JP2004228360A - Method of manufacturing wiring board - Google Patents

Method of manufacturing wiring board Download PDF

Info

Publication number
JP2004228360A
JP2004228360A JP2003014846A JP2003014846A JP2004228360A JP 2004228360 A JP2004228360 A JP 2004228360A JP 2003014846 A JP2003014846 A JP 2003014846A JP 2003014846 A JP2003014846 A JP 2003014846A JP 2004228360 A JP2004228360 A JP 2004228360A
Authority
JP
Japan
Prior art keywords
hole
plating
conductor
wiring
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003014846A
Other languages
Japanese (ja)
Inventor
Hidetoshi Yugawa
英敏 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003014846A priority Critical patent/JP2004228360A/en
Publication of JP2004228360A publication Critical patent/JP2004228360A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board which is equipped with a through-hole conductor and a build-up wiring layer that are both hardly disconnected, and also to provide its manufacturing method. <P>SOLUTION: A plating film 11 is deposited on a carbide layer 6 formed on the inner surface of a through-hole 3 bored by laser processing, then the carbide layer 6 is removed together with the plating film 11 by etching, and the inside of the through-hole 3 where the carbide layer 6 and the plating film 11 have been removed is filled up with a conductor by plating. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、有機材料系の配線基板の製造方法に関する。
【0002】
【従来の技術】
従来、半導体素子等の電子部品を搭載するための有機材料系の配線基板として、例えばガラス−エポキシ樹脂から成り、その上面から下面にかけて貫通する貫通孔を有する絶縁樹脂板の上下面に銅箔およびその上に施しためっきから成る配線導体を被着させるとともに、前記貫通孔の内面に前記上下面の配線導体同士を接続するめっきから成る貫通導体を被着させて成る配線基板が使用されている。
【0003】
このような有機材料系の配線基板は、ガラス−エポキシ樹脂から成る絶縁樹脂板の上下面に銅箔が被着された両面銅張板を準備するとともに、この両面銅張板を上下に貫通する貫通孔をドリル加工により穿孔し、次に前記銅箔上および貫通孔の内面に銅から成るめっきを無電解めっき法および電解めっき法により析出させて前記銅箔の上にめっき層を被着するとともに貫通孔の内面に貫通導体を形成し、次に前記銅箔および銅箔上に被着しためっき層をフォトリソグラフィー技術を採用して部分的にエッチングして配線導体を形成することによって製作されている。
【0004】
また、この配線基板の両面にビルドアップ樹脂層およびビルドアップ配線層を形成することによりビルドアップ配線基板が製作される。なお、このような配線基板においては、貫通導体が被着された貫通孔は通常、エポキシ樹脂等の穴埋め樹脂により充填されている。
【0005】
ところで、このような有機材料系の多層配線基板においては、電子装置の小型・薄型化の要求に対応してその配線密度を高めるために、例えば絶縁樹脂板の厚みを0.2〜1mm程度、貫通孔の直径を75〜130μm程度の小さなものとする試みがなされている。そしてこのような直径が75〜130μm程度の小さな貫通孔を形成するためには、例えば炭酸ガスレーザによる穿孔方法が採用される。
【0006】
【特許文献1】
特開2000−91750号公報
【0007】
【発明が解決しようとする課題】
しかしながら、絶縁樹脂板に貫通孔を炭酸ガスレーザを用いて穿孔した場合、炭酸ガスレーザの熱により貫通孔の内面に絶縁樹脂板に含まれる有機材料の炭化層が形成され、この炭化層がもろいために、貫通孔の内面にめっきから成る貫通導体を被着させた後、貫通孔の内面の炭化層を起点として貫通導体が剥離してしまい、それにより貫通導体と配線導体との間にクラックが発生して導通不良を起こしてしまうという問題があった。
【0008】
また、貫通導体と穴埋め樹脂との間でも剥離が生じ、この配線基板を用いてビルドアップ配線基板を製作した場合、この剥離が起点となりビルドアップ樹脂層にクラックが生じビルドアップ配線層が断線してしまうという問題点も有していた。
【0009】
本発明は、かかる従来の問題点に鑑み案出されたものであり、その目的は、貫通導体に剥離が発生することがなく、貫通導体と配線導体とが常に良好に接続され、またこれを用いてビルドアップ配線基板を製作した場合に、貫通導体と穴埋め樹脂間の剥離で生じるクラックによりビルドアップ配線層に断線を発生させない、極めて高密度な配線が可能な配線基板を提供することにある。
【0010】
【課題を解決するための手段】
本発明の配線基板の製造方法は、絶縁樹脂板の上下面に銅箔が被着された両面銅張板にレーザ加工を施すことにより、前記両面銅張板を貫通し、内面に炭化層が形成された複数の貫通孔を穿孔する工程と、次に前記炭化層の表面にめっき膜を被着させる工程と、次に前記炭化層を前記めっき膜とともにエッチング除去する工程と、次に前記炭化層および前記めっき膜が除去された前記貫通孔の内部にめっきにより導体を充填して貫通導体を形成するとともに前記銅箔の表面に前記めっきによりめっき層を被着させる工程と、次に前記銅箔およびこの銅箔に被着した前記めっき層を部分的にエッチングして配線導体を形成する工程とを行なうことを特徴とするものである。
【0011】
本発明の配線基板の製造方法によれば、レーザ加工により形成された貫通孔内面の炭化層の表面にめっき膜を被着させた後、これを炭化層とともにエッチング除去し、さらに炭化層およびめっき膜が除去された貫通孔の内部にめっきにより導体を充填して貫通導体を形成することから、めっき膜の形成時にめっき膜が炭化層の微視的な凹凸内に入り込んでめっき膜の成膜時の応力が炭化層に良好に作用して炭化層が剥離されやすくなり、炭化層およびめっき膜をエッチング除去する際に炭化層がめっき膜とともに良好に除去され、その結果、貫通導体が炭化層を起点にして剥離することがない配線基板を得ることができる。
【0012】
また、この配線基板を用いてビルドアップ配線基板を製作した場合においても、ビルドアップ樹脂層にクラックが生じてビルドアップ配線層が断線してしまうことのない、接続信頼性に優れた配線基板を得ることができる。
【0013】
【発明の実施の形態】
次に、本発明の配線基板の製造方法について、添付の図面に基づいて詳細に説明する。
図1は、本発明の製造方法によって製造される配線基板の実施の形態の一例を示す部分断面図であり、図1において、1は絶縁樹脂板、2A・2Bは配線導体、3は貫通孔、4は貫通導体であり、主として絶縁樹脂板1の上下面に配線導体2A・2Bが被着されるとともに貫通孔3の内部に貫通導体4が充填・形成されることにより配線基板が構成されている。なお、本実施例においては、貫通導体4および配線導体2A・2B上にソルダーレジスト5を設けた例を示している。また、本実施例においては、配線基板が直径が75〜130μmと微細な貫通孔3を有するとともに、厚みが0.2〜0.8mmと薄型のものである場合の例を示している。
【0014】
絶縁樹脂板1は、本発明の製造方法によって製造される配線基板のコア部材として機能し、例えばガラスクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂を含浸させた厚みが0.2〜0.8mmの平板であり、その上下面に厚みが3〜12μmの銅箔およびこの銅箔を被覆した銅めっきから成る配線導体2A・2Bが被着された、いわゆるめっき付両面銅張板を構成している。
【0015】
