JP2006237241A - Printed circuit board and manufacturing method thereof - Google Patents

Printed circuit board and manufacturing method thereof Download PDF

Info

Publication number
JP2006237241A
JP2006237241A JP2005049198A JP2005049198A JP2006237241A JP 2006237241 A JP2006237241 A JP 2006237241A JP 2005049198 A JP2005049198 A JP 2005049198A JP 2005049198 A JP2005049198 A JP 2005049198A JP 2006237241 A JP2006237241 A JP 2006237241A
Authority
JP
Japan
Prior art keywords
hole
conductor
wiring board
resin
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005049198A
Other languages
Japanese (ja)
Inventor
Hidetoshi Yugawa
英敏 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005049198A priority Critical patent/JP2006237241A/en
Publication of JP2006237241A publication Critical patent/JP2006237241A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a printed circuit board ensuring excellent reliability of connection between internal wall of through-hole and through-conductor thereof, and to provide a method of manufacturing the same. <P>SOLUTION: The printed circuit board 21 comprises an insulated base material 5 including at least fiber 1 and resin 3, a through-hole 7 formed to the insulated base material 5, and a through-conductor 9 constituted of the metal phase formed to the through-conductor 7. In this printed circuit board 21, an alienating part A alienating the fiber 1 and resin 3 is opened to the through-hole 7, and a sealing conductor 11 is also formed to the alienating part A. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機材料系の配線基板、特に、大規模半導体(LSI)を実装するための配線基板に関し、特に貫通孔内壁と貫通導体との接続信頼性に優れた配線基板及びその製造方法に関するものである。   The present invention relates to an organic material-based wiring board, and more particularly to a wiring board for mounting a large-scale semiconductor (LSI), and more particularly to a wiring board excellent in connection reliability between a through-hole inner wall and a through-conductor and a manufacturing method thereof. Is.

従来、半導体素子等の電子部品を搭載するための有機材料系の配線基板として、例えばガラス−エポキシ板から成り、その上面から下面にかけて貫通する貫通孔を有する絶縁基板の上下両面に銅箔およびその上に施しためっき層から成る配線導体を被着させるとともに、前記貫通孔の内面に前記上下両面の配線導体同士を接続するめっき層から成る貫通導体を被着させて成る配線基板が使用されている。   Conventionally, as an organic material-based wiring board for mounting electronic components such as semiconductor elements, copper foil and its upper and lower surfaces of an insulating substrate made of, for example, a glass-epoxy plate and having through holes penetrating from the upper surface to the lower surface thereof A wiring board is used in which a wiring conductor made of a plating layer applied thereon is attached and a through conductor made of a plating layer connecting the wiring conductors on both the upper and lower surfaces is attached to the inner surface of the through hole. Yes.

このような有機材料系の配線基板は、ガラス−エポキシ板から成る絶縁基板の上下両面に銅箔が被着された両面銅張板を準備するとともに、この両面銅張板を上下に貫通する貫通孔をドリル加工により穿孔し、次に前記上下両面の銅箔上および貫通孔内面に銅から成るめっき層を無電解めっき法および電解めっき法により析出させて前記上下両面の銅箔の上にめっき層を被着するとともに貫通孔の内面にめっき層から成る貫通導体を形成し、次に、前記絶縁基板の上下両面に被着された銅箔およびその銅箔に被着しためっき層をフォトリソグラフィー技術を採用して部分的にエッチングして配線導体を形成することによって製作されている。   For such an organic material-based wiring board, a double-sided copper-clad plate having copper foils attached to both upper and lower sides of an insulating substrate made of a glass-epoxy plate is prepared, and a through-hole penetrating through this double-sided copper-clad plate is provided. Holes are drilled, and then plated on the upper and lower copper foils by depositing a copper plating layer on the upper and lower copper foils and on the inner surface of the through holes by electroless plating and electrolytic plating. A through conductor made of a plated layer is formed on the inner surface of the through hole, and then the copper foil deposited on the upper and lower surfaces of the insulating substrate and the plated layer deposited on the copper foil are photolithography. It is manufactured by employing a technique and partially etching to form a wiring conductor.

また、この配線基板の両面にビルドアップ樹脂層およびビルドアップ配線層を形成することによりビルドアップ配線基板が製作される。なお、このような配線基板においては、貫通導体が被着された貫通孔は通常、エポキシ樹脂等の穴埋め樹脂により充填されている。   Moreover, a buildup wiring board is manufactured by forming a buildup resin layer and a buildup wiring layer on both surfaces of the wiring board. In such a wiring board, the through hole to which the through conductor is attached is usually filled with a filling resin such as an epoxy resin.

ところで、このような有機材料系の多層配線基板においては、電子装置の小型・薄型化の要求に対応してその配線密度を高めるために、例えば絶縁基板の厚みを0.2〜1mm程度、貫通孔の直径を75〜130μm程度の小さなものとする試みがなされている。また、このような直径が75〜130μm程度の小さな貫通孔を形成するためには、例えば炭酸ガスレーザによる穿孔方法が採用されている(特許文献1参照)。
特開2000−91750号公報
By the way, in such an organic material-based multilayer wiring board, in order to increase the wiring density in response to the demand for reduction in size and thickness of the electronic device, for example, the insulating substrate has a thickness of about 0.2 to 1 mm. Attempts have been made to make the hole diameter as small as 75 to 130 μm. Moreover, in order to form such a small through-hole with a diameter of about 75 to 130 μm, for example, a drilling method using a carbon dioxide gas laser is employed (see Patent Document 1).
JP 2000-91750 A

しかしながら、このようにレーザ光を用いて貫通孔を形成する場合でも、また、従来のドリル加工で貫通孔を形成する場合でも、貫通孔壁面と貫通導体とが十分な密着強度を有することができないという問題があった。   However, even when the through hole is formed using the laser beam as described above, or when the through hole is formed by a conventional drilling process, the through hole wall surface and the through conductor cannot have sufficient adhesion strength. There was a problem.

特に、絶縁基板中のガラス繊維周辺と貫通導体との密着が弱く、半導体素子実装時の熱履歴等で貫通孔壁面の絶縁基板の樹脂とガラス繊維と貫通導体の間で熱膨張係数の違い、特に3種類の熱膨張の違う材料の3重点となっているところがより大きい応力が発生し貫通導体とガラス繊維の界面で剥離が生じ、それが起点となり貫通孔と貫通導体の間のクラックとなり、配線基板の表裏の導通の為の貫通導体を断線せしめ導通不良を発生させてしまうという問題がある。   In particular, the adhesion between the periphery of the glass fiber and the through conductor in the insulating substrate is weak, the difference in thermal expansion coefficient between the resin and the glass fiber and the through conductor of the insulating substrate on the wall surface of the through hole due to thermal history at the time of mounting the semiconductor element, In particular, the three stress points of the three types of materials with different thermal expansion generate greater stress and peeling occurs at the interface between the through conductor and the glass fiber, which becomes a starting point and a crack between the through hole and the through conductor, There is a problem in that the through conductors for conduction between the front and back sides of the wiring board are disconnected to cause conduction failure.

これに対し、本発明は、貫通孔内壁と貫通導体との接続信頼性に優れた配線基板並びにその製造方法を提供することを目的とする。   On the other hand, an object of this invention is to provide the wiring board excellent in the connection reliability of an inner wall of a through-hole, and a through-conductor, and its manufacturing method.

本発明の配線基板は、少なくとも繊維と樹脂とを含有してなる絶縁基体と、該絶縁基体に形成された貫通孔と、該貫通孔に形成された金属相からなる貫通導体を具備してなる配線基板において、前記繊維と樹脂とが乖離した乖離部が前記貫通孔に開口するように形成されるとともに、前記乖離部に封止導体が形成されてなることを特徴とする。   The wiring board of the present invention comprises an insulating base containing at least fibers and a resin, a through hole formed in the insulating base, and a through conductor made of a metal phase formed in the through hole. In the wiring board, a separation portion where the fiber and the resin are separated is formed so as to open in the through hole, and a sealing conductor is formed in the separation portion.

