JP4528204B2 - Method for manufacturing printed wiring board - Google Patents

Method for manufacturing printed wiring board Download PDF

Info

Publication number
JP4528204B2
JP4528204B2 JP2005159740A JP2005159740A JP4528204B2 JP 4528204 B2 JP4528204 B2 JP 4528204B2 JP 2005159740 A JP2005159740 A JP 2005159740A JP 2005159740 A JP2005159740 A JP 2005159740A JP 4528204 B2 JP4528204 B2 JP 4528204B2
Authority
JP
Japan
Prior art keywords
copper foil
surface treatment
printed wiring
wiring board
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005159740A
Other languages
Japanese (ja)
Other versions
JP2006339259A (en
Inventor
利則 川村
晴夫 赤星
邦夫 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Via Mechanics Ltd filed Critical Hitachi Via Mechanics Ltd
Priority to JP2005159740A priority Critical patent/JP4528204B2/en
Priority to KR1020060048419A priority patent/KR101277390B1/en
Priority to TW95119161A priority patent/TWI394504B/en
Priority to CN2006100830968A priority patent/CN1874655B/en
Priority to US11/443,013 priority patent/US7666320B2/en
Publication of JP2006339259A publication Critical patent/JP2006339259A/en
Application granted granted Critical
Publication of JP4528204B2 publication Critical patent/JP4528204B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

本発明は、プリント配線板及び製造方法に関し、特に、レーザ光によって銅箔に穴あけ加工する技術に関する。   The present invention relates to a printed wiring board and a manufacturing method, and more particularly to a technique for drilling a copper foil with a laser beam.

近年、電子機器の小型軽量化に伴い、プリント配線板の配線の高密度化が要求されている。そのために、複数の絶縁層と配線層を有する多層プリント配線板の技術が進んでいる。多層プリント配線基板の製造技術では、配線層の間を電気的に接続する層間接続が重要な要素となっている。   In recent years, with the reduction in size and weight of electronic devices, there has been a demand for higher density wiring of printed wiring boards. Therefore, a technique of a multilayer printed wiring board having a plurality of insulating layers and wiring layers has been advanced. In a multilayer printed wiring board manufacturing technique, an interlayer connection for electrically connecting wiring layers is an important factor.

層間接続方法としては、貫通穴であるスルーホールや非貫通穴のブラインドビアホールを使用する方法、インタースティシャルビアホールを使用する方法等がある。   As an interlayer connection method, there are a method using a through hole which is a through hole or a blind via hole which is a non-through hole, a method using an interstitial via hole, and the like.

穴の形成方法には、ドリル加工法、レーザ加工法などがあるが、加工穴の小径化、高加工速度などの面からレーザ加工法が主流となっている。その中でも高レーザエネルギを有するCO2レーザが最も普及している。 The hole forming method includes a drilling method, a laser processing method, and the like, but the laser processing method is mainly used from the viewpoint of reducing the diameter of the processing hole and high processing speed. CO 2 lasers are the most prevalent having high laser energy among them.

CO2レーザの波長領域では銅箔表面でレーザ光が反射するため、CO2レーザによる加工が困難である。そこで、予め穴形成周辺部の銅箔のみをエッチング除去してからレーザ加工を行うコンフォーマルマスク法が採用されている。 In the wavelength region of the CO 2 laser, laser light is reflected on the surface of the copper foil, so that it is difficult to process with the CO 2 laser. Therefore, a conformal mask method is employed in which only the copper foil around the hole forming periphery is etched away before laser processing.

しかし、コンフォーマルマスク法では、銅箔のパターニング工程が必要とされることや穴の位置ずれの修正も困難であることから、直接、レーザで銅箔を加工するための銅箔表面処理技術が検討されている。   However, the conformal mask method requires a copper foil patterning process and it is difficult to correct the misalignment of the holes, so there is a copper foil surface treatment technology for processing copper foil directly with a laser. It is being considered.

銅箔表面のレーザ光の吸収率を高くする方法としては、銅箔表面にレーザ光吸収率の高い金属層または有機皮膜を設ける方法と直接銅箔表面を粗化する黒化処理方法がある。   As a method of increasing the laser light absorption rate on the copper foil surface, there are a method of providing a metal layer or an organic film having a high laser light absorption rate on the copper foil surface and a blackening treatment method of directly roughening the copper foil surface.

特開2004−6611号公報JP 2004-6611 A 広垣俊樹、他4名著 「炭酸ガスレーザによるCuダイレクト加工における穴品質の改善」第14回マイクロエレクトロニクスシンポジウム2004年10月Toshiki Hirogaki and 4 other authors "Improvement of hole quality in Cu direct machining with carbon dioxide laser" The 14th Microelectronics Symposium October 2004

銅箔表面に金属層又は有機皮膜などの異種層を設ける方法は、異種層の積層および穴加工後の剥離が必要であり、工程数の大幅な増加が必要である。また、銅箔表面を粗化する黒化処理方法は、本来、内層配線と絶縁層の密着化のための銅箔表面処理であるため、レーザ光反射率は約90%以上と高い。従って、黒化処理した銅箔に穴あけ加工するには、高いレーザエネルギが必要である。そのため、穴加工時にオーバーハングが発生し、穴径寸法精度が低下する。   The method of providing a different layer such as a metal layer or an organic film on the surface of the copper foil requires lamination of the different layers and peeling after drilling, and requires a significant increase in the number of steps. In addition, the blackening treatment method for roughening the copper foil surface is originally a copper foil surface treatment for adhesion between the inner wiring and the insulating layer, and therefore the laser light reflectance is as high as about 90% or more. Therefore, high laser energy is required for drilling a blackened copper foil. For this reason, an overhang occurs at the time of drilling, and the hole diameter dimensional accuracy decreases.