この絶縁樹脂板1は、その厚みが0.2mm未満では、絶縁樹脂板1および配線導体2A・2B用の銅箔を貫通して複数の貫通孔3を形成したり、あるいは絶縁樹脂板1の上下面に配線導体2A・2Bを形成したり、さらにはソルダーレジスト5を形成する際等に印加される熱や外力等の影響で配線基板に反りや変形が発生して配線基板に要求される平坦度を確保できなくなってしまう危険性が大きなものとなり、他方、0.8mmを超えると、後述するように、貫通孔3の内部にめっきを充填させて貫通導体4を形成するときに、貫通孔3内にめっき液が浸入しにくくなり、貫通導体4を良好に形成することが困難となる。したがって、絶縁樹脂板1の厚みは0.2〜0.8mmの範囲が好ましい。
【0016】
なお、絶縁樹脂板1は、ガラスクロスに含浸させるエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂中にシリカやアルミナあるいはアラミド樹脂等から成るフィラーをガラスクロス部分と樹脂部分とでレーザ光の透過度が略同等となる程度に含有させておけば、後述するように絶縁樹脂板1にレーザ光で貫通孔3を穿孔する際に、貫通孔3を略均一な大きさで良好に形成することが可能となる。したがって、絶縁樹脂板1のガラスクロスに含浸させるエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂中にはシリカやアルミナあるいはアラミド樹脂等から成るフィラーをガラスクロス部分と樹脂部分とでレーザ光の透過度が略同等となるように含有させておくことが好ましい。
【0017】
また、絶縁樹脂板1の上下面に被着された配線導体2A・2Bは、厚みが3〜12μmの銅箔に銅めっき等のめっき層を被着させて成り、配線基板に搭載される電子部品(図示せず)の電極を外部電気回路基板の配線導体(図示せず)に電気的に接続するための導電路の一部として機能し、上面側の配線導体層2Aには、電子部品の電極が半田等の導電性接合部材を介して接続される電子部品接続パッドおよびこの電子部品接続パッドから引き回される配線パターン等が形成されており、下面側の配線導体層2Bには、外部電気回路基板の配線導体に半田等の導電性接合部材を介して接続される外部接続パッド等が形成されている。
【0018】
なお、配線導体2A・2Bを構成する銅箔は、その厚みが3μm未満の場合、後述するように、配線導体2A・2Bに貫通孔3を形成した後に無電解銅めっきの前処理として行なわれるマイクロエッチング時に、銅箔がエッチングされて銅箔にピンホールまたは欠損を生じ、銅箔への銅めっきの付き周り性や密着力が弱くなる傾向がある。他方、12μmを超える場合、後述するように絶縁樹脂板1と配線導体2A・2B用の銅箔とを貫通する貫通孔3をレーザ加工により穿孔する場合に、直径が75〜130μmの貫通孔3を安定して形成することが困難となる。したがって配線導体2A・2Bを構成する銅箔の厚みは3〜12μmの範囲が好ましい。
【0019】
また、配線導体2A・2Bは、これらを構成する銅箔とそれに被着しためっき層との合計の厚みが8μm未満であると、配線導体2A・2Bの電気抵抗が高いものとなり、他方、30μmを超えると、配線導体2A・2Bを高密度のパターンに形成することが困難となる。したがって、配線導体2A・2Bを構成する銅箔とこの銅箔に被着しためっき層との合計の厚みは、8〜30μmの範囲が好ましい。
【0020】
さらに、配線導体2A・2Bは、その表面の算術平均粗さRaが0.2μm未満の場合、配線導体2A・2Bとソルダーレジスト5とが強固に密着せずに配線導体2A・2Bとソルダーレジスト5との間で剥離が発生しやすくなる傾向にあり、他方2μmを超えると、そのような粗い面を安定かつ効率良く形成することが困難となる傾向にある。したがって、配線導体2A・2B表面の算術平均粗さRaは0.2〜2μmの範囲が好ましい。
【0021】
また、本発明の配線基板においては、絶縁樹脂板1を貫通して直径が75〜130μmの貫通孔3が形成されており、この貫通孔3の内部にめっきを充填することにより貫通導体4が形成されている。貫通孔3は、貫通導体4を絶縁樹脂板1の上面から下面にかけて導出させるための導出路を提供するためのものであり、レーザ加工により穿孔されている。この貫通孔3は、その直径が絶縁樹脂板1の厚み方向の中央部においては75〜115μmで略同じ大きさであり、絶縁樹脂板1の開口部で90〜130μmとなるように絶縁樹脂板1の上下両面側に向かって拡径させておく、すなわち、絶縁樹脂板1の開口部の直径が絶縁樹脂板1の厚み方向の中央部における直径に較べて大きくなるようにしておくことが好ましい。
【0022】
そして、このように本発明の製造方法によって製造される配線基板によれば、貫通孔3の直径を75〜130μmと微細にした場合には、貫通導体4を高密度で配置することができ、それにより極めて高密度な配線を有するものとすることができる。
【0023】
また、貫通孔3は、その直径が絶縁樹脂板の上下面に向かって拡径していることにより、後述するように貫通孔3の内部にめっきにより導体を充填して貫通導体4を形成する際に、めっき液が貫通孔4の内部に良好に入り込み、その結果、貫通孔3の内部に貫通導体4を良好に形成することができる。なお、貫通孔3の直径が75μm未満の場合、貫通孔3の内部にめっきにより導体を充填して貫通導体4を充填・形成する際に、めっき液が貫通孔3の内部に良好に入り込まずに貫通孔3の内部にめっきにより導体を充填して貫通導体4を良好に形成することが困難となり、他方、130μmを超えると、貫通導体4および配線導体2A・2Bを高密度で配置することが困難となる。したがって、貫通孔3の直径は、75〜130μmの範囲が好ましい。
【0024】
さらに、貫通孔3の開口部における直径が絶縁樹脂板1の厚み方向の中央部における直径よりも10μm未満大きい場合には、貫通孔3の内部にめっきにより導体を充填して貫通導体4を形成する際に、貫通導体4を形成するためのめっき液が貫通孔3の内部に良好に入り込まずに、貫通孔3の内部に貫通導体4を良好に形成することが困難となり、他方、50μmを超えて大きな場合には、そのような形状を有する貫通孔4を安定して形成することが困難となる。したがって、貫通孔4の開口部における直径は、絶縁樹脂板1の厚み方向の中央部における直径よりも10〜50μm大きいことが好ましい。
【0025】
また、貫通孔3の内部に形成された貫通導体4は銅めっき等のめっきから成り、絶縁樹脂板1を挟んで上下に位置する配線導体2A・2B同士を互いに電気的に接続する接続導体として機能する。そして、貫通孔3が上述したように絶縁樹脂板1の上下面に向けて拡径する形状となっていることから、貫通孔3の内部にめっきにより良好に充填・形成されている。
【0026】
さらに、配線導体2A・2Bが被着された絶縁樹脂板1の表面には、必要に応じてエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の熱硬化性樹脂から成るソルダーレジスト5が被着される。ソルダーレジスト5は、配線導体層2A・2Bを保護するとともに配線導体2A・2Bにおける各配線パターン同士を電気的に良好に絶縁するための保護層として機能し、配線導体2A・2Bの一部を露出させる所定のパターンに被着形成されている。
【0027】
なお、ソルダーレジスト5は、その配線導体2A・2B上における厚みが10μm未満であると、配線導体2A・2Bを良好に保護することができなくなるとともに配線導体2A・2Bにおける各配線パターン同士を電気的に良好に絶縁することができなくなる傾向にあり、他方、40μmを超えると、ソルダーレジスト5を所定のパターンに形成することが困難となる傾向にある。したがって、ソルダーレジスト5の配線導体2A・2B上における厚みは、10〜40μmの範囲が好ましい。
【0028】
次に、図1に示した配線基板を本発明の製造方法により製造する方法について、図2(a)〜(g)に示す各工程毎の部分断面図を参照して詳細に説明する。なお、本実施例においても、直径が75〜130μmと微細な貫通孔3を有するとともに、厚みが0.2〜0.8mmと薄型の配線基板を製造する場合の例を示している。
【0029】
まず、図2(a)に部分断面図で示すように、例えばガラスクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂を含浸させた厚みが0.2〜0.8mmの絶縁樹脂板1の上下両面に厚みが3〜12μmの銅箔2A’・2B’が被着形成された両面銅張板を準備する。
【0030】
なお、絶縁樹脂板1は、その厚みが0.2mm未満では後述するように絶縁樹脂板1および銅箔2A’・2B’を貫通して複数の貫通孔3を形成したり、絶縁樹脂板1上にソルダーレジスト5を形成したりする際等に、熱や外力等の影響で配線基板に反りや変形が発生して配線基板に要求される平坦度を確保できなくなってしまう危険性が大きなものとなり、他方、0.8mmを超えると、後述するように貫通孔3の内部にめっきにより導体を充填して貫通導体4を形成する際に、貫通孔3の内部にめっき液が浸入しにくくなり、貫通導体4に断線が発生しやすくなる。したがって、絶縁樹脂板1の厚みは0.2〜0.8mmの範囲が好ましい。
【0031】
