JP4692059B2 - Method for manufacturing light emitting device - Google Patents

Method for manufacturing light emitting device Download PDF

Info

Publication number
JP4692059B2
JP4692059B2 JP2005126398A JP2005126398A JP4692059B2 JP 4692059 B2 JP4692059 B2 JP 4692059B2 JP 2005126398 A JP2005126398 A JP 2005126398A JP 2005126398 A JP2005126398 A JP 2005126398A JP 4692059 B2 JP4692059 B2 JP 4692059B2
Authority
JP
Japan
Prior art keywords
emitting device
light emitting
light
wavelength conversion
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005126398A
Other languages
Japanese (ja)
Other versions
JP2006303373A (en
Inventor
正喜 小林
欣弘 中谷
勝 杉本
秀吉 木村
良二 横谷
健一 山田
真也 石崎
哲 森
崇史 藤野
拓磨 橋本
哲也 木本
英二 塩濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005126398A priority Critical patent/JP4692059B2/en
Publication of JP2006303373A publication Critical patent/JP2006303373A/en
Application granted granted Critical
Publication of JP4692059B2 publication Critical patent/JP4692059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Description

本発明は、LEDの発光による発光装置の製造方法に関する。 The present invention relates to the production how the light emitting device by the LED light emission.

近年、窒化ガリウム系化合物半導体による青色光を放射するLED(Light Emitting Diode:発光ダイオード)チップや紫外線を放射するLEDチップが開発されている。このようなLEDチップを蛍光顔料、蛍光染料などの種々の波長変換材料と組合わせることにより、LEDチップの発光色とは異なる色合いの光や白色光を発光する発光装置の開発が行われている。LED発光装置は、小型、軽量、省電力といった長所があり、現在、表示用光源、小型電球の代替、液晶パネル用光源等として広く用いられている。   In recent years, LED (Light Emitting Diode) chips that emit blue light and LED chips that emit ultraviolet light have been developed using gallium nitride compound semiconductors. By combining such LED chips with various wavelength conversion materials such as fluorescent pigments and fluorescent dyes, light emitting devices that emit light of a color different from the emission color of LED chips or white light have been developed. . The LED light emitting device has advantages such as small size, light weight, and power saving, and is currently widely used as a light source for display, an alternative to a small light bulb, a light source for a liquid crystal panel and the like.

上述のような発光装置において波長変換材料を固定した波長変換部を形成する方法として、波長変換材料を樹脂に含有させてLEDチップの載置部に充填する方法が一般的に行われている。しかし、充填による波長変換部の形成方法の工程は煩雑であると共に樹脂滴下量の制御が困難という問題があるため、発光装置毎の色ばらつきや光量ばらつきが大きいという問題点がある。そこで、実装基板の凹部内にLEDチップを配置し、波長変換材料を含む波長変換部を別部材として形成し、その波長変換部を実装基板の凹部を覆うように配置した発光装置が知られている(例えば、特許文献1参照)。   As a method of forming a wavelength conversion portion in which a wavelength conversion material is fixed in the light emitting device as described above, a method of filling a placement portion of an LED chip with a wavelength conversion material contained in a resin is generally performed. However, the steps of the method of forming the wavelength conversion part by filling are complicated and there are problems that it is difficult to control the amount of resin dripping, so there is a problem that the color variation and light amount variation are large for each light emitting device. Therefore, a light emitting device is known in which an LED chip is disposed in a recess of a mounting substrate, a wavelength conversion unit including a wavelength conversion material is formed as a separate member, and the wavelength conversion unit is disposed so as to cover the recess of the mounting substrate. (For example, refer to Patent Document 1).

ところで、LEDチップ自体に発光輝度と発光波長のばらつきがあることから、このようなLEDチップに波長変換材料を組合せた、例えば白色光を発光する発光装置において、発光装置毎に色調がばらつくという問題がある。この問題を解決するため、一方でLEDチップからの直接光の発光輝度及び発光波長に基づいてLEDチップのランク分けを行い、他方で波長変換材料と輝度調整用減光材の組合せ条件の異なる複数の被覆部材を形成し、ランク分けしたLEDチップにそのランクに対応する所定組合せ条件の被覆部材を組合せて発光装置を製造するという製造方法が知られている(例えば、特許文献2参照)。
特開2001−345482号公報 特開2004−119743号公報
By the way, since the LED chip itself has variations in light emission luminance and light emission wavelength, for example, in a light emitting device that emits white light in which a wavelength conversion material is combined with such an LED chip, the color tone varies for each light emitting device. There is. In order to solve this problem, LED chips are ranked based on the light emission luminance and light emission wavelength of direct light from the LED chip, and on the other hand, a plurality of different combination conditions of the wavelength conversion material and the luminance adjusting light reducing material are used. There is known a manufacturing method in which a light emitting device is manufactured by forming a covering member of the above and combining LED members that are classified into ranks and covering members having a predetermined combination condition corresponding to the rank (see, for example, Patent Document 2).
JP 2001-345482 A JP 2004-119743 A

しかしながら、上述した特許文献1に示されるような発光装置の製造方法においては、波長変換部を別部材として製造工程の簡略化が図られているが、発光装置毎の色ばらつきや光量ばらつきについては、依然として改善の必要性がある。また、上述した特許文献2に示されるような発光装置の製造方法においては、事前にランク分けしたLEDチップに対応する被覆部材を組合わせるものの、その組合せによって、発光装置毎の色ばらつきが完全に解消されるとは言い難く、なお改善の余地がある。   However, in the method of manufacturing a light emitting device as described in Patent Document 1 described above, the manufacturing process is simplified by using the wavelength conversion unit as a separate member. There is still a need for improvement. Moreover, in the manufacturing method of the light-emitting device as shown in Patent Document 2 described above, although the covering members corresponding to the LED chips ranked in advance are combined, the color variation for each light-emitting device is completely achieved by the combination. It is hard to say that it will be resolved, and there is still room for improvement.

本発明は、上記課題を解消するものであって、波長変換材料の固定が容易で、発光装置毎の色ばらつきをより一層低減できるLEDの発光による発光装置の製造方法を提供することを目的とする。 The present invention aims be one to solve the above problems, an easy fixing of the wavelength converting material, to provide a manufacturing how the light-emitting device according to the LED light emission can be further reduced color unevenness of each light emitting device And

上記課題を達成するために、請求項1の発明は、LEDチップを実装して成るLED発光部と、蛍光体を含有する波長変換部とを組合せて成る発光装置の製造方法において、前記LED発光部に前記波長変換部を組合せた後に前記LEDチップの発光に基づいて放射される光の色調を前記波長変換部の前方において計測し、前記波長変換部を前記LED発光部に対して移動または回転させることにより変化する混色の強度バランスを変えることにより、当該発光装置から放射される光の色調を調整するものである。 In order to achieve the above object, the invention of claim 1 is directed to a method of manufacturing a light-emitting device comprising a combination of an LED light-emitting unit on which an LED chip is mounted and a wavelength conversion unit containing a phosphor. After the wavelength conversion unit is combined with the unit, the color tone of light emitted based on the light emission of the LED chip is measured in front of the wavelength conversion unit, and the wavelength conversion unit is moved or rotated with respect to the LED light emission unit by varying the intensity balance of the mixed color changes by and adjusts the color tone of light emitted from the light-emitting device.

請求項2の発明は、請求項1に記載の発光装置の製造方法において、前記波長変換部に蛍光体を含む領域と蛍光体を含まない領域とを設け、前記LEDチップから該波長変換部の各領域へ照射される光の割合を変えるものである。   According to a second aspect of the present invention, in the method for manufacturing a light emitting device according to the first aspect, the wavelength conversion unit is provided with a region including a phosphor and a region not including the phosphor, and the wavelength conversion unit The ratio of the light irradiated to each region is changed.

請求項3の発明は、請求項1に記載の発光装置の製造方法において、前記波長変換部は断面がくさび形状の略平板であり、前記LED発光部に対して相対的に位置を変えることによって当該LED発光部の臨む前記波長変換部の有効厚みを変えるものである。   According to a third aspect of the present invention, in the method for manufacturing a light emitting device according to the first aspect, the wavelength converting portion is a substantially flat plate having a wedge-shaped cross section, and the position is changed relative to the LED light emitting portion. The effective thickness of the wavelength conversion part that the LED light emitting part faces is changed.

請求項4の発明は、請求項2又は請求項3に記載の発光装置の製造方法において、前記波長変換部を複数枚重ねると共にそれらの位置を調整することによって混色の強度バランスを変えるものである。   According to a fourth aspect of the present invention, in the method for manufacturing the light emitting device according to the second or third aspect, the intensity balance of the color mixture is changed by overlapping a plurality of the wavelength conversion sections and adjusting their positions. .

請求項5の発明は、請求項1に記載の発光装置の製造方法において、前記LEDチップに流れる電流量を抵抗体により調整すことによって当該LEDチップが放射する光の波長を変えるものである。   According to a fifth aspect of the present invention, in the method for manufacturing the light emitting device according to the first aspect, the wavelength of light emitted by the LED chip is changed by adjusting the amount of current flowing through the LED chip with a resistor.

請求項6の発明は、請求項1に記載の発光装置の製造方法において、前記波長変換部の温度を変えることによって蛍光体の光特性を変えるものである。   According to a sixth aspect of the present invention, in the method for manufacturing a light emitting device according to the first aspect, the light characteristic of the phosphor is changed by changing the temperature of the wavelength conversion section.

請求項7の発明は、請求項1に記載の発光装置の製造方法において、LED発光部の熱抵抗を変えることによって当該LEDチップが放射する光の波長を変えるものである。   A seventh aspect of the invention is a method of manufacturing a light emitting device according to the first aspect, wherein the wavelength of light emitted from the LED chip is changed by changing the thermal resistance of the LED light emitting portion.

請求項1の発明によれば、LED発光部に波長変換部を組合せた発光装置の状態で発光特性を計測して色調を調整するので、例えば、実装部表面の光反射率のような光学条件を含めた総合的な評価に基づいて色調の調整ができ、従来に比べてより高精度に発光装置毎の色ばらつきを低減できる。また、LED発光部に組合せる波長変換部をLED発光部とは別途形成することにより、波長変換材料の固定が容易となる。   According to the invention of claim 1, since the color tone is adjusted by measuring the light emission characteristics in the state of the light emitting device in which the wavelength conversion unit is combined with the LED light emitting unit, for example, optical conditions such as the light reflectance of the surface of the mounting unit The color tone can be adjusted based on a comprehensive evaluation including the above, and the color variation of each light emitting device can be reduced with higher accuracy than in the past. In addition, the wavelength conversion material to be combined with the LED light emitting unit is formed separately from the LED light emitting unit, so that the wavelength conversion material can be easily fixed.

混色の強度バランスを変えて行う色調の調整は、例えば、波長変換部における蛍光体密度分布調整や光吸収体フィルタ配置により行える。また、LEDチップが放射する光の波長を変えて行う色調の調整は、例えば、LEDチップの電流や温度を調整して行える。また、蛍光体によって波長変換されて放射される光の波長を変えて行う色調の調整は、例えば、波長変換部の温度調整によって行える。このように、従来技術に比べて、LEDチップや波長変換部の製造ばらつきによる色調ばらつきを更に小さくできると共に、従来不良品となっていた発光装置の色調を良品範囲に調整し、不良品削減と歩留向上ができる。   The color tone adjustment performed by changing the intensity balance of the color mixture can be performed, for example, by adjusting the phosphor density distribution in the wavelength conversion unit or arranging the light absorber filter. Moreover, the adjustment of the color tone performed by changing the wavelength of the light emitted from the LED chip can be performed by adjusting the current and temperature of the LED chip, for example. Further, the color tone adjustment performed by changing the wavelength of the light emitted after being wavelength-converted by the phosphor can be performed, for example, by adjusting the temperature of the wavelength conversion unit. Thus, compared to the prior art, color variation due to manufacturing variations of LED chips and wavelength conversion units can be further reduced, and the color tone of the light emitting device, which has been a defective product in the past, can be adjusted to a non-defective product range to reduce defective products. Yield can be improved.

請求項2の発明によれば、蛍光体を含まない領域(透明領域)の割合を調整することにより、LEDチップの発光と波長変換部による発光の割合を容易に変えることができるので、混色の強度バランスを容易に調整ができ、従来例に比べてより高精度に発光装置毎の色ばらつきを低減できる。   According to the invention of claim 2, by adjusting the ratio of the area not including the phosphor (transparent area), the ratio of the light emission of the LED chip and the light emission by the wavelength converter can be easily changed. The intensity balance can be easily adjusted, and the color variation of each light emitting device can be reduced with higher accuracy than in the conventional example.

請求項3の発明によれば、波長変換部の位置を変えることにより波長変換部の厚み分布を容易に変えることができるので、混色の強度バランスを容易に調整ができ、従来に比べてより高精度に発光装置毎の色ばらつきを低減できる。   According to the invention of claim 3, since the thickness distribution of the wavelength conversion part can be easily changed by changing the position of the wavelength conversion part, the intensity balance of the color mixture can be easily adjusted, which is higher than the conventional one. The color variation for each light emitting device can be reduced with high accuracy.

請求項4の発明によれば、2枚の波長変換部の位置を互いにずらすことにより蛍光体の分布を変化させることができ、1枚の波長変換部を用いる場合に比べて、より滑らかに混色の強度バランスを調整できる。また、各波長変換部に異なる種類の蛍光体を含有させた波長変換部を用いることにより、色度座標上を曲線的に変化させることができ、黒体軌跡に沿った変化による色調調整ができる。   According to the fourth aspect of the present invention, the distribution of the phosphors can be changed by shifting the positions of the two wavelength conversion units from each other, and the color mixing is smoother than in the case of using one wavelength conversion unit. The intensity balance can be adjusted. In addition, by using a wavelength conversion unit containing different types of phosphors in each wavelength conversion unit, it is possible to change the chromaticity coordinates in a curved manner and to adjust the color tone by a change along the black body locus. .

請求項5の発明によれば、LEDチップに流れる電流が、例えば大きくなるとLEDチップの発光の波長が短くなることから、抵抗体による電流調整でLEDチップの発光の波長を一定にでき、従来に比べてより高精度に発光装置毎の色ばらつきを低減できる。   According to the invention of claim 5, when the current flowing through the LED chip increases, for example, the wavelength of light emission of the LED chip becomes shorter. Therefore, the wavelength of light emission of the LED chip can be made constant by adjusting the current by the resistor. Compared to this, it is possible to reduce the color variation for each light emitting device with higher accuracy.

請求項6の発明によれば、波長変換部の温度を調整して蛍光体による波長変換光の波長や強度を一定にでき、従来に比べてより高精度に発光装置毎の色ばらつきを低減できる。   According to the invention of claim 6, the wavelength and intensity of the wavelength-converted light by the phosphor can be made constant by adjusting the temperature of the wavelength converter, and the color variation for each light-emitting device can be reduced with higher accuracy than before. .

請求項7の発明によれば、LED発光部の熱抵抗を調整して、LEDチップ温度を変えてLEDチップの発光の波長を一定にでき、従来に比べてより高精度に発光装置毎の色ばらつきを低減できる。   According to the seventh aspect of the present invention, the thermal resistance of the LED light emitting part is adjusted, the LED chip temperature can be changed to make the light emission wavelength of the LED chip constant, and the color of each light emitting device can be more accurately compared with the conventional one. Variations can be reduced.