本発明の目的は、正確に且つ低エネルギにて銅箔に穴あけ加工することができるプリント配線板の製造方法を提供することにある。   An object of the present invention is to provide a method for manufacturing a printed wiring board capable of drilling a copper foil accurately and with low energy.

本発明によると、基材樹脂に銅箔を張り合わせた積層板にレーザを用いて外層の銅箔と樹脂とに同時に穴形成する工程を含むプリント配線板の製造方法において、レーザ加工に
先立って、外層に位置する銅箔表面には、表面反射率が波長9.3〜10.6μmの範囲において30〜80%であり、且つ、厚さが1.0〜2.0μmである銅酸化物を形成する。この銅酸化物は少なくとも、亜塩素酸ナトリウム濃度が100〜160(g/l)であり、水酸化ナトリウム濃度が60〜100(g/l)である処理液で形成する。
According to the present invention, in a method for manufacturing a printed wiring board including a step of simultaneously forming a hole in a copper foil and a resin of an outer layer using a laser on a laminated board in which a copper foil is bonded to a base resin, prior to laser processing, On the surface of the copper foil located in the outer layer, a copper oxide having a surface reflectance of 30 to 80% in a wavelength range of 9.3 to 10.6 μm and a thickness of 1.0 to 2.0 μm is formed. This copper oxide is formed at least with a treatment liquid having a sodium chlorite concentration of 100 to 160 (g / l) and a sodium hydroxide concentration of 60 to 100 (g / l).

本発明によると、正確に且つ低エネルギにて銅箔に穴あけ加工することができる。   According to the present invention, it is possible to punch a copper foil accurately and with low energy.

本発明のプリント配線板は、特に限定はなく樹脂またはガラス布を含む樹脂の両面または片面に銅箔を有するリジットもしくはフレキシブルな一般に公知のプリント配線板であってよい。   The printed wiring board of the present invention is not particularly limited, and may be a rigid or flexible generally known printed wiring board having copper foil on both sides or one side of resin including resin or glass cloth.

本発明のプリント配線板の製造方法に使用するレーザ装置は、CO2レーザであり、波長が9.3〜10.6μmの赤外光であることが望ましい。 The laser device used in the method for producing a printed wiring board according to the present invention is a CO 2 laser, and is preferably infrared light having a wavelength of 9.3 to 10.6 μm.

[実施例1〜12]
実施例1〜12では、日立化成株式会社製のガラス布含有エポキシ樹脂に銅箔を積層した銅張積層板MCL-E679を使用した。銅箔の厚さは18μmである。この銅張積層板に、先ず、銅箔表面処理を行った。
[Examples 1 to 12]
In Examples 1-12, the copper clad laminated board MCL-E679 which laminated | stacked copper foil on the glass cloth containing epoxy resin by Hitachi Chemical Co., Ltd. was used. The thickness of the copper foil is 18 μm. The copper clad laminate was first subjected to a copper foil surface treatment.

図1に銅箔表面処理の工程を示す。先ず、ステップS1にて、銅張積層板の銅箔表面の洗浄として水酸化ナトリウム溶液による脱脂処理を液温度50℃、処理時間3分で行い、その後、水洗を行った。次に、ステップS2にて、界面活性剤溶液によるコンディショナー処理を液温度40℃、処理時間3分で行い、その後、水洗を行った。ステップS3にて、過硫酸アンモニウム系のCuエッチング液にて液温度30℃、処理時間1分で処理を行い、その後、水洗を行った。ステップS4にて、濃度5%の希硫酸液にて液温25℃、処理時間1分で処理を行い、その後、水洗を行った。最後に、ステップS5にて、亜塩素酸ナトリウム濃度100〜160g/l、水酸化ナトリウム濃度60〜100g/lの銅箔表面処理液にて、液温70℃、処理時間7分にて処理を行い、水洗後、乾燥させた。なお、実施例1〜12では銅箔表面処理液の液温を70℃としたが、液温60℃〜90℃の範囲で銅箔表面処理を行うことにより所定の表面形状、膜厚を確保することが可能である。   The process of copper foil surface treatment is shown in FIG. First, in Step S1, degreasing treatment with a sodium hydroxide solution was performed at a liquid temperature of 50 ° C. for a treatment time of 3 minutes as washing of the copper foil surface of the copper clad laminate, and then washing with water was performed. Next, in step S2, the conditioner treatment with the surfactant solution was performed at a liquid temperature of 40 ° C. for a treatment time of 3 minutes, and then washed with water. In step S3, an ammonium persulfate-based Cu etching solution was treated at a liquid temperature of 30 ° C. for a treatment time of 1 minute, and then washed with water. In step S4, treatment was performed with a dilute sulfuric acid solution having a concentration of 5% at a liquid temperature of 25 ° C. for a treatment time of 1 minute, and then washed with water. Finally, in step S5, the copper foil surface treatment solution having a sodium chlorite concentration of 100 to 160 g / l and a sodium hydroxide concentration of 60 to 100 g / l is treated at a solution temperature of 70 ° C. and a treatment time of 7 minutes. Performed, washed with water and dried. In Examples 1 to 12, the liquid temperature of the copper foil surface treatment liquid was set to 70 ° C., but a predetermined surface shape and film thickness were ensured by performing the copper foil surface treatment in the liquid temperature range of 60 ° C. to 90 ° C. Is possible.