また、銅箔2A’・2B’は、その厚みが3μm未満の場合、後述するように貫通孔3形成後のめっきの前処理として行なわれるマイクロエッチング時に銅箔2A’・2B’がエッチングされて銅箔2A’・2B’にピンホールまたは欠損を生じ、銅箔2A’・2B’へのめっきの付き周り性や密着力が弱くなる傾向があり、他方、12μmを超える場合、貫通孔3をレーザ加工により穿孔する場合に、直径が75〜130μmの貫通孔3を安定して形成することが困難となる。したがって、銅箔2A’・2B’の厚みは、3〜12μmの範囲が好ましい。
【0032】
このような銅箔2A’・2B’は、絶縁樹脂板1の上下全面に厚みが8〜18μm程度の銅箔を貼着するとともにこの銅箔を硫酸−過酸化水素水などの銅エッチング液で膜厚が均一となるようにエッチングし、厚みが3〜12μmとなるように加工することにより形成される。
【0033】
次に、図2(b)に部分断面図で示すように、レーザ加工により銅箔2A’・2B’および絶縁樹脂板1を貫通する直径が75〜130μmで、絶縁樹脂板1の内部から上下両面に向けて拡径する複数の貫通孔3を穿孔する。
なお、この場合、貫通孔3の内面にはレーザ加工の熱によって厚みが数μm程度の、絶縁樹脂板1に含まれる樹脂の炭化層6が形成される。
【0034】
このように、貫通孔3の直径を75〜130μmと微細とした場合には、後述するように、貫通導体3および配線導体2A・2Bを形成する際に貫通導体4および配線導体2A・2Bを高密度で配置することができ、それにより高密度な配線基板を得ることができる。また、貫通孔3の直径が絶縁樹脂板1の内部から上下両面に向かって拡径していることから、後述するように貫通孔3の内部にめっきにより導体を充填して貫通導体4を形成する際に、貫通導体4を形成するためのめっき液が貫通孔3の内部に良好に入り込み、その結果、貫通孔3の内部に貫通導体4を良好に形成することができる。
【0035】
なお、貫通孔3の直径が75μm未満の場合、貫通孔3の内部にめっきにより導体を充填して貫通導体4を形成する際に、貫通導体4を形成するためのめっき液が貫通孔3の内部に良好に入り込まず、貫通孔3の内部に貫通導体4を良好に形成することができなくなり、他方、130μmを超えると、貫通導体4および配線導体2A・2Bを高密度で配置することが困難となる。したがって、貫通孔3の直径は、75〜130μmの範囲が好ましい。
【0036】
また、貫通孔3の開口部における直径が絶縁樹脂板1の厚み方向の中央部における直径よりも10μm未満大きい場合には、貫通孔3の内部にめっきにより導体を充填して貫通導体4を形成する際に、貫通導体4を形成するためのめっき液が貫通孔3の内部に良好に入り込まずに貫通孔3の内部に貫通導体4を良好に形成することが困難となり、他方、50μmを超えて大きな場合には、そのような形状を有する貫通孔3を安定して形成することが困難となる。したがって、貫通孔3の開口部における直径は、絶縁樹脂板1の厚み方向の中央部における直径よりも10〜50μm大きくしておくことが好ましい。
【0037】
なお、銅箔2A’・2B’および絶縁樹脂板1に貫通孔3を形成するには、銅箔2A’・2B’上に例えばレーザ光のエネルギーを良好に吸収する黒色もしくは黒色に近い色を有する樹脂から成るレーザ加工用シートを貼着し、このレーザ加工用シートの上から炭酸ガスレーザ光を照射する方法、もしくは銅箔2A’・2B’の表面を算術平均粗さRaで0.2〜2μmの範囲で表面を粗化した後、その銅箔を温度が150℃程度の酸化雰囲気下で30分程度の熱処理を行ないその表面をレーザ光のエネルギーを良好に吸収する黒色もしくは黒色に近い色を有する色として炭酸ガスレーザ光を照射する方法のどちらかの方法を使用し、20〜30mJの出力の炭酸ガスレーザ光を50〜500μ秒のパルス幅で所定の位置に照射して貫通孔3を穿孔する方法が採用される。このとき、炭酸ガスレーザ光の出力が20mJ未満だと貫通孔3を十分な大きさに穿孔することが困難となる傾向にあり、他方、30mJを超えると貫通孔3の直径が大きくなりすぎてしまう傾向にある。したがって、照射する炭酸ガスレーザ光は、その出力が20〜30mJでパルス幅が50〜500μ秒の範囲であることが好ましい。
【0038】
なお、貫通孔3を、その直径が絶縁樹脂板1の上下両面側に向かって拡径する形状とするには、レーザ加工により穿孔する場合、後述するように、レーザ光の1パルス当たりのエネルギーやショット数を調整することにより可能となる。例えばまず、図3(a)に要部拡大断面図で示すように、出力が18〜24mJでパルス幅が50〜500μ秒の数パルスのレーザ光を照射して銅箔2A’・2B’および絶縁樹脂板1を貫通し、絶縁樹脂板1の上面側で直径が外側に向けて拡径する貫通孔3を穿孔する。このとき絶縁樹脂板1の上面側ではレーザ光のエネルギーが下面側より多く印加されるので、貫通孔3は絶縁樹脂板1の上面側で外側に向けて拡径した形状となる。また、銅箔2A’・2B’は絶縁樹脂板1よりも穿孔されにくいので、貫通孔3はその直径が銅箔2A’・2B’の部位において絶縁樹脂板1の部位よりも小さく、銅箔2A’・2B’が内側に突き出た形状となる。
【0039】
次に、図3(b)に要部拡大断面図に示すように、さらに数パルスのレーザ光を照射する。それにより照射されたレーザ光の一部が絶縁樹脂板1の下面側において内側に突き出た銅箔2B’で反射されて絶縁樹脂板1の下面側の開口部付近をえぐるので、貫通孔3は絶縁樹脂板1の上下で上下両面側に向けて拡径した形状となる。次に、図3(c)に要部拡大断面図で示すように、銅箔2A’・2B’をマイクロエッチングしてその内側に突き出た部位を除去することにより、直径が75〜130μmの範囲で上下両面側に向けて拡径する形状の貫通孔3を形成することができる。たとえば、厚みが0.4mmのガラス−エポキシ樹脂から成る絶縁樹脂板1の上下面に厚みが7μmの銅箔2A’・2B’が被着された両面銅張板に炭酸ガスレーザを用いて貫通孔3を形成する場合には、レーザの1パルス当たりのパルス幅を100μ秒、エネルギー値を21mJ、ショット数を5〜8にすればよい。このとき、レーザ光照射のショット数が少なすぎると貫通孔3の下面側を外側に向けて良好に拡径することができなくなり、ショット数が多すぎると貫通孔3の下面側の径が大きくなりすぎてしまう。
【0040】
次に、図2(c)に部分断面図で示すように、貫通孔3内面の炭化層6の表面および銅箔2A’・2B’の表面に厚みが1〜3μmの無電解銅めっきから成るめっき膜11を被着させる。なお、めっき膜11を被着させるには、例えば塩化アンモニウム系酢酸パラジウムを含有するパラジウム活性液を使用して貫通孔3の内面にパラジウム触媒を付着させるとともに、その上に硫酸銅系の無電解銅めっき液を用いてめっき膜11を被着させればよい。このとき、貫通孔3は外側に向けて拡径していることから、貫通孔3内に無電解銅めっき液が良好に浸入し、その結果、貫通孔3内面の炭化層6の表面にめっき膜11を略均一な厚みに良好に被着させることができる。なお、めっき膜11を被着させる前に貫通孔3内面を例えば過マンガン酸カリウム溶液や過マンガン酸ナトリウム溶液から成る粗化液を用いて粗化しておくと、めっき膜11を良好に被着させることができる。したがって、めっき膜11を被着させる前に貫通孔3の内面を例えば過マンガン酸カリウム溶液や過マンガン酸ナトリウム溶液から成る粗化液を用いて粗化しておくことが好ましい。
【0041】
次に、図2(d)に部分断面図で示すように、炭化層6をその上に被着されためっき膜11とともにエッチング除去する。なお、このエッチングに使用するエッチング液としては、硫酸と過酸化水素水の混合溶液または塩化第2銅水溶液または塩化第2鉄水溶液から成るエッチング液を用いればよい。この場合、めっき膜11の形成時にめっき膜11が炭化層6の微視的な凹凸内に入り込んでめっき膜11の成膜時の応力が炭化層6に良好に作用して炭化層6が剥離されやすくなっている。したがって、めっき膜11をエッチング除去する際に炭化層6がめっき膜11とともに良好に除去される。また、この時、銅箔2A’・2B’の表面に被着されためっき膜11も同時に除去される。
【0042】
次に、図2(e)に部分断面図で示すように、炭化層8およびめっき膜11が除去された貫通孔3の内部に、厚みが1〜3μmの無電解銅めっきおよび電解銅めっきを順次析出させて貫通孔3を充填して貫通導体4を形成するとともに、銅箔2A’・2B’の表面に厚みが1〜3μmの無電解銅めっきおよび厚みが50〜60μmの電解銅めっきを順次析出させてめっき層12を被着させる。このとき、貫通孔3の内面は炭化層6が除去されていることから貫通孔3の内面で炭化層6を起点にして貫通導体4が剥離するようなことが無く、貫通孔3の内面に貫通導体4を強固に被着するすることができる。
【0043】
なお、無電解銅めっきを析出させるには、例えば塩化アンモニウム系酢酸パラジウムを含有するパラジウム活性液を使用して貫通孔3の内面および銅箔2A’・2B’の表面にパラジウム触媒を付着させるとともに、その上に硫酸銅系の無電解銅めっき液を用いて無電解銅めっきを被着させればよい。このとき、貫通孔3は、絶縁樹脂板1の開口部付近において絶縁樹脂板1の外側に向けて拡径していることから、貫通孔3の内部に無電解銅めっき液が良好に浸入し、その結果、貫通孔3の内面および銅箔2A’・2B’の表面に無電解銅めっきを略均一な厚みに良好に被着させることができる。なお、無電解銅めっきを析出させる前に、貫通孔3の内面を例えば過マンガン酸カリウム溶液や過マンガン酸ナトリウム溶液から成る粗化液を用いてその算術平均粗さRaが0.2〜2μm程度になるように粗化しておくと、貫通孔3の内面に無電解銅めっきを強固に被着させることができる。したがって、無電解銅めっきを被着させる前に、貫通孔3の内面を例えば過マンガン酸カリウム溶液や過マンガン酸ナトリウム溶液から成る粗化液を用いてその算術平均粗さRaが0.2〜2μm程度になるように粗化しておくことが好ましい。
