JPH06132630A - Manufacture of flexible circuit board - Google Patents

Manufacture of flexible circuit board

Info

Publication number
JPH06132630A
JPH06132630A JP28146892A JP28146892A JPH06132630A JP H06132630 A JPH06132630 A JP H06132630A JP 28146892 A JP28146892 A JP 28146892A JP 28146892 A JP28146892 A JP 28146892A JP H06132630 A JPH06132630 A JP H06132630A
Authority
JP
Japan
Prior art keywords
insulating resin
layer
circuit conductor
wiring board
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28146892A
Other languages
Japanese (ja)
Inventor
Hisashi Nakamura
恒 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28146892A priority Critical patent/JPH06132630A/en
Publication of JPH06132630A publication Critical patent/JPH06132630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a flexible circuit board having excellent economy by conducting all circuit conductor layers between layers in a high density flexible circuit board having both sides or a multilayer structure used for a wide electronic apparatus to be mutually connected, enhancing reliability of connecting interlayer circuit conductor layers and a density of circuits and simplifying manufacturing steps. CONSTITUTION:One main surface of a metal foil 6 is covered with an ultraviolet ray curable flexible insulating resin film 7, viaholes 8 are simultaneously formed at necessary positions by an optically processing method, a conductive metal layer 9 made of metallic copper is formed on the surface of the film 7, then the foil 6 and the layer 9 to be unnecessary are melted to be removed by a photoetching method, etc., thereby forming necessary circuit conductor layers on front and rear surfaces of the film 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は広範な電子機器に用いら
れるフルキシブル配線板の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a fusible wiring board used in a wide variety of electronic devices.

【0002】[0002]

【従来の技術】近年、電子機器の小型軽量化や高機能化
に対するニ−ズが増加してくるにつれて、高密度化を指
向したフルキシブル配線板の需要が著しく増大してきて
いる。
2. Description of the Related Art In recent years, as the need for smaller and lighter electronic devices and higher performance has increased, the demand for full-flexible wiring boards for higher density has increased remarkably.

【0003】従来の高密度フレキシブル配線板はいろい
ろな方法によって作られているが、その代表的な製造方
法として両面フレキシブル配線板の製造工程を図3
(a)〜(e)に示した。
A conventional high-density flexible wiring board is manufactured by various methods. As a typical manufacturing method thereof, a manufacturing process of a double-sided flexible wiring board is shown in FIG.
It shows in (a)-(e).

【0004】図3において、1は可とう性絶縁フイル
ム、2は金属銅箔、3は貫通穴、4は導電金属層(回路
導体層)、5は耐エッチングレジスト層である。
In FIG. 3, 1 is a flexible insulating film, 2 is a metal copper foil, 3 is a through hole, 4 is a conductive metal layer (circuit conductor layer), and 5 is an etching resist layer.

【0005】以上のような構成から成る両面フレキシブ
ル配線板は、一般に、図3(a)に示すようなポリイミ
ド樹脂等から成る耐熱性を有する可とう性絶縁フイルム
1の表裏両面に金属銅箔2を接着した所謂銅張りフイル
ム材を使用して、先ず図3(b)に示すようにその必要
とする位置に貫通穴3を開け、次いで、図3(c)に示
すように無電解銅めっきと電気銅めっきを併用して貫通
孔3を含む金属銅箔2の全面に金属銅から成る導電金属
層4を形成し、図3(d)に示すようにスクリ−ン印刷
法やフォト法等によって導電金属層4の表裏面に必要と
する配線回路図形状に耐エッチング性のレジスト層5を
被覆し、しかる後に、塩化第2鉄溶液等から成るのエッ
チング液に浸漬して耐エッチングレジスト層5が被覆さ
れていない露出した導電金属層4を溶解除去し、図3
(e)に示すように可とう性絶縁フイルム1の表裏両面
に必要とする導電金属層による配線回路導体層4を形成
し、貫通穴3によって回路導体層4を電気的に相互接続
する方法によって作られたものである。
The double-sided flexible wiring board having the above-described structure generally has a heat-resistant flexible insulating film 1 made of polyimide resin as shown in FIG. Using a so-called copper-clad film material adhered to the above, first through holes 3 are formed at the required positions as shown in FIG. 3 (b), and then electroless copper plating is performed as shown in FIG. 3 (c). And electro copper plating are used together to form a conductive metal layer 4 made of metallic copper on the entire surface of the metallic copper foil 2 including the through holes 3, and as shown in FIG. 3D, a screen printing method, a photo method, or the like. The conductive metal layer 4 is covered with a resist layer 5 having an etching resistance on the front surface and the back surface of the conductive metal layer 4, and then, the resist layer is immersed in an etching solution composed of ferric chloride solution. Exposed 5 uncoated Conductive metal layer 4 was dissolved and removed, FIG. 3
As shown in (e), by forming a wiring circuit conductor layer 4 of necessary conductive metal layers on both front and back surfaces of the flexible insulating film 1 and electrically interconnecting the circuit conductor layers 4 by the through holes 3. It was made.