また、乖離部の経が貫通孔側に向けて大きくなっていることが望ましい。   In addition, it is desirable that the length of the divergence portion increases toward the through hole side.

また、貫通導体と封止導体とが同一の金属相から形成されてなることが望ましい。   Further, it is desirable that the through conductor and the sealing conductor are formed from the same metal phase.

また、封止導体の長さが3〜20μmであることが望ましい。   Moreover, it is desirable that the length of the sealing conductor is 3 to 20 μm.

また、繊維の線径が15μm以下であることが望ましい。   Further, it is desirable that the fiber has a wire diameter of 15 μm or less.

また、繊維がガラス繊維であることが望ましい。   Moreover, it is desirable that the fibers are glass fibers.

本発明の配線基板の製造方法は貫通孔をレーザ加工により形成することを特徴とする。   The method for manufacturing a wiring board according to the present invention is characterized in that the through hole is formed by laser processing.

また、本発明の配線基板の製造方法は絶縁基体の貫通穴を粗化液に浸透させることにより、前記繊維と樹脂の乖離部を形成することを特徴とする。   Also, the method for manufacturing a wiring board according to the present invention is characterized in that the dissociation portion between the fiber and the resin is formed by allowing the through hole of the insulating base to penetrate into the roughening solution.

また、本発明の配線基板の製造方法は絶縁基板の貫通穴を粗化液に浸透させるときに超音波振動を製品にかけながら浸透し前記繊維と樹脂部の乖離部を形成することを特徴とする。   The wiring board manufacturing method of the present invention is characterized in that when the through hole of the insulating substrate is infiltrated into the roughening liquid, the ultrasonic wave is permeated while being applied to the product to form a separation portion between the fiber and the resin portion. .

また、本発明の配線基板の製造方法はめっき法により、封止導体を形成することを特徴とする。   Moreover, the manufacturing method of the wiring board of the present invention is characterized in that a sealing conductor is formed by a plating method.

また、本発明の配線基板の製造方法はめっき法により、貫通導体を形成することを特徴とする。   The wiring board manufacturing method of the present invention is characterized in that a through conductor is formed by a plating method.

本発明の配線基板によれば、少なくとも繊維と樹脂とを含有してなる絶縁基体と、該絶縁基体に形成された貫通孔と、該貫通孔に形成された金属相からなる貫通導体を具備してなる配線基板において、前記繊維と樹脂とが乖離した乖離部が前記貫通孔に開口するように形成されるとともに、前記乖離部に封止導体が形成されてなることにより導体と絶縁基体の壁面との接触面積が増え、その上導体がガラス繊維と樹脂の間に挟みこまれる構造となるので、絶縁基体の壁面での貫通導体と絶縁基体の樹脂とガラスクロスの密着強度は大きくなる。   According to the wiring board of the present invention, an insulating base comprising at least fibers and a resin, a through hole formed in the insulating base, and a through conductor made of a metal phase formed in the through hole are provided. In the wiring board, the gap between the fiber and the resin is formed so as to open in the through hole, and the sealing conductor is formed in the gap, thereby forming the wall surface of the conductor and the insulating substrate. The contact area between the through conductor and the insulating substrate is increased, so that the contact strength between the through conductor and the insulating substrate on the wall surface of the insulating substrate is increased.

また、その際剥離部の径が貫通孔側に向けて大きくなるように設けることでより強固に導体がガラス繊維と樹脂の間に挟みこまれる構造になるのでさらに貫通孔の壁面での貫通導体と絶縁基体の樹脂とガラスクロスの密着強度は大きくなる。   Moreover, since the conductor is sandwiched between the glass fiber and the resin more firmly by providing the diameter of the peeled portion toward the through hole at that time, the through conductor on the wall surface of the through hole is further provided. In addition, the adhesion strength between the resin of the insulating substrate and the glass cloth increases.

また、この封止導体と貫通導体を同一金属層とすることで封止導体と貫通導体の境界がなくなり、剥離が生じにくくなるために表裏の導通をとる導体の接続信頼性をより高めることができる。   In addition, by making the sealing conductor and the through conductor the same metal layer, there is no boundary between the sealing conductor and the through conductor, and peeling is unlikely to occur, so that the connection reliability of the conductor that conducts the front and back is further improved. it can.

また、封止導体の長さを3〜20μmとすることで貫通孔の壁面での貫通孔の壁面での貫通導体と絶縁基体の樹脂とガラスクロスの密着強度をより大きくでき、同時に絶縁信頼性を確保した配線基板となる。これは封止導体を3μm以上とすることでガラス繊維と導体の接着された面積が大きくなったことにより密着強度大きくなるためである。また封止導体を20μm以下とすることで貫通孔と貫通孔の壁間での絶縁信頼性がより高くなる。20μmより大きい場合は壁間での絶縁信頼性を十分確保できない場合があるためである。   Also, by setting the length of the sealing conductor to 3 to 20 μm, the adhesion strength between the through conductor on the wall surface of the through hole, the resin of the insulating base, and the glass cloth on the wall surface of the through hole can be increased, and at the same time, the insulation reliability It becomes a wiring board that secures. This is because when the sealing conductor is 3 μm or more, the adhesion strength is increased by increasing the area where the glass fiber and the conductor are bonded. Moreover, the insulation reliability between a through-hole and the wall of a through-hole becomes higher by making a sealing conductor into 20 micrometers or less. This is because if it is larger than 20 μm, the insulation reliability between the walls may not be sufficiently secured.

また、繊維の線径を15μm以下とすることで貫通孔を形成するとき、孔加工性を良好とすることができる。   Moreover, when forming a through-hole by making the wire diameter of a fiber into 15 micrometers or less, hole workability can be made favorable.

また、繊維をガラスとすることで絶縁基板が十分な剛性をもたせることができ、基板の反りを小さくすることができる。   Further, when the fiber is made of glass, the insulating substrate can have sufficient rigidity, and the warpage of the substrate can be reduced.

また、貫通孔をレーザ加工で形成することにより絶縁基体のガラス繊維と樹脂を剥離がレーザ加工時の熱作用によるガラス繊維近傍の樹脂の変質でおこるため、乖離したところ以外のガラス繊維と樹脂の密着は弱くならない。樹脂の変質した部分が化学的に除去されるのみなので、乖離させていないガラス繊維と樹脂との間への歪等の応力を作用させないためである。   In addition, by forming the through hole by laser processing, the glass fiber and the resin of the insulating substrate are peeled off due to the alteration of the resin in the vicinity of the glass fiber due to the thermal action during laser processing. Adhesion does not weaken. This is because the altered part of the resin is only chemically removed, so that stress such as strain between the glass fiber and the resin that are not separated does not act.

また、絶縁基体の貫通孔を粗化液に浸透させることにより、前記繊維と樹脂の乖離部を形成できる。これはガラスク繊維と樹脂の間のレーザ加工で変質した樹脂を化学的にとりさることによりガラス繊維近傍の樹脂の変質した残渣をほぼ除去することが可能であり、変質した樹脂残渣の上に封止導体が形成され、その部分での密着力が小さくなるということが無い。   Moreover, the dissociation part of the said fiber and resin can be formed by osmosis | permeating the roughening liquid through the through-hole of an insulation base | substrate. This is because it is possible to remove almost all the denatured residue of the resin near the glass fiber by chemically removing the resin denatured by laser processing between the glass fiber and the resin, and seal it on the denatured resin residue A conductor is formed, and the adhesion force at that portion is not reduced.

また、絶縁基板の貫通孔を粗化液に浸透させるときに超音波振動を製品にかけながら浸透することによりガラス繊維近傍の樹脂の変質した残渣をより除去することが可能であり変質した樹脂残渣の上に封止導体が形成され、その部分での密着力が小さくなるということが無い。   In addition, when the penetration hole of the insulating substrate is infiltrated into the roughening liquid, it is possible to further remove the denatured residue of the resin near the glass fiber by infiltrating while applying ultrasonic vibration to the product. The sealing conductor is formed on the top, and the adhesion force at that portion is not reduced.