図2は、ステップS5の銅箔表面処理液の濃度の例を示す。亜塩素酸ナトリウム濃度は100〜160g/l、水酸化ナトリウム濃度は60〜100g/lである。   FIG. 2 shows an example of the concentration of the copper foil surface treatment liquid in step S5. The sodium chlorite concentration is 100 to 160 g / l, and the sodium hydroxide concentration is 60 to 100 g / l.

銅箔表面処理を行った銅張積層板を用いて、CO2レーザによる穴明け加工を行い、加工性の評価を行った。目標の穴径は50μmと80μmである。結果を図3に示す。加工性の評価は、穴加工に必要なエネルギを測定することにより行う。加工条件として、1ショット加工にてレーザエネルギを1.1mJ〜25.2mJと変化させた。厚さ18μmの銅箔が目標穴径に達した時のレーザエネルギを計測した。この値は、穴加工に必要なレーザエネルギを示している。 Using a copper-clad laminate that had been subjected to copper foil surface treatment, drilling with a CO 2 laser was performed to evaluate the workability. The target hole diameter is 50 μm and 80 μm. The results are shown in FIG. The workability is evaluated by measuring the energy required for drilling. As processing conditions, the laser energy was changed from 1.1 mJ to 25.2 mJ in one shot processing. The laser energy was measured when the 18μm thick copper foil reached the target hole diameter. This value indicates the laser energy required for drilling.

尚、図3に示すように、銅箔表面処理により形成された銅酸化物の表面の反射率、及び、銅箔表面処理により形成された銅酸化物の膜厚を測定した。   In addition, as shown in FIG. 3, the reflectance of the surface of the copper oxide formed by the copper foil surface treatment and the film thickness of the copper oxide formed by the copper foil surface treatment were measured.

銅酸化物の表面反射率の測定は、赤外吸収分光法の高感度反射法により、入射角80度で行った。測定波長はCO2レーザ光と同様の9.3〜10.6μmの範囲とした。銅酸化物の膜厚測定は、電気化学的還元電位法を用いた。電極面積は4.5×10-2cm2、電解液は0.1mol/lNaOH水溶液、参照極は飽和KCl銀/塩化銀電極、電流値は1mAで行った。 The surface reflectivity of the copper oxide was measured at an incident angle of 80 degrees by a highly sensitive reflection method using infrared absorption spectroscopy. The measurement wavelength was in the range of 9.3 to 10.6 μm, similar to the CO 2 laser beam. The thickness of the copper oxide was measured using an electrochemical reduction potential method. The electrode area was 4.5 × 10 −2 cm 2 , the electrolyte was a 0.1 mol / l NaOH aqueous solution, the reference electrode was a saturated KCl silver / silver chloride electrode, and the current value was 1 mA.

本発明によると、銅箔表面処理を行った銅箔に直接レーザ穴明け加工を行うため、銅箔層よりその下の絶縁層の除去量が大きい。従って、絶縁層の穴径が外層銅箔の穴径より大きくなる、所謂、オーバーハングが発生する。このオーバーハングを評価するために、レーザ加工後の銅張積層板を断面研磨し、絶縁層の穴径に対する外層銅箔の穴径の比を断面観察により測定した。結果を図4に示す。   According to the present invention, since the laser drilling is performed directly on the copper foil that has been subjected to the copper foil surface treatment, the removal amount of the insulating layer below the copper foil layer is large. Therefore, a so-called overhang occurs in which the hole diameter of the insulating layer is larger than the hole diameter of the outer layer copper foil. In order to evaluate this overhang, the copper-clad laminate after laser processing was subjected to cross-sectional polishing, and the ratio of the hole diameter of the outer layer copper foil to the hole diameter of the insulating layer was measured by cross-sectional observation. The results are shown in FIG.

[比較例1]
比較例1では、実施例1〜12と同様な銅張積層板MCL-E679を使用して、従来技術である黒化処理を行った。黒化処理と本実施例の銅箔表面処理を比較すると、黒化処理は、図1のステップS1〜S4までは本実施例の銅箔表面処理と同一であるが、ステップS5では、図2に示すように、亜塩素酸ナトリウム濃度は90g/l、水酸化ナトリウム濃度は15g/lである。こうして、黒化処理を行ったのち、実施例1〜12と同様に、レーザ穴明け加工性評価、銅酸化物の反射率測定、膜厚測定、及び、オーバーハング評価を行った。レーザ穴明け加工性評価結果と銅酸化物の反射率測定および膜厚測定の結果を図3に示し、オーバーハング評価結果を図4に示す。
[Comparative Example 1]
In Comparative Example 1, a blackening treatment that is a conventional technique was performed using the same copper clad laminate MCL-E679 as in Examples 1-12. Comparing the blackening treatment with the copper foil surface treatment of this example, the blackening treatment is the same as the copper foil surface treatment of this example up to steps S1 to S4 in FIG. 1, but in step S5, FIG. As shown in the figure, the sodium chlorite concentration is 90 g / l, and the sodium hydroxide concentration is 15 g / l. After performing the blackening treatment in this manner, laser drilling workability evaluation, copper oxide reflectance measurement, film thickness measurement, and overhang evaluation were performed in the same manner as in Examples 1-12. FIG. 3 shows the results of laser drilling workability evaluation, copper oxide reflectivity measurement, and film thickness measurement, and FIG. 4 shows the overhang evaluation results.

