JP2005191115A - Wiring board and its manufacturing method - Google Patents

Wiring board and its manufacturing method Download PDF

Info

Publication number
JP2005191115A
JP2005191115A JP2003428076A JP2003428076A JP2005191115A JP 2005191115 A JP2005191115 A JP 2005191115A JP 2003428076 A JP2003428076 A JP 2003428076A JP 2003428076 A JP2003428076 A JP 2003428076A JP 2005191115 A JP2005191115 A JP 2005191115A
Authority
JP
Japan
Prior art keywords
hole
copper
insulating substrate
layer
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003428076A
Other languages
Japanese (ja)
Inventor
Hidetoshi Yugawa
英敏 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003428076A priority Critical patent/JP2005191115A/en
Publication of JP2005191115A publication Critical patent/JP2005191115A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board having a high reliability by suppressing the separation of an interconnection conductor around a through-hole from an insulation substrate, and to provide its manufacturing method. <P>SOLUTION: The wiring board at least comprises the insulation substrate 1 which contains resin, the through-hole 3 formed in the insulation substrate 1, a through-conductor 5 attached on the inner wall of the through-hole 3, and an interconnection layer 13 which includes a metal foil 9 and is formed on a principal plane of the insulation substrate 1. In the periphery of the through hole out of the principal plane of the insulation substrate 1, a through-hole periphery interconnection layer 14 consisting of a plating layer 11 is formed. The through-hole conductor 5 and the interconnection layer 13 are connected via the through-hole periphery interconnection layer 14. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機材料系の配線基板およびその製造方法に関し、特に、貫通孔周縁部において、絶縁基板と配線層である貫通孔周縁配線層との剥離のない、信頼性に優れた配線基板およびその製造方法に関するものである。   TECHNICAL FIELD The present invention relates to an organic material-based wiring board and a method for manufacturing the same, and in particular, a wiring board excellent in reliability without peeling between an insulating substrate and a through-hole peripheral wiring layer as a wiring layer in a peripheral part of the through-hole. It relates to the manufacturing method.

従来、半導体素子等の電子部品を搭載するための有機材料系の配線基板として、例えばガラス−エポキシ板からなり、その上面から下面にかけて貫通する貫通孔を有する絶縁基板の上下両面に銅箔およびその上に施しためっき層からなる配線導体を被着させるとともに、前記貫通孔の内面に前記上下両面の配線導体同士を接続するめっき層からなる貫通導体を被着させてなる配線基板が使用されている。   Conventionally, as an organic material-based wiring board for mounting electronic components such as semiconductor elements, copper foils are formed on both upper and lower surfaces of an insulating substrate made of, for example, a glass-epoxy plate and having through holes penetrating from the upper surface to the lower surface. A wiring board is used in which a wiring conductor made of a plating layer applied thereon is attached and a through conductor made of a plating layer that connects the upper and lower wiring conductors is attached to the inner surface of the through hole. Yes.

このような有機材料系の配線基板は、ガラス−エポキシ板からなる絶縁基板の上下両面に銅箔が被着された両面銅張基板を準備するとともに、この両面銅張基板を上下に貫通する貫通孔をドリル加工により穿孔し、次に前記上下両面の銅箔上および貫通孔内面に銅からなるめっき層を無電解めっき法および電解めっき法により析出させて前記上下両面の銅箔の上にめっき層を被着するとともに貫通孔の内面にめっき層からなる貫通導体を形成し、次に、前記絶縁基板の上下両面に被着された銅箔およびその銅箔に被着しためっき層をフォトリソグラフィー技術を採用して部分的にエッチングして配線導体を形成することによって製作されている。   Such an organic material-based wiring board is prepared by preparing a double-sided copper-clad board with copper foils attached on both upper and lower sides of an insulating substrate made of glass-epoxy board, and penetrating vertically through the double-sided copper-clad board. Holes are drilled and then plated on the upper and lower copper foils by depositing a copper plating layer on the upper and lower copper foils and on the inner surface of the through holes by electroless plating and electrolytic plating. A through conductor made of a plating layer is formed on the inner surface of the through hole, and then the copper foil applied to the upper and lower surfaces of the insulating substrate and the plating layer applied to the copper foil are photolithography. It is manufactured by employing a technique and partially etching to form a wiring conductor.

また、この配線基板の両面にビルドアップ樹脂層およびビルドアップ配線層を形成することによりビルドアップ配線基板が製作される。なお、このような配線基板においては、貫通導体が被着された貫通孔は通常、エポキシ樹脂等の穴埋め樹脂により充填されている。   Moreover, a buildup wiring board is manufactured by forming a buildup resin layer and a buildup wiring layer on both surfaces of the wiring board. In such a wiring board, the through hole to which the through conductor is attached is usually filled with a filling resin such as an epoxy resin.

ところで、このような有機材料系の多層配線基板においては、電子装置の小型・薄型化の要求に対応してその配線密度を高めるために、例えば絶縁基板の厚みを0.2〜1mm程度、貫通孔の直径を75〜130μm程度の小さなものとする試みがなされている。また、このような直径が75〜130μm程度の小さな貫通孔を形成するためには、例えば炭酸ガスレーザによる穿孔方法が採用される(特許文献1参照)。
特開2000−91750号公報
By the way, in such an organic material-based multilayer wiring board, in order to increase the wiring density in response to the demand for reduction in size and thickness of the electronic device, for example, the insulating substrate has a thickness of about 0.2 to 1 mm. Attempts have been made to make the hole diameter as small as 75 to 130 μm. Moreover, in order to form such a small through-hole with a diameter of about 75 to 130 μm, for example, a drilling method using a carbon dioxide laser is employed (see Patent Document 1).
JP 2000-91750 A

しかしながら、両面銅張基板に貫通孔を形成する場合、従来のドリル加工およびレーザで加工で貫通孔を形成した際、貫通孔形成時の熱や振動、衝撃などにより貫通孔周縁において、銅箔と絶縁基板との密着強度が極端に劣化し、半導体素子実装時の熱履歴を受けた際などに、絶縁基板と銅箔との熱膨張係数の違いにより発生する応力により、特に、貫通孔周縁において、絶縁基板と銅箔の間にクラックが発生し、そのクラックが起点となり配線基板の表裏の導通の為の貫通導体を断線せしめ導通不良を発生させてしまうという問題があった。   However, when forming a through hole in a double-sided copper-clad substrate, when the through hole is formed by conventional drilling and laser processing, the copper foil and When the adhesion strength with the insulating substrate is extremely deteriorated and the thermal history during mounting of the semiconductor element is received, the stress generated by the difference in the thermal expansion coefficient between the insulating substrate and the copper foil, particularly at the periphery of the through hole There is a problem in that a crack is generated between the insulating substrate and the copper foil, and the crack is the starting point, causing the through conductors for conduction on the front and back sides of the wiring substrate to be disconnected, resulting in poor conduction.

本発明は、かかる従来の問題点に鑑み案出されたものであり、その目的は、両面銅張基板に貫通孔を形成したときの熱や振動、衝撃などによる銅箔と絶縁基板の密着強度低下を原因とする貫通導体の断線の生じない配線基板および配線基板の製造方法を提供することにある。   The present invention has been devised in view of such conventional problems, and its purpose is to provide adhesion strength between a copper foil and an insulating substrate due to heat, vibration, impact, etc. when a through hole is formed in a double-sided copper-clad substrate. It is an object of the present invention to provide a wiring board and a manufacturing method of the wiring board that do not cause disconnection of a through conductor due to a decrease.

本発明の配線基板は、少なくとも、樹脂を含有してなる絶縁基板と、該絶縁基板に形成された貫通孔と、該貫通孔の内壁に被着した貫通導体と、前記絶縁基板の主面に形成された金属箔を備えた配線層とを具備してなる配線基板において、前記絶縁基板の主面のうち、前記貫通孔周縁部には、めっき層からなる貫通孔周縁配線層が形成され、該貫通孔周縁配線層を介して、前記貫通導体と配線層とが接続されてなることを特徴とする。   The wiring substrate of the present invention includes at least an insulating substrate containing a resin, a through hole formed in the insulating substrate, a through conductor attached to the inner wall of the through hole, and a main surface of the insulating substrate. In a wiring board comprising a wiring layer provided with the formed metal foil, a through-hole peripheral wiring layer made of a plating layer is formed on the peripheral edge of the through-hole in the main surface of the insulating substrate, The through conductor and the wiring layer are connected via the through hole peripheral wiring layer.

また、貫通孔周縁配線層の幅が3μm以上であることが望ましい。   Further, it is desirable that the width of the through hole peripheral wiring layer is 3 μm or more.

また、本発明の配線基板は、めっき層が、無電解めっき層と、電解めっき層とからなり、銅めっきであることが望ましい。   Moreover, as for the wiring board of this invention, a plating layer consists of an electroless plating layer and an electroplating layer, and it is desirable that it is copper plating.

また、本発明の配線基板の製造方法は、樹脂を含有してなる絶縁基板と、絶縁基板の主面に形成された金属箔とからなる両面銅張基板に貫通孔を形成する工程と、前記両面銅張基板を粗化処理する工程と、粗化処理した前記両面銅張基板の銅箔の一部をエッチングして前記貫通孔の周縁の銅箔を除去し、前記貫通孔の周縁の絶縁基板の主面を露出させる工程と、前記貫通孔の周縁の銅箔を除去した前記両面銅張基板に、順次、無電解銅めっき層と電解銅めっき層とを形成し、貫通導体と、貫通導体周縁配線層と、配線層と、を形成する工程と、前記貫通孔内に穴埋め樹脂を埋め込む工程と、前記両面銅張基板の表層を研磨して穴埋め樹脂の不要部分を除去するとともに、配線層の厚みを所定の厚みにする研磨工程と、を具備することを特徴とする。   In addition, the method for manufacturing a wiring board according to the present invention includes a step of forming a through hole in a double-sided copper-clad substrate including an insulating substrate containing a resin and a metal foil formed on a main surface of the insulating substrate, A step of roughening the double-sided copper-clad substrate, and etching a part of the copper foil of the roughened double-sided copper-clad substrate to remove the copper foil at the periphery of the through-hole, thereby insulating the periphery of the through-hole An electroless copper plating layer and an electrolytic copper plating layer are sequentially formed on the double-sided copper-clad substrate from which the copper foil at the periphery of the through hole is removed, and a step of exposing the main surface of the substrate. A step of forming a conductor peripheral wiring layer and a wiring layer; a step of embedding a hole-filling resin in the through-hole; and polishing a surface layer of the double-sided copper-clad substrate to remove unnecessary portions of the hole-filling resin; A polishing step for setting the thickness of the layer to a predetermined thickness, and That.