また、めっき法により、封止導体と貫通導体を形成することすることにより乖離部内部までめっき液が浸透しやすくなる。液体は隙間にくまなく入り込むことができるために封止導体でガラス繊維と樹脂の隙間を埋めることができ封止導体めっきと貫通導体の密着を十分に保つことができるようになる。   Further, by forming the sealing conductor and the through conductor by plating, the plating solution can easily penetrate into the dissociated portion. Since the liquid can enter all the gaps, the gap between the glass fiber and the resin can be filled with the sealing conductor, and the adhesion between the sealing conductor plating and the through conductor can be sufficiently maintained.

本発明の配線基板は、例えば、図1に示すように、繊維1であるガラスクロス1と、樹脂3とを含有してなる絶縁基体5と、絶縁基体5を貫通して形成された貫通孔7と、貫通孔7内に形成された貫通導体9と、貫通孔7の内壁のガラス繊維1と樹脂3との剥離部Aに入り込む封止導体11と、絶縁基体5の両面に形成されたコア配線層13と、絶縁基体5の主面に形成された絶縁層15と、絶縁層15を貫通して形成されたビア導体17と、絶縁層15の主面に形成された配線導体層19とで構成されている。   For example, as shown in FIG. 1, the wiring board of the present invention includes an insulating base 5 containing a glass cloth 1 as a fiber 1 and a resin 3, and a through-hole formed through the insulating base 5. 7, the through conductor 9 formed in the through hole 7, the sealing conductor 11 that enters the peeling portion A between the glass fiber 1 and the resin 3 on the inner wall of the through hole 7, and the insulating base 5. Core wiring layer 13, insulating layer 15 formed on the main surface of insulating base 5, via conductor 17 formed through insulating layer 15, and wiring conductor layer 19 formed on the main surface of insulating layer 15 It consists of and.

このような配線基板21において、絶縁基体5、絶縁層15は、それぞれを挟持するように配置されたコア配線層13、配線導体層19並びに、それぞれを貫通して設けられた貫通導体9、ビア導体17と、を支持し、電気的に絶縁する機能を有している。   In such a wiring board 21, the insulating substrate 5 and the insulating layer 15 are composed of the core wiring layer 13, the wiring conductor layer 19, and the through conductors 9 and vias that are provided so as to sandwich them. The conductor 17 is supported and electrically insulated.

そして、コア配線層13、配線導体層19、貫通導体9、ビア導体17は、それぞれが任意に接続され、配線回路を形成している。   The core wiring layer 13, the wiring conductor layer 19, the through conductor 9, and the via conductor 17 are arbitrarily connected to each other to form a wiring circuit.

本発明の配線基板21においては、貫通孔7の内壁の繊維1と樹脂3との間に形成された乖離部Aに、封止導体11を形成することが重要であり、従来、貫通孔7の壁面で貫通導体9が剥離しやすく、配線基板21の信頼性を低下させる大きな要因の一つであった貫通孔7の内壁において繊維1と樹脂3との乖離部Aに封止導体11を形成することで、封止導体11並びに貫通導体9と、繊維1と樹脂3とを含有する絶縁基体5との接触面積が増え、その上、封止導体11が繊維1と樹脂3との間に挟みこまれる構造となるので、絶縁基体5の壁面での封止導体11並びに貫通導体9と、繊維1と樹脂3とを含有する絶縁基体5との密着強度は格段に大きくなり、配線基板21の信頼性は格段に向上するのである。また、封止導体11並びに貫通導体9と、繊維1と樹脂3とを含有する絶縁基体5との密着強度が向上することにより、両者の間に剥離が発生しにくくなり、繊維1と樹脂3を起点とする貫通孔と貫通導体クラックの発生を減らすことができ、配線基板の表裏の導通上の接続信頼性を向上することができる。   In the wiring board 21 of the present invention, it is important to form the sealing conductor 11 at the divergence portion A formed between the fiber 1 on the inner wall of the through hole 7 and the resin 3. The sealing conductor 11 is placed on the gap A between the fiber 1 and the resin 3 on the inner wall of the through hole 7, which is one of the major factors that cause the through conductor 9 to easily peel off the wall surface of the wiring board 21 and reduce the reliability of the wiring board 21. By forming, the contact area between the sealing conductor 11 and the through conductor 9 and the insulating base 5 containing the fiber 1 and the resin 3 is increased, and the sealing conductor 11 is between the fiber 1 and the resin 3. Therefore, the adhesion strength between the sealing conductor 11 and the through conductor 9 on the wall surface of the insulating base 5 and the insulating base 5 containing the fibers 1 and the resin 3 is remarkably increased. The reliability of 21 is greatly improved. Further, since the adhesion strength between the sealing conductor 11 and the through conductor 9 and the insulating base 5 containing the fiber 1 and the resin 3 is improved, it is difficult for peeling to occur between the fiber 1 and the resin 3. The occurrence of through-holes and through-conductor cracks starting from the above can be reduced, and the connection reliability in conduction between the front and back sides of the wiring board can be improved.

この乖離部Aに封止導体11を形成するため、また、封止導体11と絶縁基体5との接着強度を向上させるために乖離部Aの径は貫通孔7に向けて大きくなるように開口させることが望ましい。   In order to form the sealing conductor 11 in the divergence portion A and to improve the adhesive strength between the sealing conductor 11 and the insulating substrate 5, the divergence portion A has a diameter that is increased toward the through hole 7. It is desirable to make it.

また、封止導体11と貫通導体9の境界をなくし、半導体チップ実装での熱衝撃等で剥離を生じにくくするために、この封止導体11と貫通導体9とは同一の金属相により形成することが望ましい。   Further, in order to eliminate the boundary between the sealing conductor 11 and the through conductor 9 and to prevent peeling due to thermal shock or the like in the semiconductor chip mounting, the sealing conductor 11 and the through conductor 9 are formed of the same metal phase. It is desirable.

また、封止導体11と絶縁基体5との密着強度を向上させるためには、封止導体11の貫通孔7からの侵入深さを3μm以上とすることが望ましく、特に、5μm以上、さらに、7μm以上とすることが望ましい。また、隣り合う、他の貫通導体7との絶縁信頼性を向上させるためには、封止導体11の貫通孔7からの侵入深さを20μm以下とすることが望ましく、特に、15μm以下、さらに、10μm以下とすることが望ましい。   Further, in order to improve the adhesion strength between the sealing conductor 11 and the insulating substrate 5, it is desirable that the penetration depth of the sealing conductor 11 from the through hole 7 is 3 μm or more, particularly 5 μm or more, It is desirable to set it as 7 micrometers or more. Further, in order to improve the insulation reliability between adjacent through conductors 7, the penetration depth of the sealing conductor 11 from the through hole 7 is desirably 20 μm or less, in particular, 15 μm or less, It is desirable that the thickness be 10 μm or less.

また、繊維1の線径を15μm以下とすることで、容易に貫通孔7を形成することができるとともに、繊維1の周囲に容易に所望の形状の乖離部Aを形成することができる。   In addition, when the fiber 1 has a wire diameter of 15 μm or less, the through-hole 7 can be easily formed, and the detachment portion A having a desired shape can be easily formed around the fiber 1.

また、絶縁基体5に十分な剛性をもたせ、配線基板21の反りを小さくすることができることから、繊維1をガラスにより形成し、繊維1として、いわゆるガラスクロス1を用いることが望ましい。即ち、図1では、直線的に繊維1を表現しているが、繊維1として、ガラス繊維1を布のように編み込んだガラスクロス1を用いる場合には、ガラス繊維1は波状に、しかも、互いに交差して絶縁基体5を構成するのである。また、繊維1は、図1では、長繊維1として表現しているが短繊維であってもよいことは言うまでもない。   Further, since the insulating base 5 can have sufficient rigidity and the warping of the wiring substrate 21 can be reduced, it is desirable to form the fiber 1 from glass and use the so-called glass cloth 1 as the fiber 1. That is, in FIG. 1, the fiber 1 is expressed linearly, but when the glass cloth 1 in which the glass fiber 1 is knitted like a cloth is used as the fiber 1, the glass fiber 1 is wavy, The insulating base 5 is formed so as to cross each other. Moreover, although the fiber 1 is expressed as the long fiber 1 in FIG. 1, it goes without saying that the fiber 1 may be a short fiber.