[比較例2]
比較例2では、実施例1〜12と同様な銅張積層板MCL-E679を使用した。但し、銅箔表面処理法が、実施例1〜12の場合と異なる。比較例2では、銅張積層板MCL-E679を最初にクリーニング液(MB-115濃度100ml/l)で、液温度50℃、処理時間3分で処理した後、水洗を行った。次に、プレディップ液(MB-100B濃度20ml/l、MB-100C濃度29ml/l)で、液温度25℃、処理時間1分で処理後、マルチボンド液(MB-100A濃度100ml/l、MB-100B濃度80ml/l、MB-100C濃度43ml/l、硫酸濃度50ml/l)で、液温度32℃、処理時間2分で処理後、水洗し、乾燥させた。マルチボンド液は、日本マクダーミッド社製の硫酸/過酸化水素系の銅粗化エッチング液である。
[Comparative Example 2]
In Comparative Example 2, the same copper clad laminate MCL-E679 as in Examples 1 to 12 was used. However, the copper foil surface treatment method is different from that in Examples 1-12. In Comparative Example 2, the copper clad laminate MCL-E679 was first treated with a cleaning liquid (MB-115 concentration 100 ml / l) at a liquid temperature of 50 ° C. for a treatment time of 3 minutes, and then washed with water. Next, after treatment with pre-dip solution (MB-100B concentration 20 ml / l, MB-100C concentration 29 ml / l) at a liquid temperature of 25 ° C. and a treatment time of 1 minute, a multibond solution (MB-100A concentration 100 ml / l, MB-100B concentration 80 ml / l, MB-100C concentration 43 ml / l, sulfuric acid concentration 50 ml / l), liquid temperature 32 ° C., treatment time 2 minutes, washed with water and dried. The multi-bond solution is a sulfuric acid / hydrogen peroxide-based copper roughening etching solution manufactured by Nihon McDermid.

次に、図3及び図4を参照して、本実施例1〜12と比較例1、2について、レーザ穴明け加工性評価の結果を検討する。穴明け加工性が良好であるとは、穴加工に必要なエネルギが少ないことである。表面反射率が低いのは、レーザ加工に利用されるエネルギの比率が高いことを意味する。従って、表面反射率が低いことも、穴明け加工性が良好であるといえる。   Next, with reference to FIG. 3 and FIG. 4, the results of laser drilling workability evaluation for Examples 1 to 12 and Comparative Examples 1 and 2 will be examined. Good drilling workability means that less energy is required for drilling. Low surface reflectance means that the ratio of energy used for laser processing is high. Therefore, it can be said that the low surface reflectivity also has good drilling workability.

本実施例1〜12と比較例1を比較すると、全ての実施例1〜12について、比較例1よりレーザ加工エネルギが小さく、従って、穴あけ加工性が良いことが確認できる。   When Examples 1-12 are compared with Comparative Example 1, it can be confirmed that the laser processing energy is smaller than Comparative Example 1 for all Examples 1-12, and therefore the drilling workability is good.

図5は、本実施例で用いた亜塩素酸ナトリウム濃度100〜160g/l、水酸化ナトリウム濃度60〜100g/lの範囲を図示したものである。本実施例1〜12は破線で示す矩形の範囲にある。従って、破線の矩形の範囲では、比較例1よりレーザ加工エネルギが小さく、従って、穴あけ加工性が良い。この範囲では、表面反射率が約30〜80%である。即ち、実施例6、9を除いて、表面反射率は約30〜65%である。   FIG. 5 illustrates the ranges of sodium chlorite concentration of 100 to 160 g / l and sodium hydroxide concentration of 60 to 100 g / l used in this example. Examples 1 to 12 are in a rectangular range indicated by a broken line. Therefore, in the rectangular range indicated by the broken line, the laser processing energy is smaller than that of Comparative Example 1, and therefore the drilling workability is good. In this range, the surface reflectance is about 30-80%. That is, except for Examples 6 and 9, the surface reflectance is about 30 to 65%.

本実施例のうち、特に加工性が良好であったのは、実施例1、実施例2、実施例3、実施例5、実施例8及び実施例10である。これらの実施例は、図5に示す点A〜Dによって囲まれた菱形の斜線の領域及び点E近傍の領域にある。この領域では、レーザ加工エネルギが小さく且つ表面反射率が約30〜55%となる。このなかで、最も良好な結果を得ることができたのは、実施例1である。   Among the present examples, the workability was particularly good in Example 1, Example 2, Example 3, Example 5, Example 8, and Example 10. These examples are in the rhombic hatched area surrounded by the points A to D shown in FIG. In this region, the laser processing energy is small and the surface reflectance is about 30 to 55%. Among them, Example 1 was able to obtain the best results.

