the present invention, a large number of through holes 3 having a diameter of 70 to 130 μm are formed penetrating the insulating substrate 1 and the wiring conductor 2, and the through conductor 3 is formed on an inner surface of the through hole 3. 4 is formed. The through-hole 3 is for providing a lead-out path for leading the through conductor 4 from the upper surface to the lower surface of the insulating substrate 1 and is perforated by laser light irradiation. The diameter of the through-hole 3 is 70 to 110 μm at a substantially central portion in the thickness direction of the insulating substrate 1, and is increased toward the outside so that the upper and lower surfaces of the insulating substrate 1 have a diameter of 90 to 130 μm. That is, it is preferable that the diameter increases as it goes closer to the outside near the upper and lower surfaces of the insulating substrate 1.
[0020]
As described above, since the hole diameter of the through hole 3 is as small as 70 to 130 μm, the through conductors 4 can be arranged at a high density, whereby a wiring board having an extremely high density wiring can be obtained. If the diameter of the through-hole 3 is increased toward the outside of the insulating substrate 1, as described later, when the through-hole 4 is attached to the inner surface of the through-hole 3, The plating solution to be formed well enters the inside of the through hole 3, and as a result, the through conductor 4 can be well formed in the through hole 3.
[0021]
If the diameter of the through-hole 3 is less than 70 μm, the plating solution for forming the through-conductor 4 does not enter the inside of the through-hole 3 satisfactorily when the through-conductor 4 is applied to the inner surface of the through-hole 3. In this case, it is difficult to form the through conductor 4 satisfactorily on the inner surface of the through hole 3. On the other hand, when it exceeds 130 μm, it becomes difficult to arrange the through conductor 4 and the wiring conductor 2 at high density. Therefore, the diameter of the through hole 3 is preferably in the range of 70 to 130 μm.
[0022]
When the diameter of the through-hole 3 on the upper and lower surfaces of the insulating substrate 1 is smaller than the diameter of the insulating substrate 1 at a substantially central portion in the thickness direction by less than 10 μm, when attaching the through-conductor 4 to the inner surface of the through-hole 3 In addition, the plating solution for forming the through conductor 4 does not well enter the inside of the through hole 3, so that it becomes difficult to satisfactorily adhere and form the through conductor 4 on the inner surface of the through hole 3. If it is larger than this, it is difficult to stably form the through hole 3 having such a shape. Therefore, it is preferable that the diameter of the through-hole 3 on the upper and lower surfaces of the insulating substrate 1 is larger by 10 to 50 μm than the diameter at the approximate center in the thickness direction of the insulating substrate 1.
[0023]
In order to form the through hole 3 to have a shape whose diameter increases outward, as described later, when piercing the through hole 3 by irradiating a laser beam, the energy per one pulse of the laser beam or irradiation is performed. It becomes possible by adjusting the number of shots.
[0024]
Further, the through conductor 4 attached to the inner surface of the through hole 3 is formed of a plated metal layer 13 having a thickness of about 8 to 25 μm in which an electroless copper plating layer and an electrolytic copper plating layer are laminated, and sandwiches the insulating substrate 1. It functions as a connection conductor for electrically connecting the upper and lower wiring conductors 2 to each other.
[0025]
If the thickness of the through conductor 4 is less than 8 μm, the electrical resistance of the through conductor 4 tends to be too high, while if it exceeds 25 μm, the inside of the through hole 3 on which the When the solder resist 5 described later is filled, it is difficult to fill the solder resist 5 well. Therefore, the thickness of the through conductor 4 is preferably in the range of 8 to 25 μm.
[0026]
Further, a solder resist 5 made of a thermosetting resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin is attached to the surface of the insulating substrate 1 on which the wiring conductor 2 is attached and the inside of the through hole 3. Is filled. The solder resist 5 functions as a protective layer for protecting the through conductor 4 and the wiring conductor 2 and for electrically insulating the patterns of the wiring conductor 2 from each other in a satisfactory manner. It is formed on the pattern.
[0027]
When the thickness of the solder resist 5 on the wiring conductor 2 is less than 10 μm, it becomes impossible to protect the wiring conductor 2 satisfactorily and it is possible to electrically insulate the patterns on the wiring conductor 2 satisfactorily. On the other hand, if it exceeds 40 μm, it tends to be difficult to form the solder resist 5 in a predetermined pattern. Therefore, the thickness of the solder resist 5 on the wiring conductor 2 is preferably in the range of 10 to 40 μm.
[0028]
Next, a method of manufacturing the wiring board shown in FIG. 1 by using the perforation method of the present invention is described with reference to FIGS. 2 (a) to 2 (e), 3, 4 and 5 (a) to 5 (c). And will be described in detail.
2 (a) to 2 (e) are partial cross-sectional views for each step for explaining a method of piercing a mother board for a multi-cavity wiring board by a laser according to the present invention, and FIG. FIG. 4 is a plan view of an example of a mother board in which regions are arranged vertically and horizontally, FIG. 4 is a plan view of the mother board for explaining the order of laser beam irradiation in the present invention, and FIGS. FIG. 4 is a cross-sectional view for explaining a method of forming a through hole by irradiating a laser beam.
[0029]
First, as shown in a partial cross-sectional view of the wiring board in FIG. 2A, for example, a thickness made of an insulating material in which a glass cloth or an aramid cloth is impregnated with an epoxy resin, a resin such as a bismaleimide triazine resin, or a polyphenylene ether resin is used. An organic material-based mother substrate 10 having a copper foil 12 having a thickness of 3 to 12 μm on the upper and lower surfaces of an insulating resin plate 11 having a thickness of 0.2 to 0.8 mm is prepared. As shown in the plan view of FIG. 3, a large number of wiring board regions 21 to be wiring boards are arranged on the mother board 10 in a matrix. Such a mother board 10 impregnates a glass cloth or aramid cloth with an uncured thermosetting resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin, and attaches a copper foil 12 on upper and lower surfaces thereof, Thereafter, it is manufactured by thermosetting the uncured thermosetting resin.
[0030]