【0044】
また、電解銅めっきを被着させるための電解銅めっき液としては、例えば硫酸銅系からなる電解銅めっき液を用いればよい。このとき、貫通孔3は、絶縁樹脂板1の開口部付近において外側に向けて拡径していることから、貫通孔3の内部に電解銅めっき液が良好に浸入し、その結果、貫通孔3の内部を電解銅めっきで良好に充填することができる。したがって、本発明の配線基板の製造方法によれば、貫通孔3内にめっきから成る貫通導体4が良好に形成され、貫通導体4に断線が発生することのない配線基板を提供することができる。また、本発明の製造方法により製造された配線基板を用いてビルドアップ配線基板を製作した場合においても、ビルドアップ絶縁層に貫通孔3内からクラックが発生したり、それによりビルドアップ配線層に断線が発生したりすることのないビルドアップ配線基板を提供することができる。
【0045】
次に、図2(f)に部分断面図で示すように、銅箔2A’・2B’上のめっき層12を機械的に研磨して平坦化した後、銅箔2A’・2B’およびその上のめっき層12を従来周知のフォトリソグラフィー技術により所定のパターンにエッチングすることにより配線導体2A・2Bを形成する。なお、エッチング液としては塩化第2銅水溶液や塩化第2鉄水溶液から成るエッチング液を用いればよい。このとき、貫通孔3の内面は炭化層6が除去されており、貫通導体4が炭化層6を起点にして剥離してしまうようなことはないので、本発明の製造方法によると、貫通導体4と配線導体2A・2Bとが常に良好に接続された、信頼性の高い高密度配線の配線基板を得ることができる。
【0046】
最後に、図2(g)の部分断面図で示すように、配線導体2A・2Bが形成された絶縁樹脂板1の表面にエポキシ樹脂やビスマレイドトリアジン樹脂・ポリフェニレンエーテル等の熱硬化性樹脂から成るソルダーレジスト5を被着させることにより、図1に示す配線基板が完成する。なおソルダーレジスト5は、ソルダーレジスト5用の感光性の樹脂ペーストを従来周知のスクリーン印刷法を採用して絶縁樹脂板1上に印刷塗布するか、もしくはソルダーレジスト5用のドライフィルムレジストを真空ラミネーターにより絶縁樹脂板1上に貼着した後、その樹脂ペーストもしくはドライフィルムレジストを従来周知のフォトリソグラフィー技術を採用して所定のパターンに露光・現像することにより形成される。
【0047】
かくして、本発明の配線基板の製造方法によれば、貫通導体4に断線が発生することなく、極めて高密度な配線が可能な配線基板を得ることができる。またその上にビルドアップ樹脂層およびビルドアップ配線層を積層してビルドアップ配線基板を製作したとしてもビルドアップ樹脂層に貫通孔3内からのクラックが発生することのない配線基板を得ることができる。
【0048】
なお、上述の実施例では貫通孔の直径が75〜130μm、厚みが0.2〜0.8mmの配線基板を例にとって示したが、本発明は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば、種々の変更が可能であることはいうまでもない。
【0049】
【発明の効果】
本発明の配線基板の製造方法によれば、レーザ加工により形成された貫通孔内面の炭化層の表面にめっき膜を被着させた後、これを炭化層とともにエッチング除去し、さらに炭化層およびめっき膜が除去された貫通孔の内部にめっきにより導体を充填して貫通導体を形成することから、めっき膜の形成時にめっき膜が炭化層の微視的凹凸内に入り込んでめっき膜の成膜時の応力が炭化層に良好に作用して炭化層が剥離されやすくなり、炭化層およびめっき膜をエッチング除去する際に炭化層がめっき膜とともに良好に除去され、その結果、貫通導体が炭化層を起点にして剥離するようなことがない配線基板を得ることができる。
【0050】
また、この配線基板を用いてビルドアップ配線基板を製作した場合においても、ビルドアップ樹脂層にクラックが生じてビルドアップ配線層が断線してしまうことのない、接続信頼性に優れた配線基板を得ることができる。
【図面の簡単な説明】
【図1】本発明の配線基板の実施の形態の一例を示す部分断面図である。
【図2】(a)〜(g)は、本発明の配線基板の製造方法を説明するための工程毎の部分断面図である。
【図3】(a)〜(c)は、本発明の配線基板の製造方法を説明するための要部拡大断面図である。
【符号の説明】
1・・・・・・・・・・・・・絶縁樹脂板
2A’・2B’・・・・・・・・銅箔
2A・2B・・・・・・・・・配線導体
3・・・・・・・・・・・・・貫通孔
4・・・・・・・・・・・・・貫通導体
6・・・・・・・・・・・・・炭化層
11・・・・・・・・・・・・・めっき膜
12・・・・・・・・・・・・・めっき層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an organic material-based wiring board.
[0002]
[Prior art]
Conventionally, as an organic material-based wiring board for mounting electronic components such as semiconductor elements, for example, a glass-epoxy resin, copper foil and copper foil on the upper and lower surfaces of an insulating resin plate having through holes penetrating from the upper surface to the lower surface. A wiring board is used in which a wiring conductor made of plating applied thereon is adhered and a through conductor made of plating for connecting the wiring conductors on the upper and lower surfaces is adhered to the inner surface of the through hole. .
[0003]
Such an organic material-based wiring board prepares a double-sided copper-clad board in which copper foil is adhered to upper and lower surfaces of an insulating resin plate made of glass-epoxy resin, and penetrates the double-sided copper-clad board up and down. A through hole is drilled, and then a plating made of copper is deposited on the copper foil and on the inner surface of the through hole by an electroless plating method and an electrolytic plating method to deposit a plating layer on the copper foil. A through conductor is formed on the inner surface of the through hole, and then the wiring layer is formed by partially etching the copper foil and the plating layer deposited on the copper foil using photolithography technology to form a wiring conductor. ing.
[0004]
A build-up wiring board is manufactured by forming a build-up resin layer and a build-up wiring layer on both sides of the wiring board. In such a wiring board, the through hole on which the through conductor is attached is usually filled with a filling resin such as an epoxy resin.