また、本発明の配線基板の製造方法は貫通孔の形成方法がレーザ加工であることが望ましい。   In the method for manufacturing a wiring board according to the present invention, the through hole is preferably formed by laser processing.

また、本発明の配線基板の製造方法は研磨工程において前記両面銅張基板の表層の研磨と銅のエッチングとを交互に複数回繰り返して行うことが望ましい。   In the method for manufacturing a wiring board according to the present invention, it is preferable that the polishing of the surface layer of the double-sided copper-clad substrate and the etching of copper are alternately repeated a plurality of times in the polishing step.

従来、両面銅張基板に貫通孔を形成する際に発生する熱や振動、衝撃などに起因して発生する貫通孔周縁の銅箔と絶縁基板との密着強度低下により、配線基板の信頼性は著しく低下しているのであるが、本発明によれば、密着強度の低下した銅箔をあらかじめ除去し、再度、めっき法により、貫通孔周縁に貫通孔周縁配線層を形成することで、貫通孔周縁の絶縁基板と貫通孔周縁配線層との密着信頼性を格段に改善することができ、配線基板の信頼性を向上させることができる。   Conventionally, the reliability of the wiring board has been reduced due to a decrease in the adhesion strength between the copper foil around the through hole and the insulating board generated due to heat, vibration, impact, etc. that are generated when the through hole is formed in the double-sided copper-clad board. According to the present invention, the copper foil with reduced adhesion strength is removed in advance, and the through hole peripheral wiring layer is formed around the through hole periphery again by the plating method. The adhesion reliability between the peripheral insulating substrate and the through hole peripheral wiring layer can be remarkably improved, and the reliability of the wiring substrate can be improved.

また、本発明では貫通孔周縁配線層の貫通孔からの幅を3μm以上とすることで、密着力が低下した金属箔を除去することができ、配線基板の信頼性を向上させることができる。   Further, in the present invention, by setting the width from the through hole of the through hole peripheral wiring layer to 3 μm or more, the metal foil with reduced adhesion can be removed, and the reliability of the wiring board can be improved.

また、貫通孔周縁配線層を、無電解めっき層と電解めっき層とで形成することで、電気抵抗が小さく電気的ノイズの小さい配線層を安価に、容易に形成することができる。   In addition, by forming the through-hole peripheral wiring layer with an electroless plating layer and an electrolytic plating layer, a wiring layer with low electrical resistance and low electrical noise can be easily formed at low cost.

また、本発明の製造方法によれば、貫通孔周縁の絶縁基板との密着信頼性に優れた貫通孔周縁配線層を容易に形成することができ、信頼性に優れた配線基板を提供することができる。   In addition, according to the manufacturing method of the present invention, it is possible to easily form a through hole peripheral wiring layer having excellent adhesion reliability with an insulating substrate at the periphery of the through hole, and to provide a wiring substrate excellent in reliability. Can do.

特に、貫通孔形成後に両面配線基板を粗化処理し、その粗化処理後に両面銅張基板の銅の一部をエッチングするという工程順序にしたことで両面銅張基板の粗化工程において銅箔との密着強度のみならず、樹脂として要求される特性の低下した絶縁基板の極表面部分を除去することができ、絶縁基板の特性を回復させることもできる。   In particular, the copper foil in the roughening process of the double-sided copper-clad board is made by roughening the double-sided wiring board after forming the through-hole, and etching the part of the copper of the double-sided copper-clad board after the roughening process. It is possible to remove not only the adhesion strength of the insulating substrate but also the pole surface portion of the insulating substrate having deteriorated characteristics required as a resin, and the characteristics of the insulating substrate can be recovered.

そして、この粗化工程の後に銅箔のエッチングを行うことにより、貫通孔の周縁の銅箔を貫通孔周縁において、幅3〜5μm程度、容易に除去することができる。   Then, by etching the copper foil after this roughening step, the copper foil at the periphery of the through hole can be easily removed at a width of about 3 to 5 μm at the periphery of the through hole.

また、貫通孔に穴埋め樹脂を埋め込む工程と前記貫通孔の周縁の銅箔を前記両面銅張基板の表層を研磨して穴埋め樹脂の不要部分を除去するとともに、配線層の厚みを所定の厚みにする研磨工程とすることで貫通孔周縁配線層と、金属箔を備える配線層とを略同一面とすることができ、ビルドアップ配線層を形成する際に十分な平坦度を得ることができる。   In addition, the step of embedding a hole-filling resin in the through-hole and the copper foil at the periphery of the through-hole remove the unnecessary portion of the hole-filling resin by polishing the surface layer of the double-sided copper-clad substrate, and the wiring layer has a predetermined thickness By using the polishing step, the through hole peripheral wiring layer and the wiring layer including the metal foil can be made substantially flush with each other, and sufficient flatness can be obtained when forming the build-up wiring layer.

また、両面銅張基板への貫通孔への加工をレーザ加工により行うことで貫通孔のまわりの銅箔がエッチングされ易くなる。特に炭酸ガスレーザで貫通孔を形成する場合の銅箔のエッチングされやすさは顕著となる。それはレーザ加工の際の熱作用で銅箔に孔が開き貫通孔が形成されるが貫通孔の周りの銅箔も熱作用を受け表面が酸化され、また熱作用により銅の結晶配行も変化してエッチングがされやすくなるためと考えられる。   Moreover, the copper foil around a through-hole becomes easy to be etched by processing to the through-hole to a double-sided copper clad board | substrate by laser processing. In particular, the ease of etching of the copper foil in the case where the through hole is formed with a carbon dioxide laser becomes remarkable. It is a thermal action during laser processing that opens a hole in the copper foil to form a through-hole, but the copper foil around the through-hole also receives a heat action to oxidize the surface, and the copper action also changes the copper crystal arrangement. This is considered to be because etching is easily performed.

そのために両面銅張基板への貫通孔の形成はレーザ、特に炭酸ガスレーザによる加工が望ましい。   Therefore, it is desirable to form a through hole in the double-sided copper-clad substrate by using a laser, particularly a carbon dioxide gas laser.

また、研磨工程においては、両面銅張基板の表層の研磨と銅のエッチングとを交互に複数回繰り返して穴埋め樹脂の不要部分を除去するとともに表層の銅の厚みを所定の厚みにする。研磨のみで穴埋め樹脂の不要部分の除去と銅厚みを所定の厚みにするより、研磨と銅のエッチングを交互に行うことにより穴埋め樹脂の不要部分を除去し銅の厚みを所定の厚みとするほうが、総計の作業時間が短縮され、銅厚みがより均一となる。また銅のエッチング液としては硫酸−過酸化水素水の混合溶液や過硫酸アンモニウム水溶液が望ましく、銅厚みの均一なエッチングを行うことができる。   Further, in the polishing step, the polishing of the surface layer of the double-sided copper-clad substrate and the etching of the copper are alternately repeated a plurality of times to remove unnecessary portions of the hole-filling resin and to make the thickness of the surface layer copper a predetermined thickness. Rather than removing unnecessary portions of the hole filling resin and making the copper thickness a predetermined thickness only by polishing, it is better to remove the unnecessary portions of the hole filling resin by alternately performing polishing and copper etching and to make the copper thickness a predetermined thickness. The total working time is shortened and the copper thickness becomes more uniform. As the copper etching solution, a mixed solution of sulfuric acid-hydrogen peroxide solution or an aqueous solution of ammonium persulfate is desirable, and etching with a uniform copper thickness can be performed.

本発明の配線基板は、例えば、図1に示すように絶縁基板1に貫通孔3が設けられており、この貫通孔3には、絶縁基板1の両面を電気的に接続する貫通導体5が設けられている。そして、貫通導体5が取り囲んで形成する空間には埋め込み樹脂7が充填されている。   In the wiring board of the present invention, for example, as shown in FIG. 1, a through hole 3 is provided in an insulating substrate 1, and a through conductor 5 that electrically connects both surfaces of the insulating substrate 1 is provided in the through hole 3. Is provided. A space formed by surrounding the through conductor 5 is filled with an embedded resin 7.

また、絶縁基板1の両面には、金属箔9とめっき層11とからなる配線層13が形成されている。そして、貫通孔3の周縁部には、金属箔9がなく、めっき層11からなる貫通孔周縁配線層14が形成されている。   A wiring layer 13 made of a metal foil 9 and a plating layer 11 is formed on both surfaces of the insulating substrate 1. The peripheral portion of the through hole 3 has no metal foil 9 and a through hole peripheral wiring layer 14 made of a plating layer 11 is formed.

本発明の配線基板においては、貫通孔3の周縁部において、金属箔9を設けず、金属箔9を具備する配線層13と、貫通導体5とを貫通孔周縁配線層14を介して、接続することが重要である。   In the wiring board of the present invention, the metal foil 9 is not provided at the peripheral portion of the through hole 3, and the wiring layer 13 provided with the metal foil 9 and the through conductor 5 are connected via the through hole peripheral wiring layer 14. It is important to.

例えば、両面銅張基板から配線基板を作製する場合には、貫通孔3を形成する際に発生する熱や、振動、衝撃などにより、特に、貫通孔3の周縁において絶縁基板1と金属箔9との接着強度は著しく劣化するのであるが、このような構造とすることで、貫通孔3の周縁において接着強度に劣る金属箔9に換えて、新たにめっき層による貫通孔周縁配線層14を形成することで、貫通孔周縁部における絶縁基板1との接着強度に優れた貫通孔周縁配線層14を有する配線基板となり、配線基板の信頼性を格段に向上させることができる。   For example, when a wiring board is manufactured from a double-sided copper-clad substrate, the insulating substrate 1 and the metal foil 9 are formed particularly at the periphery of the through hole 3 due to heat, vibration, impact, etc. generated when the through hole 3 is formed. In this structure, instead of the metal foil 9 having poor adhesion strength at the periphery of the through-hole 3, a through-hole peripheral wiring layer 14 made of a plating layer is newly provided. By forming, it becomes a wiring board which has the through-hole periphery wiring layer 14 excellent in the adhesive strength with the insulating substrate 1 in the through-hole peripheral part, and can improve the reliability of a wiring board markedly.

この貫通孔周縁配線層14は、形成が容易であることから、めっき法により形成することが望ましく、特に、絶縁基板1の主面に順次、無電解めっき層、電解めっき層を被着させて、形成することが望ましい。また、抵抗の低い銅を主成分とすることが望ましい。   The through-hole peripheral wiring layer 14 is preferably formed by a plating method because it is easy to form. In particular, an electroless plating layer and an electrolytic plating layer are sequentially deposited on the main surface of the insulating substrate 1. It is desirable to form. Moreover, it is desirable that copper having a low resistance is a main component.