以下、本発明の実施形態に係る発光装置の製造方法と該発光装置を用いた照明器具について、図面を参照して説明する。図1(a)(b)は本発明に係る製造方法により製造された発光装置1を示す。発光装置1は、LEDチップ2を発光装置本体である実装基板4に実装して成るLED発光部と、蛍光体を含有する波長変換部3とを組合せて構成されている。実装基板4は、例えばセラミックスで形成された略直方体形状の基板であり、その略直方体形状の実装基板4の一面(上面)にLEDチップ2を実装する凹部41を備え、凹部41の底面には、直方体の下面から側面を経由して延設された電極42が設けられている。LEDチップ2は、例えば、青色光を発光する青色LEDであり、実装基板4の凹部41の底面に、例えばフリップチップ実装され、電極42とLEDチップ2の電極(不図示)が電気接続されている。なお、実装基板4の材質は、特にセラミックスに限定されるものではない。LEDチップ2は、例えば、ドミナント波長460nm〜465nmの窒化ガリウム系青色LEDである。   Hereinafter, a method for manufacturing a light emitting device according to an embodiment of the present invention and a lighting fixture using the light emitting device will be described with reference to the drawings. 1A and 1B show a light emitting device 1 manufactured by the manufacturing method according to the present invention. The light emitting device 1 is configured by combining an LED light emitting unit formed by mounting an LED chip 2 on a mounting substrate 4 that is a light emitting device main body, and a wavelength conversion unit 3 containing a phosphor. The mounting substrate 4 is a substantially rectangular parallelepiped substrate formed of ceramics, for example, and includes a recess 41 for mounting the LED chip 2 on one surface (upper surface) of the approximately rectangular parallelepiped mounting substrate 4. An electrode 42 extending from the lower surface of the rectangular parallelepiped via the side surface is provided. The LED chip 2 is, for example, a blue LED that emits blue light. The LED chip 2 is, for example, flip-chip mounted on the bottom surface of the recess 41 of the mounting substrate 4, and the electrode 42 and the electrode (not shown) of the LED chip 2 are electrically connected. Yes. The material of the mounting substrate 4 is not particularly limited to ceramics. The LED chip 2 is, for example, a gallium nitride blue LED having a dominant wavelength of 460 nm to 465 nm.

波長変換部3は、例えば、上述のような青色LEDの発光を吸収して黄色系の光を発生する蛍光体を含む領域(以下、蛍光体領域部31)と蛍光体を含まない領域(以下、透明領域部30)とを設けて形成されたシート状の部材からなる。なお、この波長変換部3は略平板であってLED発光部の上面つまり実装基板4の上面にLEDチップの光放射面と平行に配置されており、波長変換部3の蛍光体領域部31及び透明領域部30は、それぞれ波長変換部3の厚み方向の全域にわたって形成されている。このような構成の波長変換部3は、シート状の部材を用いて容易に形成できる。なお、波長変換部3の構成は、この構成に限定されるものではない。   The wavelength conversion unit 3 includes, for example, a region including a phosphor that absorbs light emitted from the blue LED as described above to generate yellow light (hereinafter, phosphor region portion 31) and a region that does not include the phosphor (hereinafter, phosphor). , And a transparent region portion 30). The wavelength conversion unit 3 is a substantially flat plate and is disposed on the upper surface of the LED light emitting unit, that is, the upper surface of the mounting substrate 4 in parallel with the light emitting surface of the LED chip. The transparent region portion 30 is formed over the entire area in the thickness direction of the wavelength conversion portion 3. The wavelength conversion unit 3 having such a configuration can be easily formed using a sheet-like member. The configuration of the wavelength conversion unit 3 is not limited to this configuration.

上述の発光装置1において、LEDチップ2によって発生した青色光の一部は、蛍光体領域部31の蛍光体により吸収されて黄色系の光に変換されて発光装置1から外部へ放射され、一部は蛍光体に吸収されることなく蛍光体領域部31を通過し、又は、透明領域部30を通過して、青色光のまま発光装置1から外部へ放射される。発光装置1から放射された青色光と黄色系の光とは互いに補色の関係に当たるので、これらの光が適切な強度バランスで混色されることにより、発光装置1からの光は白色光として認識される。混色の強度バランスの調整は、波長変換部3の蛍光体領域部31と透明領域部30の割合を調整することにより行われている。   In the light emitting device 1 described above, part of the blue light generated by the LED chip 2 is absorbed by the phosphor in the phosphor region portion 31 and converted into yellow light, and is emitted from the light emitting device 1 to the outside. The portion passes through the phosphor region portion 31 without being absorbed by the phosphor, or passes through the transparent region portion 30 and is emitted from the light emitting device 1 to the outside as blue light. Since the blue light and the yellow light emitted from the light emitting device 1 have a complementary color relationship, the light from the light emitting device 1 is recognized as white light by mixing these lights with an appropriate intensity balance. The Adjustment of the intensity balance of the color mixture is performed by adjusting the ratio of the phosphor region portion 31 and the transparent region portion 30 of the wavelength conversion unit 3.

上述の発光装置1の製造工程を、さらに、図2に示すフローチャート及び図3を参照して、説明する。図3は発光装置1からの光の色調計測の様子を示す。発光装置1の製造は、図2に示すように、まず、LEDチップ2、波長変換部3、実装基板4の製造が行われる(S1)。その後、LEDチップ2を実装基板4に実装することにより、LED発光部が作製される(S2)。LEDチップ2の実装には、例えば、フリップチップ実装が用いられ、LEDチップ2の電極と実装基板4の電極42の電気的接合には、超音波接合、はんだ接合、銀ペーストによる接合等を用いることができる。   The manufacturing process of the above-described light emitting device 1 will be further described with reference to the flowchart shown in FIG. 2 and FIG. FIG. 3 shows how the color tone of light from the light emitting device 1 is measured. As shown in FIG. 2, the light emitting device 1 is manufactured first by manufacturing the LED chip 2, the wavelength conversion unit 3, and the mounting substrate 4 (S1). Then, the LED light emitting part is produced by mounting the LED chip 2 on the mounting substrate 4 (S2). For example, flip chip mounting is used for mounting the LED chip 2, and ultrasonic bonding, solder bonding, bonding with silver paste, or the like is used for electrical bonding between the electrode of the LED chip 2 and the electrode 42 of the mounting substrate 4. be able to.

次に、LEDチップ2を実装基板4に電気的に接続して形成したLED発光部は、波長変換部3と組合せた色調調整前の調整前発光装置とされる(S3)。調整前の発光装置1は、実装基板4の凹部41の開口部を覆うように、波長変換部3を実装基板4の上面に載置したものである。波長変換部3の蛍光体領域部31と透明領域部30の境界部は、凹部41の開口面内の任意の位置とされる。波長変換部3は、LEDチップ2を覆い、かつ凹部41の傾斜面が透明領域部30から確認できる配置とされる。   Next, the LED light emitting unit formed by electrically connecting the LED chip 2 to the mounting substrate 4 is a pre-adjustment light emitting device before color tone adjustment combined with the wavelength conversion unit 3 (S3). In the light emitting device 1 before adjustment, the wavelength conversion unit 3 is placed on the upper surface of the mounting substrate 4 so as to cover the opening of the recess 41 of the mounting substrate 4. A boundary portion between the phosphor region portion 31 and the transparent region portion 30 of the wavelength conversion portion 3 is an arbitrary position within the opening surface of the recess 41. The wavelength conversion unit 3 covers the LED chip 2 and is arranged so that the inclined surface of the recess 41 can be confirmed from the transparent region unit 30.

この配置状態において、シート状の波長変換部3は、図3に示すように、不図示のスライド可能なアームに取付られたチャックにより保持され、実装基板4の凹部41の開口領域における蛍光体領域部31と透明領域部30の割合を調整可能なように、矢印aで示す方向にスライド可能とされている。また、シート状の波長変換部3は、このスライドに対応できるように、実装基板4の上面の面積よりも大きめに形成されている。   In this arrangement state, as shown in FIG. 3, the sheet-like wavelength conversion unit 3 is held by a chuck attached to a slidable arm (not shown), and the phosphor region in the opening region of the recess 41 of the mounting substrate 4. It is possible to slide in the direction indicated by the arrow a so that the ratio between the portion 31 and the transparent region portion 30 can be adjusted. In addition, the sheet-like wavelength conversion unit 3 is formed to be larger than the area of the upper surface of the mounting substrate 4 so as to cope with this slide.

上述の調整前発光装置1は、図3に示すように、電極42を介して供給される電力によってLEDチップ2が発光されると共に、その発光に基づいて調整前発光装置1から放射される光の色調が波長変換部3の前方に設けられた測定装置Dにより計測される(S4)。調整前発光装置1からの発光の色調は色度座標で表現され、その色度座標に基づいて、発光の色調が所定の色調であるかどうか判断される(S5)。   As shown in FIG. 3, the pre-adjustment light emitting device 1 emits light from the LED chip 2 by the electric power supplied through the electrode 42, and light emitted from the pre-adjustment light emitting device 1 based on the emitted light. Is measured by the measuring device D provided in front of the wavelength converter 3 (S4). The color tone of light emitted from the pre-adjustment light emitting device 1 is expressed by chromaticity coordinates, and based on the chromaticity coordinates, it is determined whether the color tone of light emission is a predetermined color tone (S5).

上記色調が所定の色調でない場合(S5でNO)、色度座標における測定値と所定色調に対応する基準値との差に基づいて、波長変換部3を矢印aのいずれかの方向にスライドさせ、発光装置1としての色調を調整する(S6)。LEDチップを発光させている状態で、色調の測定(S4)、色調の判断(S5)、波長変換部3のスライドによる色調の調整(S6)を、測定色調(色度座標)が所定色調(色度座標)の所定範囲内となるまで繰り返す。   When the color tone is not the predetermined color tone (NO in S5), the wavelength conversion unit 3 is slid in any direction of the arrow a based on the difference between the measured value in the chromaticity coordinates and the reference value corresponding to the predetermined color tone. Then, the color tone of the light emitting device 1 is adjusted (S6). While the LED chip is emitting light, measurement of color tone (S4), determination of color tone (S5), adjustment of color tone by sliding the wavelength conversion unit 3 (S6), measurement color tone (chromaticity coordinates) is a predetermined color tone ( Repeat until it is within a predetermined range of (chromaticity coordinates).

なお、波長変換部3のスライド幅と色度座標の変化量の関係を予め設定し、最初に測定した値と基準との差異に相当するスライド幅をスライドさせるようにすると、測定装置Dによる測定を最短1回とすることができ、調整時間を短縮することができる。また、発光装置1からの発光の発光特性の計測は、例えば、光束、輝度、視感度効率などの測定値であって色度座標との関係を決定できるものであればよい。   When the relationship between the slide width of the wavelength conversion unit 3 and the amount of change in chromaticity coordinates is set in advance and the slide width corresponding to the difference between the initially measured value and the reference is slid, measurement by the measuring device D is performed. Can be set as short as one time, and the adjustment time can be shortened. Moreover, the measurement of the light emission characteristic of light emission from the light-emitting device 1 should just be measurement values, such as a light beam, a brightness | luminance, and visibility efficiency, for example, and the relationship with a chromaticity coordinate can be determined.

上述のステップS5において、測定された色度座標が予め決めておいた基準内となって測定色調が所定の色調と判断された場合(S5でYES)、調整前発光装置1は最終状態の発光装置1として仕上げの工程が行われる(S7)。この仕上げの工程において、波長変換部3の外形寸法が実装基板4の上面の外形寸法と同じとなるようにカットされる。この外形のカットは、実装基板4上から別の場所に移して行われる。   In step S5 described above, when the measured chromaticity coordinates are within a predetermined reference and the measured color tone is determined to be a predetermined color tone (YES in S5), the pre-adjustment light emitting device 1 emits light in the final state. A finishing process is performed as the apparatus 1 (S7). In this finishing step, the outer dimensions of the wavelength conversion unit 3 are cut so as to be the same as the outer dimensions of the upper surface of the mounting substrate 4. The cutting of the outer shape is performed by moving from the mounting substrate 4 to another location.

実装基板4の上面には、例えばシリコン樹脂やエポキシ樹脂等の接着部材を塗布又は滴下する。接着部材の塗布範囲は、波長変換部3を固定可能なように、例えば、実装基板4の上面の周縁部とされる。次に、上述のカットした波長変換部3を、吸着ノズル等を用いて実装基板4の所定位置まで移動し、載置して、接着部材を硬化する。これにより、波長変換部3がLED発光部(実装基板4の上面)に接着固定され、図1(a)に示した発光装置1が完成する。   On the upper surface of the mounting substrate 4, for example, an adhesive member such as silicon resin or epoxy resin is applied or dropped. The application range of the adhesive member is, for example, the peripheral edge of the upper surface of the mounting substrate 4 so that the wavelength conversion unit 3 can be fixed. Next, the above-described cut wavelength conversion unit 3 is moved to a predetermined position on the mounting substrate 4 by using a suction nozzle or the like, and is placed to cure the adhesive member. Thereby, the wavelength conversion unit 3 is bonded and fixed to the LED light emitting unit (the upper surface of the mounting substrate 4), and the light emitting device 1 shown in FIG. 1A is completed.

なお、LEDチップ2を実装基板4に実装後に、接着部材を実装基板4の上面に塗布しておき、波長変換部3を実装基板4の上面から接着部材が触れない程度に離れた位置に設置し、色度座標測定を行い、基準内に入った状態でそのまま実装基板に載置し、接着させるようにしてもよい。この場合、接着部材を硬化させた後、実装基板4からはみ出している波長変換部3をカットする。   In addition, after mounting the LED chip 2 on the mounting substrate 4, an adhesive member is applied to the upper surface of the mounting substrate 4, and the wavelength conversion unit 3 is installed at a position away from the upper surface of the mounting substrate 4 so that the adhesive member does not touch. Then, the chromaticity coordinate measurement may be performed, and the substrate may be placed on the mounting substrate as it is within the reference and bonded. In this case, after the adhesive member is cured, the wavelength conversion unit 3 protruding from the mounting substrate 4 is cut.

次に、図4のフローチャートを参照して、発光装置の色調を調整する種々の方法の概要を説明する。本発明における発光装置1から放射される光の色調の調整は、図4に示すように、波長変換部3における蛍光体密度分布の調整や、波長変換部3への光フィルタの配置により、混色の強度バランスを変更して行うことができる(S61)。また、LEDチップ2の電流や温度を調整することにより、LEDチップ2の発光波長を変更して行うことができる(S62)。また、波長変換部3の温度調整により、波長変換部3の蛍光体によって波長変換されて放射される光の波長を変更して行うことができる(S63)。これらの3つの工程の少なくとも1つの工程により、LEDチップ2や波長変換部3の製造ばらつきによる色調ばらつきを更に小さくできると共に、従来不良品となっていた発光装置の色調を良品範囲に調整し、不良品削減と歩留向上ができる。   Next, an overview of various methods for adjusting the color tone of the light emitting device will be described with reference to the flowchart of FIG. As shown in FIG. 4, the color tone of the light emitted from the light emitting device 1 according to the present invention is mixed by adjusting the phosphor density distribution in the wavelength conversion unit 3 or arranging the optical filter in the wavelength conversion unit 3. The intensity balance can be changed (S61). Moreover, the light emission wavelength of the LED chip 2 can be changed by adjusting the current and temperature of the LED chip 2 (S62). In addition, the temperature of the wavelength converter 3 can be adjusted to change the wavelength of the light emitted after being wavelength-converted by the phosphor of the wavelength converter 3 (S63). At least one of these three steps can further reduce the color tone variation due to the manufacturing variation of the LED chip 2 and the wavelength conversion unit 3, and adjust the color tone of the light emitting device that has been a defective product to a non-defective range, Reduce defective products and improve yield.

上述の図1(a)(b)や図3に示した発光装置1は、蛍光体領域部31と透明領域部30を有する波長変換部3をスライドさせることにより、混色のバランスを調整して色調を調整するものである。以下において、光の色調の調整を行う他の例を説明する。   The light emitting device 1 shown in FIGS. 1A and 1B and FIG. 3 adjusts the color mixing balance by sliding the wavelength conversion unit 3 having the phosphor region portion 31 and the transparent region portion 30. This is to adjust the color tone. In the following, another example of adjusting the color tone of light will be described.

図5に示す発光装置1は、蛍光体領域部31と透明領域部30を交互に配置して形成した2枚の蛍光体シート3A,3Bにより構成された波長変換部3を備えている。蛍光体シート3Bは、実装基板4の上面と同じ大きさにカットされている。蛍光体シート3Aは、色調調整前においては、矢印aの方向にスライドできるように、装置アームのチャック部(不図示)に取付る部分とスライド調整幅に相当する部分だけ実装基板4より長くなっている。   The light emitting device 1 shown in FIG. 5 includes a wavelength conversion unit 3 composed of two phosphor sheets 3A and 3B formed by alternately arranging phosphor region portions 31 and transparent region portions 30. The phosphor sheet 3 </ b> B is cut to the same size as the upper surface of the mounting substrate 4. The phosphor sheet 3A is longer than the mounting substrate 4 by a portion attached to the chuck portion (not shown) of the device arm and a portion corresponding to the slide adjustment width so that the phosphor sheet 3A can slide in the direction of the arrow a before the color tone adjustment. ing.

この発光装置1の製造工程の初期の工程において、実装基板4にLEDチップ2を電気的接合し、その後、実装基板4に蛍光体シート3Bを接着部材により接着し、固定する。次の発光特性の調整工程において、実装基板4より大きい蛍光体シート3Aを、矢印aの方向にスライド可能な状態で装置アームのチャック部に取付ける。そして、蛍光体シート3Aの透明領域部30が蛍光体シート3Bの透明領域部30上に位置するように、蛍光体シート3Aを設置する。   In the initial process of manufacturing the light emitting device 1, the LED chip 2 is electrically joined to the mounting substrate 4, and then the phosphor sheet 3 </ b> B is bonded to the mounting substrate 4 with an adhesive member and fixed. In the next step of adjusting the light emission characteristics, the phosphor sheet 3A larger than the mounting substrate 4 is attached to the chuck portion of the apparatus arm in a state in which it can slide in the direction of arrow a. Then, the phosphor sheet 3A is installed so that the transparent region portion 30 of the phosphor sheet 3A is positioned on the transparent region portion 30 of the phosphor sheet 3B.

実装基板4の電極42に電圧印加し、LEDチップ2を発光させ、その発光特性として色度座標を測定装置Dにより測定する。測定した色度座標と基準との差異に応じて、蛍光体シート3Aをスライドさせる。色度座標が基準内に入るまでスライドを繰り返し、基準内に入ったときに測定と色調調整を終了する。色調調整終了時の蛍光体シート3Aの位置において、蛍光体シート3Aを吸着ノズル(不図示)で吸着し、蛍光体シート3Aを保持していた装置アームのチャック部を開放し、蛍光体シート3Aの外形寸法を実装基板4の上面外形に合わせてカットする。   A voltage is applied to the electrode 42 of the mounting substrate 4 to cause the LED chip 2 to emit light, and chromaticity coordinates are measured by the measuring device D as the light emission characteristics. The phosphor sheet 3A is slid according to the difference between the measured chromaticity coordinates and the reference. The slide is repeated until the chromaticity coordinates are within the standard, and when the standard is within the standard, the measurement and the tone adjustment are finished. At the position of the phosphor sheet 3A at the end of the color tone adjustment, the phosphor sheet 3A is adsorbed by an adsorption nozzle (not shown), the chuck portion of the apparatus arm holding the phosphor sheet 3A is opened, and the phosphor sheet 3A Are cut according to the outer shape of the upper surface of the mounting substrate 4.

次に、実装基板4に既に固定されている蛍光体シート3Bの周縁部に接着部材を塗布し、その上に蛍光体シート3Aを載置して接着部材を硬化する。蛍光体シート3Aの載置の際に、実装基板4の端面のいずれかに位置決め用治具を当接させ、蛍光体シート3Aを、その位置決め用治具に当接させ載置することにより、蛍光体シート3Aの位置をスライド調整時の位置に再現しやすくする。   Next, an adhesive member is applied to the peripheral portion of the phosphor sheet 3B already fixed to the mounting substrate 4, and the phosphor sheet 3A is placed thereon to cure the adhesive member. When placing the phosphor sheet 3A, a positioning jig is brought into contact with one of the end faces of the mounting substrate 4, and the phosphor sheet 3A is placed in contact with the positioning jig. The position of the phosphor sheet 3A is easily reproduced at the position at the time of slide adjustment.

なお、蛍光体シート3Aの一方の横幅を蛍光体シート3Bと同じにし、その横幅を揃えた状態でスライドさせ、色調調整後、蛍光体シート3A,3Bの位置が互いに揃っている側面部に接着部材を塗布し、硬化させた後に、蛍光体シート3Aの他の側面部をカットするようにしてもよい。このようにして製造された発光装置1は、LEDチップ2からの光が蛍光体シート3A,3Bの透明領域部30と蛍光体領域部31の各領域を照射する割合を、蛍光体シート3Aの蛍光体領域部31と蛍光体シート3Bの透明領域部30の重なり部分の調整により、変化させて、発光装置1としての混色の強度バランスを調整し、高精度な色調調整を可能としている。   The phosphor sheet 3A has the same horizontal width as that of the phosphor sheet 3B, and is slid in a state where the horizontal width is aligned. After adjusting the color tone, the phosphor sheets 3A and 3B are bonded to the side surface where the positions of the phosphor sheets 3A and 3B are aligned with each other. After the member is applied and cured, the other side surface portion of the phosphor sheet 3A may be cut. The light-emitting device 1 manufactured in this way has a ratio of the light from the LED chip 2 irradiating each region of the transparent region portion 30 and the phosphor region portion 31 of the phosphor sheets 3A and 3B. By adjusting the overlapping portion of the phosphor region portion 31 and the transparent region portion 30 of the phosphor sheet 3B, it is changed to adjust the intensity balance of the color mixture as the light emitting device 1, thereby enabling highly accurate color tone adjustment.

この発光装置1は、図1に示した発光装置1のような1枚の蛍光体シートから成る波長変換部3により色調を調整するものに比べて、LEDチップ2の発光と波長変換部3により波長変換された発光との強度バランスを滑らかに調整することが可能となる。   This light-emitting device 1 uses the light emission of the LED chip 2 and the wavelength conversion unit 3 as compared to the light-emitting device 1 shown in FIG. 1 that adjusts the color tone by the wavelength conversion unit 3 made of a single phosphor sheet. It is possible to smoothly adjust the intensity balance with the wavelength-converted light emission.

図6に示す発光装置1は、蛍光体領域部31及び透明領域部30を交互に配置して形成した蛍光体シート3Aと、蛍光体領域部31の蛍光体とは異なる蛍光体を用いた蛍光体領域部32及び透明領域部30を交互に配置して形成した蛍光体シート3Bとを用いて構成された波長変換部3を備えている。このような蛍光体シート3A,3Bの組合せから成る波長変換部3を用いることにより、LEDチップ2の発光色、蛍光体領域部31の蛍光体による発光色、及び蛍光体領域部32の蛍光体による発光色の3色混色が可能となる。これにより、色調の調整時に、色度座標上を曲線的に変化させることができ、黒体軌跡に沿った調整が可能となり、また、多色化も容易となる。   The light-emitting device 1 shown in FIG. 6 uses a phosphor sheet 3A formed by alternately arranging phosphor region portions 31 and transparent region portions 30, and fluorescence using a phosphor different from the phosphor in the phosphor region portion 31. A wavelength conversion unit 3 configured using phosphor sheets 3B formed by alternately arranging body region portions 32 and transparent region portions 30 is provided. By using the wavelength conversion unit 3 composed of such a combination of the phosphor sheets 3A and 3B, the emission color of the LED chip 2, the emission color of the phosphor in the phosphor region 31, and the phosphor in the phosphor region 32 It is possible to mix three colors of emitted colors. As a result, at the time of color tone adjustment, the chromaticity coordinates can be changed in a curved line, adjustment along the black body locus is possible, and multi-coloring is also facilitated.

図7に示す発光装置1は、テーパ状の断面を有する蛍光体領域部31を有する蛍光体シート3Aを用いて構成された波長変換部3を備えている。LEDチップ2の実装された実装基板4の上面に、この波長変換部3を配置し、色調を計測しつつ、波長変換部3をスライドして色調の調整を行う。これらの、波長変換部3のスライドと接着固定の手順は、上述の図3について説明した手順と同様である。   The light emitting device 1 illustrated in FIG. 7 includes a wavelength conversion unit 3 configured using a phosphor sheet 3A having a phosphor region portion 31 having a tapered cross section. The wavelength conversion unit 3 is disposed on the upper surface of the mounting substrate 4 on which the LED chip 2 is mounted, and the color tone is adjusted by sliding the wavelength conversion unit 3 while measuring the color tone. The procedure for sliding and bonding and fixing the wavelength conversion unit 3 is the same as the procedure described with reference to FIG.

図8に示す発光装置1は、テーパ状の断面を有する蛍光体領域部31を有する2枚の蛍光体シート3A,3Bを用いて構成された波長変換部3を備えている。一方の蛍光体シート3Aを実装基板4の上面に配置して固定した状態で、他方の蛍光体シート3Bをスライドさせることにより、色調の調整を行うことができる。発光装置1を製造する他の手順は、上述の図3について説明した手順と同様であり、説明を省略する。   The light emitting device 1 illustrated in FIG. 8 includes a wavelength conversion unit 3 configured using two phosphor sheets 3A and 3B each having a phosphor region 31 having a tapered cross section. The color tone can be adjusted by sliding the other phosphor sheet 3 </ b> B in a state where the one phosphor sheet 3 </ b> A is arranged and fixed on the upper surface of the mounting substrate 4. Other procedures for manufacturing the light emitting device 1 are the same as those described with reference to FIG.

上述の図7、図8に示す発光装置1では、LEDチップ2からみた蛍光体シート3A,3Bの厚みの分布を変えることにより、LEDチップ2から放射される光の空間分布に対する厚みの分布を相互に位置関係について変更して、LEDチップ2からの光と蛍光体を含む波長変換部3からの光との割合を変化させることができ、従って、発光装置1としての混色の強度バランスを容易に調整ができ、従来例に比べて高精度に発光装置毎の色ばらつきを低減することができる。   In the light emitting device 1 shown in FIG. 7 and FIG. 8 described above, the thickness distribution with respect to the spatial distribution of the light emitted from the LED chip 2 is changed by changing the thickness distribution of the phosphor sheets 3A and 3B viewed from the LED chip 2. By changing the positional relationship with each other, the ratio of the light from the LED chip 2 and the light from the wavelength conversion unit 3 including the phosphor can be changed, and therefore, the intensity balance of the color mixture as the light emitting device 1 is easy. The color variation for each light emitting device can be reduced with higher accuracy than in the conventional example.

また、図8に示す発光装置1では、さらに、蛍光体シート3Bと蛍光体シート3Aとに異なる蛍光体を用いることにより、図6に示した発光装置1と同様に、3色混色が可能となり、色調の調整時に、色度座標上を曲線的に変化させることができ、黒体軌跡に沿った調整が可能となり、また、多色化も容易となる。   Further, in the light emitting device 1 shown in FIG. 8, by using different phosphors for the phosphor sheet 3B and the phosphor sheet 3A, it is possible to mix three colors as in the light emitting device 1 shown in FIG. When the color tone is adjusted, the chromaticity coordinates can be changed in a curved line, adjustment along the black body locus is possible, and multi-coloring is also facilitated.

図9、図10に示す発光装置1は、蛍光体を含む蛍光体領域部31の表面に切削除去部33からなる透明部を有する蛍光体シートを用いて構成された波長変換部3を備えている。この発光装置1の製造工程の初期の工程において、実装基板4にLEDチップ2を電気的接合し、その後、実装基板4に波長変換部3を配置し、実装基板4の電極42に電圧印加し、LEDチップ2を発光させ、その発光特性として色度座標を測定装置Dにより測定する。そして、測定結果の色度座標と基準との差異に応じて、予め決められた波長変換部3の切削面積と色度座標との関係に基づいて、波長変換部3の一部を切削して切削除去部33を形成する。この切削には、切削刃などを用いて行う。また、機械加工の切削によらずに、レーザ光を用いて蒸発除去してもよい。   The light emitting device 1 shown in FIG. 9 and FIG. 10 includes a wavelength conversion unit 3 configured using a phosphor sheet having a transparent portion including a cutting removal portion 33 on the surface of a phosphor region portion 31 containing a phosphor. Yes. In the initial process of manufacturing the light emitting device 1, the LED chip 2 is electrically joined to the mounting substrate 4, and then the wavelength conversion unit 3 is disposed on the mounting substrate 4, and voltage is applied to the electrodes 42 of the mounting substrate 4. The LED chip 2 is caused to emit light, and the chromaticity coordinates are measured by the measuring device D as the light emission characteristics. Then, according to the difference between the chromaticity coordinates of the measurement result and the reference, a part of the wavelength conversion unit 3 is cut based on a predetermined relationship between the cutting area of the wavelength conversion unit 3 and the chromaticity coordinates. The cutting removal part 33 is formed. This cutting is performed using a cutting blade or the like. Further, it is possible to evaporate and remove using laser light instead of machining.

切削除去部33を形成した波長変換部3は、再度、実装基板4に載置され、色度座標が基準内に入るまで切削除去部33の形成を繰り返し、基準内に入ったときに測定と色調調整を終了する。色度座標が基準内となった後、図3の発光装置1の説明における手順と同様の手順で波長変換部3の接着固定を行う。   The wavelength conversion unit 3 on which the cutting removal unit 33 has been formed is placed on the mounting substrate 4 again, and the formation of the cutting removal unit 33 is repeated until the chromaticity coordinates are within the reference. Finish the color adjustment. After the chromaticity coordinates are within the reference, the wavelength conversion unit 3 is bonded and fixed in the same procedure as in the description of the light emitting device 1 in FIG.

図9と図10に示した波長変換部3は、その切削除去部33が、前者では内面側に形成されており、後者では、表面側に形成されている点が異なる。図10に示すように、切削除去部33を表面側に形成する場合は、波長変換部3を実装基板4の表面に載置した状態で切削除去部を形成できる。この場合、切削除去部33の形成には、レーザ光を用いる加工が、加工精度や加工効率の点で好適である。また、色調の測定結果と切削除去部33の形成条件を予め決めておき、その条件に基づいて形成することにより、切削除去部33の形成と色調の測定を繰り返すことなく色調の調整を行うことができる。   The wavelength conversion unit 3 shown in FIGS. 9 and 10 is different in that the cutting removal unit 33 is formed on the inner surface side in the former, and is formed on the surface side in the latter. As shown in FIG. 10, when the cutting removal portion 33 is formed on the surface side, the cutting removal portion can be formed with the wavelength conversion portion 3 placed on the surface of the mounting substrate 4. In this case, processing using a laser beam is suitable for forming the cutting removal portion 33 in terms of processing accuracy and processing efficiency. Further, the color tone measurement result and the formation condition of the cutting removal part 33 are determined in advance, and the color tone is adjusted without repeating the formation of the cutting removal part 33 and the color tone measurement by forming based on the conditions. Can do.

図11に示す発光装置13は、実装基板4の上面に配置した蛍光体を含有する蛍光体シート3Aの上面に蛍光体シートの厚み増加部3Cを設けて構成した波長変換部3を備えている。蛍光体シート3Aを実装基板4の上面に配置固定した状態で、発光装置1の混色の強度バランスの測定を行い、予め決められた条件に基づいて、蛍光体シートの厚みを増加させることにより、色調の調整を行う。実装基板4の電極42に電圧を印加し、LEDチップ2を発光させる。色度座標が基準内に入るように、蛍光体シート3A上に、蛍光体シート3Aが含有している蛍光体と同じ蛍光体を含有する樹脂を塗布して、増加部3Cを形成する。   A light emitting device 13 shown in FIG. 11 includes a wavelength conversion unit 3 configured by providing a phosphor sheet thickness increasing portion 3C on the upper surface of a phosphor sheet 3A containing a phosphor disposed on the upper surface of the mounting substrate 4. . In the state where the phosphor sheet 3A is arranged and fixed on the upper surface of the mounting substrate 4, the intensity balance of the color mixture of the light emitting device 1 is measured, and the thickness of the phosphor sheet is increased based on a predetermined condition, Adjust the color tone. A voltage is applied to the electrode 42 of the mounting substrate 4 to cause the LED chip 2 to emit light. The increasing part 3C is formed by applying a resin containing the same phosphor as the phosphor contained in the phosphor sheet 3A on the phosphor sheet 3A so that the chromaticity coordinates are within the standard.

なお、増加部3Cを形成する方法には、塗布する方法の他に、蛍光体入りの樹脂中に蛍光体シートを浸漬させる方法や、蛍光体入りの樹脂を噴霧する方法がある。いずれかの方法により、蛍光体シートの厚みを増加させた後、再度、発光装置1としての測定を行い、所望の混色の強度バランスとなっていることを確認する。発光装置1を製造する他の手順は、上述の図3について説明した手順と同様であり、説明を省略する。   In addition to the application method, the method of forming the increased portion 3C includes a method of immersing a phosphor sheet in a resin containing a phosphor and a method of spraying a resin containing a phosphor. After increasing the thickness of the phosphor sheet by any method, the measurement as the light-emitting device 1 is performed again to confirm that the intensity balance of the desired color mixture is obtained. Other procedures for manufacturing the light emitting device 1 are the same as those described with reference to FIG.

図12に示す発光装置1は、窪み部34を上面に設けた蛍光体を含有する蛍光体シート3Aを実装基板4の上面に配置固定した状態で、発光装置1の混色の強度バランスについて測定を行い、窪み部34に蛍光体粒材35を適量入れたもので構成された波長変換部3を備えている。この蛍光体粒材35の量によって、色調の調整を行う。   The light-emitting device 1 shown in FIG. 12 measures the intensity balance of the color mixture of the light-emitting device 1 in a state where the phosphor sheet 3A containing the phosphor with the depression 34 provided on the upper surface is arranged and fixed on the upper surface of the mounting substrate 4. The wavelength conversion part 3 comprised by what put an appropriate quantity of fluorescent substance particle materials 35 in the hollow part 34 is provided. The color tone is adjusted according to the amount of the phosphor particle material 35.

蛍光体粒材35は、エポキシ樹脂やシリコン樹脂などに蛍光体を含有させて形成したものである。蛍光体粒材35の直径は、蛍光体シート3Aの窪み部34の寸法より小さくする。また、直径の異なる複数種類の蛍光体粒材35を用意する。実装基板4の電極42に電圧を印加し、LEDチップ2を発光させ、色度座標を測定する。測定した色度座標と基準値の差と、予め求めておいた色度座標と蛍光体粒材35の直径及び数量との関係に基づいて、蛍光体粒材35を蛍光体シート3Aの窪み部34に入れる。窪み部34には、予め接着部材として、シリコン樹脂やエポキシ樹脂などを充填しておく。蛍光体粒材35を窪み部34に入れ、色度座標の調整を行った後、色度座標を確認する。色度座標が基準内に入るまで、蛍光体粒材35の窪み部34への配置と、色度座標の確認を繰り返す。発光装置1を製造する他の手順は、上述の図3について説明した手順と同様であり、説明を省略する。   The phosphor particle material 35 is formed by containing a phosphor in an epoxy resin, a silicon resin, or the like. The diameter of the phosphor particle material 35 is made smaller than the size of the recess 34 of the phosphor sheet 3A. Also, a plurality of types of phosphor particle materials 35 having different diameters are prepared. A voltage is applied to the electrode 42 of the mounting substrate 4 to cause the LED chip 2 to emit light, and the chromaticity coordinates are measured. Based on the difference between the measured chromaticity coordinate and the reference value, and the relationship between the chromaticity coordinate determined in advance and the diameter and quantity of the phosphor particle material 35, the phosphor particle material 35 is removed from the depression of the phosphor sheet 3A. 34. The depression 34 is filled with silicon resin or epoxy resin as an adhesive member in advance. The phosphor particle material 35 is put into the depression 34 and the chromaticity coordinates are adjusted, and then the chromaticity coordinates are confirmed. Until the chromaticity coordinates fall within the standard, the arrangement of the phosphor particle material 35 in the recess 34 and the confirmation of the chromaticity coordinates are repeated. Other procedures for manufacturing the light emitting device 1 are the same as those described with reference to FIG.

色度座標が基準内に入った時点で、窪み部34内の接着部材を硬化させる。以上のような製造方法により、発光装置1の色調のばらつきを低減することができる。また、この方法は、図3に示した発光装置1のように蛍光体シートをスライドさせて調整を行う方法とは異なり、スライドさせるために予め設けた余剰の蛍光体シートを削って捨てるということが不要であり、実装基板4の上面外形寸法に合った蛍光体シートを用いればよく、材料費を低減することもできる。   When the chromaticity coordinates are within the reference, the adhesive member in the recess 34 is cured. By the manufacturing method as described above, variations in color tone of the light emitting device 1 can be reduced. Further, this method is different from the method of adjusting the phosphor sheet by sliding the phosphor sheet as in the light emitting device 1 shown in FIG. 3, and the excess phosphor sheet previously provided for sliding is scraped and discarded. Is not necessary, and a phosphor sheet suitable for the outer surface dimensions of the mounting substrate 4 may be used, and the material cost can be reduced.

図13に示す発光装置1は、実装基板4の上面に配置固定した蛍光体を含有する蛍光体シート3Aと、その上面に配置した、蛍光体シート3A状に形成され、LEDチップ2からの発光、又は蛍光体シート3A中の蛍光体からの発光の少なくとも一部を吸収する光フィルタ6と、により構成された波長変換部3を備えている。蛍光体シート3Aと光フィルタ6の外形寸法は、実装基板4の上面の外形寸法と同じとすることができる。発光装置1の色調の調整は、実装基板4に蛍光体シート3Aと光フィルタ6を置いた状態で、色調の測定、及び光フィルタ6の一部を除去して成る除去部61の形成によって行われる。発光装置1の色度座標や演色性を測定しながら、例えば、レーザ光を用いて、所望の混色の強度バランスとなるまで、光フィルタ6に除去部61の形成を行う。ここで、光フィルタ6の除去は、必ずしも測定を継続して行う必要はなく、測定結果に基づいて予め決めた条件に従って行ってもよい。発光装置1を製造する他の手順は、上述の図3について説明した手順と同様であり、説明を省略する。   The light emitting device 1 shown in FIG. 13 is formed into a phosphor sheet 3A containing a phosphor arranged and fixed on the upper surface of the mounting substrate 4, and a phosphor sheet 3A arranged on the upper surface, and emits light from the LED chip 2. Or a wavelength conversion unit 3 configured by an optical filter 6 that absorbs at least a part of light emitted from the phosphor in the phosphor sheet 3A. The external dimensions of the phosphor sheet 3 </ b> A and the optical filter 6 can be the same as the external dimensions of the upper surface of the mounting substrate 4. The color tone of the light emitting device 1 is adjusted by measuring the color tone and forming a removal portion 61 formed by removing a part of the optical filter 6 with the phosphor sheet 3A and the optical filter 6 placed on the mounting substrate 4. Is called. While measuring the chromaticity coordinates and color rendering properties of the light emitting device 1, the removal unit 61 is formed in the optical filter 6 using, for example, laser light until the intensity balance of a desired color mixture is achieved. Here, the removal of the optical filter 6 is not necessarily performed continuously, and may be performed according to a condition determined in advance based on the measurement result. Other procedures for manufacturing the light emitting device 1 are the same as those described with reference to FIG.

また、光フィルタ6を蛍光体シート3Aから分離可能としておき、光フィルタ6の除去部61の形成に際し、色調の測定の後に、光フィルタ6を一旦蛍光体シート3A上から外し、別の場所でレーザ光により光フィルタ6の一部を除去し、光フィルタ6を再度、蛍光体シート3A上に戻すようにしてもよい。   In addition, the optical filter 6 is made separable from the phosphor sheet 3A, and when forming the removal portion 61 of the optical filter 6, after the color tone measurement, the optical filter 6 is once removed from the phosphor sheet 3A, and at another place. A part of the optical filter 6 may be removed by laser light, and the optical filter 6 may be returned to the phosphor sheet 3A again.

図14に示す発光装置1は、実装基板4の上面に固定した蛍光体を含有する蛍光体シート3Aとその上面に設けた蛍光体入りの樹脂塊36により構成された波長変換部3を備えている。発光装置1の色調の調整は、実装基板4に蛍光体シート3Aを置いた状態で、色調の測定、及び測定結果に基づいて蛍光体シート3A上に、蛍光体入りの樹脂をポッティングして樹脂塊36を形成することにより行われる。発光装置1の混色の強度バランスを測定しながら、蛍光体入り樹脂のポッティングを、所望の混色の強度バランスとなるまで行う。ここで、ポッティングは、必ずしも測定を継続して行う必要はなく、測定結果に基づいて予め決めた条件に従って実施してもよい。発光装置1を製造する他の手順は、上述の図3について説明した手順と同様であり、説明を省略する。   The light emitting device 1 shown in FIG. 14 includes a wavelength conversion unit 3 including a phosphor sheet 3A containing a phosphor fixed on the upper surface of a mounting substrate 4 and a resin mass 36 containing the phosphor provided on the upper surface. Yes. The color tone of the light-emitting device 1 is adjusted by potting a phosphor-containing resin on the phosphor sheet 3A based on the measurement of the color tone and the measurement result with the phosphor sheet 3A placed on the mounting substrate 4. This is done by forming a mass 36. While measuring the intensity balance of the color mixture of the light emitting device 1, the potting of the phosphor-containing resin is performed until the intensity balance of the desired color mixture is achieved. Here, the potting does not necessarily have to be performed continuously, and may be performed according to a condition determined in advance based on the measurement result. Other procedures for manufacturing the light emitting device 1 are the same as those described with reference to FIG.

図15に示す発光装置1は、実装基板4の上面に固定した蛍光体を含有する蛍光体シート3Aとその上面に設けた蛍光体粒材37とにより構成された波長変換部3を備えている。発光装置1の色調の調整は、実装基板4に蛍光体シート3Aを置いた状態で、色調の測定、及び測定結果に基づいて蛍光体シート3A上に配置する蛍光体粒材37の数量の加減により行う。発光装置1を製造する他の手順は、上述の図3について説明した手順と同様であり、説明を省略する。   The light emitting device 1 shown in FIG. 15 includes a wavelength conversion unit 3 including a phosphor sheet 3A containing a phosphor fixed on the upper surface of the mounting substrate 4 and a phosphor particle material 37 provided on the upper surface. . The adjustment of the color tone of the light emitting device 1 is performed by measuring the color tone in a state where the phosphor sheet 3A is placed on the mounting substrate 4 and adjusting the quantity of the phosphor particles 37 arranged on the phosphor sheet 3A based on the measurement result. To do. Other procedures for manufacturing the light emitting device 1 are the same as those described with reference to FIG.

図16(a)(b)(c)に示す発光装置1は、円板状の透明領域部30と、その略中心に中心を一致させて配置した四角形の蛍光体領域部31とにより構成された波長変換部3を備えている。実装基板4の凹部41は、断面が逆台形形状をしており、その逆台形形状の凹部41の開口部と実装基板4の上面とは、円形の段差部40を介して接続されている。そして、円形の段差部40に円板状の透明領域部30が回転自在に嵌合し、配置される。   The light emitting device 1 shown in FIGS. 16 (a), (b), and (c) includes a disk-shaped transparent region portion 30 and a quadrangular phosphor region portion 31 that is arranged so that the center coincides with the approximate center thereof. The wavelength converter 3 is provided. The recess 41 of the mounting substrate 4 has an inverted trapezoidal cross section, and the opening of the inverted trapezoidal recess 41 and the upper surface of the mounting substrate 4 are connected via a circular stepped portion 40. Then, the disc-shaped transparent region portion 30 is rotatably fitted to the circular step portion 40 and disposed.

蛍光体領域部31は、実装基板4の凹部41の開口と大略一致して配置されればよく、四角形に限らず、三角形、星型、楕円形などの形状のものでもよい。発光装置1の色調の調整は、実装基板4の段差部40に波長変換部3の透明領域部30を置いた状態で、色調の測定、及び測定結果に基づく透明領域部30の回転により行われる。透明領域部30の回転にともなって、その上の蛍光体領域部31が回転し、LEDチップ2からの光の面分布と凹部41の開口面内における蛍光体領域部31に含まれる蛍光体の面分布の相対位置関係が変化することによって、混色の強度バランスを変えることができる。   The phosphor region portion 31 may be disposed so as to substantially coincide with the opening of the concave portion 41 of the mounting substrate 4, and is not limited to a quadrangle, and may have a shape such as a triangle, a star shape, or an ellipse. The color tone of the light emitting device 1 is adjusted by measuring the color tone and rotating the transparent region 30 based on the measurement result in a state where the transparent region 30 of the wavelength conversion unit 3 is placed on the stepped portion 40 of the mounting substrate 4. . With the rotation of the transparent region portion 30, the phosphor region portion 31 thereon rotates, and the surface distribution of the light from the LED chip 2 and the phosphor contained in the phosphor region portion 31 in the opening surface of the recess 41 are obtained. The intensity balance of the color mixture can be changed by changing the relative positional relationship of the surface distribution.

上述の波長変換部3の実装基板4への載置と回転は、例えば吸着ノズルを用いて透明領域部30を吸着して行うことができる。吸着ノズルは、透光性とし、LEDチップ2の発光時の色調の測定に影響のないものとする。発光装置1を製造する他の手順は、上述の図3について説明した手順と同様であり、説明を省略する。   The mounting and rotation of the wavelength conversion unit 3 on the mounting substrate 4 can be performed by sucking the transparent region 30 using, for example, a suction nozzle. The suction nozzle is translucent and does not affect the measurement of the color tone when the LED chip 2 emits light. Other procedures for manufacturing the light emitting device 1 are the same as those described with reference to FIG.

図17(a)(b)に示す発光装置1は、上述の図3に示した発光装置1の波長変換部3と同様の蛍光体領域部31と透明領域部30とにより構成された波長変換部3を備えている。発光装置1の実装基板4には、波長変換部3の蛍光体を含まない透明領域部30と凹部41の底面に実装されたLEDチップ2との間に遮光用の可動部7を進退自在に挿入するための切欠き部71が形成されている。発光装置1の色調の調整は、可動部7の進退位置を調整してLEDチップ2から透明領域部30に達して通過する光量を加減し、混色の強度バランスを変えることにより行われる。可動部7の先端が凹部41の内壁面より内部に挿入された状態では、透明領域部30を通過する光量が減少し、可動部7の先端が内壁面よりも外側に引き出された状態では、凹部41の内壁面が拡大した状態となって、透明領域部30を通過する光量が増加する。   The light emitting device 1 shown in FIGS. 17A and 17B has a wavelength conversion composed of a phosphor region portion 31 and a transparent region portion 30 similar to the wavelength converting portion 3 of the light emitting device 1 shown in FIG. Part 3 is provided. On the mounting substrate 4 of the light emitting device 1, the movable portion 7 for light shielding can be moved forward and backward between the transparent region portion 30 not including the phosphor of the wavelength conversion portion 3 and the LED chip 2 mounted on the bottom surface of the concave portion 41. A notch 71 for insertion is formed. The color tone of the light emitting device 1 is adjusted by adjusting the advancing / retreating position of the movable portion 7 to increase or decrease the amount of light passing from the LED chip 2 to the transparent region portion 30, and changing the intensity balance of the color mixture. In a state where the tip of the movable part 7 is inserted inside from the inner wall surface of the recess 41, the amount of light passing through the transparent region part 30 is reduced, and in a state where the tip of the movable part 7 is drawn outside the inner wall surface, The inner wall surface of the recess 41 is expanded, and the amount of light passing through the transparent region 30 is increased.

発光装置1の製造工程を説明する。実装基板4にLEDチップ2を実装した後、波長変換部3を実装基板4の上面に、シリコン樹脂やエポキシ樹脂などの接着部材を用いて接着し、固定する。波長変換部3の透明領域部30は、LEDチップ2を実装した凹部41の開口面に一部がかかるように配置されている。実装基板4の電極42に電圧を印加し、LEDチップ2を発光させ、発光の色度座標を測定装置により測定する。可動部7は、その端部を不図示の装置アームに保持されて、実装基板4の上部側面に設けられた切欠き部71に配置され、内外方向にスライド可能とされる。   A manufacturing process of the light emitting device 1 will be described. After mounting the LED chip 2 on the mounting substrate 4, the wavelength conversion unit 3 is bonded and fixed to the upper surface of the mounting substrate 4 using an adhesive member such as silicon resin or epoxy resin. The transparent region part 30 of the wavelength conversion part 3 is arranged so that a part of the opening surface of the concave part 41 on which the LED chip 2 is mounted. A voltage is applied to the electrode 42 of the mounting substrate 4 to cause the LED chip 2 to emit light, and the chromaticity coordinates of the emitted light are measured by a measuring device. The movable portion 7 has its end held by a device arm (not shown) and is disposed in a notch portion 71 provided on the upper side surface of the mounting substrate 4 so as to be slidable inward and outward.

発光装置1の発光を測定した結果、発光の色度座標が基準内に入っていない場合、可動部7をスライドさせる。これにより、LEDチップ2の発光である直接光が透明領域部30を通過する量を加減し、LEDチップ2の発光と蛍光体領域部31の蛍光体により波長変換された光との割合を変化させ、発光装置1の発光の色度座標を変化させて発光の色調を調整する。色度座標が基準内に入るまで、可動部7をスライドさせ、基準内に入った状態で、可動部7と実装基板4との当接部分に接着部材を塗布し、これらを互いに固定する。可動部7を固定させた後、実装基板4の外壁からはみ出ている可動部7の余剰部分をレーザ光や刃物によって切断して除去する。   As a result of measuring the light emission of the light emitting device 1, if the chromaticity coordinates of the light emission are not within the reference, the movable part 7 is slid. As a result, the amount of direct light that is emitted from the LED chip 2 passes through the transparent region 30 is adjusted, and the ratio between the light emitted from the LED chip 2 and the light that has been wavelength-converted by the phosphor in the phosphor region 31 is changed. The chromaticity coordinates of the light emission of the light emitting device 1 are changed to adjust the color tone of the light emission. The movable part 7 is slid until the chromaticity coordinates are within the reference, and in a state where the chromaticity coordinates are within the reference, an adhesive member is applied to the contact portion between the movable part 7 and the mounting substrate 4 to fix them together. After fixing the movable part 7, the surplus part of the movable part 7 protruding from the outer wall of the mounting substrate 4 is removed by cutting with laser light or a blade.

上述のような可動部7を用いた色調の調整方法によると、波長変換部3の大きさを実装基板4の外形寸法に合わせた状態で実装基板4に固定できるので、蛍光体を含有する蛍光体シートの材料ロスの削減が可能である。なお、波長変換部3の透明領域部30の配置は、可動部7を引き抜く方向にスライドすることにより発光装置1の発光の色調を調整できるように、配置しておくのが好適である。このような配置によると、LEDチップ2の発光を無駄に遮光して発光効率を下げてしまう、という不具合を避けることができる。   According to the color tone adjustment method using the movable portion 7 as described above, the wavelength conversion portion 3 can be fixed to the mounting substrate 4 in a state in which the size of the wavelength conversion portion 3 is adjusted to the outer dimensions of the mounting substrate 4. The material loss of the body sheet can be reduced. In addition, it is preferable to arrange the transparent region portion 30 of the wavelength conversion unit 3 so that the color tone of light emission of the light emitting device 1 can be adjusted by sliding the movable unit 7 in the pulling direction. According to such an arrangement, it is possible to avoid the disadvantage that the light emission of the LED chip 2 is unnecessarily shielded to reduce the light emission efficiency.

また、上述の発光装置1における、切欠き部71や可動部7を用いる代わりに、透明領域部30の上面に金属層を設け、この金属層を部分的に除去することによって混色の強度バランスを変えることもできる。この場合、金属層の除去にはレーザ光を用いることができる。   Further, instead of using the notch portion 71 and the movable portion 7 in the light emitting device 1 described above, a metal layer is provided on the upper surface of the transparent region portion 30, and the color balance is achieved by partially removing the metal layer. It can also be changed. In this case, laser light can be used to remove the metal layer.

図18(a)(b)に示す発光装置1は、上述の図3に示した発光装置1の波長変換部3と同様の蛍光体領域部31と透明領域部30とにより構成された波長変換部3を備えている。発光装置1の色調の調整は、実装基板4の側壁に設けた貫通孔72によって、LEDチップ2からの発光を側方に漏らし、透明領域部30を通過する量を減らすことによって行われる。   The light emitting device 1 shown in FIGS. 18 (a) and 18 (b) has a wavelength conversion composed of a phosphor region portion 31 and a transparent region portion 30 similar to the wavelength converting portion 3 of the light emitting device 1 shown in FIG. Part 3 is provided. The color tone of the light emitting device 1 is adjusted by reducing the amount of light emitted from the LED chip 2 to the side and passing through the transparent region 30 by the through holes 72 provided in the side wall of the mounting substrate 4.

発光装置1の製造工程を説明する。実装基板4にLEDチップ2を実装した後、波長変換部3を実装基板4の上面に接着部材により接着し、固定する。波長変換部3の透明領域部30は、LEDチップ2を実装した凹部41の開口面に一部がかかるように配置されている。実装基板4の電極42に電圧を印加し、LEDチップ2を発光させ、発光の色度座標を測定装置により測定する。   A manufacturing process of the light emitting device 1 will be described. After mounting the LED chip 2 on the mounting substrate 4, the wavelength conversion unit 3 is bonded and fixed to the upper surface of the mounting substrate 4 with an adhesive member. The transparent region part 30 of the wavelength conversion part 3 is arranged so that a part of the opening surface of the concave part 41 on which the LED chip 2 is mounted. A voltage is applied to the electrode 42 of the mounting substrate 4 to cause the LED chip 2 to emit light, and the chromaticity coordinates of the emitted light are measured by a measuring device.

発光装置1の発光を測定した結果、発光の色度座標が基準内に入っていない場合、実装基板の側面にLEDチップ実装凹部に向けて貫通孔72を開け、LEDチップ2からの光を外部に漏らし、この状態で、再度色度座標を測定する。色度座標が基準内に入っていない場合は、再度貫通孔72を開ける。貫通孔72は、先に開けた箇所とは異なる箇所に開ける。なお、貫通孔72の位置は1箇所とし、その代わりに穴径を次第に大きくすることにより光の漏れ量を増やす調整を行うこともできる。また、実装基板4に貫通孔72を開け易くするため、エポキシなどの樹脂による実装基板4を用いてもよい。貫通孔72の形成には、レーザ光を用いるのが簡便で好適である。レーザ光を用いる場合、レーザ光の出力を大きくするなどして、貫通孔72の径を調節することができる。   As a result of measuring the light emission of the light emitting device 1, when the chromaticity coordinates of the light emission are not within the reference, a through hole 72 is opened on the side surface of the mounting substrate toward the LED chip mounting recess, and the light from the LED chip 2 is externally transmitted. In this state, the chromaticity coordinates are measured again. If the chromaticity coordinates are not within the reference, the through hole 72 is opened again. The through-hole 72 is opened at a location different from the location previously opened. In addition, the position of the through-hole 72 is set to one place, and it can also be adjusted to increase the amount of light leakage by gradually increasing the hole diameter instead. Further, in order to easily open the through hole 72 in the mounting substrate 4, the mounting substrate 4 made of a resin such as epoxy may be used. For the formation of the through hole 72, it is simple and preferable to use a laser beam. When laser light is used, the diameter of the through hole 72 can be adjusted by increasing the output of the laser light.

図19に示す発光装置1は、蛍光体を含有する蛍光体シートからなる波長変換部3を備えると共に、実装基板4の凹部41の底面に実装されたLEDチップ2に電流を供給する電極42の配線パターンに直列に挿入された抵抗体Rを備えている。発光装置1の色調の調整は、この抵抗体Rの抵抗値を変化させてLEDチップ2に供給する電流量を変化させることにより行われる。これは、LEDチップ2に流れる電流が、例えば大きくなるとLEDチップ2の発光の波長が短くなるという原理に基づいている。抵抗体Rを用いた電流調整により、LEDチップ2の発光の波長を所定の一定値にでき、従来に比べてより高精度に発光装置1毎の色ばらつきを低減できる。   A light emitting device 1 shown in FIG. 19 includes a wavelength conversion unit 3 made of a phosphor sheet containing a phosphor, and includes electrodes 42 that supply current to the LED chip 2 mounted on the bottom surface of the recess 41 of the mounting substrate 4. A resistor R inserted in series with the wiring pattern is provided. The color tone of the light emitting device 1 is adjusted by changing the resistance value of the resistor R and changing the amount of current supplied to the LED chip 2. This is based on the principle that when the current flowing through the LED chip 2 increases, for example, the emission wavelength of the LED chip 2 decreases. By adjusting the current using the resistor R, the emission wavelength of the LED chip 2 can be set to a predetermined constant value, and the color variation for each light emitting device 1 can be reduced with higher accuracy than in the past.

抵抗体Rは、チップ抵抗や実装基板に予め設けられた抵抗体などであって、その抵抗値を変更可能な抵抗体である。いずれの抵抗体Rを用いる場合でも、実装基板4の上面に波長変換部3を配置した状態で、発光装置1の発光の色調を測定し、所定の色調が得られるように、所定の印加電圧のもとでLEDチップ2に流す電流量を抵抗体Rの抵抗値の変更によって調整する。   The resistor R is a resistor that is provided in advance on a chip resistor or a mounting substrate, and the resistance value of which can be changed. Regardless of which resistor R is used, in a state where the wavelength conversion unit 3 is disposed on the upper surface of the mounting substrate 4, the color tone of light emission of the light emitting device 1 is measured, and a predetermined applied voltage is obtained so as to obtain a predetermined color tone. Is adjusted by changing the resistance value of the resistor R.

上述の抵抗体Rが、実装基板4に予め設けた薄膜などから成る場合、抵抗体Rを形成している薄膜の一部をレーザ光などを用いて削除することにより、抵抗値を上げることができる。また、チップ抵抗を並列接続して構成した抵抗体の場合は、その並列抵抗を切り離すことによって抵抗値を上げることができる。抵抗体Rの抵抗値を減らすことは、例えば、導電性ペーストなどを用いて抵抗体Rの一部を直結することにより行われる。   When the above-described resistor R is made of a thin film or the like previously provided on the mounting substrate 4, the resistance value can be increased by removing a part of the thin film forming the resistor R using a laser beam or the like. it can. In the case of a resistor configured by connecting chip resistors in parallel, the resistance value can be increased by disconnecting the parallel resistors. The resistance value of the resistor R is reduced by, for example, directly connecting a part of the resistor R using a conductive paste or the like.

図20に示す発光装置1は、実装基板4の上面に蛍光体を含有する蛍光体シートからなる波長変換部3を備えて配線基板5に実装される。配線基板5は、発光装置1に電流を供給する配線パターン53を備え、その配線パターン53には直列に挿入された抵抗体Rが設けられている。発光装置1の色調の調整は、発光装置1を配線基板5に実装し、配線基板5上の抵抗体Rの抵抗値を変化させてLEDチップ2に供給する電流量を変化させることにより行われる。これは、上述同様に、LEDチップ2に流れる電流が、例えば大きくなるとLEDチップ2の発光の波長が短くなるという原理に基づいている。   The light emitting device 1 shown in FIG. 20 is mounted on the wiring substrate 5 with the wavelength conversion unit 3 made of a phosphor sheet containing a phosphor on the upper surface of the mounting substrate 4. The wiring board 5 includes a wiring pattern 53 that supplies a current to the light emitting device 1, and the wiring pattern 53 is provided with a resistor R that is inserted in series. The color tone of the light emitting device 1 is adjusted by mounting the light emitting device 1 on the wiring board 5 and changing the amount of current supplied to the LED chip 2 by changing the resistance value of the resistor R on the wiring board 5. . As described above, this is based on the principle that when the current flowing through the LED chip 2 increases, for example, the emission wavelength of the LED chip 2 decreases.

抵抗体Rとして、チップ抵抗、リード線を有する抵抗、抵抗値可変抵抗、配線基板5に形成された薄膜パターン抵抗などを用いることができる。いずれの抵抗体Rを用いる場合でも、実装基板4の上面に波長変換部3を配置した状態で、発光装置1の発光の色調を測定し、所定の色調が得られるように、所定の印加電圧のもとでLEDチップ2に流す電流量を抵抗体Rの抵抗値の変更によって調整する。   As the resistor R, a chip resistor, a resistor having a lead wire, a resistance value variable resistor, a thin film pattern resistor formed on the wiring substrate 5 or the like can be used. Regardless of which resistor R is used, in a state where the wavelength conversion unit 3 is disposed on the upper surface of the mounting substrate 4, the color tone of light emission of the light emitting device 1 is measured, and a predetermined applied voltage is obtained so as to obtain a predetermined color tone. Is adjusted by changing the resistance value of the resistor R.

図21、図22に示す発光装置1は、蛍光体を含有する蛍光体シートからなる波長変換部3を備えて配線基板5に実装される。発光装置1の実装基板4は、底面が正方形の直方体であり、配線基板5に設けられた配線パターン53に電気接続するための電極42が、実装基板4の各側面から上面と下面に至る配線パターンによって形成されている。電極42は、実装基板4の各側面に電流流入用と電流流出用の2つが対になって設けられている。これらの各対となった電極42の1対が、実装基板4の凹部41の底面に実装されたLEDチップ2の電極に電気接続されている。なお、他の3対の電極42は、発光装置1を配線基板5にはんだによって固定する機能のみを有するダミー電極である。   The light emitting device 1 shown in FIGS. 21 and 22 is mounted on a wiring board 5 with a wavelength conversion unit 3 made of a phosphor sheet containing a phosphor. The mounting substrate 4 of the light emitting device 1 is a rectangular parallelepiped having a bottom surface, and electrodes 42 for electrical connection to the wiring pattern 53 provided on the wiring substrate 5 are connected from each side surface of the mounting substrate 4 to the upper surface and the lower surface. It is formed by a pattern. The electrode 42 is provided on each side surface of the mounting substrate 4 in pairs for current inflow and current outflow. One pair of these electrode pairs 42 is electrically connected to the electrode of the LED chip 2 mounted on the bottom surface of the recess 41 of the mounting substrate 4. The other three pairs of electrodes 42 are dummy electrodes having only a function of fixing the light emitting device 1 to the wiring board 5 with solder.

また、配線基板5の配線パターン53は、発光装置1の4対の電極42に接続するように4対設けられており、対を成す各配線パターン53の一方には、互いに抵抗値の異なる抵抗体R1〜R4が直列に挿入されている。抵抗体R1〜R4として、チップ抵抗、リード線を有する抵抗、抵抗値可変抵抗、配線基板5に形成された薄膜パターン抵抗などを用いることができる。また、抵抗体R1〜R4は必ずしも全てを実装する必要はなく、抵抗体R1として抵抗値調整可能な抵抗を実装し、この抵抗体R1を用いて電流調整を行うこともできる。   Further, four pairs of wiring patterns 53 of the wiring substrate 5 are provided so as to be connected to the four pairs of electrodes 42 of the light emitting device 1, and one of the wiring patterns 53 forming a pair has resistances having different resistance values. The bodies R1 to R4 are inserted in series. As the resistors R1 to R4, a chip resistor, a resistor having a lead wire, a resistance variable resistor, a thin film pattern resistor formed on the wiring substrate 5, and the like can be used. It is not always necessary to mount all of the resistors R1 to R4. A resistor whose resistance value can be adjusted is mounted as the resistor R1, and current adjustment can be performed using the resistor R1.

発光装置1の色調の調整は、発光装置1を配線基板5に実装する際に、配線基板5上の抵抗体を選択することによって行われる。これは、上述同様に、LEDチップ2に流れる電流が、例えば大きくなるとLEDチップ2の発光の波長が短くなるという原理に基づいている。予め発光装置1の発光の色調を測定し、その測定結果に基づいて、所望の混色の強度バランスが得られるLEDチップ2への供給電流値を決定する。次に、その電流値が得られる抵抗体(例えば、抵抗体R1)が接続された配線パターン53に、LEDチップ2が電気接続されるように、発光装置1の向きを回転し、発光装置1を配線基板5にはんだ等を用いて実装する。   The color tone of the light emitting device 1 is adjusted by selecting a resistor on the wiring substrate 5 when the light emitting device 1 is mounted on the wiring substrate 5. As described above, this is based on the principle that when the current flowing through the LED chip 2 increases, for example, the emission wavelength of the LED chip 2 decreases. The color tone of light emitted from the light emitting device 1 is measured in advance, and the supply current value to the LED chip 2 that provides a desired color mixture intensity balance is determined based on the measurement result. Next, the direction of the light emitting device 1 is rotated so that the LED chip 2 is electrically connected to the wiring pattern 53 to which the resistor (for example, the resistor R1) from which the current value is obtained is connected. Is mounted on the wiring board 5 using solder or the like.

図23に示す発光装置1は、実装基板4の上面に配置した断熱シート11と、断熱シート11の上面に配置した蛍光体を含有する蛍光体シート3Aにより構成された波長変換部3を備えている。発光装置1の色調の調整は、蛍光体シート3Aの温度を所定の一定温度にすることにより蛍光体の光特性を所定温度下で安定させることにより行われる。発光装置1の製造工程を説明する。実装基板4にLEDチップ2を実装した後、蛍光体シート3Aを実装基板4の上面に載置し、実装基板4の電極42を介してLEDチップ2に電流を流して発光装置1の発光特性である色度座標を測定する。   The light emitting device 1 illustrated in FIG. 23 includes a wavelength conversion unit 3 including a heat insulating sheet 11 disposed on the upper surface of the mounting substrate 4 and a phosphor sheet 3A containing a phosphor disposed on the upper surface of the heat insulating sheet 11. Yes. The color tone of the light emitting device 1 is adjusted by stabilizing the light characteristics of the phosphor at a predetermined temperature by setting the temperature of the phosphor sheet 3A to a predetermined constant temperature. A manufacturing process of the light emitting device 1 will be described. After mounting the LED chip 2 on the mounting substrate 4, the phosphor sheet 3 </ b> A is placed on the upper surface of the mounting substrate 4, and a current is passed through the LED chip 2 through the electrode 42 of the mounting substrate 4 to emit light. Measure the chromaticity coordinates.

測定した色度座標と基準との差異、及び、予め確認している色度座標とLEDチップ2の発光時の実装基板4の凹部41内の温度の関係に基づいて、蛍光体シート3Aの温度を所定温度にするため、蛍光体シート3Aの下に断熱シート11を配置する。断熱シート11として、予め所定の厚み間隔で作られた複数種類のものを準備しておき、測定した発光装置1の発光特性に合わせて所定厚みの断熱シート11を適宜選択して用いる。選択した断熱シート11は、実装基板4にシリコン樹脂やエポキシ樹脂等の接着部材により接着し、蛍光体シート3Aも、同様に断熱シート11上に接着する。   The temperature of the phosphor sheet 3A is based on the difference between the measured chromaticity coordinates and the reference, and the relationship between the chromaticity coordinates confirmed in advance and the temperature in the recess 41 of the mounting substrate 4 when the LED chip 2 emits light. Is set to a predetermined temperature, the heat insulating sheet 11 is disposed under the phosphor sheet 3A. A plurality of types of heat insulating sheets 11 prepared in advance at predetermined thickness intervals are prepared in advance, and the heat insulating sheet 11 having a predetermined thickness is appropriately selected and used in accordance with the measured light emission characteristics of the light emitting device 1. The selected heat insulating sheet 11 is bonded to the mounting substrate 4 with an adhesive member such as silicon resin or epoxy resin, and the phosphor sheet 3A is also bonded onto the heat insulating sheet 11 in the same manner.

なお、断熱シート11は、調整可能な最大厚みのものを1種類用意しておき、測定した発光特性に応じて、必要な厚みとなるように断熱シート11を加工して用いてもよい。また、蛍光体シート3Aに断熱シート11を接着しておき、測定した発光特性に合わせて断熱シート11を切削して薄くしてもよい。   Note that one type of heat insulating sheet 11 having a maximum adjustable thickness is prepared, and the heat insulating sheet 11 may be processed and used so as to have a required thickness in accordance with the measured light emission characteristics. Alternatively, the heat insulating sheet 11 may be bonded to the phosphor sheet 3A, and the heat insulating sheet 11 may be cut and thinned according to the measured light emission characteristics.

図24に示す発光装置1は、蛍光体を含有する蛍光体シートにより構成された波長変換部3を備え、波長変換部3は接着部材12を用いて温度調節可能な状態で実装基板4の上面に固定される。発光装置1の色調の調整は、上述同様に、波長変換部3の温度を所定の一定温度にして蛍光体の光特性を所定温度下で安定させることにより行われる。発光装置1の製造工程を説明する。実装基板4にLEDチップ2を実装した後、上述同様に、発光装置1の発光特性である色度座標を測定する。さらに、波長変換部3の温度を上述同様の方法で求めた温度とするため、波長変換部3を実装基板4の上面から所定距離だけ離した位置に配置し固定する。実装基板4の上面と波長変換部3との距離は、例えば、粘着性の高い接着部材12を実装基板4の上面の周辺部に塗布することにより確保する。   The light-emitting device 1 shown in FIG. 24 includes a wavelength conversion unit 3 made of a phosphor sheet containing a phosphor, and the wavelength conversion unit 3 uses the adhesive member 12 so that the temperature can be adjusted. Fixed to. As described above, the color tone of the light emitting device 1 is adjusted by setting the temperature of the wavelength conversion unit 3 to a predetermined constant temperature and stabilizing the light characteristics of the phosphor at a predetermined temperature. A manufacturing process of the light emitting device 1 will be described. After mounting the LED chip 2 on the mounting substrate 4, the chromaticity coordinates, which are the light emission characteristics of the light emitting device 1, are measured as described above. Furthermore, in order to set the temperature of the wavelength conversion unit 3 to the temperature obtained by the same method as described above, the wavelength conversion unit 3 is arranged and fixed at a position separated from the upper surface of the mounting substrate 4 by a predetermined distance. The distance between the upper surface of the mounting substrate 4 and the wavelength conversion unit 3 is ensured by, for example, applying a highly adhesive adhesive member 12 to the peripheral portion of the upper surface of the mounting substrate 4.

図25、図26に示す発光装置1は、蛍光体を含有する蛍光体シートからなる波長変換部3を備えて、配線基板5に実装される。発光装置1の色調の調整は、LEDチップ2の温度を調整してLEDチップ2が放射する光の波長を所定温度下で安定させることにより行われる。LEDチップ2の温度を調整するため、発光装置1のLEDチップ2を実装する実装基板4の下面と発光装置1を実装する配線基板5との間に温度調整用の部材を設けている。これにより、LEDチップ2の温度を変えてLEDチップ2の発光の波長を一定にでき、従来に比べてより高精度に発光装置毎の色ばらつきを低減できる。   The light emitting device 1 shown in FIGS. 25 and 26 includes a wavelength conversion unit 3 made of a phosphor sheet containing a phosphor, and is mounted on the wiring board 5. The color tone of the light emitting device 1 is adjusted by adjusting the temperature of the LED chip 2 and stabilizing the wavelength of light emitted by the LED chip 2 at a predetermined temperature. In order to adjust the temperature of the LED chip 2, a temperature adjusting member is provided between the lower surface of the mounting substrate 4 on which the LED chip 2 of the light emitting device 1 is mounted and the wiring substrate 5 on which the light emitting device 1 is mounted. Thereby, the temperature of the LED chip 2 can be changed to make the light emission wavelength of the LED chip 2 constant, and the color variation for each light emitting device can be reduced with higher accuracy than in the past.

ここで、発光装置1と配線基板5の相互接合のための構造を説明する。発光装置1は、配線基板5に実装してLEDチップ2に電流を供給するための実装基板4の下面に回り込んだ電極42、及び実装基板4の下面からLEDチップ2の熱を放熱させるための放熱用ランド43を備えている。また、配線基板5は、金属、例えば銅、からなるベース基板50の上に絶縁層52が設けられ、絶縁層52の上に配線パターン53を形成した構造に成っている。また、ベース基板50の発光装置1が実装される領域は、他の部分よりも突出した凸部51となっている。この凸部51には、絶縁層52が設けられてなく、発光装置1の下面の放熱用ランド43に、例えば、はんだ54によって接合し、放熱を図る構造と成っている。   Here, a structure for mutual joining of the light emitting device 1 and the wiring board 5 will be described. The light emitting device 1 is mounted on the wiring board 5 to dissipate the heat of the LED chip 2 from the electrode 42 that wraps around the lower surface of the mounting substrate 4 for supplying current to the LED chip 2 and the lower surface of the mounting substrate 4. The heat radiation land 43 is provided. The wiring substrate 5 has a structure in which an insulating layer 52 is provided on a base substrate 50 made of metal, for example, copper, and a wiring pattern 53 is formed on the insulating layer 52. Moreover, the area | region where the light-emitting device 1 of the base substrate 50 is mounted becomes the convex part 51 which protruded rather than the other part. The convex portion 51 is not provided with the insulating layer 52, and has a structure in which, for example, solder 54 is joined to the heat radiation land 43 on the lower surface of the light emitting device 1 to dissipate heat.

発光装置1の製造工程を説明する。発光装置1の発光特性を予め測定しておく。次に、発光装置1を配線基板5に実装する。この実装の際に、実装基板4の放熱用ランド43と配線基板5の凸部51との間の熱伝導面積又は体積を調整することにより、実装基板4と配線基板5との間の熱抵抗を変えてLEDチップ2の温度を調整し、発光装置1の発光特性を調整する。   A manufacturing process of the light emitting device 1 will be described. The light emission characteristics of the light emitting device 1 are measured in advance. Next, the light emitting device 1 is mounted on the wiring board 5. During this mounting, the thermal resistance between the mounting substrate 4 and the wiring substrate 5 is adjusted by adjusting the heat conduction area or volume between the heat radiation land 43 of the mounting substrate 4 and the convex portion 51 of the wiring substrate 5. The temperature of the LED chip 2 is adjusted to change the light emission characteristics of the light emitting device 1.

上述の熱抵抗を変える手段として、実装基板4と配線基板5との間にスペーサ13を介在させる。このスペーサ13を介在させた状態で、実装基板4の放熱用ランド43と配線基板5の放熱用の凸部51とを、はんだ54によって熱的に接合する。スペーサ13は、はんだペーストを配線基板5に印刷や塗布する前に、凸部51に載置する。スペーサ13の厚みは、はんだ印刷時に印刷用マスクに対して影響がない厚みとする。はんだペーストを塗布した配線基板5に、発光装置1を載せ、例えば、リフロー炉を用いて、発光装置の電極42と配線基板5の配線パターン53、及び、発光装置1の放熱用ランド43と配線基板5の放熱用凸部51を互いに、はんだ54により接合する。   As a means for changing the above-described thermal resistance, a spacer 13 is interposed between the mounting substrate 4 and the wiring substrate 5. With the spacer 13 interposed, the heat radiation land 43 of the mounting substrate 4 and the heat radiation convex portion 51 of the wiring substrate 5 are thermally bonded by the solder 54. The spacer 13 is placed on the convex portion 51 before the solder paste is printed or applied to the wiring board 5. The spacer 13 has a thickness that does not affect the printing mask during solder printing. The light emitting device 1 is mounted on the wiring substrate 5 to which the solder paste is applied. For example, using a reflow furnace, the electrode 42 of the light emitting device and the wiring pattern 53 of the wiring substrate 5 and the heat radiation land 43 and the wiring of the light emitting device 1 are used. The heat radiating convex portions 51 of the substrate 5 are joined to each other by solder 54.

上述のスペーサ13は、中央に穴の開いた銅や鉄などの金属からなる。スペーサ13は、穴径の異なる数種類のものを用意しておく。スペーサ13の熱伝導率は、はんだ54と異なるものとする。従って、スペーサ13を変更することにより、LEDチップ2の動作時の温度を変えることができる。なお、発光装置1に放熱用ランドがない場合であっても、実装基板4の下面に熱接触させたスペーサ13を設けることにより、LEDチップ2からの放熱を調整して発光装置1の発光特性を調整できる。   The above-mentioned spacer 13 is made of a metal such as copper or iron having a hole in the center. Several types of spacers 13 having different hole diameters are prepared. The thermal conductivity of the spacer 13 is different from that of the solder 54. Therefore, by changing the spacer 13, the temperature during operation of the LED chip 2 can be changed. Even when the light emitting device 1 does not have a heat dissipation land, the light emission characteristics of the light emitting device 1 can be adjusted by adjusting the heat dissipation from the LED chip 2 by providing the spacer 13 in thermal contact with the lower surface of the mounting substrate 4. Can be adjusted.

図27に示す発光装置1は、蛍光体を含有する蛍光体シートからなる波長変換部3を備えて、配線基板5に実装される。発光装置1の色調の調整は、上述同様に、実装基板4と配線基板5との間の熱抵抗を変えてLEDチップ2の温度を調整し、LEDチップ2が発する光の波長を所定温度下で安定させることにより行われる。熱抵抗を変える手段として、実装基板4の放熱用ランド43と配線基板5の放熱用の凸部51とを接合するはんだ54の内部に発生する、はんだ中のフラックスや空気などに起因するボイド14を用いる。   A light emitting device 1 shown in FIG. 27 includes a wavelength conversion unit 3 made of a phosphor sheet containing a phosphor and is mounted on a wiring board 5. As described above, the color tone of the light emitting device 1 is adjusted by changing the thermal resistance between the mounting substrate 4 and the wiring substrate 5 to adjust the temperature of the LED chip 2 and reducing the wavelength of light emitted by the LED chip 2 to a predetermined temperature. It is done by stabilizing it with. As a means for changing the thermal resistance, a void 14 caused by flux, air, or the like in the solder generated inside the solder 54 that joins the heat radiation land 43 of the mounting substrate 4 and the heat radiation convex portion 51 of the wiring board 5. Is used.

上述のボイド14の大きさは、はんだ付けの条件(時間、温度)を変化させることにより調整でき、従って、実装基板4に実装したLEDチップ2の温度を調整できる。また、他の方法として、放熱用ランド43に切欠きを設けることにより、ボイド14の大きさと位置を調整することもできる。放熱用ランド43の対向する辺の中央に切欠きを設けると、切欠きにより分離されたランド面の略中央にボイドの位置を特定することが可能となり、ボイド14の大きさも切欠きがない場合に比べて小さくすることが可能となる。   The size of the above-mentioned void 14 can be adjusted by changing the soldering conditions (time and temperature). Therefore, the temperature of the LED chip 2 mounted on the mounting substrate 4 can be adjusted. As another method, the size and position of the void 14 can be adjusted by providing a notch in the heat radiation land 43. When a notch is provided at the center of the opposite sides of the heat radiation land 43, it is possible to specify the position of the void at the approximate center of the land surface separated by the notch, and the size of the void 14 is not notched. It becomes possible to make it smaller compared to.

図28に示す発光装置1は、蛍光体を含有する蛍光体シートからなる波長変換部3を備えて、配線基板5に実装される。発光装置1の色調の調整は、上述同様に、実装基板4と配線基板5との間の熱抵抗を変えてLEDチップ2の温度を調整し、LEDチップ2が発する光の波長を所定温度下で安定させることにより行われる。熱抵抗を変える手段として、実装基板4の下面に突起部15を備えており、この突起部15を用いることにより、放熱用ランド43と放熱用の凸部51を接合するはんだの高さを調整する。   A light emitting device 1 shown in FIG. 28 includes a wavelength conversion unit 3 made of a phosphor sheet containing a phosphor and is mounted on a wiring board 5. As described above, the color tone of the light emitting device 1 is adjusted by changing the thermal resistance between the mounting substrate 4 and the wiring substrate 5 to adjust the temperature of the LED chip 2 and reducing the wavelength of light emitted by the LED chip 2 to a predetermined temperature. It is done by stabilizing it with. As a means for changing the thermal resistance, a protrusion 15 is provided on the lower surface of the mounting substrate 4, and by using this protrusion 15, the height of the solder for joining the heat dissipation land 43 and the heat dissipation protrusion 51 is adjusted. To do.

発光装置1の製造に際し、まず、発光装置1の発光特性を測定し、予め確認しているLEDチップ2の発熱温度と発光特性との関係に基づいて、放熱用ランド43において所定のはんだ接合面積となるように、突起部15を削ってその高さを調整する。次に、配線基板に、はんだペーストを印刷し、突起部15を削って突起部15の高さを調整した発光装置1を配線基板5に載置し、上述同様にリフロー炉によりはんだ付けを行う。   When manufacturing the light emitting device 1, first, the light emitting characteristics of the light emitting device 1 are measured, and based on the relationship between the heat generation temperature and the light emitting characteristics of the LED chip 2 that has been confirmed in advance, a predetermined solder joint area in the heat radiation land 43 is obtained. Then, the protrusion 15 is shaved and the height thereof is adjusted. Next, the solder paste is printed on the wiring board, and the light emitting device 1 whose height is adjusted by shaving the protrusion 15 is placed on the wiring board 5 and soldered by a reflow furnace in the same manner as described above. .

図29に示す発光装置1は、蛍光体を含有する蛍光体シートからなる波長変換部3を備えて、配線基板5に実装される。発光装置1の色調の調整は、実装基板4の温度を調整し、LEDチップ2や波長変換部3の温度を調整することにより行われる。実装基板4の温度を調整する手段として、実装基板4の周囲にフィンや断熱材などの温度調整材16を設ける。温度調整材16は、温度を低減させる場合は放熱フィンから成り、温度を上げる場合は断熱材から成る。   A light emitting device 1 shown in FIG. 29 includes a wavelength conversion unit 3 made of a phosphor sheet containing a phosphor, and is mounted on a wiring board 5. The color tone of the light emitting device 1 is adjusted by adjusting the temperature of the mounting substrate 4 and adjusting the temperature of the LED chip 2 and the wavelength conversion unit 3. As means for adjusting the temperature of the mounting substrate 4, a temperature adjusting material 16 such as a fin or a heat insulating material is provided around the mounting substrate 4. The temperature adjusting material 16 is made of heat radiating fins when the temperature is reduced, and is made of heat insulating material when the temperature is raised.

発光装置1の製造に際し、まず、リフロー炉などを用いて配線基板5に発光装置1を実装し、発光装置1を発光させて発光特性を測定する。測定した発光特性と基準との差に基づいて、発光装置1内のLEDチップ2を実装した凹部41内の温度を所定温度に調整するため、温度調整材16を発光装置1の周りに取り付ける。これにより、実装基板4を所望の温度にし、所望の混色の強度バランスとなる発光装置1を得る。   In manufacturing the light-emitting device 1, first, the light-emitting device 1 is mounted on the wiring board 5 using a reflow furnace or the like, and the light-emitting device 1 is caused to emit light to measure the light emission characteristics. Based on the difference between the measured light emission characteristics and the reference, the temperature adjusting material 16 is attached around the light emitting device 1 in order to adjust the temperature in the recess 41 in which the LED chip 2 in the light emitting device 1 is mounted to a predetermined temperature. Thereby, the mounting substrate 4 is brought to a desired temperature, and the light emitting device 1 having a desired color mixture intensity balance is obtained.

図30(a)(b)は、上述の、例えば、図1(a)(b)に示した発光装置1を7個用いて形成した照明器具10を示す。照明器具10は、配線基板5に発光装置1を実装し、筐体17と透光性の前面パネル18によって発光装置1を覆うようにして形成されている。各発光装置1は、配線基板5上の配線パターン53により互いに並列接続されて、外部電極53aを介して電流供給される。この照明器具10は、各発光装置1の個々の色ばらつきが従来より一層低減されたものであり、7個の発光装置1の間の色ばらつきも低減されており、大口径で大出力の一様な色調の照明光を発生することができる。   30 (a) and 30 (b) show a lighting fixture 10 formed by using, for example, seven light emitting devices 1 shown in FIGS. 1 (a) and 1 (b). The luminaire 10 is formed so that the light emitting device 1 is mounted on the wiring board 5 and the light emitting device 1 is covered with a housing 17 and a translucent front panel 18. The light emitting devices 1 are connected to each other in parallel by the wiring pattern 53 on the wiring substrate 5 and supplied with current through the external electrode 53a. The lighting fixture 10 has the individual color variation of each light emitting device 1 further reduced than before, the color variation among the seven light emitting devices 1 is also reduced, and has a large diameter and a large output. It is possible to generate illumination light of various colors.

なお、本発明は、上記構成に限られることなく種々の変形が可能である。LEDチップ2を実装する凹部41は、矩形開口でなく円形開口でもよい。LEDチップ2の実装は、フリップチップ実装に限らず、他の実装方法、例えばワイヤボンディング法でもよい。また、照明器具10において、発光装置1の個数は7個に限らず任意個数により照明器具10を構成できる。また、上述において、発光装置1として白色光を得る例を示しているが、本発明の発光装置1の製造方法は、白色光に限らず、有色光を発する発光装置の製造にも適用できる。   The present invention is not limited to the above-described configuration, and various modifications can be made. The recess 41 for mounting the LED chip 2 may be a circular opening instead of a rectangular opening. The mounting of the LED chip 2 is not limited to the flip chip mounting, but may be another mounting method such as a wire bonding method. Moreover, in the lighting fixture 10, the number of the light-emitting devices 1 is not restricted to seven, and the lighting fixture 10 can be comprised by arbitrary numbers. Moreover, although the example which obtains white light as the light-emitting device 1 is shown in the above, the manufacturing method of the light-emitting device 1 of this invention is applicable not only to white light but manufacture of the light-emitting device which emits colored light.

(a)は本発明に係る製造方法により製造された発光装置の斜視図、(b)は同発光装置の断面図。(A) is a perspective view of the light-emitting device manufactured by the manufacturing method based on this invention, (b) is sectional drawing of the light-emitting device. 同上製造方法のフローチャート。The flowchart of a manufacturing method same as the above. 同上製造方法における発光装置からの光の色調計測を示す斜視図。The perspective view which shows the color tone measurement of the light from the light-emitting device in a manufacturing method same as the above. 本発明の発光装置の製造方法における色調調整に関するフローチャート。6 is a flowchart relating to color tone adjustment in the method for manufacturing a light emitting device of the present invention. 同上製造方法の他の例を説明する発光装置の断面図。Sectional drawing of the light-emitting device explaining the other example of a manufacturing method same as the above. 同上製造方法のさらに他の例を説明する発光装置の断面図。Sectional drawing of the light-emitting device explaining the further another example of a manufacturing method same as the above. 同上製造方法のさらに他の例を説明する発光装置の断面図。Sectional drawing of the light-emitting device explaining the further another example of a manufacturing method same as the above. 同上製造方法のさらに他の例を説明する発光装置の断面図。Sectional drawing of the light-emitting device explaining the further another example of a manufacturing method same as the above. 同上製造方法のさらに他の例を説明する発光装置の断面図。Sectional drawing of the light-emitting device explaining the further another example of a manufacturing method same as the above. 同上製造方法のさらに他の例を説明する発光装置の断面図。Sectional drawing of the light-emitting device explaining the further another example of a manufacturing method same as the above. 同上製造方法のさらに他の例を説明する発光装置の断面図。Sectional drawing of the light-emitting device explaining the further another example of a manufacturing method same as the above. 同上製造方法のさらに他の例を説明する発光装置の断面図。Sectional drawing of the light-emitting device explaining the further another example of a manufacturing method same as the above. 同上製造方法のさらに他の例を説明する発光装置の断面図。Sectional drawing of the light-emitting device explaining the further another example of a manufacturing method same as the above. 同上製造方法のさらに他の例を説明する発光装置の断面図。Sectional drawing of the light-emitting device explaining the further another example of a manufacturing method same as the above. 同上製造方法のさらに他の例を説明する発光装置の断面図。Sectional drawing of the light-emitting device explaining the further another example of a manufacturing method same as the above. (a)は同上製造方法のさらに他の例を説明する波長変換部の平面図、(b)は同波長変換部を用いるLED発光部の平面図、(c)は(b)のX1−X1線断面図。(A) is a top view of the wavelength conversion part explaining the further another example of a manufacturing method same as the above, (b) is a top view of the LED light emission part which uses the same wavelength conversion part, (c) is X1-X1 of (b). FIG. (a)は同上製造方法のさらに他の例を説明する発光装置の断面図、(b)は(a)の発光装置の斜視図。(A) is sectional drawing of the light-emitting device explaining the further another example of a manufacturing method same as the above, (b) is a perspective view of the light-emitting device of (a). (a)は同上製造方法のさらに他の例を説明する発光装置の断面図、(b)は(a)の発光装置の斜視図。(A) is sectional drawing of the light-emitting device explaining the further another example of a manufacturing method same as the above, (b) is a perspective view of the light-emitting device of (a). 同上製造方法のさらに他の例を説明する波長変換部を一部破断して示した発光装置の平面図。The top view of the light-emitting device which fractured | ruptured and showed the wavelength conversion part explaining the further another example of a manufacturing method same as the above. 同上製造方法のさらに他の例を説明する発光装置を実装する配線基板の平面図。The top view of the wiring board which mounts the light-emitting device explaining the further another example of a manufacturing method same as the above. 同上製造方法のさらに他の例を説明する波長変換部を一部破断して示した発光装置の平面図。The top view of the light-emitting device which fractured | ruptured and showed the wavelength conversion part explaining the further another example of a manufacturing method same as the above. 図21に示した発光装置を実装する配線基板の平面図。The top view of the wiring board which mounts the light-emitting device shown in FIG. 同上製造方法のさらに他の例を説明する発光装置の断面図。Sectional drawing of the light-emitting device explaining the further another example of a manufacturing method same as the above. 同上製造方法のさらに他の例を説明する発光装置の断面図。Sectional drawing of the light-emitting device explaining the further another example of a manufacturing method same as the above. 同上製造方法のさらに他の例を説明する配線基板に実装した状態の発光装置の断面図。Sectional drawing of the light-emitting device of the state mounted in the wiring board explaining the further another example of a manufacturing method same as the above. 図25のX2−X2線断面図。X2-X2 sectional view taken on the line of FIG. 同上製造方法のさらに他の例を説明する配線基板に実装した状態の発光装置の断面図。Sectional drawing of the light-emitting device of the state mounted in the wiring board explaining the further another example of a manufacturing method same as the above. 同上製造方法のさらに他の例を説明する配線基板に実装した状態の発光装置の断面図。Sectional drawing of the light-emitting device of the state mounted in the wiring board explaining the further another example of a manufacturing method same as the above. 同上製造方法のさらに他の例を説明する配線基板に実装した状態の発光装置の断面図。Sectional drawing of the light-emitting device of the state mounted in the wiring board explaining the further another example of a manufacturing method same as the above. (a)は本発明に係る製造方法により製造された発光装置を用いた照明器具の斜視図、(b)は同照明器具の筐体を除いた状態の平面図。(A) is a perspective view of the lighting fixture using the light-emitting device manufactured by the manufacturing method which concerns on this invention, (b) is a top view of the state which removed the housing | casing of the lighting fixture.

符号の説明Explanation of symbols

1 発光装置
2 LEDチップ
3 波長変換部
4 実装基板(発光装置本体)
7 可動部
10 照明器具
30 透明領域部
31,32 蛍光体領域部
R 抵抗体
DESCRIPTION OF SYMBOLS 1 Light-emitting device 2 LED chip 3 Wavelength conversion part 4 Mounting board (light-emitting device main body)
7 Movable part 10 Lighting fixture 30 Transparent area part 31, 32 Phosphor area part R Resistor

Claims (7)

LEDチップを実装して成るLED発光部と、蛍光体を含有する波長変換部とを組合せて成る発光装置の製造方法において、
前記LED発光部に前記波長変換部を組合せた後に前記LEDチップの発光に基づいて放射される光の色調を前記波長変換部の前方において計測し、前記波長変換部を前記LED発光部に対して移動または回転させることにより変化する混色の強度バランスを変えることにより、当該発光装置から放射される光の色調を調整することを特徴とする発光装置の製造方法。
In the manufacturing method of the light emitting device formed by combining the LED light emitting unit formed by mounting the LED chip and the wavelength conversion unit containing the phosphor,
After the wavelength conversion unit is combined with the LED light emitting unit, the color tone of light emitted based on the light emission of the LED chip is measured in front of the wavelength conversion unit, and the wavelength conversion unit is measured with respect to the LED light emitting unit. by varying the intensity balance of the mixed color is changed by moving or rotating, the method of manufacturing the light emitting device characterized by adjusting the color tone of light emitted from the light-emitting device.
前記波長変換部に蛍光体を含む領域と蛍光体を含まない領域とを設け、前記LEDチップから該波長変換部の各領域へ照射される光の割合を変えることにより混色の強度バランスを変えることを特徴とする請求項1に記載の発光装置の製造方法。   The wavelength conversion unit is provided with a region containing a phosphor and a region not containing a phosphor, and the intensity balance of the color mixture is changed by changing the ratio of light emitted from the LED chip to each region of the wavelength conversion unit. The method of manufacturing a light emitting device according to claim 1. 前記波長変換部は断面がくさび形状の略平板であり、前記LED発光部に対して相対的に位置を変えることによって当該LED発光部の臨む前記波長変換部の有効厚みを変えることを特徴とする請求項1に記載の発光装置の製造方法。   The wavelength conversion part is a substantially flat plate with a wedge-shaped cross section, and the effective thickness of the wavelength conversion part facing the LED light emitting part is changed by changing the position relative to the LED light emitting part. The manufacturing method of the light-emitting device of Claim 1. 前記波長変換部を複数枚重ねると共にそれらの位置を調整することによって混色の強度バランスを変えることを特徴とする請求項2又は請求項3に記載の発光装置の製造方法。   The method of manufacturing a light emitting device according to claim 2 or 3, wherein the intensity balance of the color mixture is changed by overlapping a plurality of the wavelength conversion units and adjusting their positions. 前記LEDチップに流れる電流量を抵抗体により調整することによって当該LEDチップが放射する光の波長を変えることを特徴とする請求項1に記載の発光装置の製造方法。   The method of manufacturing a light emitting device according to claim 1, wherein the wavelength of light emitted by the LED chip is changed by adjusting the amount of current flowing through the LED chip with a resistor. 前記波長変換部の温度を変えることによって蛍光体の光特性を変えることを特徴とする請求項1に記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 1, wherein the light characteristic of the phosphor is changed by changing the temperature of the wavelength conversion unit. 前記LED発光部の熱抵抗を変えることによって当該LEDチップが放射する光の波長を変えることを特徴とする請求項1に記載の発光装置の製造方法。   The method of manufacturing a light emitting device according to claim 1, wherein the wavelength of light emitted by the LED chip is changed by changing a thermal resistance of the LED light emitting unit.
JP2005126398A 2005-04-25 2005-04-25 Method for manufacturing light emitting device Active JP4692059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005126398A JP4692059B2 (en) 2005-04-25 2005-04-25 Method for manufacturing light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005126398A JP4692059B2 (en) 2005-04-25 2005-04-25 Method for manufacturing light emitting device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2010294381A Division JP2011066460A (en) 2010-12-29 2010-12-29 Light-emitting device
JP2010294380A Division JP2011077551A (en) 2010-12-29 2010-12-29 Light emitting device

Publications (2)

Publication Number Publication Date
JP2006303373A JP2006303373A (en) 2006-11-02
JP4692059B2 true JP4692059B2 (en) 2011-06-01

Family

ID=37471272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005126398A Active JP4692059B2 (en) 2005-04-25 2005-04-25 Method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP4692059B2 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462502B2 (en) * 2004-11-12 2008-12-09 Philips Lumileds Lighting Company, Llc Color control by alteration of wavelength converting element
JP2007049114A (en) 2005-05-30 2007-02-22 Sharp Corp Light emitting device and method of manufacturing the same
JP2007066969A (en) * 2005-08-29 2007-03-15 Toshiba Lighting & Technology Corp White light emitting diode and its fabrication process
US7344952B2 (en) 2005-10-28 2008-03-18 Philips Lumileds Lighting Company, Llc Laminating encapsulant film containing phosphor over LEDs
US8969908B2 (en) 2006-04-04 2015-03-03 Cree, Inc. Uniform emission LED package
JP4986608B2 (en) * 2006-12-26 2012-07-25 京セラ株式会社 Light emitting device and lighting device
KR100862532B1 (en) * 2007-03-13 2008-10-09 삼성전기주식회사 Method of manufacturing light emitting diode package
JP5089212B2 (en) * 2007-03-23 2012-12-05 シャープ株式会社 LIGHT EMITTING DEVICE, LED LAMP USING THE SAME, AND METHOD FOR MANUFACTURING LIGHT EMITTING DEVICE
US9401461B2 (en) 2007-07-11 2016-07-26 Cree, Inc. LED chip design for white conversion
US10505083B2 (en) 2007-07-11 2019-12-10 Cree, Inc. Coating method utilizing phosphor containment structure and devices fabricated using same
US8783887B2 (en) * 2007-10-01 2014-07-22 Intematix Corporation Color tunable light emitting device
US20090117672A1 (en) * 2007-10-01 2009-05-07 Intematix Corporation Light emitting devices with phosphor wavelength conversion and methods of fabrication thereof
JP2009158541A (en) * 2007-12-25 2009-07-16 Citizen Electronics Co Ltd Manufacturing method of light emitting diode
US8531126B2 (en) 2008-02-13 2013-09-10 Canon Components, Inc. White light emitting apparatus and line illuminator using the same in image reading apparatus
US8877524B2 (en) * 2008-03-31 2014-11-04 Cree, Inc. Emission tuning methods and devices fabricated utilizing methods
JP5709943B2 (en) * 2008-04-24 2015-04-30 シチズンホールディングス株式会社 LED light source manufacturing method
KR101670107B1 (en) 2009-02-05 2016-11-09 씨씨에스 가부시키가이샤 Led light emitting device
JP5680278B2 (en) * 2009-02-13 2015-03-04 シャープ株式会社 Light emitting device
JP5322728B2 (en) * 2009-03-27 2013-10-23 シチズンホールディングス株式会社 LED light source and method of manufacturing LED light source
KR101092261B1 (en) 2009-08-24 2011-12-12 갤럭시아일렉트로닉스(주) Led package comprising film for improving contrast and display device using the same
US8679865B2 (en) 2009-08-28 2014-03-25 Samsung Electronics Co., Ltd. Resin application apparatus, optical property correction apparatus and method, and method for manufacturing LED package
KR101510151B1 (en) 2009-12-18 2015-04-10 삼성전자주식회사 Apparatus for correcting optic property of light emitting device and Method thereof
JP2011091101A (en) * 2009-10-20 2011-05-06 Stanley Electric Co Ltd Light emitting device and method of manufacturing light emitting device
JP4998540B2 (en) * 2009-12-02 2012-08-15 三菱電機株式会社 Light emitting device
KR20110094996A (en) * 2010-02-18 2011-08-24 엘지이노텍 주식회사 Package of light emitting device and method for fabricating the same and lighting system including the same
US8273589B2 (en) * 2010-03-19 2012-09-25 Micron Technology, Inc. Light emitting diodes and methods for manufacturing light emitting diodes
JP2011228403A (en) * 2010-04-16 2011-11-10 Panasonic Electric Works Co Ltd Wavelength conversion member and lighting device using the same
JP5828100B2 (en) 2010-04-21 2015-12-02 パナソニックIpマネジメント株式会社 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
CN102376860A (en) 2010-08-05 2012-03-14 夏普株式会社 Light emitting apparatus and method for manufacturing thereof
JP2012195552A (en) * 2010-10-13 2012-10-11 Sharp Corp Light-emitting device and manufacturing method therefor
JP5231609B2 (en) * 2010-12-08 2013-07-10 シャープ株式会社 Light emitting device and manufacturing method thereof
JP5610212B2 (en) * 2010-09-24 2014-10-22 ミネベア株式会社 Light emitting device
JP2012074423A (en) * 2010-09-27 2012-04-12 Panasonic Electric Works Sunx Co Ltd Led module
JP2011066460A (en) * 2010-12-29 2011-03-31 Panasonic Electric Works Co Ltd Light-emitting device
JP2011077551A (en) * 2010-12-29 2011-04-14 Panasonic Electric Works Co Ltd Light emitting device
JP5843859B2 (en) * 2011-07-01 2016-01-13 シチズンホールディングス株式会社 Manufacturing method of semiconductor light emitting device
JP2013038136A (en) * 2011-08-04 2013-02-21 Sharp Corp Light-emitting device and display device
US8558252B2 (en) 2011-08-26 2013-10-15 Cree, Inc. White LEDs with emission wavelength correction
US10056531B2 (en) 2011-08-26 2018-08-21 Lumileds Llc Method of processing a semiconductor structure
US8687147B2 (en) * 2011-11-14 2014-04-01 Planck Co., Ltd. Color regulating device for illumination and apparatus using the same, and method of regulating color
JP5806153B2 (en) * 2012-03-21 2015-11-10 京セラ株式会社 Light emitting device
JP5649202B2 (en) 2012-04-24 2015-01-07 株式会社光波 Phosphor, method for manufacturing the same, and light emitting device
WO2013175752A1 (en) * 2012-05-25 2013-11-28 日本電気株式会社 Wavelength conversion member, optical element, light-emitting device, and projection device
DE102012106949A1 (en) 2012-07-30 2014-01-30 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component
KR102024592B1 (en) * 2012-11-26 2019-09-24 엘지전자 주식회사 Light emitting device package
WO2014112231A1 (en) * 2013-01-21 2014-07-24 シャープ株式会社 Light emitting device, light guide device, and method for manufacturing light emitting device
JP2014192326A (en) * 2013-03-27 2014-10-06 Nitto Denko Corp Optical semiconductor device manufacturing method
WO2014167840A1 (en) * 2013-04-12 2014-10-16 東レエンジニアリング株式会社 Led manufacturing device and led manufacturing method
CN103447247B (en) * 2013-09-02 2015-12-23 深圳市华星光电技术有限公司 Be applicable to screening technique and the backlight module of the fluorescent material blooming piece of backlight module
KR102116823B1 (en) 2013-09-13 2020-06-01 삼성디스플레이 주식회사 Light source, menufacturing method thereof, and back light unit including the same
WO2015182537A1 (en) * 2014-05-28 2015-12-03 京セラ株式会社 Light emitting device
CN114146317A (en) * 2021-11-04 2022-03-08 中国科学院半导体研究所 Wearable noninvasive phototherapy device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542820U (en) * 1978-09-14 1980-03-19
JPH0429379A (en) * 1990-05-24 1992-01-31 Matsushita Electric Ind Co Ltd Led array light source
JPH09270537A (en) * 1996-04-01 1997-10-14 Nichia Chem Ind Ltd Photoelectric conversion device
JPH1146019A (en) * 1997-07-28 1999-02-16 Nichia Chem Ind Ltd Light-emitting diode and method for forming led indicator
JPH11145519A (en) * 1997-09-02 1999-05-28 Toshiba Corp Semiconductor light-emitting element, semiconductor light-emitting device, and image-display device
JP2001245482A (en) * 1999-07-06 2001-09-07 Honda Electronic Co Ltd Ultrasonic motor
JP2002009349A (en) * 2000-06-26 2002-01-11 Koha Co Ltd Surface emission led and its manufacturing method
JP2003046134A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Method of manufacturing light emitting device
JP2003046133A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Light emitting device and method of manufacturing the same
JP2003258309A (en) * 2002-03-01 2003-09-12 Rohm Co Ltd Packaged light emitting device
JP2003347601A (en) * 2002-05-28 2003-12-05 Matsushita Electric Works Ltd Light emitting diode illuminator
JP2004103912A (en) * 2002-09-11 2004-04-02 Noritz Corp Light emitting mold containing fluorescent pigment
JP2004119743A (en) * 2002-09-26 2004-04-15 Citizen Electronics Co Ltd Manufacturing method of white light emitting device
JP2004221536A (en) * 2002-12-24 2004-08-05 Nanotemu:Kk Light emitting element and manufacturing method thereof
JP2004349647A (en) * 2003-05-26 2004-12-09 Matsushita Electric Works Ltd Light-emitting device and method of manufacturing the same
JP2005039104A (en) * 2003-07-17 2005-02-10 Sanyo Electric Co Ltd Light emitting diode and its manufacturing method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542820U (en) * 1978-09-14 1980-03-19
JPH0429379A (en) * 1990-05-24 1992-01-31 Matsushita Electric Ind Co Ltd Led array light source
JPH09270537A (en) * 1996-04-01 1997-10-14 Nichia Chem Ind Ltd Photoelectric conversion device
JPH1146019A (en) * 1997-07-28 1999-02-16 Nichia Chem Ind Ltd Light-emitting diode and method for forming led indicator
JPH11145519A (en) * 1997-09-02 1999-05-28 Toshiba Corp Semiconductor light-emitting element, semiconductor light-emitting device, and image-display device
JP2001245482A (en) * 1999-07-06 2001-09-07 Honda Electronic Co Ltd Ultrasonic motor
JP2002009349A (en) * 2000-06-26 2002-01-11 Koha Co Ltd Surface emission led and its manufacturing method
JP2003046134A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Method of manufacturing light emitting device
JP2003046133A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Light emitting device and method of manufacturing the same
JP2003258309A (en) * 2002-03-01 2003-09-12 Rohm Co Ltd Packaged light emitting device
JP2003347601A (en) * 2002-05-28 2003-12-05 Matsushita Electric Works Ltd Light emitting diode illuminator
JP2004103912A (en) * 2002-09-11 2004-04-02 Noritz Corp Light emitting mold containing fluorescent pigment
JP2004119743A (en) * 2002-09-26 2004-04-15 Citizen Electronics Co Ltd Manufacturing method of white light emitting device
JP2004221536A (en) * 2002-12-24 2004-08-05 Nanotemu:Kk Light emitting element and manufacturing method thereof
JP2004349647A (en) * 2003-05-26 2004-12-09 Matsushita Electric Works Ltd Light-emitting device and method of manufacturing the same
JP2005039104A (en) * 2003-07-17 2005-02-10 Sanyo Electric Co Ltd Light emitting diode and its manufacturing method

Also Published As

Publication number Publication date
JP2006303373A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4692059B2 (en) Method for manufacturing light emitting device
JP2011077551A (en) Light emitting device
US6909234B2 (en) Package structure of a composite LED
US7997760B2 (en) Enamel substrate for mounting light emitting elements, light emitting element module, illumination apparatus, display apparatus, and traffic signal
US9515055B2 (en) Light emitting devices including multiple anodes and cathodes
US8294162B2 (en) LED device and LED lighting apparatus
US9961770B2 (en) Solder pads, methods, and systems for circuitry components
TWI481069B (en) Optical film
EP2182783A2 (en) Light-emitting module and illuminating apparatus
EP2334147B1 (en) Illumination device
JP2007067326A (en) Light emitting diode and method of manufacturing same
JP2007027157A (en) Light emitting diode device, its manufacturing method, and illumination apparatus
JP7179923B2 (en) Light emitting device and toning device
US7285803B2 (en) Light-emitting diode lamp having a terminal portion with a notch portion
JP2009224074A (en) Led lighting device
JP2012019104A (en) Light emitting apparatus
JP4754245B2 (en) Manufacturing method of light emitting element unit
JP2014017459A (en) Light device
JP2011091101A (en) Light emitting device and method of manufacturing light emitting device
WO2014068983A1 (en) Method for manufacturing light-emitting device and light-emitting device
JP2011066460A (en) Light-emitting device
US10161574B2 (en) Light-emitting device, lighting device, and method of manufacturing light-emitting device
JP6695114B2 (en) Light emitting device
TWI596805B (en) Light-emitting element and the manufacturing method of the same
JP2005085912A (en) Led lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4692059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150