一方、比較例1について検討する。比較例1と実施例1を比較すると、目標穴径50μmでのレーザ穴明け加工性評価では、実施例1に比べ約4倍のレーザエネルギが必要であった。オーバーハング評価結果では、絶縁層の穴径に対して銅箔の穴径が二分の一となり、実施例1に比べオーバーハングが大きいことがわかった。これは、レーザエネルギが低減することによって、銅箔と絶縁層の除去量の差が小さくなるためであると考えられる。   On the other hand, Comparative Example 1 will be examined. Comparing Comparative Example 1 and Example 1, the laser drilling workability evaluation at a target hole diameter of 50 μm required about 4 times as much laser energy as Example 1. From the overhang evaluation result, it was found that the hole diameter of the copper foil was halved relative to the hole diameter of the insulating layer, and the overhang was larger than that of Example 1. This is considered to be because the difference in the removal amount of the copper foil and the insulating layer is reduced by reducing the laser energy.

比較例1の銅酸化物の反射率は、98%と高く、実施例1と比べ約3倍である。銅酸化物の膜厚は、0.5μmであり、実施例1と比べ2.8倍薄い。形成された銅酸化物の結晶形状も比較例1は、微細な針状結晶であるのに対し、実施例1は、凹凸状結晶であり、一つの結晶の大きさも比較例1より大きい。これらの結果から、本発明の銅箔表面処理によって、レーザ加工エネルギを低減でき、更に、オーバーハングが減少することが確認できた。   The reflectance of the copper oxide of Comparative Example 1 is as high as 98%, which is about 3 times that of Example 1. The thickness of the copper oxide is 0.5 μm, which is 2.8 times thinner than that of Example 1. The crystal shape of the formed copper oxide is also a fine acicular crystal in Comparative Example 1, whereas Example 1 is an uneven crystal, and the size of one crystal is larger than Comparative Example 1. From these results, it was confirmed that the laser processing energy can be reduced and the overhang is reduced by the copper foil surface treatment of the present invention.

次に、比較例2について検討する。比較例2の表面反射率は50%、銅酸化物の膜厚は0.02μmである。比較例2の銅箔表面処理液の特徴は、銅箔表面に殆ど銅酸化物を形成しないことである。   Next, Comparative Example 2 will be examined. The surface reflectance of Comparative Example 2 is 50%, and the film thickness of the copper oxide is 0.02 μm. The feature of the copper foil surface treatment solution of Comparative Example 2 is that almost no copper oxide is formed on the copper foil surface.

比較例2と実施例2及び実施例10を比較する。両者の表面反射率は同程度であるが、銅酸化物膜厚は、実施例2及び実施例10のほうが比較例2より厚い。しかしながら、目標穴径50μmのレーザ穴明け加工性評価では、比較例2の方がレーザエネルギは高い。この原因は、わからないが、実施例2及び実施例10では、銅酸化物が銅箔表面に形成されることによって、レーザの熱エネルギが大気中に拡散することが防止され、熱エネルギによる加工効率が向上するためであると推測される。銅の熱伝導率4.01gJ/cm・s・Kに対して酸化銅の熱伝導率0.003gJ/cm・s・Kであり100分の1も小さい。   Comparative Example 2 is compared with Example 2 and Example 10. The surface reflectivities of the two are comparable, but the copper oxide film thickness is greater in Example 2 and Example 10 than in Comparative Example 2. However, in the laser drilling workability evaluation with a target hole diameter of 50 μm, the laser energy of Comparative Example 2 is higher. The cause of this is not known, but in Example 2 and Example 10, the formation of copper oxide on the surface of the copper foil prevents the thermal energy of the laser from diffusing into the atmosphere, and the processing efficiency by thermal energy Is presumed to be improved. The thermal conductivity of copper oxide is 0.003 gJ / cm · s · K compared to 4.01 gJ / cm · s · K, which is one hundredth smaller.

この結果から、銅酸化物の厚い方がレーザ穴明け加工性が向上することが確認できたが、穴加工後に銅酸化物を除去しなければならないことや銅箔が減厚する問題があるため、銅酸化物の厚さは1.0〜2.0μmが望ましい。   From this result, it was confirmed that the thicker the copper oxide, the better the laser drilling workability, but there is a problem that the copper oxide has to be removed after drilling and the copper foil is thinned. The thickness of the copper oxide is preferably 1.0 to 2.0 μm.

図6〜図8を参照して、本発明によるプリント配線板の製造方法を説明する。ここでは、実施例1〜12の銅箔表面処理液を用いて多層プリント配線板を作製した。図6(a)に示すように、表面に銅箔3aを有する内層基材1として銅張積層板MCL-E679を用意した。図6(b)に示すように、銅箔3a上にレジスト2からなる内層回路パターンを形成する。エッチングにより、レジスト2に覆われた部分以外の銅箔3aを除去し、次に、レジスト2を除去することにより、図6(c)に示すように、内層基材1上に内層回路3を形成した。この内層基材の両面にガラスクロスを含まない樹脂付き銅箔をプレスにより積層し、4層の銅張積層板を作製した。この銅張積層板は、図7(a)に示すように、2つの外層銅箔5と2つの内層銅箔3からなる4層の銅箔を有する。外層銅箔5の厚さは9μmとした。   With reference to FIGS. 6-8, the manufacturing method of the printed wiring board by this invention is demonstrated. Here, the multilayer printed wiring board was produced using the copper foil surface treatment liquid of Examples 1-12. As shown in FIG. 6A, a copper clad laminate MCL-E679 was prepared as an inner layer base material 1 having a copper foil 3a on the surface. As shown in FIG. 6B, an inner layer circuit pattern made of a resist 2 is formed on the copper foil 3a. The copper foil 3a other than the portion covered with the resist 2 is removed by etching, and then the resist 2 is removed, whereby the inner layer circuit 3 is formed on the inner layer substrate 1 as shown in FIG. Formed. A copper foil with a resin not containing glass cloth was laminated on both sides of the inner layer base material by pressing to produce a four-layer copper-clad laminate. As shown in FIG. 7A, this copper-clad laminate has four layers of copper foil composed of two outer layer copper foils 5 and two inner layer copper foils 3. The thickness of the outer layer copper foil 5 was 9 μm.