また、貫通孔7をレーザ加工で形成した場合には、絶縁基体5のガラス繊維1と樹脂3の乖離はレーザ加工時の熱作用によるガラス繊維近傍の樹脂の変質により、形成することができ、乖離部以外のガラス繊維1と樹脂3の密着性を維持することが容易となる。このレーザ加工条件は、貫通孔7の周辺においてガラス繊維1の周辺の樹脂3を変質させて、除去しやすくするためにエネルギーの出力とショット数を調整することが望ましい。具体的には炭酸ガスレーザを使い、1ショットあたりの出力を10〜25mJとし、ショット数を3〜20ショットとすることでガラス繊維1近傍の樹脂3の変質を調整することが可能である。   Further, when the through-hole 7 is formed by laser processing, the divergence between the glass fiber 1 and the resin 3 of the insulating base 5 can be formed by alteration of the resin in the vicinity of the glass fiber due to thermal action during laser processing, It becomes easy to maintain the adhesiveness between the glass fiber 1 and the resin 3 other than the separation part. As for the laser processing conditions, it is desirable to adjust the output of energy and the number of shots in order to change the resin 3 around the glass fiber 1 around the through-hole 7 so that it can be easily removed. Specifically, it is possible to adjust the alteration of the resin 3 in the vicinity of the glass fiber 1 by using a carbon dioxide laser and setting the output per shot to 10 to 25 mJ and the number of shots to 3 to 20 shots.

レーザ加工した絶縁基体5の貫通孔7を粗化液に浸透させることにより、前記繊維と樹脂の乖離部Aを形成できる。これはガラス繊維1と樹脂3の間のレーザ加工で変質した樹脂3を化学的にとりさることによりガラス繊維1の近傍の樹脂3の変質した残渣をほぼ除去することが可能であり、変質した樹脂残渣の上に封止導体11が形成され、その部分での密着力が小さくなるということが無い。これは樹脂3のレーザ加工時に変質し、除去しやすくなった部分のみを化学的に除去しているだけなので、レーザ加工時に変質していない部分の樹脂3とガラス繊維1とを新たに乖離させることはない。   By allowing the through hole 7 of the laser-processed insulating substrate 5 to penetrate into the roughening liquid, the fiber-resin separation portion A can be formed. This is because it is possible to almost remove the denatured residue of the resin 3 in the vicinity of the glass fiber 1 by chemically removing the resin 3 denatured by the laser processing between the glass fiber 1 and the resin 3. The sealing conductor 11 is formed on the residue, and the adhesion force at that portion is not reduced. This is because the resin 3 is altered during the laser processing and only the portion that has been easily removed is chemically removed, so that the resin 3 and the glass fiber 1 that are not altered during the laser processing are newly separated. There is nothing.

また、絶縁基板1の貫通孔5を粗化液に浸透させるときに超音波振動を製品にかけながら浸透することによりガラス繊維近傍の樹脂の変質した残渣をより速やかに除去することが可能であり変質した樹脂残渣の上に封止導体が形成され、その部分での密着力が小さくなるということが無い。   In addition, when the through-hole 5 of the insulating substrate 1 is infiltrated into the roughening solution, it is possible to more quickly remove the altered residue of the resin near the glass fiber by infiltrating the product while applying ultrasonic vibration. The sealing conductor is not formed on the resin residue, and the adhesive force at that portion is not reduced.

また、めっき法により、封止導体と貫通導体を形成した場合には、乖離部A内部までめっき液が浸透しやすくなり、封止導体でガラス繊維と樹脂の隙間を容易に埋めることができ、封止導体めっきと貫通導体の密着を十分に保つことができるようになる。   In addition, when the sealing conductor and the through conductor are formed by plating, the plating solution can easily penetrate into the gap A, and the sealing conductor can easily fill the gap between the glass fiber and the resin. Adhesion between the sealing conductor plating and the through conductor can be sufficiently maintained.

以下に、図1を用いて説明した本発明の配線基板21を製造するための本発明の配線基板21の製造方法について、詳細に説明する。なお、本実施例においても、直径が75〜130μmと微細な貫通孔7を有するとともに、厚みが0.2〜0.8mmの薄型の配線基板を製造する場合の例を示している。   Below, the manufacturing method of the wiring board 21 of this invention for manufacturing the wiring board 21 of this invention demonstrated using FIG. 1 is demonstrated in detail. In this embodiment, an example of manufacturing a thin wiring board having a fine through hole 7 with a diameter of 75 to 130 μm and a thickness of 0.2 to 0.8 mm is shown.

まず、図2(a)に示すように、例えば、ガラスクロス1にエポキシ樹脂やビスマレイミドトリアジン樹脂・ポリフェニレンエーテル樹脂等の樹脂3を含浸させた厚みが0.2〜0.8mmの絶縁基体5の両面に厚みが5〜20μmの金属箔23である銅箔23が被着形成された両面銅張板25を準備する。この時にガラスクロス1は繊維の直径が15μm以下のガラス繊維1を用いることが望ましい。   First, as shown in FIG. 2A, for example, an insulating substrate 5 having a thickness of 0.2 to 0.8 mm in which a glass cloth 1 is impregnated with a resin 3 such as an epoxy resin, a bismaleimide triazine resin, or a polyphenylene ether resin. A double-sided copper-clad plate 25 having a copper foil 23, which is a metal foil 23 having a thickness of 5 to 20 μm, is prepared on both sides. At this time, it is desirable to use glass fiber 1 having a fiber diameter of 15 μm or less as glass cloth 1.

なお、絶縁基体5は、その厚みを0.2mm以上とすることで、絶縁基体5および銅箔23を貫通して複数の貫通孔7を形成したり、さらには穴埋め樹脂38を形成する際等に印加される熱や外力等の影響で配線基板21に反りや変形が発生して配線基板に要求される平坦度を確保できなくなってしまう危険性を小さくすることができ、また、その厚みを0.8mm以下とすることで、後述するように貫通孔7の内壁にめっきを被着して貫通導体9を形成するとき、貫通孔7内にめっき液が浸入しにくくなり、貫通導体9に断線が発生しやすくなるということがない。したがって、厚みが0.2〜0.8mmの絶縁基板1を用いることが好ましい。また、ガラスクロス1は、その繊維1の直径を15μm以下とすることでレーザ加工により貫通孔7を形成する時の加工が容易となり所定の孔径を加工しやすくなり、形状も良好となる。   The insulating base 5 has a thickness of 0.2 mm or more, so that a plurality of through holes 7 are formed by penetrating the insulating base 5 and the copper foil 23, and further, the filling resin 38 is formed. It is possible to reduce the risk of warping or deformation of the wiring board 21 due to the influence of heat, external force, etc. applied to the wiring board, making it impossible to ensure the flatness required for the wiring board. By setting the thickness to 0.8 mm or less, as will be described later, when plating is applied to the inner wall of the through hole 7 to form the through conductor 9, the plating solution is less likely to enter the through hole 7. Disconnection is not likely to occur. Therefore, it is preferable to use the insulating substrate 1 having a thickness of 0.2 to 0.8 mm. In addition, the glass cloth 1 has a fiber 1 having a diameter of 15 μm or less, which facilitates processing when the through hole 7 is formed by laser processing, facilitates processing of a predetermined hole diameter, and improves the shape.

また、銅箔23は、その厚みを5μm以上とすることで、貫通孔7形成後のめっきの前処理として行なわれるマイクロエッチング時に銅箔23がエッチングされて銅箔23にピンホールまたは欠損を生じることがなくなり、銅箔23へのめっきの付き周り性や密着力を強くすることができる。   Further, by setting the thickness of the copper foil 23 to 5 μm or more, the copper foil 23 is etched at the time of microetching performed as a pretreatment for plating after the formation of the through hole 7, thereby causing pinholes or defects in the copper foil 23. This eliminates the possibility of increasing the adhesion and adhesion of the copper foil 23 to the plating.