また、スパッタ法や真空蒸着法などにより、電解めっき層の下地を形成してもよい。   Further, the base of the electrolytic plating layer may be formed by a sputtering method or a vacuum deposition method.

また、絶縁基板1の主面に形成された配線導体13は、例えば、厚みが3〜18μmの銅箔9に銅めっき等のめっき層11を被着させてなり、配線基板に搭載される電子部品(図示せず)の電極を外部電気回路基板の配線導体(図示せず)に電気的に接続するための導電路の一部として機能し、上面側の配線導体層13には、電子部品の電極が半田等の導電性接合部材を介して接続される電子部品接続パッドおよびこの電子部品接続パッドから引き回される配線パターン等が形成されており、下面側の配線導体層13には、外部電気回路基板の配線導体に半田等の導電性接合部材を介して接続される外部接続パッド等が形成されている。   In addition, the wiring conductor 13 formed on the main surface of the insulating substrate 1 is formed by, for example, depositing a plating layer 11 such as copper plating on a copper foil 9 having a thickness of 3 to 18 μm, and is mounted on the wiring substrate. It functions as a part of a conductive path for electrically connecting an electrode of a component (not shown) to a wiring conductor (not shown) of an external electric circuit board, and the wiring conductor layer 13 on the upper surface side has an electronic component. Are formed via an electronic component connection pad connected via a conductive bonding member such as solder and a wiring pattern drawn from the electronic component connection pad. External connection pads and the like are formed which are connected to the wiring conductor of the external electric circuit board via a conductive bonding member such as solder.

なお、配線導体13を構成する銅箔9は、その厚みを5μm以上とすることで、配線導体13に貫通孔3を形成した後に無電解銅めっき層形成の前処理として行なわれるマイクロエッチング時に銅箔9がエッチングされて銅箔9のピンホールまたは銅箔9の欠損を生じず、銅箔9への銅めっき層11の付き周り性や密着力が十分確保できる。他方、20μm以下とすることで、銅箔9に銅めっき層11等の層11を良好に形成することができる。したがって配線導体13を構成する銅箔9の厚みは5〜20μm、最適には10〜15μmの範囲とすることが望ましい。   Note that the copper foil 9 constituting the wiring conductor 13 has a thickness of 5 μm or more, so that the copper foil 9 is subjected to copper during micro-etching performed as a pretreatment for forming the electroless copper plating layer after the through hole 3 is formed in the wiring conductor 13. The foil 9 is etched so that pinholes in the copper foil 9 or defects in the copper foil 9 do not occur, and sufficient coverage and adhesion of the copper plating layer 11 to the copper foil 9 can be secured. On the other hand, when the thickness is 20 μm or less, the layer 11 such as the copper plating layer 11 can be satisfactorily formed on the copper foil 9. Therefore, the thickness of the copper foil 9 constituting the wiring conductor 13 is desirably in the range of 5 to 20 μm, and optimally in the range of 10 to 15 μm.

また、配線導体13は、これらを構成する銅箔9とそれに被着しためっき層11との合計の厚みが8μm未満であると、配線導体13の電気抵抗が高いものとなり、他方、30μmを超えると、配線導体13を高密度の配線パターンに形成することが困難となる。したがって、配線導体13を構成する銅箔9とこの銅箔9に被着しためっき層11との合計の厚みは、8〜30μmの範囲が好ましい。   In addition, when the total thickness of the copper foil 9 constituting the wiring conductor 13 and the plating layer 11 deposited thereon is less than 8 μm, the wiring conductor 13 has high electrical resistance, and on the other hand, exceeds 30 μm. It becomes difficult to form the wiring conductor 13 in a high-density wiring pattern. Therefore, the total thickness of the copper foil 9 constituting the wiring conductor 13 and the plating layer 11 deposited on the copper foil 9 is preferably in the range of 8 to 30 μm.

また、本発明の配線基板に用いられる絶縁基板1は、例えば、ガラスクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂を含浸させた厚みが0.2〜0.8mmの平板である。   The insulating substrate 1 used for the wiring board of the present invention is, for example, a flat plate having a thickness of 0.2 to 0.8 mm in which a glass cloth is impregnated with a resin such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin. is there.

この絶縁基板1は、その厚みを0.2mm以上とすることで、絶縁基板1および金属箔9を貫通して複数の貫通孔3を形成したり、あるいは絶縁基板1の上下両面に配線導体13を形成したり、さらには穴埋め樹脂7を形成する際等に印加される熱や外力等の影響により、発生する配線基板の反り、変形を抑制することができ、配線基板に要求される平坦度を確保することができる。また、絶縁基板1の厚みを0.8mm以下とすることで、貫通孔3の内部に貫通導体5を形成するときに、貫通孔3の内壁にめっき液を浸入させやすくなり、貫通導体5を良好に形成することできる。したがって、絶縁基板1の厚みは0.2〜0.8mmの範囲が好ましい。   The insulating substrate 1 has a thickness of 0.2 mm or more so that a plurality of through holes 3 are formed through the insulating substrate 1 and the metal foil 9 or the wiring conductors 13 are formed on both upper and lower surfaces of the insulating substrate 1. Can be prevented from being warped or deformed due to the influence of heat or external force applied when forming the hole filling resin 7 or the like, and the flatness required for the wiring board Can be secured. Further, by setting the thickness of the insulating substrate 1 to 0.8 mm or less, when the through conductor 5 is formed inside the through hole 3, the plating solution can easily enter the inner wall of the through hole 3. It can be formed satisfactorily. Therefore, the thickness of the insulating substrate 1 is preferably in the range of 0.2 to 0.8 mm.

なお、絶縁基板1は、ガラスクロスに含浸させるエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂中にシリカやアルミナあるいはアラミド樹脂等からなるフィラーをガラスクロス部分と樹脂部分とでレーザ光の透過度が略同等となる程度に含有させておけば、絶縁基板1と金属箔9との積層体である絶縁基板にレーザ光で貫通孔3を穿孔する際に、貫通孔3を略均一な大きさで良好に形成することが可能となる。したがって、絶縁基板1のガラスクロスに含浸させるエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂中にはシリカやアルミナあるいはアラミド樹脂等からなるフィラーをガラスクロス部分と樹脂部分とでレーザ光の透過度が略同等となるように含有させておくことが好ましい。   Insulating substrate 1 is made of a resin material such as epoxy resin, bismaleimide triazine resin, polyphenylene ether resin or the like impregnated into glass cloth. If the penetration is included so that the transmittance is substantially equal, the through-hole 3 is made substantially uniform when the through-hole 3 is drilled with a laser beam in the insulating substrate that is a laminate of the insulating substrate 1 and the metal foil 9. It is possible to form a good size. Therefore, in the resin such as epoxy resin, bismaleimide triazine resin or polyphenylene ether resin impregnated into the glass cloth of the insulating substrate 1, a filler made of silica, alumina, aramid resin or the like is irradiated with laser light between the glass cloth portion and the resin portion. It is preferable to make it contain so that the transmittance | permeability may become substantially equivalent.

また、ガラスクロスを含まない絶縁基板1であってもよく、また、液晶ポリマーからなる絶縁基板1を用いて熱膨張係数を適宜調整することもできる。また、あるいは、これらの絶縁基板1を複数の種類用いて、熱膨張係数や強度などの特性を調整することも可能である。   Moreover, the insulating substrate 1 which does not contain glass cloth may be sufficient, and a thermal expansion coefficient can also be adjusted suitably using the insulating substrate 1 which consists of a liquid crystal polymer. Alternatively, it is also possible to adjust characteristics such as a coefficient of thermal expansion and strength by using a plurality of types of these insulating substrates 1.

また、絶縁基板を貫通して直径が75〜130μmの貫通孔3が形成されることが望ましく、この貫通孔3の内壁に金属めっきを施すことにより貫通導体5が形成される。貫通孔3は、貫通導体5を絶縁基板1の上面から下面にかけて導出させるための導出路を提供するためのものであり、レーザ加工により穿孔されている。   Further, it is desirable to form a through hole 3 having a diameter of 75 to 130 μm through the insulating substrate, and the through conductor 5 is formed by applying metal plating to the inner wall of the through hole 3. The through hole 3 is provided to provide a lead-out path for leading the through conductor 5 from the upper surface to the lower surface of the insulating substrate 1 and is drilled by laser processing.

この貫通孔3は、その直径が絶縁基板1の断面の略中央部においては75〜115μmで略同じ大きさであり、絶縁基板1の開口部で90〜130μmとなるように外側に向かって拡径させておくことが好ましい。   The through-hole 3 has a diameter of 75 to 115 μm at the substantially central portion of the cross section of the insulating substrate 1 and is substantially the same size, and expands outward so as to be 90 to 130 μm at the opening of the insulating substrate 1. It is preferable to keep the diameter.

そして、このように貫通孔3の孔径を75〜130μmと微細にした場合には、貫通孔3の大きさが小さくなるため、貫通導体5を高密度で配置することができ、極めて高密度な配線を有する配線基板を得ることができる。   And when the hole diameter of the through-hole 3 is made as fine as 75 to 130 μm in this way, the size of the through-hole 3 becomes small, so that the through conductors 5 can be arranged at high density, and the extremely high density A wiring board having wiring can be obtained.

また、貫通孔3は、その直径が外側に向かって広がっていることにより、貫通孔3の内部にめっき金属を被着させて貫通導体5を形成する際に、貫通導体5を形成するためのめっき液が貫通孔3の内部に良好に入り込み、その結果、貫通孔3内に貫通導体5を良好に被着・形成することができる。なお、貫通孔3の直径が75μm以上の場合、貫通孔3の内部にめっき金属を充填して貫通導体5を形成する際に、貫通導体5を形成するためのめっき液が貫通孔3の内部に良好に入り込み貫通孔3の内部にめっき金属を被着させて貫通導体5を良好に形成することが可能となり、他方、130μm以下の場合、貫通導体5および配線導体13を高密度で配置することが可能となる。したがって、貫通孔3の直径は、75〜130μmの範囲が好ましい。   Moreover, when the through-hole 3 forms the through-conductor 5 when depositing a plating metal inside the through-hole 3 and forming the through-conductor 5 due to the diameter expanding toward the outside, The plating solution enters the inside of the through hole 3 favorably, and as a result, the through conductor 5 can be satisfactorily deposited and formed in the through hole 3. In addition, when the diameter of the through hole 3 is 75 μm or more, when forming the through conductor 5 by filling the inside of the through hole 3 with a plating metal, a plating solution for forming the through conductor 5 is formed inside the through hole 3. The through conductor 5 can be satisfactorily formed by depositing the plated metal inside the through hole 3, and when the thickness is 130 μm or less, the through conductor 5 and the wiring conductor 13 are arranged at high density. It becomes possible. Therefore, the diameter of the through hole 3 is preferably in the range of 75 to 130 μm.