[0005]
By the way, in such an organic material-based multilayer wiring board, in order to increase the wiring density in response to the demand for smaller and thinner electronic devices, for example, the thickness of the insulating resin plate is about 0.2 to 1 mm, Attempts have been made to make the diameter of the through hole as small as about 75 to 130 μm. In order to form such a small through hole having a diameter of about 75 to 130 μm, for example, a perforation method using a carbon dioxide gas laser is employed.
[0006]
[Patent Document 1]
JP 2000-91750 A
[0007]
[Problems to be solved by the invention]
However, when a through-hole is formed in the insulating resin plate using a carbon dioxide gas laser, a carbonized layer of an organic material contained in the insulating resin plate is formed on the inner surface of the through-hole by heat of the carbon dioxide gas laser, and the carbonized layer is brittle. After applying a through conductor made of plating to the inner surface of the through hole, the through conductor peels off from the carbonized layer on the inner surface of the through hole as a starting point, thereby causing a crack between the through conductor and the wiring conductor. This causes a problem of poor conduction.
[0008]
In addition, peeling occurs between the through conductor and the filling resin, and when a build-up wiring board is manufactured using this wiring board, the peeling starts and a crack occurs in the build-up resin layer, and the build-up wiring layer is disconnected. Had the problem that
[0009]
The present invention has been devised in view of such a conventional problem, and an object of the present invention is to prevent the through conductor from being peeled off, and to ensure that the through conductor and the wiring conductor are always well connected, and The object of the present invention is to provide a wiring board capable of extremely high-density wiring, which does not cause breakage in a build-up wiring layer due to a crack generated by peeling between a through conductor and a filling resin when a build-up wiring board is manufactured using the same. .
[0010]
[Means for Solving the Problems]
The method for manufacturing a wiring board according to the present invention is characterized in that a laser processing is performed on a double-sided copper-clad board having copper foil adhered to the upper and lower surfaces of an insulating resin plate, so that the double-sided copper-clad board penetrates and a carbonized layer is formed on the inner surface. Drilling a plurality of formed through-holes, depositing a plating film on the surface of the carbonized layer, etching the carbonized layer together with the plating film, and then removing the carbonized layer. Filling a conductor by plating into the inside of the through hole from which the layer and the plating film have been removed to form a through conductor, and applying a plating layer to the surface of the copper foil by plating; Forming a wiring conductor by partially etching the foil and the plating layer applied to the copper foil.
[0011]
According to the method for manufacturing a wiring board of the present invention, after a plating film is applied to the surface of the carbonized layer on the inner surface of the through hole formed by laser processing, the plated film is removed by etching together with the carbonized layer. Since the conductor is filled by plating into the through hole from which the film has been removed to form a through conductor, the plating film enters the microscopic unevenness of the carbonized layer when the plating film is formed, and the plating film is formed. When the stress acts on the carbonized layer well, the carbonized layer is easily peeled off, and when the carbonized layer and the plating film are removed by etching, the carbonized layer is well removed together with the plating film. Can be obtained as a starting point.
[0012]
In addition, even when a build-up wiring board is manufactured using this wiring board, a wiring board having excellent connection reliability without causing cracks in the build-up resin layer and disconnecting the build-up wiring layer. Obtainable.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a method for manufacturing a wiring board according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a partial cross-sectional view showing an example of an embodiment of a wiring board manufactured by the manufacturing method of the present invention. In FIG. 1, 1 is an insulating resin plate, 2A and 2B are wiring conductors, and 3 is a through hole. Reference numeral 4 denotes a through conductor, which is mainly composed of wiring conductors 2A and 2B on the upper and lower surfaces of the insulating resin plate 1 and a through conductor 4 filled and formed in the through hole 3 to form a wiring board. ing. This embodiment shows an example in which the solder resist 5 is provided on the through conductor 4 and the wiring conductors 2A and 2B. Further, in the present embodiment, an example is shown in which the wiring board has a fine through hole 3 having a diameter of 75 to 130 μm and a thin thickness of 0.2 to 0.8 mm.
[0014]
The insulating resin plate 1 functions as a core member of a wiring board manufactured by the manufacturing method of the present invention. For example, a glass cloth impregnated with a resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin has a thickness of 0.1 mm. A so-called plated double-sided copper clad, which is a flat plate of 2 to 0.8 mm, on which upper and lower surfaces are coated with copper foil having a thickness of 3 to 12 μm and wiring conductors 2A and 2B made of copper plating covering the copper foil. Constitutes a plate.
[0015]
When the thickness of the insulating resin plate 1 is less than 0.2 mm, a plurality of through holes 3 are formed through the insulating resin plate 1 and the copper foil for the wiring conductors 2A and 2B. The wiring board is warped or deformed by the influence of heat or external force applied when the wiring conductors 2A and 2B are formed on the upper and lower surfaces, and furthermore, when the solder resist 5 is formed. There is a great risk that the flatness cannot be ensured. On the other hand, if the thickness exceeds 0.8 mm, as described later, when forming the through conductor 4 by filling the inside of the through hole 3 with plating, It becomes difficult for the plating solution to penetrate into the holes 3, and it becomes difficult to form the through conductor 4 satisfactorily. Therefore, the thickness of the insulating resin plate 1 is preferably in the range of 0.2 to 0.8 mm.
[0016]
The insulating resin plate 1 is made of a resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin impregnated in a glass cloth, and a filler made of silica, alumina, or aramid resin in a glass cloth part and a resin part. If the through holes 3 are contained to such an extent that the through holes 3 are substantially equal to each other, the through holes 3 are preferably formed with a substantially uniform size when the through holes 3 are formed in the insulating resin plate 1 by laser light as described later. It is possible to do. Accordingly, a resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin impregnated into the glass cloth of the insulating resin plate 1 is provided with a filler made of silica, alumina, or aramid resin in the glass cloth portion and the resin portion. Is preferably contained so that the transmittances thereof are substantially the same.
[0017]
The wiring conductors 2A and 2B attached to the upper and lower surfaces of the insulating resin plate 1 are formed by attaching a plating layer such as copper plating to a copper foil having a thickness of 3 to 12 μm, and It functions as a part of a conductive path for electrically connecting an electrode of a component (not shown) to a wiring conductor (not shown) of an external electric circuit board, and an electronic component is provided on the wiring conductor layer 2A on the upper surface side. Is formed with an electronic component connection pad to which the electrodes are connected via a conductive joining member such as solder, and a wiring pattern or the like drawn from the electronic component connection pad. The wiring conductor layer 2B on the lower surface side includes An external connection pad or the like connected to a wiring conductor of the external electric circuit board via a conductive joining member such as solder is formed.
[0018]
When the thickness of the copper foil forming the wiring conductors 2A and 2B is less than 3 μm, as described later, the copper foil is formed as a pretreatment for the electroless copper plating after forming the through holes 3 in the wiring conductors 2A and 2B. At the time of micro-etching, the copper foil is etched and pinholes or defects are generated in the copper foil, and there is a tendency for the copper foil to adhere to the copper foil and to have poor adhesion. On the other hand, when it exceeds 12 μm, as described later, when the through hole 3 penetrating the insulating resin plate 1 and the copper foil for the wiring conductors 2 </ b> A and 2 </ b> B is formed by laser processing, the through hole 3 having a diameter of 75 to 130 μm is formed. Is difficult to form stably. Therefore, the thickness of the copper foil forming the wiring conductors 2A and 2B is preferably in the range of 3 to 12 μm.
[0019]
If the total thickness of the copper foil constituting the wiring conductors 2A and 2B and the plating layer adhered to the wiring conductors 2A and 2B is less than 8 μm, the electric resistance of the wiring conductors 2A and 2B becomes high, and on the other hand, 30 μm Is exceeded, it becomes difficult to form the wiring conductors 2A and 2B in a high-density pattern. Therefore, the total thickness of the copper foil forming the wiring conductors 2A and 2B and the plating layer applied to the copper foil is preferably in the range of 8 to 30 μm.
[0020]
Furthermore, when the arithmetic average roughness Ra of the surface of the wiring conductors 2A and 2B is less than 0.2 μm, the wiring conductors 2A and 2B and the solder 5 tends to easily occur, while if it exceeds 2 μm, it tends to be difficult to form such a rough surface stably and efficiently. Therefore, the arithmetic average roughness Ra of the surfaces of the wiring conductors 2A and 2B is preferably in the range of 0.2 to 2 μm.