【0006】また一方、多層化したフレキシブル配線板
を作るには、可とう性を有する絶縁フイルムの少なくと
も一方の主面上に銅箔により必要とする回路導体層を形
成した複数枚のフルキシブル配線板を接着剤シ−トを挟
んで熱ロ−ルプレスにより積層一体化し、所定の位置に
貫通穴を開けて以降図3(b)〜(e)の工程を経て作
られるものである。
On the other hand, in order to form a multilayer flexible wiring board, a plurality of flexible wiring boards in which a required circuit conductor layer is formed of copper foil on at least one main surface of an insulating film having flexibility. Is laminated and integrated by a heat roll press with an adhesive sheet sandwiched therebetween, a through hole is formed at a predetermined position, and thereafter, the steps shown in FIGS. 3 (b) to 3 (e) are performed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな従来例による両面及び多層化した高密度フレキシブ
ル配線板は、可とう性絶縁性フイルムの両面に形成した
単層または多層状の回路導体層を貫通穴にスル−ホ−ル
めっきを行うことによって接続するものであり、このよ
うなスル−ホ−ル接続では特に多層回路の層間接続の信
頼性が乏しい問題や、表面に露出する貫通穴の占有面積
が大きいために回路設計の自由度が制約され、単位面積
当たりの配線パタ−ンの収容性が低下して回路の高密度
化がはかりにくい問題がある。
However, the double-sided and multi-layered high-density flexible wiring board according to the conventional example has a single-layered or multi-layered circuit conductor layer formed on both sides of the flexible insulating film. The through holes are connected by performing through-hole plating, and such a through-hole connection has a problem of poor reliability of interlayer connection of a multilayer circuit, and a through hole exposed on the surface. Since the occupied area is large, the degree of freedom in circuit design is restricted, and the capacity of wiring patterns per unit area is reduced, which makes it difficult to increase the circuit density.

【0008】また一方、従来例では製造設備が大掛かり
となることはもとより、特に穴加工工程では、通常数値
制御したドリルを用いて1穴ずつ加工されるが、回路が
複雑になる程、穴数が多くなり、その作業工数が増大し
て経済性に欠ける問題点があった。
On the other hand, in the conventional example, not only the manufacturing equipment becomes large-scaled, but especially in the hole drilling process, one hole is usually drilled by using a numerically controlled drill. However, there is a problem in that the man-hours are increased and the economy is lacking.

【0009】本発明はこのような従来例の問題点を解決
し、回路の高密度化と、製造工程の簡略化による経済性
に優れた両面または多層の高密度フルキシブル配線板の
製造方法を提供することを目的とするものである。
The present invention solves the problems of the conventional example, and provides a method for manufacturing a double-sided or multi-layered high-density fusible wiring board which is excellent in economy by increasing the circuit density and simplifying the manufacturing process. The purpose is to do.

【0010】[0010]

【課題を解決するための手段】この問題を解決するため
に本発明によるフルキシブル配線板は、金属箔の少なく
とも一方の主面上に可とう性を有する絶縁性樹脂膜を被
覆し、この絶縁樹脂膜の一部を除去して金属箔の一部が
露出するようにビアホ−ルを形成し、このビアホ−ルを
含む絶縁樹脂層に導電金属層を設けた後で、不要とする
金属箔層と導電金属層を溶解除去して可とう性絶縁樹脂
膜の表裏面に所望とする配線回路導体層を形成したも
の、及びこの両面フレキシブル配線板を使用してその表
裏両面に上述した可とう性絶縁樹脂層と、導電金属から
成る回路導体層を交互に形成して多層配線化したもので
ある。
In order to solve this problem, a fusible wiring board according to the present invention covers at least one principal surface of a metal foil with a flexible insulating resin film, After removing a part of the film to form a via hole so that a part of the metal foil is exposed, and after providing a conductive metal layer on the insulating resin layer including the via hole, a metal foil layer which is unnecessary And the conductive metal layer are dissolved and removed to form a desired wiring circuit conductor layer on the front and back surfaces of the flexible insulating resin film, and the above-mentioned flexibility on both front and back surfaces using this double-sided flexible wiring board. Insulating resin layers and circuit conductor layers made of conductive metal are alternately formed to form a multi-layer wiring.