Next, as shown in the partial cross-sectional view of FIG. 2B, a large number of through holes 3 penetrating the copper foil 12 and the insulating resin plate 11 by laser light irradiation are formed for each wiring board region 21. At this time, in the present invention, the order of the wiring board regions 21 in which the through holes 3 are formed by the irradiation of the laser beam is important. In the present invention, the formation of the through-holes 3 by the irradiation of the laser beam is performed on each of the wiring board regions 21 in the order that they are not vertically and horizontally adjacent to each other, as shown in a plan view in FIG. It is.
[0031]
As described above, since the formation of the through-holes 3 by the irradiation of the laser beam is performed on each of the wiring board regions 21 in the order in which the through-holes 3 are not vertically and horizontally adjacent to each other, the through-holes 3 are formed. Can be satisfactorily dissipated from the wiring board area 21 vertically and horizontally adjacent to the wiring board area 21 irradiated with the laser light, and as a result, the through holes 3 can be irradiated by the laser light. When the mother board 10 is formed, thermal expansion of the mother board 10 from one end side thereof and large deformation are reduced, thereby causing a large shift in a formation position of the through hole 3 formed in each wiring board area 21. There is no. Therefore, as described later, after forming the through conductors 4 by depositing the plating metal layer 13 on the inner surface of these through holes 3 and then forming the wiring conductors 2 on the upper and lower surfaces of each wiring board region 21, 4 and the wiring conductor 2 are normally connected, and as a result, there is no disconnection between the through conductor 4 and the wiring conductor 2 and no short circuit between the adjacent wiring conductors 2 due to the through conductor 4. A wiring board can be provided.
[0032]
Further, when the through holes 3 are formed by laser light irradiation from the wiring board area 21 located on the outer peripheral side of the mother board 10 to the wiring board area 21 located on the center side in a spiral order, The displacement of the formation position of the through hole 3 in the wiring board region 21 located on the outer peripheral side of the mother board 10 which is most susceptible to the thermal expansion can be made extremely small. Therefore, it is preferable that the formation of the through holes 3 by the irradiation of the laser beam is performed in a spiral order from the wiring board region 21 located on the outer peripheral side of the mother board 10 to the wiring board region 21 located on the center side. In this case, for example, of the wiring board regions 21 arranged on the mother board 10, the laser beam irradiation is performed in a spiral order that is not adjacent to each other from one 21A located on the outer peripheral side to one 21B located on the central side. Is formed in the same manner as above, and the laser light is irradiated in a spiral order not adjacent to each other from the one 21C located on the outer peripheral side to the one 21D located on the center side in the same manner. 3 may be formed.
[0033]
In FIG. 4, the formation of the through-holes 3 by the irradiation of the laser beam is performed every other wiring substrate region 21 from the wiring substrate region 21 located on the outer peripheral side of the mother substrate 10 to the wiring substrate region 21 located on the center side. Although the example shown in FIG. 3 is shown, it may be formed every two or even every three.
[0034]
Further, in order to form the through holes 3 in each wiring board region 21 of the mother board 10, for example, a resin having a black color or a color close to black that favorably absorbs the energy of laser light is formed on the copper foil 12 on the top face of the mother board 10. A laser processing sheet made of, and 0.2 to 1 J / cm from the top of the laser processing sheet 2 A method of piercing the through-hole 3 by irradiating a predetermined position with 5 to 10 shots of a carbon dioxide laser beam having an output of 5 with a pulse width of 50 to 500 μs is adopted. At this time, the output of the carbon dioxide gas laser beam was 0.2 J / cm. 2 If it is less than 1, it tends to be difficult to perforate the through hole 3 to a sufficient size, while 1 J / cm 2 If it exceeds, the hole diameter of the through-hole 3 tends to be too large. Therefore, the output of the irradiated carbon dioxide laser beam is 0.2 to 1 J / cm. 2 And the pulse width is in the range of 50 to 500 μs, and it is preferable to irradiate 5 to 10 shots per through hole 3. The laser processing sheet is peeled off after the perforations 3 are formed.
[0035]
Further, by adjusting the energy per pulse of laser light, the number of shots, and the like, the shape of the through-hole 3 can be made to have a shape that expands outward.
In order to increase the diameter of the through hole 3 toward the outside, for example, first, as shown in the main part enlarged sectional view of FIG. 5A, the output is 0.2 to 1 J / cm. 2 And a through-hole 3 having a shape in which a pulse width of 50 to 500 μsec is applied to irradiate a laser beam of several pulses to penetrate the copper foil 12 and the insulating resin plate 11, and expand outward on the upper surface side of the insulating resin plate 11. Perforate. At this time, since the energy of the laser beam is applied more on the upper surface side of the insulating resin plate 11 than on the lower surface side, the diameter of the through hole 3 is increased outward on the upper surface side of the insulating resin plate 11. Further, since the copper foil 12 is harder to be pierced than the insulating resin plate 11, the diameter of the through hole 3 is smaller at the portion of the copper foil 12 than at the portion of the insulating resin plate 11, so that the shape of the copper foil 12 protrudes inward. Become.
[0036]
Next, as shown in the main part enlarged sectional view of FIG. 5B, several pulses of laser light are further applied. A part of the irradiated laser beam is reflected by the lower copper foil 12 protruding inward on the lower surface side of the insulating resin plate 11 and passes through the lower surface side of the insulating resin plate 11. The shape is such that the diameter is increased outwardly above and below the plate 11.
[0037]
Next, as shown in a main part enlarged sectional view of FIG. 5C, a through-hole having a shape that expands outward by microetching the copper foil 12 to remove a portion protruding inward is removed. 3 can be formed. For example, when the through-hole 3 is formed using a carbon dioxide laser on a mother substrate 10 having a copper foil 12 having a thickness of 7 μm adhered to upper and lower surfaces of an insulating resin plate 11 made of a glass-epoxy plate having a thickness of 0.4 mm. Has a pulse width of 100 μsec per pulse of laser light and an output of 0.6 J / cm 2 The number of shots may be 5 to 8. At this time, if the number of shots of the laser beam irradiation is too small, the diameter of the lower surface side of the through hole 3 cannot be satisfactorily expanded toward the outside with the lower surface side of the through hole 3 being too large. It becomes too much.