[0021]
Further, in the wiring board of the present invention, a through hole 3 having a diameter of 75 to 130 μm is formed through the insulating resin plate 1, and the through conductor 4 is formed by filling the inside of the through hole 3 with plating. Is formed. The through hole 3 is for providing a lead-out path for leading the through conductor 4 from the upper surface to the lower surface of the insulating resin plate 1, and is formed by laser processing. The diameter of the through-hole 3 is approximately 75 to 115 μm at the center in the thickness direction of the insulating resin plate 1, which is substantially the same size, and is 90 to 130 μm at the opening of the insulating resin plate 1. The diameter of the opening of the insulating resin plate 1 is preferably larger than the diameter of the insulating resin plate 1 at the center in the thickness direction. .
[0022]
According to the wiring board manufactured by the manufacturing method of the present invention, when the diameter of the through-hole 3 is reduced to 75 to 130 μm, the through conductors 4 can be arranged at high density. Thereby, it is possible to have an extremely high-density wiring.
[0023]
Further, since the diameter of the through hole 3 is increased toward the upper and lower surfaces of the insulating resin plate, the through hole 3 is filled with a conductor by plating to form the through conductor 4 as described later. At this time, the plating solution can well enter the inside of the through hole 4, and as a result, the through conductor 4 can be well formed inside the through hole 3. When the diameter of the through-hole 3 is less than 75 μm, the plating solution does not enter the inside of the through-hole 3 satisfactorily when filling and forming the through-conductor 4 by filling the inside of the through-hole 3 with plating. In this case, it is difficult to fill the through hole 3 with a conductor by plating to form the through conductor 4 satisfactorily. On the other hand, if it exceeds 130 μm, the through conductor 4 and the wiring conductors 2A and 2B must be arranged at high density. Becomes difficult. Therefore, the diameter of the through hole 3 is preferably in the range of 75 to 130 μm.
[0024]
Further, when the diameter at the opening of the through hole 3 is smaller than the diameter at the center in the thickness direction of the insulating resin plate 1 by less than 10 μm, the inside of the through hole 3 is filled with a conductor by plating to form the through conductor 4. In doing so, the plating solution for forming the through conductor 4 does not enter the inside of the through hole 3 satisfactorily, and it becomes difficult to form the through conductor 4 satisfactorily inside the through hole 3. If it is larger than this, it is difficult to stably form the through hole 4 having such a shape. Therefore, the diameter of the through hole 4 at the opening is preferably larger by 10 to 50 μm than the diameter at the center in the thickness direction of the insulating resin plate 1.
[0025]
The through conductor 4 formed inside the through hole 3 is formed by plating such as copper plating, and serves as a connection conductor for electrically connecting the wiring conductors 2A and 2B located above and below the insulating resin plate 1 to each other. Function. Since the through-hole 3 has a shape that expands toward the upper and lower surfaces of the insulating resin plate 1 as described above, the inside of the through-hole 3 is favorably filled and formed by plating.
[0026]
Furthermore, a solder resist 5 made of a thermosetting resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin is attached on the surface of the insulating resin plate 1 on which the wiring conductors 2A and 2B are attached, if necessary. Is done. The solder resist 5 functions as a protective layer for protecting the wiring conductor layers 2A and 2B and electrically insulating the wiring patterns of the wiring conductors 2A and 2B from each other in an excellent manner, and a part of the wiring conductors 2A and 2B. It is formed in a predetermined pattern to be exposed.
[0027]
If the thickness of the solder resist 5 on the wiring conductors 2A and 2B is less than 10 μm, the solder resists 5 cannot protect the wiring conductors 2A and 2B well, and also connect the wiring patterns of the wiring conductors 2A and 2B to each other. If the thickness exceeds 40 μm, it tends to be difficult to form the solder resist 5 in a predetermined pattern. Therefore, the thickness of the solder resist 5 on the wiring conductors 2A and 2B is preferably in the range of 10 to 40 μm.
[0028]
Next, a method of manufacturing the wiring board shown in FIG. 1 by the manufacturing method of the present invention will be described in detail with reference to partial cross-sectional views of each step shown in FIGS. This embodiment also shows an example in which a thin wiring board having a fine through hole 3 having a diameter of 75 to 130 μm and a thickness of 0.2 to 0.8 mm is manufactured.
[0029]
First, as shown in a partial cross-sectional view of FIG. 2A, for example, an insulating resin having a thickness of 0.2 to 0.8 mm obtained by impregnating a glass cloth with a resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin. A double-sided copper-clad board is prepared in which copper foils 2A ′ and 2B ′ having a thickness of 3 to 12 μm are formed on both upper and lower surfaces of the board 1.
[0030]
When the thickness of the insulating resin plate 1 is less than 0.2 mm, a plurality of through-holes 3 are formed through the insulating resin plate 1 and the copper foils 2A 'and 2B' as described later. When the solder resist 5 is formed thereon, there is a great risk that the wiring board may be warped or deformed by the influence of heat, external force, or the like, and the required flatness of the wiring board may not be secured. On the other hand, if it exceeds 0.8 mm, it becomes difficult for the plating solution to penetrate into the through-holes 3 when the through-holes 3 are formed by filling the inside of the through-holes 3 with a conductor by plating as described later. In addition, disconnection of the through conductor 4 is likely to occur. Therefore, the thickness of the insulating resin plate 1 is preferably in the range of 0.2 to 0.8 mm.
[0031]
When the thickness of the copper foils 2A ′ and 2B ′ is less than 3 μm, the copper foils 2A ′ and 2B ′ are etched during micro-etching performed as a pretreatment for plating after the formation of the through holes 3 as described later. Pinholes or defects occur in the copper foils 2A 'and 2B', and the plating adherence and adhesion to the copper foils 2A 'and 2B' tend to be weak. On the other hand, when the thickness exceeds 12 μm, the through holes 3 are formed. When drilling by laser processing, it is difficult to stably form the through-hole 3 having a diameter of 75 to 130 μm. Therefore, the thickness of the copper foils 2A ′ and 2B ′ is preferably in the range of 3 to 12 μm.
[0032]
Such copper foils 2A ′ and 2B ′ are formed by attaching copper foil having a thickness of about 8 to 18 μm to the entire upper and lower surfaces of the insulating resin plate 1 and applying the copper foil with a copper etching solution such as sulfuric acid-hydrogen peroxide solution. It is formed by etching so as to have a uniform film thickness and processing so as to have a thickness of 3 to 12 μm.
[0033]
Next, as shown in the partial cross-sectional view of FIG. 2B, the diameter passing through the copper foils 2A ′ and 2B ′ and the insulating resin plate 1 is 75 to 130 μm by laser processing, and A plurality of through-holes 3 whose diameters are increased toward both sides are formed.
In this case, a carbonized layer 6 of the resin contained in the insulating resin plate 1 having a thickness of about several μm is formed on the inner surface of the through hole 3 by the heat of laser processing.
[0034]
As described above, when the diameter of the through hole 3 is as fine as 75 to 130 μm, the through conductor 4 and the wiring conductors 2A and 2B are formed when forming the through conductor 3 and the wiring conductors 2A and 2B, as described later. High-density wiring boards can be obtained with high density. In addition, since the diameter of the through hole 3 is increased from the inside of the insulating resin plate 1 toward the upper and lower surfaces, the inside of the through hole 3 is filled with a conductor by plating to form the through conductor 4 as described later. In doing so, the plating solution for forming the through conductor 4 can well enter the inside of the through hole 3, and as a result, the through conductor 4 can be well formed inside the through hole 3.
[0035]
When the diameter of the through-hole 3 is less than 75 μm, when the inside of the through-hole 3 is filled with a conductor by plating to form the through-conductor 4, the plating solution for forming the through-conductor 4 is As a result, the through conductor 4 cannot be satisfactorily formed inside the through hole 3, and if it exceeds 130 μm, the through conductor 4 and the wiring conductors 2 </ b> A and 2 </ b> B can be arranged at high density. It will be difficult. Therefore, the diameter of the through hole 3 is preferably in the range of 75 to 130 μm.
[0036]
When the diameter of the opening of the through hole 3 is larger than the diameter of the insulating resin plate 1 at the center in the thickness direction by less than 10 μm, the inside of the through hole 3 is filled with a conductor by plating to form the through conductor 4. In doing so, it is difficult for the plating solution for forming the through conductor 4 to well enter the inside of the through hole 3 and to form the through conductor 4 satisfactorily inside the through hole 3. If it is too large, it is difficult to stably form the through hole 3 having such a shape. Therefore, it is preferable that the diameter of the opening of the through hole 3 is larger by 10 to 50 μm than the diameter of the insulating resin plate 1 at the center in the thickness direction.