【0011】[0011]

【作用】これにより、層間回路導体層の接続がスル−ホ
−ルによらないブラインドスル−ホ−ルによって接続し
た両面または多層のフレキシブル配線板が構成されるの
で、回路の高密度化と共に、貫通穴の穴開け加工が不要
となることにより、製造工程の簡略化がはかられ経済性
に優れた高密度フレキシブル配線板が実現されることと
なる。
As a result, a double-sided or multi-layered flexible wiring board in which the interlayer circuit conductor layers are connected by a blind through-hole which does not rely on a through-hole is constructed, so that the circuit density is increased and By eliminating the process of drilling through holes, a high-density flexible wiring board that is economical and has a simplified manufacturing process can be realized.

【0012】[0012]

【実施例】以下、本発明によるフレキシブル配線板の製
造方法の一実施例について図面を参照しながら説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a flexible wiring board according to the present invention will be described below with reference to the drawings.

【0013】図1(a)〜(e)は本発明の第一の実施
例における両面型フレキシブル配線板の製造工程を説明
するための工程断面図である。
FIGS. 1A to 1E are process sectional views for explaining a manufacturing process of a double-sided flexible wiring board in the first embodiment of the present invention.

【0014】図1において、6は金属箔(回路導体
層)、7は可とう性絶縁樹脂膜、8はビアホ−ル、9は
導電金属層(回路導体層)、10は耐エッチングレジス
ト層である。
In FIG. 1, 6 is a metal foil (circuit conductor layer), 7 is a flexible insulating resin film, 8 is a via hole, 9 is a conductive metal layer (circuit conductor layer), and 10 is an etching resistant resist layer. is there.

【0015】以上のような構成からなる両面フレキシブ
ル配線板について以下その製造工程を詳細に説明する。
The manufacturing process of the double-sided flexible wiring board having the above structure will be described in detail below.

【0016】本実施例では先ず図1(a)に示すように
金属箔6として任意の厚みを有する電解または圧延銅箔
を使用し、これらの金属銅箔6の一方の面を酸化処理等
によって緻密に粗面化し、その表面全体に可とう性を有
する絶縁性樹脂7を塗布すると共に、図1(b)に示す
ように絶縁樹脂膜7の所定の位置に反対側の金属銅箔6
の一部が露出するように任意の径を有する微細な穴を開
け、ビアホ−ル8を形成した。
In this embodiment, first, as shown in FIG. 1A, an electrolytic or rolled copper foil having an arbitrary thickness is used as the metal foil 6, and one surface of these metal copper foils 6 is subjected to an oxidation treatment or the like. The surface is densely roughened, and the insulating resin 7 having flexibility is applied to the entire surface thereof, and the metal copper foil 6 on the opposite side is provided at a predetermined position of the insulating resin film 7 as shown in FIG. 1B.
A fine hole having an arbitrary diameter was opened so that a part of the via hole was exposed to form a via hole 8.

【0017】この場合、可とう性絶縁樹脂膜7を構成す
る絶縁樹脂材料としては、その被膜が可とう性に優れた
特性を有していることはもとより、耐熱性や電気絶縁特
性、耐薬品性等にすぐれた特性を有していることや、塗
膜の一部を簡単に除去してビアホ−ルの形成が容易にで
きる性能を具備ていることが望ましい。
In this case, as the insulating resin material forming the flexible insulating resin film 7, not only the coating film has excellent flexibility, but also the heat resistance, the electrical insulation characteristic, and the chemical resistance. It is desirable that it has excellent properties such as properties, and that it has the ability to easily remove a part of the coating film to easily form a via hole.

【0018】このような特性を満足できる絶縁樹脂材料
として本実施例では紫外線硬化のエポキシ系樹脂を使用
した。
In this embodiment, an ultraviolet curable epoxy resin is used as an insulating resin material which can satisfy such characteristics.

【0019】そして、この紫外線硬化型エポキシ樹脂を
使用したビアホ−ル8の形成方法としては、所定の位置
にビアが開けられるように部分的に光りが透過しないよ
うに設計したフォトマスクを作製し、このマスクを乾燥
した可とう性絶縁樹脂膜7に密着させて紫外線を照射
し、未露光部分(ビア径)の絶縁樹脂膜7を溶剤現像に
よリ溶解除去することによってビアホ−ル8を形成し
た。
As a method of forming the via hole 8 using this ultraviolet-curable epoxy resin, a photomask is designed so that the via can be opened at a predetermined position and light is not partially transmitted. This mask is brought into close contact with the dried flexible insulating resin film 7 and irradiated with ultraviolet rays, and the insulating resin film 7 in the unexposed portion (via diameter) is dissolved and removed by solvent development to remove the via hole 8. Formed.