また、銅箔23の厚みを20μm以下とすることで、貫通孔7をレーザ加工により穿孔する場合に、直径が75〜130μmの貫通孔7を安定して形成することが可能となる。したがって、5〜20μmの厚みの銅箔23を用いることが望ましい。   Moreover, when the thickness of the copper foil 23 is 20 μm or less, when the through hole 7 is drilled by laser processing, the through hole 7 having a diameter of 75 to 130 μm can be stably formed. Therefore, it is desirable to use a copper foil 23 having a thickness of 5 to 20 μm.

このような銅箔23は、例えば、絶縁基体5の上下全面に厚みが8〜40μm程度の銅箔23を貼着するとともに、この銅箔23を硫酸−過酸化水素水などの銅エッチング液で膜厚が均一となるようにエッチングし、厚みが5〜20μmとなるように加工して形成される。   For example, the copper foil 23 has a thickness of about 8 to 40 μm adhered to the entire upper and lower surfaces of the insulating base 5 and the copper foil 23 is made of a copper etching solution such as sulfuric acid-hydrogen peroxide solution. It is formed by etching so that the film thickness becomes uniform and processing so that the thickness becomes 5 to 20 μm.

次に、図2(b)に示すように、レーザ加工により両面銅張板25を貫通する直径が75〜130μmの貫通孔7を穿孔する。   Next, as shown in FIG.2 (b), the through-hole 7 with a diameter of 75-130 micrometers which penetrates the double-sided copper clad board 25 is drilled by laser processing.

このように、貫通孔7の直径が75〜130μmと微細な場合には、貫通導体9および配線導体13を形成する際に貫通導体9および配線導体13を高密度で配置することができ、それにより高密度な配線基板を得ることができる。なお、貫通孔7の孔径が75μm以上の場合、貫通孔7の内層にめっき金属を被着して貫通導体9を形成する際に、貫通導体9を形成するためのめっき液が貫通孔7の内部に良好に入り込み、貫通孔7の内部に貫通導体9を良好に形成することが可能となり、他方、130μm以下では、貫通導体9および配線導体13を高密度で配置することが可能となる。したがって、貫通孔7の直径は、75〜130μmの範囲が好ましい。   Thus, when the diameter of the through hole 7 is as fine as 75 to 130 μm, the through conductor 9 and the wiring conductor 13 can be arranged with high density when forming the through conductor 9 and the wiring conductor 13. Thus, a high-density wiring board can be obtained. In addition, when the hole diameter of the through hole 7 is 75 μm or more, when forming the through conductor 9 by depositing a plating metal on the inner layer of the through hole 7, a plating solution for forming the through conductor 9 is used in the through hole 7. The inside of the through hole 7 can be satisfactorily formed, and the through conductor 9 can be satisfactorily formed inside the through hole 7. On the other hand, when the thickness is 130 μm or less, the through conductor 9 and the wiring conductor 13 can be arranged with high density. Therefore, the diameter of the through hole 7 is preferably in the range of 75 to 130 μm.

なお、絶縁基板1および銅箔23に貫通孔7を形成するには、銅箔23上に例えばレーザ光のエネルギーを良好に吸収する黒色もしくは黒色に近い色を有する樹脂から成るレーザ加工用シートを貼着し、このレーザ加工用シートの上から炭酸ガスレーザ光を照射する方法、もしくは銅箔23の表面を算術平均粗さRaで0.2〜2μmの範囲で表面を粗化した後、その銅箔23に酸化雰囲気150℃で30分程度の熱処理を施し、その表面をレーザ光のエネルギーを良好に吸収する黒色もしくは茶色等の黒色に近い色を有する色として炭酸ガスレーザ光を照射する方法のどちらかの方法を使用し、8〜30mJの出力の炭酸ガスレーザ光を40〜240μ秒のパルス幅で所定の位置に照射して貫通孔7を穿孔する方法が採用される。   In order to form the through-hole 7 in the insulating substrate 1 and the copper foil 23, a laser processing sheet made of a resin having a black color or a color close to black, for example, which absorbs laser beam energy satisfactorily on the copper foil 23 is used. A method of applying carbon dioxide laser light from above the laser processing sheet, or roughening the surface of the copper foil 23 with an arithmetic average roughness Ra in the range of 0.2 to 2 μm, and then the copper Either of the methods in which the foil 23 is heat-treated at an oxidizing atmosphere of 150 ° C. for about 30 minutes, and the surface is irradiated with carbon dioxide laser light as a color having a color close to black, such as black or brown, which absorbs the energy of the laser light well. Using this method, a method of piercing the through-hole 7 by irradiating a predetermined position with a carbon dioxide laser beam with an output of 8 to 30 mJ with a pulse width of 40 to 240 μsec is employed.

このとき、炭酸ガスレーザ光の出力を8mJ以上とすることで、貫通孔7を十分な大きさに穿孔することが可能となる。また、30mJ以下とすることで絶縁基板1における貫通孔7の孔径を精度よく形成することができる。したがって、照射する炭酸ガスレーザ光は、その出力が8〜30mJでパルス幅が40〜240μ秒の範囲ですることが好ましい。   At this time, by setting the output of the carbon dioxide laser beam to 8 mJ or more, the through hole 7 can be drilled to a sufficient size. Moreover, the hole diameter of the through-hole 7 in the insulated substrate 1 can be accurately formed by setting it as 30 mJ or less. Therefore, it is preferable that the carbon dioxide laser beam to be irradiated has an output of 8 to 30 mJ and a pulse width of 40 to 240 μsec.

なお、貫通孔7を上下両面側に向けて拡径する形状とするには、レーザ加工により穿孔する場合、レーザ光の1パルス当たりのエネルギーやショット数を調整すればよい。   In addition, in order to make the through-hole 7 have a shape that expands toward both the upper and lower surfaces, when drilling by laser processing, the energy per laser beam and the number of shots may be adjusted.

このような工程でレーザ光を用いて貫通孔7を形成した場合には、貫通孔7の内壁には熱により炭化層(図示せず)が形成される。また、炭化していなくとも貫通孔7の壁面、貫通孔7の壁面近傍の繊維3の周囲の樹脂は熱により変質し、除去されやすくなる。   When the through hole 7 is formed using laser light in such a process, a carbonized layer (not shown) is formed on the inner wall of the through hole 7 by heat. Moreover, even if it is not carbonized, the resin around the wall surface of the through-hole 7 and the fiber 3 in the vicinity of the wall surface of the through-hole 7 is altered by heat and easily removed.

そして、貫通孔7の内壁に形成された炭化層や変質層を例えば過マンガン酸カリウム溶液や過マンガン酸ナトリウム溶液から成る粗化液を用いて粗化して除去することにより、図2(c)の部分断面図に示す炭化層、変質層が除去された両面銅張板25が得られる。   Then, the carbonized layer and the altered layer formed on the inner wall of the through-hole 7 are removed by roughening using, for example, a roughening solution composed of a potassium permanganate solution or a sodium permanganate solution, thereby removing the carbonized layer or the altered layer shown in FIG. The double-sided copper-clad board 25 from which the carbonized layer and the altered layer shown in the partial cross-sectional view are removed is obtained.

この両面銅張板25の貫通孔7の内壁に接する繊維1の周囲は除去されて、乖離部Aが形成される。   The periphery of the fiber 1 in contact with the inner wall of the through-hole 7 of the double-sided copper-clad plate 25 is removed, and a divergence portion A is formed.

次に、図3(d)に示すように、炭化層並びに変質層を除去した後に、貫通孔7の内部、金属箔23の表面に無電解めっき銅めっき(図示せず)および電解銅めっき層(図示せず)を順次析出させて、乖離部Aに封止導体11を形成するとともに、貫通孔7に貫通導体9を形成し、あわせて、銅箔23の表面にも厚みが1〜3μmの無電解銅めっき層および厚みが20〜30μmの電解銅めっき層を順次析出させて、めっき層を形成する。   Next, as shown in FIG. 3 (d), after removing the carbonized layer and the altered layer, the inside of the through hole 7 and the surface of the metal foil 23 are electroless plated copper plated (not shown) and electrolytic copper plated layer. (Not shown) are sequentially deposited to form the sealing conductor 11 in the divergence portion A, the through conductor 9 is formed in the through hole 7, and the thickness of the copper foil 23 is also 1 to 3 μm. The electroless copper plating layer and the electrolytic copper plating layer having a thickness of 20 to 30 μm are sequentially deposited to form a plating layer.