[0037]
In order to form the through holes 3 in the copper foils 2A ′ and 2B ′ and the insulating resin plate 1, for example, black or a color close to black that favorably absorbs the energy of laser light is formed on the copper foils 2A ′ and 2B ′. A method of applying a laser processing sheet made of a resin having the resin and irradiating a carbon dioxide laser beam from above the laser processing sheet, or the surface of the copper foils 2A ′ and 2B ′ having an arithmetic average roughness Ra of 0.2 to After roughening the surface in the range of 2 μm, the copper foil is subjected to a heat treatment for about 30 minutes in an oxidizing atmosphere at a temperature of about 150 ° C., and the surface is black or a color close to black which absorbs the energy of laser light well. Using a method of irradiating a carbon dioxide gas laser beam as a color having the following, a predetermined position is irradiated with a carbon dioxide gas laser beam having an output of 20 to 30 mJ with a pulse width of 50 to 500 μsec to perforate the through hole 3. Do The method is adopted. At this time, if the output of the carbon dioxide laser beam is less than 20 mJ, it tends to be difficult to perforate the through-hole 3 to a sufficient size, while if it exceeds 30 mJ, the diameter of the through-hole 3 becomes too large. There is a tendency. Therefore, it is preferable that the carbon dioxide laser beam to be irradiated has an output of 20 to 30 mJ and a pulse width of 50 to 500 μsec.
[0038]
In order to increase the diameter of the through-hole 3 toward the upper and lower surfaces of the insulating resin plate 1, when drilling by laser processing, the energy per one pulse of the laser light will be described later. Or by adjusting the number of shots. For example, first, as shown in the main part enlarged sectional view of FIG. 3A, the copper foils 2A 'and 2B' are irradiated by irradiating several pulses of laser light having an output of 18 to 24 mJ and a pulse width of 50 to 500 .mu.sec. A through hole 3 is formed which penetrates the insulating resin plate 1 and whose diameter increases outward on the upper surface side of the insulating resin plate 1. At this time, the energy of the laser beam is applied more on the upper surface side of the insulating resin plate 1 than on the lower surface side, so that the through-hole 3 has a shape whose diameter increases outward on the upper surface side of the insulating resin plate 1. Further, since the copper foils 2A 'and 2B' are less likely to be perforated than the insulating resin plate 1, the diameter of the through holes 3 is smaller at the copper foils 2A 'and 2B' than at the insulating resin plate 1; 2A 'and 2B' have a shape protruding inward.
[0039]
Next, as shown in the main part enlarged sectional view of FIG. 3B, several pulses of laser light are further irradiated. A part of the irradiated laser light is reflected by the copper foil 2B 'projecting inward on the lower surface side of the insulating resin plate 1 and goes around the opening on the lower surface side of the insulating resin plate 1, so that the through hole 3 is formed. It has a shape in which the diameter is increased toward the upper and lower surfaces both above and below the insulating resin plate 1. Next, as shown in the main part enlarged sectional view of FIG. 3C, the copper foils 2A ′ and 2B ′ are micro-etched to remove a portion protruding inside the copper foils 2A ′ and 2B ′ so that the diameter is in the range of 75 to 130 μm. Thus, the through-hole 3 having a shape whose diameter increases toward the upper and lower surfaces can be formed. For example, a through-hole is formed by using a carbon dioxide gas laser on a double-sided copper-clad board in which copper foils 2A ′ and 2B ′ each having a thickness of 7 μm are attached to the upper and lower surfaces of an insulating resin plate 1 made of glass-epoxy resin having a thickness of 0.4 mm. In the case of forming 3, the pulse width per laser pulse should be 100 μs, the energy value should be 21 mJ, and the number of shots should be 5-8. At this time, if the number of shots of the laser beam irradiation is too small, the diameter of the lower surface side of the through hole 3 cannot be satisfactorily expanded toward the outside with the lower surface side of the through hole 3 being too large. It becomes too much.
[0040]
Next, as shown in the partial cross-sectional view of FIG. 2C, the surface of the carbonized layer 6 on the inner surface of the through hole 3 and the surface of the copper foils 2A 'and 2B' are made of electroless copper plating having a thickness of 1 to 3 [mu] m. The plating film 11 is applied. In order to deposit the plating film 11, for example, a palladium catalyst is adhered to the inner surface of the through hole 3 using a palladium active solution containing ammonium chloride-based palladium acetate, and a copper sulfate-based electroless The plating film 11 may be deposited using a copper plating solution. At this time, since the diameter of the through hole 3 is increased toward the outside, the electroless copper plating solution penetrates well into the through hole 3, and as a result, the surface of the carbonized layer 6 on the inner surface of the through hole 3 is plated. The film 11 can be satisfactorily applied to a substantially uniform thickness. If the inner surface of the through-hole 3 is roughened using a roughening solution composed of, for example, a potassium permanganate solution or a sodium permanganate solution before the plating film 11 is deposited, the plating film 11 can be deposited well. Can be done. Therefore, it is preferable that the inner surface of the through hole 3 is roughened using a roughening solution composed of, for example, a potassium permanganate solution or a sodium permanganate solution before the plating film 11 is applied.
[0041]
Next, as shown in a partial cross-sectional view in FIG. 2D, the carbonized layer 6 is etched away together with the plating film 11 deposited thereon. As an etching solution used for this etching, a mixed solution of sulfuric acid and hydrogen peroxide solution or an etching solution composed of an aqueous solution of cupric chloride or an aqueous solution of ferric chloride may be used. In this case, the plating film 11 enters into the microscopic unevenness of the carbonized layer 6 when the plated film 11 is formed, and the stress at the time of forming the plated film 11 acts on the carbonized layer 6 satisfactorily, and the carbonized layer 6 is separated. It is easy to be. Therefore, when etching plating film 11, carbonized layer 6 is removed well with plating film 11. At this time, the plating film 11 applied to the surfaces of the copper foils 2A 'and 2B' is also removed at the same time.
[0042]
Next, as shown in the partial cross-sectional view of FIG. 2E, electroless copper plating and electrolytic copper plating having a thickness of 1 to 3 μm are applied inside the through holes 3 from which the carbonized layer 8 and the plating film 11 have been removed. While sequentially depositing and filling the through holes 3 to form the through conductors 4, electroless copper plating with a thickness of 1 to 3 μm and electrolytic copper plating with a thickness of 50 to 60 μm are formed on the surfaces of the copper foils 2A ′ and 2B ′. The plating layer 12 is deposited by being sequentially deposited. At this time, since the carbonized layer 6 has been removed from the inner surface of the through hole 3, the through conductor 4 does not peel off from the carbonized layer 6 on the inner surface of the through hole 3, and the inner surface of the through hole 3 The through conductor 4 can be firmly attached.
[0043]
In order to deposit the electroless copper plating, for example, a palladium catalyst is attached to the inner surface of the through hole 3 and the surfaces of the copper foils 2A ′ and 2B ′ using a palladium active solution containing ammonium chloride-based palladium acetate. Then, electroless copper plating may be applied thereon using a copper sulfate-based electroless copper plating solution. At this time, since the diameter of the through-hole 3 is increased toward the outside of the insulating resin plate 1 near the opening of the insulating resin plate 1, the electroless copper plating solution satisfactorily enters the inside of the through-hole 3. As a result, electroless copper plating can be satisfactorily applied to the inner surface of the through-hole 3 and the surfaces of the copper foils 2A 'and 2B' to a substantially uniform thickness. Before the deposition of the electroless copper plating, the inner surface of the through-hole 3 is made to have an arithmetic average roughness Ra of 0.2 to 2 μm using a roughening solution composed of, for example, a potassium permanganate solution or a sodium permanganate solution. If the surface is roughened to the extent, electroless copper plating can be firmly applied to the inner surface of the through hole 3. Therefore, before the electroless copper plating is applied, the inner surface of the through-hole 3 is made to have an arithmetic average roughness Ra of 0.2 to 0.2 using a roughening solution composed of, for example, a potassium permanganate solution or a sodium permanganate solution. It is preferable to roughen to about 2 μm.