[0038]
Next, as shown in the partial sectional view of FIG. 2C, electroless copper plating having a thickness of 1 to 3 μm and electrolytic copper plating having a thickness of about 10 to 35 μm are formed on the inner surface of the through hole 3 and the surface of the copper foil 12. Is deposited. At this time, the through conductor 4 for connecting the copper foils 12 attached to the upper and lower surfaces of the insulating resin plate 11 by the plated metal layer 13 is formed. In order to apply electroless copper plating, for example, a palladium catalyst is adhered to the inner surface of the through hole 3 and the surface of the copper foil 12 using a palladium active solution containing ammonium chloride-based palladium acetate, and Then, an electroless copper plating may be applied using a copper sulfate-based electroless copper plating solution. As an electrolytic copper plating solution for applying electrolytic copper plating, for example, an electrolytic copper plating solution composed of copper sulfate may be used.
[0039]
At this time, since the diameter of the through hole 3 is increased outward, the electroless copper plating solution or the electrolytic copper plating solution satisfactorily penetrates into the through hole 3, and as a result, the inner surface of the through hole 3 and the copper foil 12 The plating metal layer 13 made of electroless copper plating and electrolytic copper plating can be satisfactorily adhered to the surface of the substrate. Before the plating metal layer 13 is applied, the inner surface of the through hole 3 is made to have an arithmetic average roughness Ra of 0.2 to 0.2 using a roughening solution composed of, for example, a potassium permanganate solution or a sodium permanganate solution. If the surface is roughened to about 2 μm, the plated metal layer 13 can be firmly adhered to the inner surface of the through hole 3. Therefore, before the plating metal layer 13 is applied, the inner surface of the through-hole 3 is made to have an arithmetic average roughness Ra of 0.2 to 2 μm using a roughening solution composed of, for example, a potassium permanganate solution or a sodium permanganate solution. It is preferable to roughen to a degree.
[0040]
Next, as shown in a partial cross-sectional view of FIG. 2D, the copper foil 12 and the plated metal layer 13 thereon are partially etched by employing a conventionally known photolithography technique, so that each wiring board area The wiring conductor 2 is formed on the upper and lower surfaces 21. At this time, as described above, since the through holes 3 in the respective wiring board regions 21 do not have a large displacement in the formation positions, the through conductors 4 and the wiring conductors 2 are normally connected. It is possible to provide a wiring board in which a disconnection does not occur between the wiring conductor 2 and the wiring conductor 2 and the adjacent wiring conductors 2 are not short-circuited by the through conductor 4.
Note that as the etching solution, an aqueous cupric chloride solution or an aqueous ferric chloride solution may be used.
[0041]
Finally, as shown in a partial cross-sectional view of FIG. 2E, heat of epoxy resin, bismaleimide triazine resin, polyphenylene ether, etc. After the solder resist 5 made of a curable resin is applied and filled, the mother board 10 is cut along the boundary of each wiring board area 21 and divided, whereby the wiring board shown in the partial cross-sectional view in FIG. Complete.
[0042]
The solder resist 5 is applied by printing a photosensitive resin paste for the solder resist 5 from both the upper and lower surfaces of the mother substrate 10 by using a conventionally known screen printing method. It is formed by exposing and developing a predetermined pattern using a known photolithography technique.
[0043]
Thus, according to the method for drilling a mother board for a multi-cavity wiring board using a laser according to the present invention, a break occurs between the through conductor 4 and the wiring conductor 2 or the adjacent wiring conductors 2 As a result, it is possible to obtain a wiring board capable of extremely high-density wiring without causing a short circuit.
[0044]
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the spirit of the present invention.
[0045]
【The invention's effect】
According to the method for punching a mother board for a multi-cavity wiring board using a laser according to the present invention, a laser beam is applied to each of the wiring board areas in a sequence that is not vertically and horizontally adjacent to each other. Is formed, the heat generated by the laser light irradiated to form the through hole can be radiated well from the mother substrate. As a result, when the laser light is irradiated to form the through hole, the mother substrate A large deformation due to thermal expansion from one end side is reduced, so that a large displacement does not occur in a formation position of a through hole formed in each wiring board region.
[0046]
According to the method for piercing a multi-cavity wiring substrate mother board of the present invention with a laser, in the above-described configuration, the formation of the through hole by irradiating the laser beam is performed from the wiring board region located on the outer peripheral side of the mother board to the center side. When performed in a spiral order to the wiring board area located, the deviation of the through hole formation position in the wiring board area located on the outer peripheral side of the mother board which is most susceptible to thermal expansion is extremely small. It can be.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing one embodiment of a wiring board manufactured by employing a laser drilling method on a mother board for a multi-cavity wiring board of the present invention.
FIGS. 2A to 2E are partial cross-sectional views for explaining a method of perforating a mother board for a multi-cavity wiring board by laser according to the present invention.
FIG. 3 is a plan view of an example of a mother board in which a large number of wiring board regions are arranged vertically and horizontally.
FIG. 4 is a plan view of a mother board for explaining a laser beam irradiation order in a method of perforating a mother board for a multi-cavity wiring board with a laser according to the present invention.
FIGS. 5A to 5C are cross-sectional views illustrating a method of forming a through hole by irradiating a laser beam.
[Explanation of symbols]
2 Wiring conductor
3 ...... through-hole
4 ... Through conductor
10 mother board
11 ... Insulating resin plate
12 ... copper foil
21 ・ ・ ・ ・ ・ ・ ・ ・ ・ Wiring board area