【0020】次いで、図1(c)に示すように、ビアホ
−ル8を開けた可とう性絶縁樹脂膜7の表面に無電解銅
めっきや電解銅めっきを併用して金属銅から成る導電金
属層9を形成した。
Then, as shown in FIG. 1C, a conductive metal made of metallic copper is used on the surface of the flexible insulating resin film 7 having the via holes 8 opened by electroless copper plating or electrolytic copper plating. Layer 9 was formed.

【0021】この場合、可とう性絶縁樹脂膜7の表面に
密着性に優れた導電金属被膜8を形成するために、本実
施例では絶縁樹脂被膜7の表面をサンドブラスト等の機
械的研磨法や、過マンガン酸カリウム溶液中に浸漬して
樹脂の表面層の一部を緻密にエッチングする化学的方法
を併用して粗面化した。
In this case, in order to form the conductive metal film 8 having excellent adhesion on the surface of the flexible insulating resin film 7, the surface of the insulating resin film 7 is mechanically polished by sandblasting or the like in this embodiment. The surface of the resin was roughened by a chemical method in which a part of the surface layer of the resin was finely etched by immersing it in a potassium permanganate solution.

【0022】そして、この粗面化した絶縁樹脂膜7の表
面層に導電金属層9を形成する方法としては、先ず塩化
第1錫と塩化パラジウムの塩酸酸性溶液に順次浸漬して
金属パラジウムの微粒子核を粗面した絶縁樹脂層に均一
に吸着させた後で、銅錯塩のアルカリ溶液とホルマリン
から成る無電解銅めっき液に浸漬して金属銅を薄付け
(1μ以下)し、金属銅箔6の全面をマスキングした後
で、硫酸銅浴により電解銅めっきを行って、絶縁樹脂膜
7上にのみ金属銅箔6とほぼ同程度の厚みを有する導電
金属層9を形成した。
As a method for forming the conductive metal layer 9 on the surface layer of the roughened insulating resin film 7, first, the conductive metal layer 9 is first dipped in a hydrochloric acid acidic solution of stannous chloride and palladium chloride, and then fine particles of palladium metal. After the nuclei are uniformly adsorbed on the roughened insulating resin layer, they are immersed in an electroless copper plating solution consisting of an alkaline solution of a copper complex salt and formalin to thinly coat the metal copper (1 μm or less), and the metal copper foil 6 After masking the entire surface of the above, electrolytic copper plating was performed in a copper sulfate bath to form a conductive metal layer 9 having a thickness approximately the same as that of the metal copper foil 6 only on the insulating resin film 7.

【0023】それから図1(d)に示すように、金属銅
からなる金属箔6と導電金属層9の表面にスクリ−ン印
刷法やフォト法によって所望とする配線回路図形状に耐
エッチング性のレジスト10を被覆し、しかる後にエッ
チング処理を行って露出した不要とする導電金属層9を
溶解除去し、図3(e)に示すように可とう性を有する
絶縁樹脂膜7の表裏面に金属銅による必要とする回路導
体層6、9を形成した両面配線板を作製した。
Then, as shown in FIG. 1 (d), the surface of the metal foil 6 made of metallic copper and the conductive metal layer 9 is made to have a desired wiring circuit diagram shape by a screen printing method or a photo method so as to have etching resistance. The resist 10 is covered, and then an unnecessary conductive metal layer 9 exposed by performing an etching process is dissolved and removed. As shown in FIG. 3E, metal is formed on the front and back surfaces of the insulating resin film 7 having flexibility. A double-sided wiring board having required circuit conductor layers 6 and 9 made of copper was produced.