このように、封止導体11と貫通導体9とを同時に形成することで、両者を同一の金属により形成することができるため、封止導体11と貫通導体9との間で熱膨張係数の差による応力が発生することが無く、信頼性に優れた配線基板となる。また、工程がひとつですむため、プロセスコストを低くすることができる。   Thus, since the sealing conductor 11 and the through conductor 9 can be formed of the same metal by forming the sealing conductor 11 and the through conductor 9 at the same time, a difference in thermal expansion coefficient between the sealing conductor 11 and the through conductor 9 can be obtained. Therefore, the wiring board is excellent in reliability. Also, since only one process is required, the process cost can be reduced.

このとき、貫通孔7の内壁から炭化層17を除去し、さらに、貫通孔周縁部の金属箔23、貫通孔周縁部の絶縁基板1の密着強度の低下した表層の極薄い部分とをあらかじめ除去したことで、貫通導体9と貫通孔7、並びに貫通孔周縁配線層14と絶縁基板1とを強固に結合させることができる。   At this time, the carbonized layer 17 is removed from the inner wall of the through-hole 7, and further, the metal foil 23 at the periphery of the through-hole and the ultrathin portion of the surface layer where the adhesion strength of the insulating substrate 1 at the periphery of the through-hole is reduced are removed in advance. As a result, the through conductor 9 and the through hole 7, and the through hole peripheral wiring layer 14 and the insulating substrate 1 can be firmly bonded.

なお、無電解銅めっき層を析出させるには、例えば、塩化アンモニウム系酢酸パラジウムを含有するパラジウム活性液を使用して貫通孔7内壁、貫通孔周縁部のの絶縁基板1が露出した部分ならびに銅箔23の表面にパラジウム触媒を付着させるとともに、その上に硫酸銅系の無電解銅めっき液を用いて無電解銅めっき層を被着させればよい。このとき、貫通孔7は、両面銅張板15の開口部において外側に向けて拡径していることから、貫通孔7内に無電解銅めっき液が良好に浸入し、その結果、無電解銅めっき層を略均一な厚みに良好に被着させることができる。   In order to deposit the electroless copper plating layer, for example, a palladium active solution containing ammonium chloride-based palladium acetate is used to expose the inner wall of the through-hole 7, the exposed portion of the insulating substrate 1 at the periphery of the through-hole, and copper. A palladium catalyst may be attached to the surface of the foil 23, and an electroless copper plating layer may be deposited thereon using a copper sulfate-based electroless copper plating solution. At this time, since the diameter of the through-hole 7 is increased toward the outside at the opening of the double-sided copper-clad plate 15, the electroless copper plating solution satisfactorily enters the through-hole 7, and as a result, the electroless A copper plating layer can be satisfactorily deposited to a substantially uniform thickness.

また、電解銅めっき層を被着させるための電解銅めっき液としては、例えば、硫酸銅系の電解銅めっき液を用いればよい。このとき、貫通孔7は、両面銅張板25の開口部において外側に向けて拡径していることから、貫通孔7内に電解銅めっき液が良好に浸入し、その結果、貫通孔7内を電解銅めっきで良好に充填することができる。   Moreover, as an electrolytic copper plating solution for depositing the electrolytic copper plating layer, for example, a copper sulfate-based electrolytic copper plating solution may be used. At this time, since the diameter of the through hole 7 is increased toward the outside at the opening of the double-sided copper clad plate 25, the electrolytic copper plating solution enters the through hole 7 favorably, and as a result, the through hole 7 The inside can be satisfactorily filled with electrolytic copper plating.

次に、図3(e)に示すように、貫通孔7に形成された貫通導体9により形成された貫通孔7aの内部に埋込樹脂27を充填し、硬化させた後に、図4(g)に示すように、穴埋め樹脂27を埋め込んだ両面銅張板25の表面を研磨し、平坦化する。   Next, as shown in FIG. 3 (e), the embedded resin 27 is filled in the through hole 7a formed by the through conductor 9 formed in the through hole 7 and cured, and then the resin shown in FIG. ), The surface of the double-sided copper-clad plate 25 in which the hole filling resin 27 is embedded is polished and flattened.

この研磨により穴埋め樹脂27の不要部分を除去するとともに、両面銅張板25の表面に形成された導体層の厚みを所定の厚みにすることができる。また研磨工程においては、研磨と銅のエッチングとを交互に複数回繰り返して穴埋め樹脂27の不要部分を除去するとともに両面銅張板25の表面に形成された導体層の厚みを所定の厚みにする。研磨のみで穴埋め樹脂27の不要部分の除去と両面銅張板25の表面に形成された導体層の厚みを所定の厚みにするよりも、研磨と銅のエッチングを交互に行ったほうが、総計の作業時間が短縮され、両面銅張板25の表面に形成された導体層の厚みがより均一となる。また銅のエッチング液としては硫酸−過酸化水素水の混合溶液や過硫酸アンモニウム水溶液が望ましく、銅厚みの均一なエッチングを行うことができる。   By this polishing, unnecessary portions of the hole filling resin 27 are removed, and the thickness of the conductor layer formed on the surface of the double-sided copper-clad plate 25 can be set to a predetermined thickness. In the polishing step, polishing and copper etching are alternately repeated a plurality of times to remove unnecessary portions of the hole-filling resin 27, and the thickness of the conductor layer formed on the surface of the double-sided copper clad plate 25 is set to a predetermined thickness. . Rather than removing unnecessary portions of the hole-filling resin 27 only by polishing and making the thickness of the conductor layer formed on the surface of the double-sided copper-clad plate 25 a predetermined thickness, polishing and copper etching are performed alternately. The working time is shortened, and the thickness of the conductor layer formed on the surface of the double-sided copper-clad plate 25 becomes more uniform. As the copper etching solution, a mixed solution of sulfuric acid-hydrogen peroxide solution or an aqueous solution of ammonium persulfate is desirable, and etching with a uniform copper thickness can be performed.

次に、例えば、図4(f)に示すように、平坦化された両面銅張板25の表面に、めっきにより導体29を形成し、最後に、図5(g)に示すように、従来周知のサブトラクト法、セミアディティブ法などにより、両面銅張板25の表面に形成された導体層の不要な部分を除去し、配線導体13を形成する。   Next, for example, as shown in FIG. 4 (f), a conductor 29 is formed by plating on the surface of the flattened double-sided copper clad plate 25. Finally, as shown in FIG. The wiring conductor 13 is formed by removing unnecessary portions of the conductor layer formed on the surface of the double-sided copper clad plate 25 by a known subtractive method, semi-additive method, or the like.

さらに、このような配線基板の主面にビルドアップ樹脂層およびビルドアップ配線層を積層してビルドアップ配線基板を製作した場合には、図1に示すような配線基板を得ることができる。   Furthermore, when a buildup wiring board is manufactured by laminating a buildup resin layer and a buildup wiring layer on the main surface of such a wiring board, a wiring board as shown in FIG. 1 can be obtained.

すなわち、本発明によれば、貫通孔壁面と貫通導体とが強固に接続された信頼性の高い配線基板を容易に作製することができるのである。   That is, according to the present invention, a highly reliable wiring board in which the through hole wall surface and the through conductor are firmly connected can be easily manufactured.

なお、上述の実施例では貫通孔7の直径が75〜130μm、厚みが0.2〜0.8mmの配線基板を例にとって示したが、本発明は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば、種々の変更が可能であることはいうまでもない。   In the above-described embodiment, the through hole 7 has a diameter of 75 to 130 μm and a thickness of 0.2 to 0.8 mm as an example. However, the present invention is not limited to the above-described embodiment. Needless to say, various modifications can be made without departing from the scope of the present invention.