さらに、貫通孔3の開口部における直径が絶縁基板1の厚み方向の略中央部における直径よりも10μm以上大きい場合には、貫通孔3の内部にめっき金属を充填して貫通導体5を形成する際に、貫通導体5を形成するためのめっき液が貫通孔3の内部に良好に入り込み、貫通孔3内に貫通導体5を良好に被着・形成することが可能となり、また、貫通孔3の開口部における直径が絶縁基板の厚み方向の略中央部における直径よりも大きく、その差が50μm以下の場合には、そのような形状を有する貫通孔3を安定して形成することが可能となる。したがって、貫通孔3の開口部における直径は、絶縁基板1の厚み方向の略中央部における直径よりも10〜50μm大きいことが好ましい。   Further, when the diameter at the opening of the through hole 3 is 10 μm or more larger than the diameter at the substantially central portion in the thickness direction of the insulating substrate 1, the through conductor 3 is formed by filling the inside of the through hole 3 with a plating metal. At this time, the plating solution for forming the through conductor 5 enters the inside of the through hole 3 favorably, so that the through conductor 5 can be satisfactorily deposited and formed in the through hole 3. When the diameter of the opening is larger than the diameter of the central portion in the thickness direction of the insulating substrate and the difference is 50 μm or less, the through-hole 3 having such a shape can be stably formed. Become. Therefore, it is preferable that the diameter at the opening of the through hole 3 is 10 to 50 μm larger than the diameter at the substantially central portion in the thickness direction of the insulating substrate 1.

また、貫通孔3内に被着・形成された貫通導体5は銅めっき等のめっき金属からなり、絶縁基板1を挟んで上下に位置する配線導体13同士を互いに電気的に接続する接続導体として機能する。そして、貫通孔3が上述したように外側に向けて拡径する形状となっていることから、貫通孔3内にめっき層5を被着させることにより良好に被着・形成されている。   Further, the through conductor 5 deposited and formed in the through hole 3 is made of a plating metal such as copper plating, and serves as a connection conductor for electrically connecting the wiring conductors 13 positioned above and below the insulating substrate 1 with each other. Function. Since the through hole 3 has a shape that expands toward the outside as described above, the plated layer 5 is deposited and formed satisfactorily by depositing the plating layer 5 in the through hole 3.

次に、図1に示した配線基板を製造する本発明の配線基板の製造方法について、図2(a)〜図5(g)を用いて詳細に説明する。なお、本実施例においても、直径が75〜130μmと微細な貫通孔3を有するとともに、厚みが0.2〜0.8mmの薄型の配線基板を製造する場合の例を示している。   Next, a method for manufacturing the wiring board of the present invention for manufacturing the wiring board shown in FIG. 1 will be described in detail with reference to FIGS. 2 (a) to 5 (g). In this embodiment as well, an example is shown in which a thin wiring board having a diameter of 75 to 130 μm and a fine through hole 3 and a thickness of 0.2 to 0.8 mm is manufactured.

まず、図2(a)に示すように、例えばガラスクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂を含浸させた厚みが0.2〜0.8mmの絶縁基板1の両面に厚みが5〜20μmの金属箔9である銅箔9が被着形成された両面銅張基板15を準備する。   First, as shown in FIG. 2 (a), for example, glass cloth is impregnated with an epoxy resin, a resin such as a bismaleimide triazine resin or a polyphenylene ether resin, on both surfaces of an insulating substrate 1 having a thickness of 0.2 to 0.8 mm. A double-sided copper-clad substrate 15 on which a copper foil 9 that is a metal foil 9 having a thickness of 5 to 20 μm is deposited is prepared.

なお、絶縁基板1は、その厚みを0.2mm以上とすることで、絶縁基板1および銅箔9を貫通して複数の貫通孔3を形成したり、さらには穴埋め樹脂7を形成する際等に印加される熱や外力等の影響で配線基板に反りや変形が発生して配線基板に要求される平坦度を確保できなくなってしまう危険性を小さくすることができ、また、その厚みを0.8mm以下とすることで、後述するように貫通孔3の内壁にめっき層5を被着して貫通導体5を形成するとき、貫通孔3内にめっき液が浸入しにくくなり、貫通導体5に断線が発生しやすくなるということがない。したがって、厚みが0.2〜0.8mmの絶縁基板1を用いることが好ましい。   The insulating substrate 1 has a thickness of 0.2 mm or more, so that when the insulating substrate 1 and the copper foil 9 are penetrated, a plurality of through holes 3 are formed, or when the hole filling resin 7 is formed. The risk of warping or deformation of the wiring board due to the influence of heat or external force applied to the wiring board to prevent the flatness required of the wiring board from being ensured can be reduced, and the thickness can be reduced to 0. By setting the thickness to .8 mm or less, when the through conductor 5 is formed by depositing the plating layer 5 on the inner wall of the through hole 3 as will be described later, it is difficult for the plating solution to enter the through hole 3. In this case, disconnection is not likely to occur. Therefore, it is preferable to use the insulating substrate 1 having a thickness of 0.2 to 0.8 mm.

また、銅箔9は、その厚みを5μm以上とすることで、貫通孔3形成後のめっき層形成の前処理として行なわれるマイクロエッチング時に銅箔9がエッチングされて銅箔9にピンホールまたは欠損を生じることがなくなり、銅箔9へのめっきの付き周り性や密着力を強くすることができる。   Further, by setting the thickness of the copper foil 9 to 5 μm or more, the copper foil 9 is etched at the time of microetching performed as a pretreatment for forming the plating layer after the through-hole 3 is formed, so that pinholes or defects are formed in the copper foil 9. Can be prevented, and the adhesion property and adhesion of the plating on the copper foil 9 can be increased.

また、銅箔9の厚みを20μm以下とすることで、貫通孔3をレーザ加工により穿孔する場合に、直径が75〜130μmの貫通孔3を安定して形成することが可能となる。したがって、5〜20μmの厚みの銅箔9を用いることが望ましい。   Moreover, when the thickness of the copper foil 9 is 20 μm or less, when the through hole 3 is drilled by laser processing, the through hole 3 having a diameter of 75 to 130 μm can be stably formed. Therefore, it is desirable to use a copper foil 9 having a thickness of 5 to 20 μm.

このような銅箔9は、例えば、絶縁基板1の上下全面に厚みが8〜40μm程度の銅箔9を貼着するとともに、この銅箔9を硫酸−過酸化水素水などの銅エッチング液で膜厚が均一となるようにエッチングし、厚みが5〜20μmとなるように加工して形成される。   For example, the copper foil 9 has a thickness of about 8 to 40 μm attached to the entire upper and lower surfaces of the insulating substrate 1, and the copper foil 9 is made of a copper etching solution such as sulfuric acid-hydrogen peroxide solution. It is formed by etching so that the film thickness becomes uniform and processing so that the thickness becomes 5 to 20 μm.

次に、図2(b)に示すように、レーザ加工により両面銅張基板15を貫通する直径が75〜130μmで、絶縁基板1の表層において外側に向けて拡径する貫通孔3を穿孔する。   Next, as shown in FIG. 2B, a through hole 3 having a diameter of 75 to 130 μm penetrating the double-sided copper-clad substrate 15 and expanding toward the outside in the surface layer of the insulating substrate 1 is drilled by laser processing. .

なお、この場合、貫通孔3の内壁にはレーザ加工に伴なって厚みが数μm以下程度の炭化層17が形成される。また貫通孔加工時のレーザ加工の熱衝撃により、貫通孔3の周縁の銅箔9と絶縁基板1との密着強度が低くなっている。   In this case, a carbonized layer 17 having a thickness of about several μm or less is formed on the inner wall of the through hole 3 along with the laser processing. Further, due to the thermal shock of the laser processing during the through hole processing, the adhesion strength between the copper foil 9 and the insulating substrate 1 at the periphery of the through hole 3 is low.

このように、貫通孔3の直径を75〜130μmと微細に場合には、貫通導体5および配線導体13を形成する際に貫通導体5および配線導体13を高密度で配置することができ、それにより高密度な配線基板を得ることができる。また、貫通孔3の孔径が外側に向かって広がっていることから、貫通孔3の内部にめっき金属を充填して貫通導体5を形成する際に、貫通導体5を形成するためのめっき液が貫通孔3の内部に良好に入り込み、その結果、貫通孔3内に貫通導体5を良好に形成することができる。   Thus, when the diameter of the through hole 3 is as fine as 75 to 130 μm, the through conductor 5 and the wiring conductor 13 can be arranged with high density when the through conductor 5 and the wiring conductor 13 are formed. Thus, a high-density wiring board can be obtained. Moreover, since the hole diameter of the through-hole 3 is expanding outward, when the through-conductor 5 is formed by filling the inside of the through-hole 3 with a plating metal, a plating solution for forming the through-conductor 5 is used. As a result, the through conductor 5 can be satisfactorily formed in the through hole 3.

なお、貫通孔3の孔径が75μm以上の場合、貫通孔3の内層にめっき金属を被着して貫通導体5を形成する際に、貫通導体5を形成するためのめっき液が貫通孔3の内部に良好に入り込み、貫通孔3の内部に貫通導体5を良好に形成することが可能となり、他方、130μm以下では、貫通導体5および配線導体13を高密度で配置することが可能となる。したがって、貫通孔3の直径は、75〜130μmの範囲が好ましい。   In addition, when the hole diameter of the through hole 3 is 75 μm or more, when forming the through conductor 5 by depositing a plating metal on the inner layer of the through hole 3, a plating solution for forming the through conductor 5 is used in the through hole 3. The inside of the through hole 3 can be satisfactorily formed, and the through conductor 5 can be satisfactorily formed inside the through hole 3. On the other hand, when the thickness is 130 μm or less, the through conductor 5 and the wiring conductor 13 can be arranged with high density. Therefore, the diameter of the through hole 3 is preferably in the range of 75 to 130 μm.