【0024】以上のような方法によって得られた両面フ
レキシブル配線板は、可とう性絶縁樹脂膜7の表裏両面
に設けた配線回路導体層6、9が貫通穴ではなく、絶縁
樹脂膜7に設けたビアホ−ル8を通して電気的に相互接
続されたものであり、従って面接続による層間接続の信
頼性が向上すると共に、貫通穴のない両面配線板が得ら
れるので、回路設計の自由度が向上して回路の高密度化
がはかられ微小径を有するビアホ−ルが光り加工によっ
て一括して行えるために製造工程の簡略化がはかれる特
徴が得られるものである。
In the double-sided flexible wiring board obtained by the above method, the wiring circuit conductor layers 6 and 9 provided on both front and back surfaces of the flexible insulating resin film 7 are provided on the insulating resin film 7 instead of the through holes. Since they are electrically connected to each other through the via hole 8, the reliability of interlayer connection by surface connection is improved, and a double-sided wiring board without through holes is obtained, so that the degree of freedom in circuit design is improved. As a result, the density of the circuit can be increased, and the via holes having a minute diameter can be collectively formed by light processing, so that the manufacturing process can be simplified.

【0025】尚、この製造方法においては、金属箔6と
して金属銅箔以外の金属として例えば、銅−亜鉛合金箔
や、鉄−ニッケル合金箔、錫−ニッケル合金箔を使用す
ることによって、これらの合金箔と金属銅から成る異種
金属による回路導体層を備えたフレキシブル両面配線板
を作製した。
In this manufacturing method, as the metal foil 6 other than the metal copper foil, for example, a copper-zinc alloy foil, an iron-nickel alloy foil, or a tin-nickel alloy foil can be used. A flexible double-sided wiring board having a circuit conductor layer made of a dissimilar metal composed of alloy foil and metallic copper was prepared.

【0026】このように、異種金属によって回路構成し
たフレキシブル配線板は、合金箔の剛性を利用して半導
体ICチップの直接ボンディングが可能なリ−ド端子一
体型フレキシブル配線板としての用途に活用できるもの
ある。
As described above, the flexible wiring board having a circuit made of different kinds of metals can be used as a flexible wiring board integrated with a lead terminal capable of directly bonding the semiconductor IC chip by utilizing the rigidity of the alloy foil. There is something.

【0027】次に本発明の第2の実施例として多層フレ
キシブル配線板の製造方法について説明する。
Next, a method of manufacturing a multilayer flexible wiring board will be described as a second embodiment of the present invention.

【0028】図2(a)〜(d)は本発明の第2の実施
例における多層構造のフレキシブル配線板の製造工程断
面図である。
2 (a) to 2 (d) are sectional views showing a manufacturing process of a flexible wiring board having a multilayer structure in the second embodiment of the present invention.

【0029】図2において、6から9は図1と同様の構
成を示すものであリ、11a,11bは層間の可とう性
絶縁樹脂層、12a,12bは層間絶縁樹脂層に設けた
ビアホ−ル、13a,13bは層間絶縁樹脂層に設けた
導電金属層(最外層の回路導体層)である。
In FIG. 2, 6 to 9 show the same structure as in FIG. 1, 11a and 11b are flexible insulating resin layers between layers, and 12a and 12b are via holes provided in the interlayer insulating resin layers. Reference numerals 13a and 13b are conductive metal layers (outermost circuit conductor layers) provided on the interlayer insulating resin layer.

【0030】以上のような構成から成る多層フレキシブ
ル配線板について以下、その製造方法の実施例の詳細に
ついて説明する。
With respect to the multilayer flexible wiring board having the above structure, the details of the embodiment of the manufacturing method will be described below.

【0031】本実施例では前述した第1実施例で得られ
た両面フレキシブル配線板を使用して先ず図2(a)に
示すように、その表裏両面全体に金属箔6及び導電金属
層9によって構成された回路導体層が完全に絶縁される
ように可とう性を有する絶縁樹脂11a,11bをカ−
テンコ−ト法やスクリ−ン印刷法、さらにはロ−ラ−コ
−ト法等の方法によってそれぞれ任意の厚さにコ−ティ
ングし、次いで図2(b)に示すようにこの絶縁樹脂層
11a,11bの所定の位置に下層となる回路導体層6
及び9の一部が露出するようにそれぞれ微細な穴即ちビ
アホ−ル12a,12bを開けた。
In this embodiment, the double-sided flexible wiring board obtained in the first embodiment described above is used, and first, as shown in FIG. 2 (a), a metal foil 6 and a conductive metal layer 9 are formed on the entire front and back surfaces thereof. The insulating resin 11a, 11b having flexibility is used so as to completely insulate the formed circuit conductor layer.
The insulating resin layer is coated to a desired thickness by a ten coat method, a screen printing method, a roller coat method or the like, and then, as shown in FIG. 2 (b). Circuit conductor layer 6 as a lower layer at a predetermined position of 11a, 11b
And fine holes, that is, via holes 12a and 12b, are formed so that parts of Nos. 9 and 9 are exposed.