また、上述の実施例では、レーザー加工により貫通孔7を形成したが、ドリル加工で貫通孔7を形成した場合にも、同様の効果が得られることはいうまでもない。   Moreover, in the above-mentioned Example, although the through-hole 7 was formed by laser processing, when the through-hole 7 is formed by drilling, it cannot be overemphasized that the same effect is acquired.

なお、穴埋め樹脂27を形成する例について説明したが、貫通孔7の内部をめっきにより完全に充填した場合には、穴埋め樹脂27を形成する必要がないことは言うまでもない。   In addition, although the example which forms the hole filling resin 27 was demonstrated, it cannot be overemphasized that it is not necessary to form the hole filling resin 27 when the inside of the through-hole 7 is completely filled by plating.

本発明の配線基板を評価するために、サンプルを作製し、次の評価を行なった。   In order to evaluate the wiring board of the present invention, a sample was prepared and the following evaluation was performed.

主面に厚み10μmの銅箔23を具備する全体の厚みが0.4mmの両面銅張板25に炭酸ガスレーザにより貫通孔7を形成した。なお、炭酸ガスレーザの穿孔条件はパルス幅が160μsで出力を10mJから25mJの条件とショット数を4ショットから6ショットに変動させる条件で組み合わせた。   The through-hole 7 was formed in the double-sided copper clad board 25 which has the copper foil 23 with a thickness of 10 micrometers on the main surface, and whose thickness is 0.4 mm with a carbon dioxide laser. Carbon dioxide laser drilling conditions were combined under the conditions of a pulse width of 160 μs, an output of 10 mJ to 25 mJ, and a condition of changing the number of shots from 4 shots to 6 shots.

なお、作製した貫通孔3の直径は90μmとし、貫通孔3同士のピッチは200μmとした。その後、炭酸ガスレーザ加工された両面銅張板15を過マンガン酸カリウム溶液からなる80℃の粗化液で5〜8分処理した。その後、無電解銅めっき層および電解銅めっき層によりガラスクロスと樹脂の間の封止導体および貫通孔3の壁面に貫通導体を形成する。その際、レーザ条件の出力とショット数を変化させる組み合わせにより、乖離部の形状を変化させ、封止導体の長さが表1にしめす値となるサンプルを得た。   In addition, the diameter of the produced through-hole 3 was 90 micrometers, and the pitch of the through-holes 3 was 200 micrometers. Thereafter, the double-sided copper-clad plate 15 subjected to carbon dioxide laser processing was treated with an 80 ° C. roughening solution composed of a potassium permanganate solution for 5 to 8 minutes. Thereafter, a through conductor is formed on the sealing conductor between the glass cloth and the resin and the wall surface of the through hole 3 by the electroless copper plating layer and the electrolytic copper plating layer. At that time, by changing the laser condition output and the number of shots, the shape of the divergence was changed, and a sample in which the length of the sealed conductor was as shown in Table 1 was obtained.

その後、貫通孔3の内部に穴埋め樹脂27を埋め込み、この穴埋め樹脂27を硬化した後、研磨により穴埋め樹脂27の不要部分を除去し、従来周知のサブトラクト法により配線パターンを形成し、コア基板としての試験片を得た。   Thereafter, the hole filling resin 27 is buried in the through hole 3, and after the hole filling resin 27 is cured, unnecessary portions of the hole filling resin 27 are removed by polishing, and a wiring pattern is formed by a conventionally known subtracting method to form a core substrate. The test piece was obtained.

封止導体の長さの違うサンプルはそれぞれ10個ずつ作製し、それぞれに400の貫通孔を形成した。半導体素子実装およびプリント基板への実装を想定した耐熱試験後に温度サイクルテストと、印加耐湿絶縁性信頼性テストを行った。耐熱試験と温度サイクル試験後、電気導通テストで断線の有無を確認し、断線しているものは貫通孔近傍にクラックが発生していないか観察した。また印加耐湿絶縁信頼性テスト後には絶縁抵抗を測定し、その絶縁抵抗により合否を判断した。なお、絶縁抵抗値が10Ω以上の試料を合格とした。 Ten samples each having a different length of the sealing conductor were prepared, and 400 through-holes were formed in each sample. A temperature cycle test and an applied moisture resistance insulation reliability test were conducted after a heat resistance test assuming mounting on a semiconductor device and printed circuit board. After the heat resistance test and the temperature cycle test, the presence or absence of a disconnection was confirmed by an electrical continuity test, and the disconnection was observed for cracks in the vicinity of the through hole. Further, after the applied moisture resistance insulation reliability test, the insulation resistance was measured, and pass / fail was judged by the insulation resistance. A sample having an insulation resistance value of 10 8 Ω or higher was accepted.

なお、半導体素子実装およびプリント基板への実装を想定した耐熱試験はピーク温度が260℃で200℃以上保持時間が60秒以上のリフロー条件に3回通して行った。また、温度サイクルテストの条件は温度サイクル試験は−55℃/125℃で1000サイクルの条件で行った。印加耐湿絶縁信頼性テストはHASTと呼ばれる、印加電圧が5.5Vで耐湿環境条件として温度130℃湿度85%で168時間の条件で行った。   The heat resistance test assuming semiconductor device mounting and mounting on a printed circuit board was performed three times under reflow conditions in which the peak temperature was 260 ° C. and the holding time was 200 ° C. or more and 60 seconds or more. The temperature cycle test was conducted at a temperature cycle of −55 ° C./125° C. under 1000 cycles. The applied moisture resistant insulation reliability test was called HAST, and the applied voltage was 5.5V and the moisture resistant environment condition was a temperature of 130 ° C. and a humidity of 85% for 168 hours.

また、乖離部の形状、すなわち、封止導体の形状は、上記の試験を行った試料の断面観察を行って測定した。

Figure 2006237241
Further, the shape of the divergence portion, that is, the shape of the sealing conductor was measured by observing a cross section of the sample subjected to the above test.
Figure 2006237241

本発明の範囲外である封止導体が形成されていない試料No.1では、耐熱試験と温度サイクル後の電気導通テストで断線不良が3/10個発生し、そのいずれもが貫通孔近傍のクラックで、その起因がガラスクロスと貫通導体との間の剥離であり、信頼性に劣ることが確認された。   Sample No. in which a sealed conductor which is outside the scope of the present invention is not formed. In No. 1, 3/10 disconnection failures occurred in the heat resistance test and the electrical continuity test after the temperature cycle, all of which were cracks in the vicinity of the through hole, and the cause was peeling between the glass cloth and the through conductor. It was confirmed that the reliability was inferior.

一方、本発明の封止導体を設けた試料No.2〜9では耐熱試験と温度サイクル後の電気導通テストで断線不良の発生がなく、また絶縁信頼性テスト後の絶縁不良も全く確認されなかった。   On the other hand, Sample No. provided with the sealing conductor of the present invention. In Nos. 2 to 9, no disconnection failure occurred in the heat resistance test and the electrical continuity test after the temperature cycle, and no insulation failure after the insulation reliability test was confirmed.

また、本発明の本発明の封止導体を設けた試料のうち、封止導体の長さが25μmの試料No.10では、隣り合う貫通導体で一部にマイグレーションが確認された。   Further, among the samples provided with the sealing conductor of the present invention, the sample No. 2 having a sealing conductor length of 25 μm was used. 10, migration was partially confirmed in adjacent through conductors.

なお、これらの試料を観察したところ、乖離部は、貫通導体側に向けて、径が大きくなるように開口していた。   In addition, when these samples were observed, the divergence part was opened so that a diameter might become large toward the penetration conductor side.

本発明の配線基板の一形態を示す断面図である。It is sectional drawing which shows one form of the wiring board of this invention. 本発明の配線基板の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the wiring board of this invention. 本発明の配線基板の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the wiring board of this invention.