また、貫通孔3の開口部における直径が、絶縁基板1の厚み方向の略中央部における直径よりも10μm以上大きい場合には、貫通孔3の内層にめっき金属を被着して貫通導体5を形成する際に、貫通導体5を形成するためのめっき液が貫通孔3の内部に良好に入り込み貫通孔3の内部に貫通導体5を良好に形成することが可能となり、また、貫通孔3の開口部における直径が絶縁基板1の厚み方向の略中央部における直径よりも50μmを超えない範囲で大きい場合には、そのような形状を有する貫通孔3を安定して形成することが可能となる。したがって、貫通孔3の開口部における直径は、絶縁基板1の略中央部における直径よりも10〜50μm程度大きくしておくことが好ましい。   Further, when the diameter of the opening of the through hole 3 is 10 μm or more larger than the diameter of the substantially central portion in the thickness direction of the insulating substrate 1, a plated metal is deposited on the inner layer of the through hole 3 to form the through conductor 5. At the time of forming, the plating solution for forming the through conductor 5 can enter the inside of the through hole 3 well and form the through conductor 5 inside the through hole 3. When the diameter at the opening is larger than the diameter at the substantially central portion in the thickness direction of the insulating substrate 1 within a range not exceeding 50 μm, the through hole 3 having such a shape can be stably formed. . Therefore, it is preferable that the diameter of the opening of the through hole 3 is about 10 to 50 μm larger than the diameter of the substantially central portion of the insulating substrate 1.

なお、絶縁基板1および銅箔9に貫通孔3を形成するには、銅箔9上に例えばレーザ光のエネルギーを良好に吸収する黒色もしくは黒色に近い色を有する樹脂からなるレーザ加工用シートを貼着し、このレーザ加工用シートの上から炭酸ガスレーザ光を照射する方法、もしくは銅箔9の表面を算術平均粗さRaで0.2〜2μmの範囲で表面を粗化した後、その銅箔9に酸化雰囲気150℃で30分程度の熱処理を施し、その表面をレーザ光のエネルギーを良好に吸収する黒色もしくは茶色等の黒色に近い色を有する色として炭酸ガスレーザ光を照射する方法のどちらかの方法を使用し、8〜30mJの出力の炭酸ガスレーザ光を40〜240μ秒のパルス幅で所定の位置に照射して貫通孔3を穿孔する方法が採用される。   In order to form the through-hole 3 in the insulating substrate 1 and the copper foil 9, a laser processing sheet made of a resin having a black color or a color close to black, for example, which absorbs laser beam energy satisfactorily on the copper foil 9 is used. A method of attaching and irradiating the laser processing sheet with a carbon dioxide laser beam, or roughening the surface of the copper foil 9 with an arithmetic average roughness Ra in the range of 0.2 to 2 μm, and then the copper Either a method in which the foil 9 is heat-treated at an oxidizing atmosphere of 150 ° C. for about 30 minutes and the surface thereof is irradiated with a carbon dioxide laser beam as a color having a color close to black, such as black or brown, which absorbs the energy of the laser beam satisfactorily. Using this method, a method of piercing the through-hole 3 by irradiating a predetermined position with a carbon dioxide laser beam with an output of 8 to 30 mJ with a pulse width of 40 to 240 μs is employed.

このとき、炭酸ガスレーザ光の出力を8mJ以上とすることで、貫通孔3を十分な大きさに穿孔することが可能となる。また、30mJ以下とすることで絶縁基板1における貫通孔3の孔径を精度よく形成することができる。したがって、照射する炭酸ガスレーザ光は、その出力が8〜30mJでパルス幅が40〜240μ秒の範囲ですることが好ましい。   At this time, by setting the output of the carbon dioxide laser beam to 8 mJ or more, the through hole 3 can be drilled to a sufficient size. Moreover, the hole diameter of the through-hole 3 in the insulated substrate 1 can be accurately formed by setting it as 30 mJ or less. Therefore, it is preferable that the carbon dioxide laser beam to be irradiated has an output of 8 to 30 mJ and a pulse width of 40 to 240 μsec.

なお、貫通孔3を上下両面側に向けて拡径する形状とするには、レーザ加工により穿孔する場合、レーザ光の1パルス当たりのエネルギーやショット数を調整すればよい。   In addition, in order to make the through-hole 3 have a shape that expands toward both the upper and lower surfaces, when drilling by laser processing, the energy per laser beam and the number of shots may be adjusted.

例えば、まず、図6(a)に要部拡大断面図で示すように、出力が8〜30mJでパルス幅が40〜500μ秒の数パルスのレーザ光を照射して銅箔9および絶縁基板1を貫通し、絶縁基板1の上面側で上下両面側に向けて拡径する形状の貫通孔3を形成する。このとき絶縁基板1の上面側ではレーザ光のエネルギーが下面側より多く印加されるので、貫通孔3は絶縁基板1の上面側で外側に向けて拡径する形状となる。また、銅箔9は絶縁基板1よりも穿孔されにくいので、貫通孔3はその直径が銅箔9の部位において絶縁基板1の部位よりも小さく、銅箔9が貫通孔3の内側に突き出た形状となる。   For example, first, as shown in the enlarged cross-sectional view of the main part in FIG. 6A, the copper foil 9 and the insulating substrate 1 are irradiated by irradiating several pulses of laser light having an output of 8 to 30 mJ and a pulse width of 40 to 500 μsec. The through-hole 3 having a shape that expands toward the upper and lower surfaces on the upper surface side of the insulating substrate 1 is formed. At this time, since the laser beam energy is applied more on the upper surface side of the insulating substrate 1 than on the lower surface side, the through-hole 3 has a shape that expands toward the outside on the upper surface side of the insulating substrate 1. Further, since the copper foil 9 is less likely to be drilled than the insulating substrate 1, the diameter of the through hole 3 is smaller than that of the insulating substrate 1 at the portion of the copper foil 9, and the copper foil 9 protrudes inside the through hole 3. It becomes a shape.

次に、図6(b)に要部拡大断面図に示すように、さらに数パルスのレーザ光を照射する。それにより照射されたレーザ光の一部が絶縁基板1の下面側において貫通孔3の内側に突き出た銅箔9で反射されて絶縁基板1の下面側をえぐるので、貫通孔3は絶縁基板1の上下で上下両面側に向けて拡径する形状となる。   Next, as shown in the enlarged cross-sectional view of the main part in FIG. A part of the irradiated laser beam is reflected by the copper foil 9 protruding to the inside of the through hole 3 on the lower surface side of the insulating substrate 1 and passes through the lower surface side of the insulating substrate 1. It becomes a shape which expands in diameter toward the upper and lower both sides.

さらに、絶縁基板1の下面側の銅箔9をレーザーにより除去することで、図6(c)に示すように両面銅張基板15に絶縁基板1の上下で上下両面側に向けて拡径し、上下の穴経が略同じとなる貫通孔3を形成することができる。   Furthermore, by removing the copper foil 9 on the lower surface side of the insulating substrate 1 with a laser, the diameter of the double-sided copper-clad substrate 15 is increased toward the upper and lower surfaces on the upper and lower sides of the insulating substrate 1 as shown in FIG. The through-hole 3 in which the upper and lower hole diameters are substantially the same can be formed.

例えば、厚みが0.4mmのガラス−エポキシ板からなる絶縁基板1の上下面に厚みが10μmの銅箔9が被着された両面銅張基板15に炭酸ガスレーザを用いて貫通孔3を形成する場合には、レーザの1パルス当たりのパルス幅を40〜240μ秒、エネルギー値を8〜30mJ、ショット数3〜10にすればよい。このとき、レーザ光照射のショット数が少なすぎると貫通孔3の下面側を外側に向けて良好に拡径することができなくなり、ショット数が多すぎると貫通孔3の下面側の径が大きくなりすぎてしまう。   For example, the through-hole 3 is formed on a double-sided copper-clad substrate 15 having a copper foil 9 having a thickness of 10 μm deposited on the upper and lower surfaces of an insulating substrate 1 made of a glass-epoxy plate having a thickness of 0.4 mm using a carbon dioxide laser. In this case, the pulse width per pulse of the laser may be 40 to 240 μsec, the energy value may be 8 to 30 mJ, and the number of shots may be 3 to 10. At this time, if the number of shots of laser light irradiation is too small, the diameter of the lower surface side of the through-hole 3 cannot be increased well toward the outside, and if the number of shots is too large, the diameter of the lower surface side of the through-hole 3 is increased. It becomes too much.

また、このレーザ条件とすることで後述する貫通孔3に突出した金属箔9の突出幅を30μm以内に抑えることができる。   Moreover, by setting it as this laser condition, the protrusion width | variety of the metal foil 9 protruded to the through-hole 3 mentioned later can be suppressed within 30 micrometers.

また、炭酸ガスレーザを用いて、レーザ加工の条件をパルス幅40〜240μs、出力8〜30mJ、ショット数3〜10ショットとすることにより、貫通孔3に突出した金属箔9の突出幅を30μm以内に抑えるとともに両面銅張基板15に貫通孔3を安定して形成することが可能となる。   Further, by using a carbon dioxide laser, the laser processing conditions are a pulse width of 40 to 240 μs, an output of 8 to 30 mJ, and a shot number of 3 to 10 shots, so that the protruding width of the metal foil 9 protruding into the through hole 3 is within 30 μm. It is possible to stably form the through holes 3 in the double-sided copper-clad substrate 15.

すなわち、パルス幅を240μs以下とすることで銅箔9を安定して開口できるのである。また、出力を8mJ以上とすることで、両面銅張基板15の裏面まで安定して穿孔することができる。また、ショット数を3ショット以上とすることで、レーザ光が両面銅張基板15の裏面まで届くため、両面銅張基板15の裏面まで安定して穿孔することができる。また、10ショット以下の場合も同様に良好に開口でき、10ショットを超える場合のようにエネルギーが大きすぎて両面銅張基板15に形成した貫通孔3が大きくなりすぎてしまい微細な配線の形成ができないということがない。また前述のレーザ条件で加工することにより貫通孔3のまわりの金属箔9が変質し、後述する突出した金属箔9の除去のためのエッチング時、貫通孔3のまわりの変質した金属箔9のエッチング速度が速くなり、貫通孔3のまわりの絶縁基板1が露出される。   That is, the copper foil 9 can be stably opened by setting the pulse width to 240 μs or less. Further, by setting the output to 8 mJ or more, it is possible to stably perforate up to the back surface of the double-sided copper-clad substrate 15. Further, by setting the number of shots to 3 shots or more, since the laser light reaches the back surface of the double-sided copper-clad substrate 15, it is possible to stably perforate the back surface of the double-sided copper-clad substrate 15. In addition, when the number of shots is 10 shots or less, the openings can be formed similarly, and the energy is so large that the through holes 3 formed in the double-sided copper-clad substrate 15 become too large as in the case of exceeding 10 shots, thereby forming fine wiring. There is no such thing as impossible. Further, the metal foil 9 around the through-hole 3 is altered by processing under the laser conditions described above, and the altered metal foil 9 around the through-hole 3 is etched during the etching for removing the protruding metal foil 9 described later. The etching rate is increased and the insulating substrate 1 around the through hole 3 is exposed.