【0032】この場合、層間絶縁樹脂11a,11bは
実施例1と同様の紫外線硬化型の可とう性樹脂を使用
し、またビアホ−ル12a,12bの形成も同様に光り
加工法により一括形成した。
In this case, as the interlayer insulating resins 11a and 11b, the same ultraviolet curable flexible resin as that used in the first embodiment is used, and the via holes 12a and 12b are also collectively formed by the light processing method. .

【0033】そして、図2(c)に示すように、ビアホ
−ル12a,12bを形成した絶縁樹脂膜11a,11
bの表面をそれぞれ実施例1と同様な方法によって微細
に粗面化し、無電解銅めっきと電解銅めっき法を併用し
て金属銅から成る導電金属層13a,13bを形成し、
フォトエッグ法等の公知の方法によって不要とする導電
金属層を溶解除去することによって必要とする回路導体
層13a,13bを形成し、層間の回路導体層6、9、
13a,13bをそれぞれ絶縁樹脂膜7、11a,11
bに設けたビアホ−ル8、12a,12bを導通化して
電気的に相互接続した多層フレキシブル配線板を作製し
た。
Then, as shown in FIG. 2 (c), the insulating resin films 11a, 11 having the via holes 12a, 12b are formed.
The surface of b is finely roughened by the same method as in Example 1, and electroconductive copper plating and electrolytic copper plating are used together to form conductive metal layers 13a and 13b made of metallic copper.
The required circuit conductor layers 13a and 13b are formed by dissolving and removing the unnecessary conductive metal layers by a known method such as a photo egg method, and the circuit conductor layers 6 and 9 between the layers are formed.
13a and 13b are replaced by insulating resin films 7, 11a and 11 respectively.
A multilayer flexible wiring board was produced in which the via holes 8, 12a, 12b provided in b were electrically connected to each other and electrically connected to each other.

【0034】以上のような方法によって得られた多層構
造のフレキシブル配線板は、層間の回路導体層の接続が
貫通穴によらず全て層間の絶縁樹脂膜に設けられたビア
ホ−ルによって相互接続されたものであり、貫通穴のな
い、多くのメリットを有する多層フレキシブル配線板が
得られるものである。
In the multilayer flexible wiring board obtained by the above method, the circuit conductor layers between layers are interconnected by via holes provided in all insulating resin films between layers, not through holes. Thus, a multi-layer flexible wiring board without through holes and having many advantages can be obtained.

【0035】[0035]

【発明の効果】以上の説明から明らかなように、本発明
により得られた両面また多層構造を有する高密度フレキ
シブル配線板では、層間の回路導体層の接続が従来例の
ような貫通穴を導通化した所謂スル−ホ−ル接続とは異
なり、層間の可とう性絶縁樹脂膜に設けたビアホ−ルを
導通化して接続する所謂ブラインドスル−ホ−ルによっ
て相互接続したものである。
As is apparent from the above description, in the high-density flexible wiring board having the double-sided or multi-layer structure obtained by the present invention, the connection of the circuit conductor layers between the layers is conducted through the through holes as in the conventional example. Unlike the so-called through-hole connection, the via-holes provided in the flexible insulating resin film between layers are interconnected by a so-called blind through-hole, which connects the via holes.

【0036】従って、従来例の貫通穴接続による両面ま
たは多層フレキシブル配線板で問題となる熱衝撃による
スル−ホ−ル接続のコ−ナ−クラックの発生や、ドリル
穴加工により生ずるスミア−による多層回路の層間接続
不良等が皆無となり、層間回路導体層の接続の信頼性が
大幅に向上する効果が得られるものである。
Therefore, a double-sided or multi-layered flexible wiring board with through-hole connection in the prior art causes corner cracks in through-hole connection due to thermal shock, which is a problem with multilayer wiring, and multi-layers due to smear generated by drilling. It is possible to obtain the effect that the reliability of the connection between the interlayer circuit conductor layers is significantly improved by eliminating any defective interlayer connection of the circuit.

【0037】また一方、本発明では、貫通穴が表面に全
く露出しない構成のために表面層が有効に活用でき、従
って回路設計の自由度が向上して単位面積当たりの配線
収容性が増加し、それに伴って回路の飛躍的高密度化が
はかれる効果が得られるものである。
On the other hand, in the present invention, the surface layer can be effectively utilized due to the structure in which the through hole is not exposed at all on the surface, so that the degree of freedom in circuit design is improved and the wiring accommodability per unit area is increased. Accordingly, the effect of dramatically increasing the circuit density can be obtained.