符号の説明Explanation of symbols

1・・・繊維、ガラスクロス
3・・・樹脂
5・・・絶縁基体
7・・・貫通孔
9・・・貫通導体
11・・封止導体
21・・配線基板
A・・・乖離部
DESCRIPTION OF SYMBOLS 1 ... Fiber, glass cloth 3 ... Resin 5 ... Insulation base | substrate 7 ... Through-hole 9 ... Through-conductor 11 ... Sealing conductor 21 ... Wiring board A ... Deviation part

Claims (12)

少なくとも繊維と樹脂とを含有してなる絶縁基体と、該絶縁基体に形成された貫通孔と、該貫通孔に形成された金属相からなる貫通導体を具備してなる配線基板において、前記繊維と樹脂とが乖離した乖離部が前記貫通孔に開口するように形成されるとともに、前記乖離部に封止導体が形成されてなることを特徴とする配線基板。 In a wiring board comprising: an insulating base containing at least fibers and a resin; a through hole formed in the insulating base; and a through conductor made of a metal phase formed in the through hole. A wiring board comprising: a separation portion that is separated from a resin so as to open in the through hole; and a sealing conductor is formed in the separation portion. 乖離部の経が貫通孔側に向けて大きくなっていることを特徴とする請求項1に記載の配線基板。 The wiring board according to claim 1, wherein the length of the separation portion increases toward the through hole side. 貫通導体と封止導体とが同一の金属相から形成されてなることを特徴とする請求項1又は2に記載の配線基板。 The wiring substrate according to claim 1, wherein the through conductor and the sealing conductor are formed of the same metal phase. 封止導体の長さが3〜20μmであることを特徴とする請求項1乃至3のうちいずれかに記載の配線基板。 4. The wiring board according to claim 1, wherein the length of the sealing conductor is 3 to 20 [mu] m. 繊維の線径が15μm以下であることを特徴とする請求項1乃至4に記載の配線基板。 The wiring board according to claim 1, wherein the fiber has a wire diameter of 15 μm or less. 繊維がガラス繊維であることを特徴とする請求項1乃至5に記載の配線基板。 6. The wiring board according to claim 1, wherein the fiber is a glass fiber. 少なくとも繊維と樹脂を含有してなる絶縁基体に貫通孔を設ける工程と、前記絶縁基体の繊維と樹脂との間に乖離部を形成する工程と、該乖離部に封止導体を形成する工程と、前記貫通孔に貫通導体を形成する工程と、を具備することを特徴とする配線基板の製造方法。 A step of providing a through hole in an insulating base containing at least a fiber and a resin, a step of forming a gap between the fiber of the insulating base and the resin, and a step of forming a sealing conductor in the gap And a step of forming a through conductor in the through hole. 貫通孔をレーザ加工により形成することを特徴とする請求項7に記載の配線基板の製造方法。 The method for manufacturing a wiring board according to claim 7, wherein the through hole is formed by laser processing. 絶縁基体の貫通孔を粗化液に浸透させることにより、前記繊維と樹脂の乖離部を形成することを特徴とする請求項7又は8に記載の配線基板の製造方法。 The method for manufacturing a wiring board according to claim 7 or 8, wherein a gap between the fiber and the resin is formed by allowing the through hole of the insulating base to penetrate into the roughening solution. 絶縁基板の貫通孔を粗化液に浸透させるとき、超音波振動をかけることを特徴とする請求項7乃至9のうちいずれかに記載の配線基板の製造方法。 10. The method of manufacturing a wiring board according to claim 7, wherein ultrasonic vibration is applied when the through hole of the insulating substrate is allowed to penetrate into the roughening liquid. めっき法により、封止導体を形成することを特徴とする請求項7乃至10のうちいずれかに記載の配線基板の製造方法。 The method for manufacturing a wiring board according to claim 7, wherein the sealing conductor is formed by a plating method. めっき法により、貫通導体を形成することを特徴とする請求項7乃至11のうちいずれかに記載の配線基板の製造方法。 12. The method for manufacturing a wiring board according to claim 7, wherein the through conductor is formed by a plating method.
JP2005049198A 2005-02-24 2005-02-24 Printed circuit board and manufacturing method thereof Pending JP2006237241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049198A JP2006237241A (en) 2005-02-24 2005-02-24 Printed circuit board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049198A JP2006237241A (en) 2005-02-24 2005-02-24 Printed circuit board and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006237241A true JP2006237241A (en) 2006-09-07

Family

ID=37044571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049198A Pending JP2006237241A (en) 2005-02-24 2005-02-24 Printed circuit board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006237241A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056558A (en) * 2013-09-12 2015-03-23 住友電工プリントサーキット株式会社 Flexible printed wiring board, multilayer printed wiring board, and method for manufacturing flexible printed wiring board
CN105530769A (en) * 2014-09-30 2016-04-27 深南电路有限公司 Processing method of printed circuit board and printed circuit board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125495A (en) * 1988-11-04 1990-05-14 Sharp Corp Manufacture of printed circuit board
JPH0353590A (en) * 1989-07-20 1991-03-07 Fujitsu Ltd Printed board
JPH04322496A (en) * 1990-11-29 1992-11-12 Macdermid Inc Manufacture of printed circuit and composition used therefor
JPH11177199A (en) * 1997-12-05 1999-07-02 Matsushita Electric Ind Co Ltd Printed wiring board and its manufacture
JP2000091750A (en) * 1998-09-16 2000-03-31 Ibiden Co Ltd Method for forming through hole, multilayered printed wiring board and manufacture thereof and through hole forming substrate
JP2002290049A (en) * 2001-03-28 2002-10-04 Jsr Corp Multilayer circuit board and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125495A (en) * 1988-11-04 1990-05-14 Sharp Corp Manufacture of printed circuit board
JPH0353590A (en) * 1989-07-20 1991-03-07 Fujitsu Ltd Printed board
JPH04322496A (en) * 1990-11-29 1992-11-12 Macdermid Inc Manufacture of printed circuit and composition used therefor
JPH11177199A (en) * 1997-12-05 1999-07-02 Matsushita Electric Ind Co Ltd Printed wiring board and its manufacture
JP2000091750A (en) * 1998-09-16 2000-03-31 Ibiden Co Ltd Method for forming through hole, multilayered printed wiring board and manufacture thereof and through hole forming substrate
JP2002290049A (en) * 2001-03-28 2002-10-04 Jsr Corp Multilayer circuit board and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056558A (en) * 2013-09-12 2015-03-23 住友電工プリントサーキット株式会社 Flexible printed wiring board, multilayer printed wiring board, and method for manufacturing flexible printed wiring board
CN105530769A (en) * 2014-09-30 2016-04-27 深南电路有限公司 Processing method of printed circuit board and printed circuit board

Similar Documents

Publication Publication Date Title
JP4776247B2 (en) Wiring board and manufacturing method thereof
KR100728754B1 (en) Printed circuit board using bump and method for manufacturing thereof
JP2000208936A (en) Manufacture of printed wiring board
JP2006237241A (en) Printed circuit board and manufacturing method thereof
JP2001230551A (en) Printed wiring board, multil ayered printed wiring board and its manufacturing method
JP2020057767A (en) Printed wiring board
JP2008205302A (en) Printed wiring board and its manufacturing method
JP2005191115A (en) Wiring board and its manufacturing method
JPH11261216A (en) Printed wiring board and its manufacture
JP3716613B2 (en) Printed wiring board and manufacturing method thereof
JP5935186B2 (en) Wiring board
JP5127790B2 (en) Wiring board
JP5172565B2 (en) Multilayer wiring board manufacturing method and multilayer wiring board
JP2000216521A (en) Manufacture of wiring board and wiring board using the same
JP2005136052A (en) Wiring board, electrical apparatus, and their manufacturing method
JP3456072B2 (en) Multilayer printed circuit board
JP4029005B2 (en) Wiring board manufacturing method
JP4328195B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTRIC DEVICE
JP2004179526A (en) Wiring board, and manufacturing method thereof
JP4328196B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTRIC DEVICE
JPS6197995A (en) Making of through hole type circuit board
JP2005072455A (en) Manufacturing method of wiring board
JP2003283135A (en) Wiring board
JP2005294873A (en) Method of manufacturing printed wiring board
JP2004095738A (en) Wiring board and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071119

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011