なお、図6では、炭化層17は省略した。   In FIG. 6, the carbonized layer 17 is omitted.

そして、貫通孔3内壁の炭化層17を例えば過マンガン酸カリウム溶液や過マンガン酸ナトリウム溶液からなる粗化液を用いて粗化して除去することにより、図3(c)の部分断面図に示す炭化層17が除去された両面銅張基板15が得られる。   Then, the carbonized layer 17 on the inner wall of the through-hole 3 is removed by roughening using, for example, a roughening solution made of a potassium permanganate solution or a sodium permanganate solution, thereby showing a partial cross-sectional view of FIG. A double-sided copper-clad substrate 15 from which the carbonized layer 17 has been removed is obtained.

ここで、金属箔9の表面にエッチングレジスト20を形成する。このエッチングレジスト20は貫通孔3の周辺に3μm以上の開口があるように形成することが望ましい。次に、金属箔9を貫通孔3に突出した部分を含めエッチング除去する。エッチング液としては金属箔9が銅箔9の場合は硫酸と過酸化水素水の混合溶液または塩化第2銅水溶液または塩化第2鉄水溶液からなるエッチング液が好適に用いられる。この後に、エッチングレジスト20を剥離することにより、図3(d)に示すように、貫通孔3の周縁部において金属箔9を除去し、絶縁基板1を露出させることができる。   Here, an etching resist 20 is formed on the surface of the metal foil 9. The etching resist 20 is desirably formed so that there is an opening of 3 μm or more around the through hole 3. Next, the metal foil 9 is removed by etching including a portion protruding from the through hole 3. As the etching solution, when the metal foil 9 is the copper foil 9, an etching solution made of a mixed solution of sulfuric acid and hydrogen peroxide, a cupric chloride aqueous solution or a ferric chloride aqueous solution is preferably used. Thereafter, by peeling off the etching resist 20, the metal foil 9 can be removed at the peripheral edge of the through hole 3 to expose the insulating substrate 1, as shown in FIG.

エッチングレジストを用いない場合でも、次に示すようにレーザ条件と銅箔厚み条件およびエッチング条件にすることで、図3(d)の部分断面図に示された絶縁基板1を得ることができる。その条件を下記に示す。貫通孔3に突出した金属箔9の幅は金属箔9の厚みの2.5倍以下に抑えることが好ましい。銅箔9の貫通孔3に突出した金属箔9があることにより、図7に示すように過マンガン酸カリウム溶液や過マンガン酸ナトリウム溶液からなる粗化液を用いて粗化するときに、貫通孔3に突出した金属箔9の部分で対流がおきやすくなり、より確実に炭化層17を除去することができ、さらに金属箔9と、密着強度の低下した絶縁基板1の表層の極薄い部分を除去することができる。ただし、貫通孔3に突出した金属箔9の長さが、金属箔9の厚みの2.5倍を超える場合には、銅エッチングの際に貫通孔3に突出した金属箔9を十分に除去することが困難となる。   Even when the etching resist is not used, the insulating substrate 1 shown in the partial cross-sectional view of FIG. 3D can be obtained by setting the laser conditions, the copper foil thickness conditions, and the etching conditions as follows. The conditions are shown below. The width of the metal foil 9 protruding into the through hole 3 is preferably suppressed to 2.5 times or less the thickness of the metal foil 9. The presence of the metal foil 9 protruding in the through-hole 3 of the copper foil 9 allows penetration when roughening using a roughening solution comprising a potassium permanganate solution or a sodium permanganate solution as shown in FIG. Convection is likely to occur at the portion of the metal foil 9 protruding into the hole 3, and the carbonized layer 17 can be more reliably removed, and the metal foil 9 and the extremely thin portion of the surface layer of the insulating substrate 1 with reduced adhesion strength Can be removed. However, when the length of the metal foil 9 protruding into the through hole 3 exceeds 2.5 times the thickness of the metal foil 9, the metal foil 9 protruding into the through hole 3 is sufficiently removed during copper etching. Difficult to do.

貫通孔3に突出した金属箔9をエッチング除去する仕様は、絶縁基板1の表面に形成された金属箔9が1方向からエッチング液が接触してエッチングされるのに対して、貫通孔3に突出した金属箔9は3方向からエッチング液が接触してエッチングされるため、絶縁基板1の表面に形成された銅箔9の2〜3倍の速度でエッチングされることを利用したエッチング仕様である。   The specification for removing the metal foil 9 protruding from the through hole 3 by etching is that the metal foil 9 formed on the surface of the insulating substrate 1 is etched by contact with an etching solution from one direction, whereas the metal foil 9 formed on the surface of the insulating substrate 1 is etched. Since the protruding metal foil 9 is etched by contact with an etching solution from three directions, it is etched using a rate of 2 to 3 times that of the copper foil 9 formed on the surface of the insulating substrate 1. is there.

そのため、貫通孔3に突出した金属箔9の突出幅が両面銅張基板15の表面に形成された銅箔の厚みの2.5倍をこえると、貫通孔に突出した金属箔9をエッチング除去する際に、貫通孔3に突出した金属箔9のエッチング量が大きくなり、絶縁基板1の表面に形成された銅箔3がエッチングされすぎてしまう。なお、貫通孔3に突出した金属箔9の突出幅を30μm以内に抑える方法としては前述したとおり、炭酸ガスレーザの条件の調整により実施することができる。即ち、炭酸ガスレーザを用いて、パルス幅40〜240μs、出力8〜30mJ、ショット数3〜10ショットの条件とすることにより、貫通孔3に突出した金属箔9の長さを絶縁基板1の表面に形成された銅箔3の厚みの2.5倍以内に抑えるとともに絶縁基板1に穿孔した貫通孔3を安定して形成することが可能となる。   Therefore, when the protruding width of the metal foil 9 protruding into the through hole 3 exceeds 2.5 times the thickness of the copper foil formed on the surface of the double-sided copper-clad substrate 15, the metal foil 9 protruding into the through hole is removed by etching. In doing so, the etching amount of the metal foil 9 protruding into the through hole 3 is increased, and the copper foil 3 formed on the surface of the insulating substrate 1 is excessively etched. Note that, as described above, the method for suppressing the protruding width of the metal foil 9 protruding into the through hole 3 to 30 μm or less can be performed by adjusting the conditions of the carbon dioxide laser. That is, using a carbon dioxide laser, the length of the metal foil 9 protruding into the through hole 3 is set to the surface of the insulating substrate 1 by setting the pulse width to 40 to 240 μs, the output to 8 to 30 mJ, and the number of shots to 3 to 10 shots. It is possible to stably form the through-hole 3 drilled in the insulating substrate 1 while keeping the thickness within 2.5 times the thickness of the copper foil 3 formed in the above.

このようにして、貫通孔3の内壁の炭化層17の除去、銅箔9のひさし形状の部分に近接した炭化層17、貫通孔周縁部の銅箔9、貫通孔周縁部の絶縁基板1の表層とを除去することができる。このような工程とすることで、後にのべる貫通導体5および貫通孔周縁配線層14、配線層13を良好に形成することができる。なおこのエッチングには、硫酸と過酸化水素水の混合溶液または塩化第2銅水溶液または塩化第2鉄水溶液からなるエッチング液が好適に用いられる。   In this way, the removal of the carbonized layer 17 on the inner wall of the through hole 3, the carbonized layer 17 adjacent to the eaves-shaped portion of the copper foil 9, the copper foil 9 at the peripheral edge of the through hole, and the insulating substrate 1 at the peripheral edge of the through hole The surface layer can be removed. By setting it as such a process, the through conductor 5 and the through-hole periphery wiring layer 14 and wiring layer 13 which are mentioned later can be formed favorably. In this etching, a mixed solution of sulfuric acid and hydrogen peroxide solution or an etching solution made of a cupric chloride aqueous solution or a ferric chloride aqueous solution is suitably used.

次に、図4(e)に示すように、炭化層17と貫通孔周縁部の金属箔9とを除去した後に、貫通孔3の内部、貫通孔周縁部の絶縁基板1が露出した部分、金属箔9の表面に無電解めっき層11a(図示せず)および電解銅めっき層11b(図示せず)を順次析出させて貫通孔3に貫通導体5を形成するとともに、銅箔9の表面に厚みが1〜3μmの無電解銅めっき層11aおよび厚みが20〜30μmの電解銅めっき層11bを順次析出させて、めっき層11を形成し、配線層13を形成する。そして、同時に貫通孔周縁部には、電解銅めっき層11aと電解銅めっき層11bとからなる貫通孔周縁配線層14が形成される。   Next, as shown in FIG. 4 (e), after removing the carbonized layer 17 and the metal foil 9 at the periphery of the through hole, the inside of the through hole 3, the portion where the insulating substrate 1 at the periphery of the through hole is exposed, An electroless plating layer 11 a (not shown) and an electrolytic copper plating layer 11 b (not shown) are sequentially deposited on the surface of the metal foil 9 to form a through conductor 5 in the through hole 3, and on the surface of the copper foil 9. An electroless copper plating layer 11 a having a thickness of 1 to 3 μm and an electrolytic copper plating layer 11 b having a thickness of 20 to 30 μm are sequentially deposited to form the plating layer 11 and form the wiring layer 13. At the same time, a through-hole peripheral wiring layer 14 composed of the electrolytic copper plating layer 11a and the electrolytic copper plating layer 11b is formed at the peripheral edge of the through-hole.

このとき、貫通孔3の内壁から炭化層17を除去し、さらに、貫通孔周縁部の金属箔9、貫通孔周縁部の絶縁基板1の密着強度の低下した表層の極薄い部分とをあらかじめ除去したことで、貫通導体5と貫通孔3、並びに貫通孔周縁配線層14と絶縁基板1とを強固に結合させることができる。   At this time, the carbonized layer 17 is removed from the inner wall of the through-hole 3, and further, the metal foil 9 at the periphery of the through-hole and the ultrathin portion of the surface layer where the adhesion strength of the insulating substrate 1 at the periphery of the through-hole is reduced are removed in advance. As a result, the through conductor 5 and the through hole 3, and the through hole peripheral wiring layer 14 and the insulating substrate 1 can be firmly bonded.