【0038】さらに、本発明では接続のためのビア加工
が光り加工によって一括して形成されるので、製造工程
における作業時間の大幅な短縮化が可能となり、製造コ
ストの低減化をはがることができた。
Further, in the present invention, since the via processing for connection is collectively formed by the light processing, the working time in the manufacturing process can be greatly shortened and the manufacturing cost can be reduced. I was able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を説明するための両面構造
のフレキシブル配線板の製造工程断面図
FIG. 1 is a sectional view of a manufacturing process of a flexible wiring board having a double-sided structure for explaining a first embodiment of the present invention.

【図2】本発明の第2実施例を説明するための多層構造
のフレキシブル配線板の製造工程断面図
FIG. 2 is a sectional view of a manufacturing process of a flexible wiring board having a multilayer structure for explaining a second embodiment of the present invention.

【図3】従来例による両面フレキシブル配線板の製造工
程断面図
FIG. 3 is a sectional view of a manufacturing process of a conventional double-sided flexible wiring board.

【符号の説明】[Explanation of symbols]

6 金属箔(回路導体層) 7 可とう性絶縁樹脂膜 8 ビアホ−ル 9 導電金属層(回路導体層) 10 耐エッチングレジスト層 11a,11b 層間の絶縁樹脂膜 12a,12b 層間の絶縁樹脂膜に設けたビアホ−ル 13a,13b 層間の絶縁樹脂膜上に形成した回路導
体層
6 Metal Foil (Circuit Conductor Layer) 7 Flexible Insulating Resin Film 8 Via Hole 9 Conductive Metal Layer (Circuit Conductor Layer) 10 Etching Resistant Layer 11a, 11b Interlayer Insulating Resin Film 12a, 12b Interlayer Insulating Resin Film Provided via holes 13a, 13b Circuit conductor layer formed on insulating resin film between layers

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】金属箔の少なくとも一方の主面上に可とう
性を有する絶縁樹脂を被覆し、該絶縁樹脂層膜の一部を
除去して前記金属箔の一部が露出するようなビアホ−ル
を形成し、該ビアホ−ルを含む絶縁樹脂膜に導電金属層
を設けた後で、不要とする金属箔及び導電金属層を溶解
除去して前記絶縁樹脂膜の表裏両面に所望とする回路導
体層を設けたフレキシブル配線板の製造方法。
1. A via-hole in which at least one main surface of a metal foil is coated with a flexible insulating resin and a part of the insulating resin layer film is removed to expose a part of the metal foil. After forming a hole and providing a conductive metal layer on the insulating resin film including the via hole, the unnecessary metal foil and the conductive metal layer are dissolved and removed to obtain desired ones on both sides of the insulating resin film. A method for manufacturing a flexible wiring board provided with a circuit conductor layer.
【請求項2】請求項1に記載した両面フレキシブル配線
板を使用してその表裏両面層に可とう性を有する絶縁性
樹脂を被覆し、その必要とする位置に下層となる回路導
体層の一部が露出するようにビアホ−ルを形成し、前記
絶縁樹脂層に所望とする回路導体層を設けて多層配線化
し、層間の回路導体層を絶縁樹脂層に設けたビアホ−ル
を導通化して相互接続したフレキシブル配線板の製造方
法。
2. The double-sided flexible wiring board according to claim 1 is used to cover the front and back both sides with an insulating resin having flexibility, and one of the circuit conductor layers as a lower layer is formed at a required position. A via hole is formed so that the portion is exposed, a desired circuit conductor layer is provided on the insulating resin layer to form a multilayer wiring, and the via hole provided on the insulating resin layer is electrically connected to the interlayer circuit conductor layer. Method for manufacturing interconnected flexible wiring boards.
【請求項3】金属箔が絶縁樹脂膜の表面に形成する導電
金属層とは異なる材質の金属箔を使用した請求項1また
は2記載のフレキシブル配線板の製造方法。
3. The method of manufacturing a flexible wiring board according to claim 1, wherein the metal foil is made of a material different from that of the conductive metal layer formed on the surface of the insulating resin film.
【請求項4】可とう性を有する絶縁樹脂膜として紫外線
硬化型の樹脂を使用した請求項1または2記載のフレキ
シブル配線板の製造方法。
4. The method for manufacturing a flexible wiring board according to claim 1, wherein an ultraviolet curable resin is used as the flexible insulating resin film.
JP28146892A 1992-10-20 1992-10-20 Manufacture of flexible circuit board Pending JPH06132630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28146892A JPH06132630A (en) 1992-10-20 1992-10-20 Manufacture of flexible circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28146892A JPH06132630A (en) 1992-10-20 1992-10-20 Manufacture of flexible circuit board