次に、この4層銅張積層板の外層銅箔5に図1に示した銅箔表面処理を行った。図7(b)に示すように、外層銅箔5の表面に銅酸化物6が形成される。図7(c)に示すように、CO2レーザによりレーザエネルギ8mJで穴径100μmのブラインドビアを形成した。図8(a)に示すように、銅エッチング液により銅酸化物膜6を除去し、ブラインドビアのデスミア処理を行い、層間導通形成のため、銅めっき膜7を15μm形成した。次に、図8(b)に示すように、外層銅箔5上にレジスト2からなる内層回路パターンを形成する。エッチングにより、レジスト2に覆われた部分以外の外層銅箔5を除去し、次に、レジスト2を除去することにより、図8(c)に示すように、絶縁層4上に外層回路7を形成した。 Next, the copper foil surface treatment shown in FIG. 1 was performed on the outer layer copper foil 5 of this four-layer copper clad laminate. As shown in FIG. 7B, copper oxide 6 is formed on the surface of the outer layer copper foil 5. As shown in FIG. 7C, a blind via with a laser energy of 8 mJ and a hole diameter of 100 μm was formed by a CO 2 laser. As shown in FIG. 8A, the copper oxide film 6 was removed with a copper etchant, a blind via desmear process was performed, and a copper plating film 7 of 15 μm was formed for interlayer conduction formation. Next, as shown in FIG. 8B, an inner layer circuit pattern made of the resist 2 is formed on the outer layer copper foil 5. The outer layer copper foil 5 other than the portion covered with the resist 2 is removed by etching, and then the resist 2 is removed, whereby the outer layer circuit 7 is formed on the insulating layer 4 as shown in FIG. Formed.

図9は、多層プリント配線板の構造を模式的に示した図である。こうして作製した多層プリント配線板の内層配線と穴の位置ズレを断面観察により測定した。測定方法は、各多層プリント配線板の穴を観察し、内層配線と穴の中心のズレの最大値を測定した。結果を図10に示す。実施例1〜12の全てにおいて内層配線と穴の中心のズレの最大値は50μm以内であった。   FIG. 9 is a diagram schematically showing the structure of a multilayer printed wiring board. The positional deviation between the inner layer wiring and the hole of the multilayer printed wiring board produced in this way was measured by cross-sectional observation. In the measurement method, the holes of each multilayer printed wiring board were observed, and the maximum deviation between the inner layer wiring and the center of the hole was measured. The results are shown in FIG. In all of Examples 1 to 12, the maximum deviation between the inner layer wiring and the center of the hole was within 50 μm.

以上、本発明の例を説明したが、本発明は上述の例に限定されるものではなく、特許請求の範囲に記載された発明の範囲にて様々な変更が可能であることは当業者に理解されよう。   The example of the present invention has been described above, but the present invention is not limited to the above-described example, and various modifications can be made by those skilled in the art within the scope of the invention described in the claims. It will be understood.

本発明による銅箔表面処理工程を示す図である。It is a figure which shows the copper foil surface treatment process by this invention. 本発明の実施例及び比較例の銅箔表面処理液の組成条件を示す図である。It is a figure which shows the composition conditions of the copper foil surface treatment liquid of the Example and comparative example of this invention. 本発明の実施例及び比較例のレーザ穴明け加工性評価と反射率および銅酸化物膜厚の測定結果を示す図である。It is a figure which shows the measurement result of the laser drilling workability evaluation of the Example and comparative example of this invention, a reflectance, and a copper oxide film thickness. 本発明の実施例及び比較例のオーバーハング評価の結果を示す図である。It is a figure which shows the result of the overhang evaluation of the Example and comparative example of this invention. 本発明による銅箔表面処理液の最適濃度範囲を示す図である。It is a figure which shows the optimal concentration range of the copper foil surface treatment liquid by this invention. 多層プリント配線板の製造工程を表す概略図である。It is the schematic showing the manufacturing process of a multilayer printed wiring board. 多層プリント配線板の製造工程を表す概略図である。It is the schematic showing the manufacturing process of a multilayer printed wiring board. 多層プリント配線板の製造工程を表す概略図である。It is the schematic showing the manufacturing process of a multilayer printed wiring board. 多層プリント配線板の鳥瞰図である。It is a bird's-eye view of a multilayer printed wiring board. 本発明による内層配線と穴の位置ズレ測定結果を示す図である。It is a figure which shows the internal layer wiring by this invention, and the positional offset measurement result of a hole.