Claims (2)

耐熱性繊維基材に樹脂を含浸させて成る絶縁樹脂板の上下面に配線導体となる銅箔が被着されており、かつ分割後に各々が配線基板となる多数の配線基板領域が縦横の並びに配列された母基板に対し、前記配線基板領域の各々に、それぞれ互いに縦横に隣接しない順序で前記配線基板領域毎に、レーザ光を照射して貫通孔を形成することを特徴とする多数個取り配線基板用母基板へのレーザによる穿孔方法。A copper foil to be a wiring conductor is adhered to upper and lower surfaces of an insulating resin plate formed by impregnating a heat-resistant fiber base material with a resin, and a number of wiring board regions each of which becomes a wiring board after division are arranged vertically and horizontally. Forming a plurality of through holes by irradiating a laser beam to each of the wiring board regions in an order in which each of the wiring board regions is not vertically and horizontally adjacent to each other; A method of drilling a mother board for a wiring board with a laser. 前記レーザ光の照射による前記貫通孔の形成を、前記母基板の外周側に位置する前記配線基板領域から中央側に位置する前記配線基板領域へと渦巻状の順序で行なうことを特徴とする請求項1記載の多数個取り配線基板用母基板へのレーザによる穿孔方法。The formation of the through-hole by the irradiation of the laser light is performed in a spiral order from the wiring substrate region located on the outer peripheral side of the mother substrate to the wiring substrate region located on the central side. Item 4. A method for perforating a mother board for a multi-cavity wiring board with a laser according to Item 1.
JP2003018023A 2003-01-27 2003-01-27 Punching method by laser to mother board for multi-cavity wiring board Pending JP2004228534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003018023A JP2004228534A (en) 2003-01-27 2003-01-27 Punching method by laser to mother board for multi-cavity wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003018023A JP2004228534A (en) 2003-01-27 2003-01-27 Punching method by laser to mother board for multi-cavity wiring board