Publications (1)

Publication Number Publication Date
JPH06132630A true JPH06132630A (en) 1994-05-13

Family

ID=17639608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28146892A Pending JPH06132630A (en) 1992-10-20 1992-10-20 Manufacture of flexible circuit board

Country Status (1)

Country Link
JP (1) JPH06132630A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148698A (en) * 1995-11-28 1997-06-06 Sharp Corp Double-sided printed wiring board and its manufacture
JP2001308529A (en) * 2000-04-21 2001-11-02 Ibiden Co Ltd Laminated wiring board and its manufacturing method
EP1194021A2 (en) * 2000-09-27 2002-04-03 Hitachi, Ltd. Method of producing multilayer printed wiring board and multilayer printed wiring board
JP2002252446A (en) * 2001-02-23 2002-09-06 Sony Chem Corp Manufacturing method of flexible wiring board
JP2005277258A (en) * 2004-03-26 2005-10-06 Toppan Printing Co Ltd Multilayer printed circuit board and method for manufacturing the same
WO2015028716A1 (en) 2013-08-30 2015-03-05 Elcoflex Oy Method for manufacturing a flexible circuit board and a flexible circuit board

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148698A (en) * 1995-11-28 1997-06-06 Sharp Corp Double-sided printed wiring board and its manufacture
JP2001308529A (en) * 2000-04-21 2001-11-02 Ibiden Co Ltd Laminated wiring board and its manufacturing method
EP1194021A2 (en) * 2000-09-27 2002-04-03 Hitachi, Ltd. Method of producing multilayer printed wiring board and multilayer printed wiring board
EP1194021A3 (en) * 2000-09-27 2003-07-23 Hitachi, Ltd. Method of producing multilayer printed wiring board and multilayer printed wiring board
JP2002252446A (en) * 2001-02-23 2002-09-06 Sony Chem Corp Manufacturing method of flexible wiring board
WO2002071818A1 (en) * 2001-02-23 2002-09-12 Sony Chemicals Corp. Method for producing flexible wiring board
US6912779B2 (en) 2001-02-23 2005-07-05 Sony Chemicals Corp. Method of manufacturing flexible wiring board
JP2005277258A (en) * 2004-03-26 2005-10-06 Toppan Printing Co Ltd Multilayer printed circuit board and method for manufacturing the same
JP4547958B2 (en) * 2004-03-26 2010-09-22 凸版印刷株式会社 Manufacturing method of multilayer wiring board
WO2015028716A1 (en) 2013-08-30 2015-03-05 Elcoflex Oy Method for manufacturing a flexible circuit board and a flexible circuit board
EP3039948B1 (en) * 2013-08-30 2022-10-05 Elcoflex OY Method for manufacturing a flexible circuit board

Similar Documents

Publication Publication Date Title
US5404637A (en) Method of manufacturing multilayer printed wiring board
US5129142A (en) Encapsulated circuitized power core alignment and lamination
KR101014228B1 (en) Flexible multilayer wiring board and manufacture method thereof
JP2658661B2 (en) Method for manufacturing multilayer printed wiring board
JP5198105B2 (en) Manufacturing method of multilayer flexible printed wiring board
TW200412205A (en) Double-sided printed circuit board without via holes and method of fabricating the same
JP2005236067A (en) Wiring substrate, its manufacturing method and semiconductor package
JP3188856B2 (en) Manufacturing method of multilayer printed wiring board
JPH06132630A (en) Manufacture of flexible circuit board
JPH1187931A (en) Manufacture of printed circuit board
JP2001189561A (en) Multilayer wiring board and manufacturing method therefor
JPH1154926A (en) One-sided circuit board and its manufacture
JP3304061B2 (en) Manufacturing method of printed wiring board
JPH1187886A (en) Production of printed wiring board
JP3179572B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP3179564B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP2828825B2 (en) Method for manufacturing high-density printed wiring board having blind holes
JP4466169B2 (en) Manufacturing method of substrate for semiconductor device
JPH0818228A (en) Manufacture of multi-layer printed board
KR100468195B1 (en) A manufacturing process of multi-layer printed circuit board
JPH06252529A (en) Manufacture of printed wiring board
JP5312831B2 (en) Method for manufacturing printed wiring board
JP3817291B2 (en) Printed wiring board
JPH06152133A (en) Board for maltilayer printed wiring board and its manufacture, manufacture of multilayer print wiring board using the board
JPH08264952A (en) Multilayer printed wiring board