符号の説明Explanation of symbols

1…内層基材、2…レジスト、3…内層回路、4…絶縁層、5…外層銅箔、6…銅酸化物、7…銅めっき膜、8…ブラインドビア   DESCRIPTION OF SYMBOLS 1 ... Inner layer base material, 2 ... Resist, 3 ... Inner layer circuit, 4 ... Insulating layer, 5 ... Outer layer copper foil, 6 ... Copper oxide, 7 ... Copper plating film, 8 ... Blind via

Claims (6)

基材樹脂に銅箔を張り合わせた積層板の外層の銅箔とその下の樹脂にレーザ加工により穴を形成する工程を含むプリント配線板の製造方法において、
レーザ加工による穴あけに先立って、外層の銅箔の表面に、波長9.3〜10.6μmの範囲の赤外光に対する表面反射率が30〜80%であり、且つ、厚さが1.0〜2.0μmである銅酸化物を形成する銅箔表面処理を行い、該銅箔表面処理は外層の銅箔の表面に、濃度が100〜160(g/l)の亜塩素酸ナトリウムと濃度が60〜100(g/l)の水酸化ナトリウムを含む表面処理液で処理を行うことを特徴とするプリント配線板の製造方法。
In the method of manufacturing a printed wiring board including a step of forming a hole by laser processing in the copper foil of the outer layer of the laminated board obtained by laminating the copper foil to the base resin and the resin below the
Prior to drilling by laser processing, the surface reflectivity for infrared light in the wavelength range of 9.3 to 10.6 μm is 30 to 80% and the thickness is 1.0 to 2.0 μm on the surface of the outer copper foil. There row copper foil surface treatment to form a copper oxide, copper foil surface treatment on the surface of the copper foil of the outer layer, the concentration is sodium chlorite and the concentration of 100~160 (g / l) 60~100 ( method for manufacturing a printed wiring board, characterized in row Ukoto the treated with a surface treatment solution containing sodium hydroxide g / l).
請求項1記載のプリント配線板の製造方法において、上記銅箔表面処理によって形成された銅酸化物の表面反射率は30〜55%であることを特徴とするプリント配線板の製造方法。   2. The method of manufacturing a printed wiring board according to claim 1, wherein the surface reflectance of the copper oxide formed by the copper foil surface treatment is 30 to 55%. 請求項1記載のプリント配線板の製造方法において、上記銅箔表面処理は、液温70〜90℃にて行うことを特徴とするプリント配線板の製造方法。 The manufacturing method of claim 1 Symbol mounting of the printed wiring board, the copper foil surface treatment method for manufacturing a printed wiring board, which comprises carrying out at a liquid temperature of 70 to 90 ° C.. 基材樹脂に銅箔を張り合わせたプリント配線板製造用の積層板において、
波長9.3〜10.6μmの範囲のレーザ光を用いて穴を形成するレーザ加工に先立って、外層の銅箔の表面に、波長9.3〜10.6μmの範囲の赤外光に対する表面反射率が30〜80%であり、且つ、厚さが1.0〜2.0μmである銅酸化物を形成する銅箔表面処理を行い、該銅箔表面処理は外層の銅箔の表面に、濃度が100〜160(g/l)の亜塩素酸ナトリウムと濃度が60〜100(g/l)の水酸化ナトリウムを含む表面処理液で処理を行ってなることを特徴とするプリント配線板製造用の積層板。
In the laminated board for printed wiring board production in which copper foil is bonded to the base resin,
Prior to laser processing for forming holes using laser light in the wavelength range of 9.3 to 10.6 μm, the surface reflectance of infrared light in the range of wavelength 9.3 to 10.6 μm is 30 to 80 on the surface of the outer copper foil. The copper foil surface treatment is performed to form a copper oxide having a thickness of 1.0 to 2.0 μm, and the copper foil surface treatment has a concentration of 100 to 160 (g / g) on the surface of the outer copper foil. A laminated board for producing a printed wiring board, wherein the laminated board is treated with a surface treatment solution containing l) sodium chlorite and sodium hydroxide having a concentration of 60 to 100 (g / l) .
請求項記載のプリント配線板製造用の積層板において、上記銅箔表面処理によって形成された銅酸化物の表面反射率は30〜55%であることを特徴とするプリント配線板製造用の積層板。 In laminates for printed wiring board manufacture according to claim 4, laminated for printed wiring board manufacturing, wherein the surface reflectance of the copper oxide formed by the copper foil surface treatment is 30 to 55% Board. 基材樹脂に銅箔を張り合わせた積層板の外層の銅箔とその下の樹脂にレーザ加工により穴を形成する工程に先立って行う表面処理に使用する表面処理液において、濃度が100〜160(g/l)の亜塩素酸ナトリウムと濃度が60〜100(g/l)の水酸化ナトリウムを含むことを特徴とする表面処理液。   In the surface treatment liquid used for the surface treatment performed prior to the step of forming the hole by laser processing on the copper foil of the laminated board in which the copper foil is bonded to the base resin and the resin therebelow, the concentration is 100 to 160 ( A surface treatment solution comprising sodium chlorite in g / l) and sodium hydroxide in a concentration of 60 to 100 (g / l).
JP2005159740A 2005-05-31 2005-05-31 Method for manufacturing printed wiring board Expired - Fee Related JP4528204B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005159740A JP4528204B2 (en) 2005-05-31 2005-05-31 Method for manufacturing printed wiring board
KR1020060048419A KR101277390B1 (en) 2005-05-31 2006-05-30 Manufacturing method of printed wiring board, copper-clad laminate and treatment solutions used therefor
TW95119161A TWI394504B (en) 2005-05-31 2006-05-30 Manufacturing method of printed wiring board as well as copper-clad laminate and treatment solutions used therefor
CN2006100830968A CN1874655B (en) 2005-05-31 2006-05-31 Manufacturing method of printed wiring board as well as copper-clad laminate
US11/443,013 US7666320B2 (en) 2005-05-31 2006-05-31 Manufacturing method of printed wiring board as well as copper-clad laminate and treatment solutions used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005159740A JP4528204B2 (en) 2005-05-31 2005-05-31 Method for manufacturing printed wiring board