なお、無電解銅めっき層11aを析出させるには、例えば、塩化アンモニウム系酢酸パラジウムを含有するパラジウム活性液を使用して貫通孔3内壁、貫通孔周縁部のの絶縁基板1が露出した部分ならびに銅箔9の表面にパラジウム触媒を付着させるとともに、その上に硫酸銅系の無電解銅めっき液を用いて無電解銅めっき層11aを被着させればよい。このとき、貫通孔3は、両面銅張基板15の開口部において外側に向けて拡径していることから、貫通孔3内に無電解銅めっき液が良好に浸入し、その結果、無電解銅めっき層11aを略均一な厚みに良好に被着させることができる。   In order to deposit the electroless copper plating layer 11a, for example, a palladium active solution containing ammonium chloride-based palladium acetate is used, and the inner wall of the through-hole 3 and the part where the insulating substrate 1 on the peripheral edge of the through-hole is exposed, A palladium catalyst may be attached to the surface of the copper foil 9, and an electroless copper plating layer 11a may be deposited thereon using a copper sulfate-based electroless copper plating solution. At this time, since the diameter of the through hole 3 is increased toward the outside at the opening of the double-sided copper-clad substrate 15, the electroless copper plating solution satisfactorily enters the through hole 3, and as a result, the electroless The copper plating layer 11a can be satisfactorily deposited with a substantially uniform thickness.

また、電解銅めっき層11bを被着させるための電解銅めっき液としては、例えば、硫酸銅系の電解銅めっき液を用いればよい。このとき、貫通孔3は、両面銅張基板15の開口部において外側に向けて拡径していることから、貫通孔3内に電解銅めっき液が良好に浸入し、その結果、貫通孔3内を電解銅めっき層で良好に充填することができる。   Moreover, as an electrolytic copper plating solution for depositing the electrolytic copper plating layer 11b, for example, a copper sulfate-based electrolytic copper plating solution may be used. At this time, since the diameter of the through hole 3 is increased toward the outside at the opening of the double-sided copper-clad substrate 15, the electrolytic copper plating solution enters the through hole 3 favorably. As a result, the through hole 3 The inside can be satisfactorily filled with the electrolytic copper plating layer.

次に、図4(f)に示すように貫通孔3の内部に穴埋め樹脂7を埋め込みし、硬化させた後に、配線層13、貫通孔周縁配線層14ならびに穴埋め樹脂7の表面を研磨し、平坦化する。この研磨により穴埋め樹脂の不要部分を除去するとともに、配線層13、貫通孔周縁配線層14の厚みを所定の厚みにすることができる。また研磨工程においては、研磨と銅のエッチングとを交互に複数回繰り返して穴埋め樹脂7の不要部分を除去するとともに表層の配線層13、貫通孔周縁配線層14の厚みを所定の厚みにする。研磨のみで穴埋め樹脂7の不要部分の除去と配線層13、貫通孔周縁配線層14の厚みを所定の厚みにするよりも、研磨と銅のエッチングを交互に行ったほうが、総計の作業時間が短縮され、配線層13、貫通孔周縁配線層14の厚みがより均一となる。また銅のエッチング液としては硫酸−過酸化水素水の混合溶液や過硫酸アンモニウム水溶液が望ましく、銅厚みの均一なエッチングを行うことができる。   Next, as shown in FIG. 4 (f), after filling and filling the hole filling resin 7 in the through hole 3, the surface of the wiring layer 13, the through hole peripheral wiring layer 14 and the hole filling resin 7 is polished, Flatten. By this polishing, unnecessary portions of the hole filling resin can be removed, and the thicknesses of the wiring layer 13 and the through hole peripheral wiring layer 14 can be set to predetermined thicknesses. In the polishing step, polishing and copper etching are alternately repeated a plurality of times to remove unnecessary portions of the hole-filling resin 7, and the thickness of the surface wiring layer 13 and the through hole peripheral wiring layer 14 is set to a predetermined thickness. Rather than removing unnecessary portions of the hole-filling resin 7 only by polishing and setting the thickness of the wiring layer 13 and the through-hole peripheral wiring layer 14 to a predetermined thickness, the total work time is improved by alternately performing polishing and copper etching. As a result, the thickness of the wiring layer 13 and the through hole peripheral wiring layer 14 becomes more uniform. As the copper etching solution, a mixed solution of sulfuric acid-hydrogen peroxide solution or an aqueous solution of ammonium persulfate is desirable, and etching with a uniform copper thickness can be performed.

最後に、図5(g)に示すように、従来周知のサブトラクト法、セミアディティブ法などにより配線導体13を形成する。かくして、本発明の配線基板の製造方法によれば、貫通孔周縁部において、絶縁基板1との密着強度が低下した金属箔9を容易に除去でき、新たに露出した貫通孔周縁部の絶縁基板1にめっき法により貫通孔周縁配線層14を形成できるため、貫通孔周縁部において、絶縁基板1と貫通孔周縁配線層14とを強固に接着することができ、信頼性に優れた配線基板を容易に提供することができる。   Finally, as shown in FIG. 5G, the wiring conductor 13 is formed by a conventionally known subtracting method, semi-additive method, or the like. Thus, according to the method for manufacturing a wiring board of the present invention, the metal foil 9 having reduced adhesion strength with the insulating substrate 1 can be easily removed at the peripheral portion of the through hole, and the newly exposed insulating substrate of the peripheral portion of the through hole. Since the through-hole peripheral wiring layer 14 can be formed on the substrate 1 by plating, the insulating substrate 1 and the through-hole peripheral wiring layer 14 can be firmly bonded to each other at the peripheral portion of the through-hole. Can be provided easily.

また、このような配線基板の主面にビルドアップ樹脂層およびビルドアップ配線層を積層してビルドアップ配線基板を製作したとしても、ビルドアップ樹脂層に貫通孔3内や貫通孔のまわりの配線導体13と絶縁基板1の間からのクラックが発生することのない配線基板を得ることができる。   Further, even if a build-up resin layer and a build-up wiring layer are laminated on the main surface of such a wiring board to produce a build-up wiring board, wiring in the through-hole 3 or around the through-hole is formed on the build-up resin layer. A wiring board in which no cracks are generated from between the conductor 13 and the insulating substrate 1 can be obtained.

なお、上述の実施例では貫通孔3の直径が75〜130μm、厚みが0.2〜0.8mmの配線基板を例にとって示したが、本発明は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば、種々の変更が可能であることはいうまでもない。   In the above-mentioned embodiment, the through-hole 3 has a diameter of 75 to 130 μm and a thickness of 0.2 to 0.8 mm as an example. However, the present invention is not limited to the above-described embodiment. Needless to say, various modifications can be made without departing from the scope of the present invention.

また、上述の実施例では、レーザー加工により貫通孔3を形成したが、ドリル加工で貫通孔3を形成した場合にも、同様の効果が得られることはいうまでもない。   Moreover, in the above-mentioned Example, although the through-hole 3 was formed by laser processing, when the through-hole 3 is formed by drilling, it cannot be overemphasized that the same effect is acquired.

本発明の配線基板を評価するために、サンプルを作製し、次の評価を行なった。   In order to evaluate the wiring board of the present invention, a sample was prepared and the following evaluation was performed.

主面に厚み10μmの銅箔9を具備する全体の厚みが0.4mmの両面銅張基板15に炭酸ガスレーザにより貫通孔3を形成した。なお、炭酸ガスレーザの穿孔条件はパルス幅が160μsで出力が20mJでショット数を6ショットとした。   The through-hole 3 was formed in the double-sided copper-clad board | substrate 15 which comprises the copper foil 9 with a thickness of 10 micrometers on the main surface, and whose thickness is 0.4 mm by the carbon dioxide laser. Carbon dioxide laser drilling conditions were such that the pulse width was 160 μs, the output was 20 mJ, and the number of shots was six.

なお、作製した貫通孔3の直径は90μmとした。その後、炭酸ガスレーザ加工された両面銅張基板15を過マンガン酸カリウム溶液からなる80℃の粗化液で10分間粗化処理を行った。次に、銅箔9の主面に貫通孔3のまわりの銅箔9の露出幅をかえたエッチングレジスト20を形成し、硫酸−過酸化水素水混合溶液からなる銅エッチング液により、銅箔9をエッチングして貫通孔周縁部の絶縁基板1を表1に示す露出幅で露出させた。   The diameter of the produced through hole 3 was 90 μm. Thereafter, the carbon dioxide laser processed double-sided copper-clad substrate 15 was subjected to a roughening treatment for 10 minutes with an 80 ° C. roughening solution made of a potassium permanganate solution. Next, an etching resist 20 in which the exposed width of the copper foil 9 around the through-hole 3 is changed is formed on the main surface of the copper foil 9, and the copper foil 9 is made with a copper etching solution made of a sulfuric acid-hydrogen peroxide mixed solution. Was etched to expose the insulating substrate 1 at the periphery of the through hole with the exposure width shown in Table 1.

この後で、エッチングレジスト20を剥離して、無電解銅めっき層11aおよび電解銅めっき層11bを貫通孔3の壁面と、貫通孔周縁部の絶縁基板1の露出している部分および銅箔9の表面に被着した。   Thereafter, the etching resist 20 is stripped, and the electroless copper plating layer 11a and the electrolytic copper plating layer 11b are exposed to the wall surface of the through hole 3, the exposed portion of the insulating substrate 1 at the periphery of the through hole, and the copper foil 9 Deposited on the surface.

その後、貫通孔3の内部に穴埋め樹脂7を埋め込み、研磨により穴埋め樹脂7の不要部分を除去し、貫通孔周縁配線層14と配線導体13を所定の厚みにし、従来周知のサブトラクト法により配線パターンを形成し、コア基板としての試験片を得た。   Thereafter, the hole filling resin 7 is embedded in the through hole 3, unnecessary portions of the hole filling resin 7 are removed by polishing, the through hole peripheral wiring layer 14 and the wiring conductor 13 are set to a predetermined thickness, and a wiring pattern is formed by a conventionally known subtract method. And a test piece as a core substrate was obtained.

これらの表1に示すスルーホール3の周りの絶縁基板1の露出幅を変化させた試験片を、それぞれ10個づつ作製し、半導体素子実装およびプリント基板への実装を想定した耐熱試験と、温度サイクル試験を行った後、SEM(走査型電子顕微鏡)による断面観察により貫通孔周縁部の絶縁基板1と貫通孔周縁配線層14との剥離状態を確認した。   Ten test pieces each having different exposed widths of the insulating substrate 1 around the through-hole 3 shown in Table 1 were prepared, a heat resistance test assuming mounting on a semiconductor element and a printed board, and a temperature. After performing the cycle test, the peeled state between the insulating substrate 1 and the through-hole peripheral wiring layer 14 at the periphery of the through-hole was confirmed by cross-sectional observation with an SEM (scanning electron microscope).