[0044]
As the electrolytic copper plating solution for applying the electrolytic copper plating, for example, an electrolytic copper plating solution composed of copper sulfate may be used. At this time, since the diameter of the through hole 3 is increased outward in the vicinity of the opening of the insulating resin plate 1, the electrolytic copper plating solution satisfactorily penetrates into the inside of the through hole 3. 3 can be satisfactorily filled with electrolytic copper plating. Therefore, according to the method for manufacturing a wiring board of the present invention, it is possible to provide a wiring board in which the through conductor 4 made of plating is formed well in the through hole 3 and the through conductor 4 is not disconnected. . Further, even when a build-up wiring board is manufactured using the wiring board manufactured by the manufacturing method of the present invention, cracks may occur in the build-up insulating layer from inside the through holes 3, thereby causing the build-up wiring layer to have a crack. It is possible to provide a build-up wiring board that does not cause disconnection.
[0045]
Next, as shown in the partial cross-sectional view of FIG. 2 (f), after the plating layer 12 on the copper foils 2A ′ and 2B ′ is mechanically polished and flattened, the copper foils 2A ′ and 2B ′ and the The wiring conductors 2A and 2B are formed by etching the upper plating layer 12 into a predetermined pattern by a conventionally known photolithography technique. Note that an etching solution composed of an aqueous solution of cupric chloride or an aqueous solution of ferric chloride may be used as the etching solution. At this time, since the carbonized layer 6 is removed from the inner surface of the through hole 3 and the through conductor 4 does not peel off from the carbonized layer 6 as a starting point, according to the manufacturing method of the present invention, 4 and the wiring conductors 2 </ b> A and 2 </ b> B are always connected well, and a highly reliable wiring board with high-density wiring can be obtained.
[0046]
Finally, as shown in the partial cross-sectional view of FIG. 2 (g), the surface of the insulating resin plate 1 on which the wiring conductors 2A and 2B are formed is made of a thermosetting resin such as an epoxy resin, a bismaleide triazine resin, or polyphenylene ether. By applying the solder resist 5 thus formed, the wiring board shown in FIG. 1 is completed. The solder resist 5 may be formed by printing a photosensitive resin paste for the solder resist 5 on the insulating resin plate 1 by using a conventionally known screen printing method, or by applying a dry film resist for the solder resist 5 to a vacuum laminator. Is formed on the insulating resin plate 1 by exposing and developing the resin paste or the dry film resist into a predetermined pattern by employing a conventionally known photolithography technique.
[0047]
Thus, according to the method for manufacturing a wiring board of the present invention, it is possible to obtain a wiring board capable of extremely high-density wiring without disconnection of the through conductor 4. Further, even if a build-up resin layer and a build-up wiring layer are laminated thereon to produce a build-up wiring board, it is possible to obtain a wiring board in which cracks do not occur in the through-holes 3 in the build-up resin layer. it can.
[0048]
In the above-described embodiment, a wiring board having a through-hole having a diameter of 75 to 130 μm and a thickness of 0.2 to 0.8 mm has been described as an example, but the present invention is not limited to the above-described embodiment. It goes without saying that various changes can be made without departing from the scope of the present invention.
[0049]
【The invention's effect】
According to the method for manufacturing a wiring board of the present invention, after a plating film is applied to the surface of the carbonized layer on the inner surface of the through hole formed by laser processing, the plated film is removed by etching together with the carbonized layer. Since the conductor is filled by plating into the through hole from which the film has been removed to form a through conductor, the plating film enters the microscopic unevenness of the carbonized layer when the plating film is formed, and the plating film is formed. Stress acts on the carbonized layer satisfactorily, and the carbonized layer is easily peeled off. When the carbonized layer and the plating film are removed by etching, the carbonized layer is well removed together with the plating film. It is possible to obtain a wiring substrate that does not peel off from the starting point.
[0050]
In addition, even when a build-up wiring board is manufactured using this wiring board, a wiring board having excellent connection reliability without causing cracks in the build-up resin layer and disconnecting the build-up wiring layer. Obtainable.
[Brief description of the drawings]
FIG. 1 is a partial sectional view showing an example of an embodiment of a wiring board of the present invention.
FIGS. 2A to 2G are partial cross-sectional views for explaining steps of a method for manufacturing a wiring board according to the present invention.
FIGS. 3A to 3C are enlarged cross-sectional views of a main part for describing a method of manufacturing a wiring board according to the present invention.
[Explanation of symbols]
1 .... Insulating resin plate
2A ', 2B', ... copper foil
2A ・ 2B ・ ・ ・ ・ ・ ・ ・ ・ ・ Wiring conductor
3 .... through-hole
4 .... through conductor
6. Carbonized layer
11 Plating film
12 ... Plating layer

Claims (1)

絶縁樹脂板の上下面に銅箔が被着された両面銅張板にレーザ加工を施すことにより、前記両面銅張板を貫通し、内面に炭化層が形成された複数の貫通孔を穿孔する工程と、次に前記炭化層の表面にめっき膜を被着させる工程と、次に前記炭化層を前記めっき膜とともにエッチング除去する工程と、次に前記炭化層および前記めっき膜が除去された前記貫通孔の内部にめっきにより導体を充填して貫通導体を形成するとともに前記銅箔の表面に前記めっきによりめっき層を被着させる工程と、次に前記銅箔および該銅箔に被着した前記めっき層を部分的にエッチングして配線導体を形成する工程とを行なうことを特徴とする配線基板の製造方法。By performing laser processing on the double-sided copper-clad board on which the copper foil is adhered to the upper and lower surfaces of the insulating resin plate, the double-sided copper-clad board is penetrated, and a plurality of through holes in which a carbonized layer is formed on the inner surface are punched. And a step of depositing a plating film on the surface of the carbonized layer, a step of etching and removing the carbonized layer together with the plating film, and then the step of removing the carbonized layer and the plating film. A step of forming a through conductor by filling a conductor by plating inside the through hole and applying a plating layer to the surface of the copper foil by plating, and then applying the plating layer to the copper foil and the copper foil. Forming a wiring conductor by partially etching the plating layer.
JP2003014846A 2003-01-23 2003-01-23 Method of manufacturing wiring board Pending JP2004228360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014846A JP2004228360A (en) 2003-01-23 2003-01-23 Method of manufacturing wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014846A JP2004228360A (en) 2003-01-23 2003-01-23 Method of manufacturing wiring board

Publications (1)

Publication Number Publication Date
JP2004228360A true JP2004228360A (en) 2004-08-12

Family

ID=32902765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014846A Pending JP2004228360A (en) 2003-01-23 2003-01-23 Method of manufacturing wiring board

Country Status (1)

Country Link
JP (1) JP2004228360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167621A (en) * 2016-04-28 2016-09-15 新光電気工業株式会社 Wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167621A (en) * 2016-04-28 2016-09-15 新光電気工業株式会社 Wiring board

Similar Documents

Publication Publication Date Title
JP2004311736A (en) Method for manufacturing built-up multilayer wiring board incorporating chip comp0nents
KR100752017B1 (en) Manufacturing Method of Printed Circuit Board
JP2020057767A (en) Printed wiring board
JP2010016061A (en) Printed wiring board, and manufacturing method therefor
JP2003188541A (en) Method of manufacturing wiring board
JP2000269647A (en) Single-side circuit board, multilayer printed wiring board and manufacture thereof
JP5935186B2 (en) Wiring board
JP2004228360A (en) Method of manufacturing wiring board
JP2003046226A (en) Wiring board and its manufacturing method
JP3792544B2 (en) Wiring board manufacturing method
JP4160765B2 (en) Wiring board manufacturing method
JP4480693B2 (en) Wiring board and manufacturing method thereof
JP3881528B2 (en) Wiring board and manufacturing method thereof
JP3934883B2 (en) Wiring board and manufacturing method thereof
JP2004179526A (en) Wiring board, and manufacturing method thereof
JP2005191115A (en) Wiring board and its manufacturing method
JP2004228362A (en) Method of manufacturing wiring board
JP2004228534A (en) Punching method by laser to mother board for multi-cavity wiring board
JPH10321970A (en) Printed wiring board and manufacture thereof
JP3881523B2 (en) Wiring board and manufacturing method thereof
JP2010262954A (en) Method for manufacturing wiring board
JP2004063927A (en) Wiring circuit board and its manufacturing method
JP2004095738A (en) Wiring board and method for producing the same
JP2004207339A (en) Wiring board and its manufacturing method
JP2006287251A (en) Wiring board and method for manufacturing it