Publications (1)

Publication Number Publication Date
JP2004228534A true JP2004228534A (en) 2004-08-12

Family

ID=32905010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003018023A Pending JP2004228534A (en) 2003-01-27 2003-01-27 Punching method by laser to mother board for multi-cavity wiring board

Country Status (1)

Country Link
JP (1) JP2004228534A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049398A (en) * 2006-07-28 2008-03-06 Hitachi Chem Co Ltd Laser beam drilling method
CN102218753A (en) * 2011-04-28 2011-10-19 惠州中京电子科技股份有限公司 Method for shaping PCB (Printed Circuit Board) by stamping
CN113423887A (en) * 2019-02-08 2021-09-21 福伊特专利有限公司 Method for producing a paper machine clothing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049398A (en) * 2006-07-28 2008-03-06 Hitachi Chem Co Ltd Laser beam drilling method
CN102218753A (en) * 2011-04-28 2011-10-19 惠州中京电子科技股份有限公司 Method for shaping PCB (Printed Circuit Board) by stamping
CN113423887A (en) * 2019-02-08 2021-09-21 福伊特专利有限公司 Method for producing a paper machine clothing

Similar Documents

Publication Publication Date Title
JPH10322027A (en) Printed wiring board and its manufacture
JP2000101245A (en) Multilayer resin wiring board and its manufacture
JP2004311736A (en) Method for manufacturing built-up multilayer wiring board incorporating chip comp0nents
JP2002237681A (en) Printed circuit board and its manufacturing method
JP2003188541A (en) Method of manufacturing wiring board
JP2004228534A (en) Punching method by laser to mother board for multi-cavity wiring board
JP2001160686A (en) Multilayer printed wiring board and its manufacturing method
JP2000269647A (en) Single-side circuit board, multilayer printed wiring board and manufacture thereof
JP2003046226A (en) Wiring board and its manufacturing method
JP2004087697A (en) Method for manufacturing wiring board
JPH10261854A (en) Printed wiring board and manufacturing method thereof
JP3881528B2 (en) Wiring board and manufacturing method thereof
JP4480693B2 (en) Wiring board and manufacturing method thereof
JP3934883B2 (en) Wiring board and manufacturing method thereof
JP3881523B2 (en) Wiring board and manufacturing method thereof
JP3792544B2 (en) Wiring board manufacturing method
JP2004228362A (en) Method of manufacturing wiring board
JP2002237679A (en) Printed circuit board and its manufacturing method
JP2003142823A (en) Manufacturing method for both-sided flexible circuit board
JP2006287251A (en) Wiring board and method for manufacturing it
JP2002198653A (en) Printed wiring board and method of manufacturing the same
JP2004228360A (en) Method of manufacturing wiring board
JP2003347726A (en) Wiring board and its fabricating method
JP2005109299A (en) Multilayer wiring board and its manufacturing method
JP2004179526A (en) Wiring board, and manufacturing method thereof