なお、半導体素子実装およびプリント基板への実装を想定した耐熱試験はピーク温度が260℃で200℃以上保持時間が60秒以上のリフロー条件に3回通して行った。また、温度サイクル試験は−55℃/125℃で1000サイクルの条件で行った。

Figure 2005191115
The heat resistance test assuming mounting on a semiconductor element and mounting on a printed board was conducted three times through reflow conditions in which the peak temperature was 260 ° C. and the holding time was 200 ° C. or more and 60 seconds or more. Further, the temperature cycle test was performed at −55 ° C./125° C. under the condition of 1000 cycles.
Figure 2005191115

本発明の範囲外である貫通孔周縁部に金属箔が形成された試料No.1では、温度サイクル後の貫通孔の断面観察で配線導体と絶縁基板の間の剥離が10/10個確認され、信頼性に劣ることが確認された。   Sample No. in which a metal foil was formed on the peripheral edge of the through hole, which was outside the scope of the present invention. In No. 1, 10/10 peeling between the wiring conductor and the insulating substrate was confirmed by observing the cross section of the through hole after the temperature cycle, and it was confirmed that the reliability was poor.

一方、本発明の貫通孔周縁配線層を設けた試料No.2〜5では温度サイクル後の貫通孔の断面観察で配線導体と絶縁基板の間の剥離は全く確認されなかった。   On the other hand, sample No. 1 provided with the through hole peripheral wiring layer of the present invention. In Nos. 2 to 5, no peeling between the wiring conductor and the insulating substrate was confirmed by cross-sectional observation of the through hole after the temperature cycle.

本発明の配線基板の要部拡大図である。It is a principal part enlarged view of the wiring board of this invention. 本発明の配線基板の製造方法の工程を説明する工程図である。It is process drawing explaining the process of the manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法の工程を説明する工程図である。It is process drawing explaining the process of the manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法の工程を説明する工程図である。It is process drawing explaining the process of the manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法の工程を説明する工程図である。It is process drawing explaining the process of the manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法のうち、貫通孔を形成する穿孔工程を説明する工程図である。It is process drawing explaining the punching process which forms a through-hole among the manufacturing methods of the wiring board of this invention. 本発明の配線基板の製造方法のうち、炭化層を除去する粗化工程を説明する工程図である。It is process drawing explaining the roughening process of removing a carbonized layer among the manufacturing methods of the wiring board of this invention.

符号の説明Explanation of symbols

1・・・絶縁基板
3・・・貫通孔
5・・・貫通導体
7・・・埋め込み樹脂
9・・・金属箔
11・・・めっき層
11a・・・無電解めっき層
11b・・・電解めっき層
13・・・配線層
14・・・貫通孔周縁配線層
15・・・両面銅張基板
17・・・炭化層
DESCRIPTION OF SYMBOLS 1 ... Insulating substrate 3 ... Through-hole 5 ... Through-conductor 7 ... Embedded resin 9 ... Metal foil 11 ... Plating layer 11a ... Electroless plating layer 11b ... Electrolytic plating Layer 13 ... Wiring layer 14 ... Through-hole peripheral wiring layer 15 ... Double-sided copper-clad substrate 17 ... Carbonized layer

Claims (6)

少なくとも、樹脂を含有してなる絶縁基板と、該絶縁基板に形成された貫通孔と、該貫通孔の内壁に被着した貫通導体と、前記絶縁基板の主面に形成された金属箔を備えた配線層とを具備してなる配線基板において、前記絶縁基板の主面のうち、前記貫通孔周縁部には、めっき層からなる貫通孔周縁配線層が形成され、該貫通孔周縁配線層を介して、前記貫通導体と前記配線層とが接続されてなることを特徴とする配線基板。 An insulating substrate containing at least a resin; a through hole formed in the insulating substrate; a through conductor deposited on an inner wall of the through hole; and a metal foil formed on a main surface of the insulating substrate. In the wiring substrate comprising the wiring layer, a through-hole peripheral wiring layer made of a plating layer is formed on the peripheral portion of the through-hole in the main surface of the insulating substrate. A wiring board, wherein the through conductor and the wiring layer are connected via each other. 貫通孔周縁配線層の幅が3μm以上であることを特徴とする請求項1に記載の配線基板。 2. The wiring board according to claim 1, wherein the width of the through hole peripheral wiring layer is 3 [mu] m or more. めっき層が、無電解めっき層と、電解めっき層とからなり、銅めっきであることを特徴とする請求項1又は2に記載の配線基板。 The wiring board according to claim 1 or 2, wherein the plating layer is composed of an electroless plating layer and an electrolytic plating layer, and is a copper plating. 樹脂を含有してなる絶縁基板と、絶縁基板の主面に形成された金属箔とからなる両面銅張基板に貫通孔を形成する工程と、前記両面銅張基板を粗化処理する工程と、粗化処理した前記両面銅張基板の銅箔の一部をエッチングして前記貫通孔の周縁の銅箔を除去し、前記貫通孔の周縁の絶縁基板の主面を露出させる工程と、前記貫通孔の周縁の銅箔を除去した前記両面銅張基板に、順次、無電解銅めっき層と電解銅めっき層とを形成し、貫通導体と、貫通導体周縁配線層と、配線層と、を形成する工程と、前記貫通孔内に穴埋め樹脂を埋め込む工程と、前記両面銅張基板の表層を研磨して穴埋め樹脂の不要部分を除去するとともに、配線層の厚みを所定の厚みにする研磨工程と、を具備することを特徴とする配線基板の製造方法。 A step of forming a through hole in a double-sided copper-clad substrate made of an insulating substrate containing a resin and a metal foil formed on the main surface of the insulating substrate; a step of roughening the double-sided copper-clad substrate; Etching part of the copper foil of the roughened double-sided copper-clad substrate to remove the copper foil at the periphery of the through hole, exposing the main surface of the insulating substrate at the periphery of the through hole; An electroless copper plating layer and an electrolytic copper plating layer are sequentially formed on the double-sided copper-clad substrate from which the copper foil at the periphery of the hole is removed, and a through conductor, a through conductor peripheral wiring layer, and a wiring layer are formed. A step of embedding a hole-filling resin in the through-hole, a polishing step of polishing a surface layer of the double-sided copper-clad substrate to remove unnecessary portions of the hole-filling resin, and a wiring layer having a predetermined thickness A method of manufacturing a wiring board, comprising: 貫通孔がレーザ加工により形成されることを特徴とする請求項4記載の配線基板の製造方法。 The method for manufacturing a wiring board according to claim 4, wherein the through hole is formed by laser processing. 研磨工程において前記両面銅張基板の表層の研磨と銅のエッチングを交互に複数回繰り返して穴埋め樹脂の不要部分を除去するとともに表層の銅の厚みを所定の厚みにすることを特徴とする請求項4又は5に記載の配線基板の製造方法。 The polishing step wherein the polishing of the surface layer of the double-sided copper-clad substrate and the etching of the copper are alternately repeated a plurality of times to remove unnecessary portions of the hole-filling resin and to make the copper thickness of the surface layer a predetermined thickness. A method for manufacturing a wiring board according to 4 or 5.
JP2003428076A 2003-12-24 2003-12-24 Wiring board and its manufacturing method Pending JP2005191115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428076A JP2005191115A (en) 2003-12-24 2003-12-24 Wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428076A JP2005191115A (en) 2003-12-24 2003-12-24 Wiring board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005191115A true JP2005191115A (en) 2005-07-14

Family

ID=34787176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428076A Pending JP2005191115A (en) 2003-12-24 2003-12-24 Wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005191115A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247294A (en) * 2012-05-28 2013-12-09 Shinko Electric Ind Co Ltd Wiring board and manufacturing method of the same
JP2016167621A (en) * 2016-04-28 2016-09-15 新光電気工業株式会社 Wiring board
CN108463065A (en) * 2017-02-17 2018-08-28 三星电机株式会社 Substrate and method for manufacturing the substrate
JP2020136634A (en) * 2019-02-26 2020-08-31 京セラ株式会社 Wiring board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247294A (en) * 2012-05-28 2013-12-09 Shinko Electric Ind Co Ltd Wiring board and manufacturing method of the same
JP2016167621A (en) * 2016-04-28 2016-09-15 新光電気工業株式会社 Wiring board
CN108463065A (en) * 2017-02-17 2018-08-28 三星电机株式会社 Substrate and method for manufacturing the substrate
US10485105B2 (en) 2017-02-17 2019-11-19 Samsung Electro-Mechanics Co., Ltd. Substrate and method for manufacturing the same
CN108463065B (en) * 2017-02-17 2020-12-18 三星电机株式会社 Substrate and method for manufacturing the same
JP2020136634A (en) * 2019-02-26 2020-08-31 京セラ株式会社 Wiring board

Similar Documents

Publication Publication Date Title
KR101049389B1 (en) Multilayer printed wiring plate, and method for fabricating the same
KR20080046275A (en) Multilayer printed wiring board and method for manufacturing same
KR20120112069A (en) Method of manufacturing multilayer printed wiring board
JPWO2016136222A1 (en) Printed wiring board and manufacturing method thereof
JP2005191115A (en) Wiring board and its manufacturing method
JP4728980B2 (en) Printed wiring board and manufacturing method thereof
KR20070079794A (en) Manufacturing method of printed circuit board
JP5935186B2 (en) Wiring board
JP2006237241A (en) Printed circuit board and manufacturing method thereof
JP2005072455A (en) Manufacturing method of wiring board
JP3716613B2 (en) Printed wiring board and manufacturing method thereof
JP2005044914A (en) Printed wiring board and manufacturing method therefor
JPH1187886A (en) Production of printed wiring board
JP2005136052A (en) Wiring board, electrical apparatus, and their manufacturing method
JP4328195B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTRIC DEVICE
JP2005217052A (en) Wiring board and method for manufacturing same
JP4328196B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTRIC DEVICE
JP2004179526A (en) Wiring board, and manufacturing method thereof
JP2005159043A (en) Wiring board and its manufacturing method
JP3792544B2 (en) Wiring board manufacturing method
JP2004063927A (en) Wiring circuit board and its manufacturing method
JP2004228360A (en) Method of manufacturing wiring board
JP3881528B2 (en) Wiring board and manufacturing method thereof
JP4480693B2 (en) Wiring board and manufacturing method thereof
JP2006059863A (en) Package substrate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061213

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Effective date: 20091020

Free format text: JAPANESE INTERMEDIATE CODE: A02