Publications (2)

Publication Number Publication Date
JP2006339259A JP2006339259A (en) 2006-12-14
JP4528204B2 true JP4528204B2 (en) 2010-08-18

Family

ID=37484846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159740A Expired - Fee Related JP4528204B2 (en) 2005-05-31 2005-05-31 Method for manufacturing printed wiring board

Country Status (2)

Country Link
JP (1) JP4528204B2 (en)
CN (1) CN1874655B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620713B2 (en) 2007-09-28 2011-01-26 日立ビアメカニクス株式会社 Printed wiring board manufacturing method and electrolytic etching solution used in the manufacturing method
CN101478862A (en) * 2008-11-29 2009-07-08 鸿源科技(杭州)有限公司 Process for blind hole, buried hole, and filled hole of multi-layered high density interconnected printed circuit board
JP5982777B2 (en) * 2011-10-20 2016-08-31 日立化成株式会社 Method for manufacturing printed wiring board
CN103972513B (en) * 2013-02-06 2016-08-17 永箔科技股份有限公司 Porous collector metal material continuous process method
JP2019196516A (en) * 2018-05-09 2019-11-14 Jx金属株式会社 Copper foil, laminate and electronic apparatus
CN109554700B (en) * 2019-01-31 2021-02-26 广东天承科技股份有限公司 Anti-reflection process for bright copper film or copper alloy film
CN110076462A (en) * 2019-04-30 2019-08-02 大连大学 A kind of preparation method of transparent metal grid conductive film
CN109920583B (en) * 2019-04-30 2020-02-14 大连大学 Transparent metal grid conductive film
JP7328671B2 (en) * 2019-05-09 2023-08-17 ナミックス株式会社 laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199596A (en) * 1984-10-22 1986-05-17 Hitachi Ltd Boring method of circuit board
JPS61176186A (en) * 1985-01-31 1986-08-07 日立化成工業株式会社 Manufacture of wiring board
JPH05308191A (en) * 1991-10-24 1993-11-19 Risho Kogyo Co Ltd Surface treatment method of inner-layer circuit board for multilayer printed wiring board
JP2001068816A (en) * 1999-08-24 2001-03-16 Mitsui Mining & Smelting Co Ltd Copper plated laminated board and laser processing method used therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732649A (en) * 1986-06-18 1988-03-22 Macdermid, Incorporated Method for manufacture of printed circuit boards
JPH11266068A (en) * 1998-01-14 1999-09-28 Canon Inc Wiring substrate and its manufacture
US6632344B1 (en) * 2000-03-24 2003-10-14 Robert L. Goldberg Conductive oxide coating process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199596A (en) * 1984-10-22 1986-05-17 Hitachi Ltd Boring method of circuit board
JPS61176186A (en) * 1985-01-31 1986-08-07 日立化成工業株式会社 Manufacture of wiring board
JPH05308191A (en) * 1991-10-24 1993-11-19 Risho Kogyo Co Ltd Surface treatment method of inner-layer circuit board for multilayer printed wiring board
JP2001068816A (en) * 1999-08-24 2001-03-16 Mitsui Mining & Smelting Co Ltd Copper plated laminated board and laser processing method used therefor

Also Published As

Publication number Publication date
CN1874655A (en) 2006-12-06
JP2006339259A (en) 2006-12-14
CN1874655B (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4528204B2 (en) Method for manufacturing printed wiring board
KR101277390B1 (en) Manufacturing method of printed wiring board, copper-clad laminate and treatment solutions used therefor
US6766576B2 (en) Method for producing a double-sided wiring board
JP4694349B2 (en) Printed wiring board using laser processing and manufacturing method thereof
JP4870699B2 (en) Copper surface treatment method and printed wiring board surface treatment method
US7665208B2 (en) Through hole forming method
JP6033872B2 (en) Manufacturing method of component-embedded substrate
WO2001089276A1 (en) Method for manufacturing printed wiring board
TWI459879B (en) Method for manufacturing multilayer flexible printed wiring board
JP3942535B2 (en) Manufacturing method of multilayer wiring board
US8493173B2 (en) Method of cavity forming on a buried resistor layer using a fusion bonding process
JP2002060967A (en) Surface treating method for copper or copper alloy
JP5223973B1 (en) Printed wiring board and printed wiring board manufacturing method
JP5982777B2 (en) Method for manufacturing printed wiring board
US6754951B2 (en) Method of drilling a circuit substrate
KR20060003847A (en) A multi-layer board provide with interconnect bump hole of the inner layer rcc and therefor method
JP2005340785A (en) Printed circuit board, processing method of printed circuit board, and manufacturing method of printed circuit board
JP4176105B2 (en) Printed wiring board
JP4736251B2 (en) Film carrier and manufacturing method thereof
JPS60143693A (en) Method of forming multilayer circuit board
JPH1168291A (en) Printed wiring board and production thereof
JP2001024330A (en) Multilayered wiring board, manufacture thereof and electronic device
JP4337408B2 (en) Method for manufacturing printed wiring board
KR200412591Y1 (en) A multi-layer board provide with interconnect bump hole of the inner layer RCC
JPH05102656A (en) Multilayer printed wiring board and copper foil for its internal layer electric circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees