JP4685979B2 - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP4685979B2
JP4685979B2 JP2001043625A JP2001043625A JP4685979B2 JP 4685979 B2 JP4685979 B2 JP 4685979B2 JP 2001043625 A JP2001043625 A JP 2001043625A JP 2001043625 A JP2001043625 A JP 2001043625A JP 4685979 B2 JP4685979 B2 JP 4685979B2
Authority
JP
Japan
Prior art keywords
resin
wiring board
electronic component
wiring
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001043625A
Other languages
Japanese (ja)
Other versions
JP2001313467A (en
Inventor
英司 小寺
照久 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2001043625A priority Critical patent/JP4685979B2/en
Publication of JP2001313467A publication Critical patent/JP2001313467A/en
Application granted granted Critical
Publication of JP4685979B2 publication Critical patent/JP4685979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、配線基板本体の内部に電子部品を内蔵した配線基板、およびかかる配線基板の表面上方にICチップ等の半導体素子を搭載した配線基板に関する。
【0002】
【従来の技術】
近年における配線基板の小型化および配線基板内における配線の高密度化に対応するため、配線基板の第1主面上にICチップなどの電子部品を搭載するだけでなく、コア基板の内部に電子部品を内蔵する配線基板が提案されている。
例えば、図5(A)に示す配線基板50は、絶縁基板51に明けた貫通孔52にチップコンデンサ53を挿入し、その両端の電極54,54をハンダ58を介して、絶縁基板51および隣接する絶縁層56の間に形成したランド57と接続している。貫通孔52内に樹脂59を充填することで、上記コンデンサ53を固着して内臓する。かかるコンデンサ53内には内部電極55が内設されている。
【0003】
また、図5(B)に示す配線基板60は、絶縁基板61に明けた貫通孔62の一方の開口部を、予め図示しない粘着性の仮固定膜により塞ぎ、この仮固定膜に内部電極65を有するチップコンデンサ63を貼り付けた状態で、貫通孔62内に樹脂69を充填し固化させた後、上記仮固定膜を除去したものである。
上記配線基板60は、図5(B)に示すように、上記コンデンサ63の両端に位置する電極64,64を、予め上記絶縁基板61とこれに隣接する絶縁層66との間に設けたランド67,67にハンダ68を介して接続している。
【0004】
【発明が解決すべき課題】
しかしながら、以上の配線基板50,60では、絶縁基板51,61とその貫通孔52,62に充填される樹脂59,69との間、および、樹脂59,69とこれに埋設されるコンデンサ(電子部品)53,63との間、の少なくとも何れかにおいて、製造過程での加熱時に熱膨張率の差により境界付近で絶縁基板51,61や樹脂59,69に割れが生じることがある。このため、前記ハンダ58,68が割れたり剥離するため、電子部品53,63と配線基板50,60内部の配線層との導通が不安定になったり断線したりする、という問題があった。
本発明は、以上に説明した従来の技術における問題点を解決し、配線基板本体に樹脂を介して電子部品を内蔵する配線基板において、かかる樹脂や配線基板本体が割れたり破損せず、上記電子部品と内部の配線層などとの導通を確実且つ安定して取り得る配線基板を、提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明は、上記課題を解決するため、配線基板本体、樹脂、および埋設される電子部品などの熱膨張率の関係に着目することにより、成されたものである。
即ち、本発明の配線基板(請求項1)は、表・裏面を有する絶縁性の配線基板本体と、この配線基板本体に設けた貫通孔または凹部と、かかる貫通孔または凹部内に内蔵され且つ樹脂を介して固着される電子部品と、上記配線基板本体の表面および裏面の少なくとも一方の上に形成される絶縁層およびハンダよりも高融点の材料からなる配線層と、を含上記電子部品は、上記貫通孔または凹部内で上記樹脂に包囲され、上記配線層は、上記樹脂の表面および裏面の少なくとも一方に露出する上記電子部品の電極の端部と接続されると共に、上記配線基板本体、樹脂、電子部品、および、絶縁層の熱膨張率α1,α2,α3,α5が数式の関係にある、ことを特徴とする配線基板。
【0006】
【数3】
α3<α1≦α2≦α5
【0007】
これによれば、配線基板本体の熱膨張率α1は、電子部品の熱膨張率α3よりも大きく、且つ上記電子部品が埋設される樹脂の熱膨張率α2と等しいかまたはそれより小さいと共に、絶縁層の熱膨張率α5は、上記樹脂の熱膨張率α2と同じかそれ以上の関係にある。
このため、溶けた上記樹脂を固化させる際や別途の位置での加熱に際し、上記電子部品、配線基板本体、および樹脂が膨張しても、絶縁層は更に大きく膨張する。この結果、かかる配線基板本体の貫通孔または凹部、あるいは上記電子部品を包囲する樹脂が大きくなっても、これらを絶縁層の膨張が吸収できる。従って、樹脂や配線基板本体が割れたり破損する事態を防止できるので、電子部品と内部の配線層との間における導通を安定して確実に取ることが可能となる。
【0008】
尚、本明細書において、熱膨張率とは、対象物の縦・横(X−Y、配線基板の厚み方向に対する直角方向)方向における熱膨張率を言う
【0009】
また、本発明には、前記配線基板本体の表面上方に搭載され且つ前記電子部品と導通される半導体素子を更に含むと共に、上記配線基板本体、樹脂、電子部品、および、半導体素子の熱膨張率α1,α2,α3,α4(即ち、配線基板本体の熱膨張率:α1、樹脂の熱膨張率:α2、電子部品の熱膨張率:α3、半導体素子の熱膨張率:α4とする)が数式4の関係にある、配線基板(請求項2)も含まれる
【0010】
【数4】
α4≦α3<α1≦α2
【0011】
これによれば、前記数式3の関係に加え、半導体素子の熱膨張率α4は内蔵される電子部品の熱膨張率α3と同じかそれ以下の関係にあるこのため、例えば配線基板の第1主面上に半導体素子を搭載する際のハンダ付け時において、半導体素子が熱膨しても電子部品と同じかそれ以下となり、配線基板本体や電子部品を埋設する樹脂に影響しなくなる従って、第1主面上などに搭載した半導体素子と電子部品とを直にまたは内部の配線層を介して確実且つ安定して導通できると共に、かかる配線基板を効率良く製造することも可能となる
【0013】
更に、本発明には、前記樹脂の熱膨張率α2が、40ppm/℃よりも小さい、配線基板(請求項3)も含まれる
これによれば、前記樹脂や配線基板本体が割れたり破損する事態を防止したり、半導体素子の膨張による配線基板本体などへの影響を一層確実に防ぐことが可能となる尚、上記熱膨張率α2は、35ppm/℃以下(望ましくは30ppm/℃以下、より望ましくは25ppm/℃以下、更に望ましくは20ppm/℃以下、但し下限値は10ppm/℃以上)が一層望ましい
【0014】
、上記何れかの配線基板本体には、内部配線を有する絶縁基板や、複数の絶縁板と配線とを積層した基板などの多層基板も含まれる。且つ、これらの配線基板本体は、ガラスクロスやガラスフィラ入りの配線基板本体としても良い。
【0015】
【発明の実施の形態】
以下において本発明の実施に好適な形態を図面と共に説明する。
図1は、本発明による1形態の配線基板1における主要部の断面を示す。
配線基板1は、配線基板本体(以下コア基板という)2と、その表・裏面3,4上に複数の絶縁層22,23,28,29,34,35と、配線層20,21,26,27,32,33とを有する。コア基板2の表面3の上方の配線層20,26,32および絶縁層22,28,34は、ビルドアップ層BU1を構成し、裏面4の下方の配線層21,27,33および絶縁層23,29,35は、ビルドアップ層BU2を構成する。
上記コア基板2は、ガラスクロス−エポキシ樹脂の複合材からなり平面視で矩形を呈する絶縁性の板材で、ほぼ中央に平面視がほぼ正方形で表・裏面3,4間を貫通する貫通孔6を有する。かかる貫通孔6内には、箱形状の電子部品ユニット10がエポキシ樹脂を主成分とする樹脂11を介して固着され埋設・内蔵されている。尚、本実施形態では、上記樹脂11には、熱膨張率α2が32ppm/℃の樹脂を用いられている。
【0016】
上記電子部品ユニット10は、図2に示すように、同じ形状の8個のチップコンデンサ(電子部品)12をエポキシ樹脂からなるモールド樹脂18により予め一体に固着したものである。尚、かかるモールド樹脂18には、樹脂11と同じ熱膨張率α2の32ppm/℃の樹脂を用いる。
各チップコンデンサ12の上面には、図2で前後方向にCuからなる一対ずつの電極14が形成され、各チップコンデンサ12の底面にも図示しない電極16が同じ位置に形成されている。これら電極14,16の上端は、上記モールド樹脂18の表・裏面から約数10μm程度突出している。各コンデンサ12には、例えばチタン酸バリウムを主成分とする誘電体層とNiを主成分とする電極層とを交互に積層したセラミックコンデンサが用いられる。
【0017】
図1に示すように、コア基板2の貫通孔6の左右には、スルーホール7が穿孔され、それらの内部に円筒状のスルーホール導体8および充填樹脂9が形成されている。コア基板2の表・裏面3,4および樹脂11の表・裏面上には、公知のビルドアップ工程(サブトラクティブ法、フルアディティブ法、セミアディティブ法等)により、所定パターンを有する銅製の配線層20,21がCuメッキにより形成されている。配線層20,21は、前記電子部品12の各電極14,16の上・下端と接続されている。
また、配線層20,21上には、エポキシ樹脂を主成分とし且つシリカなどの無機フィラを含む絶縁層22,23とその上の配線層26,27が形成され、且つ上下の配線層20,26間や、配線層21,27間を接続するフィルドビア導体24,25が、銅メッキにより絶縁層22,23を貫通して形成されている。
尚、上記ビア導体24などが形成される前のビアホールの形成は、フォトリソグラフィ技術、またはレーザ(YAG、CO、エキシマなど)照射により行われる。また、前記各コンデンサ12の電極14,16は、その真上で左右方向に連続する転換層を兼ねる配線層26,27を介して互いに接続される。このため、8個のコンデンサ12は、並列に接続され静電容量の大きな合成コンデンサを形成する。
【0018】
同様にして、配線層26,27上には、絶縁層28,29と配線層32,33およびフィルドビア導体30,31が形成される。更に、絶縁層28および配線層32の上に形成したソルダーレジスト層(絶縁層)34には、配線層32上に位置し且つ上端が第1主面34aよりも高く突出するハンダ製のフリップチップバンプ36が、複数個貫通する。各バンプ36には、第1主面34a上に搭載されるICチップ(半導体素子)38の底面における接続端子39が個別に接続され、且つこれらの周囲にエポキシ樹脂を主成分するアンダーフィル材39aが厚さ約60μmにして充填される。
一方、絶縁層29および配線層33の下にはソルダーレジスト(絶縁層)層35が形成され、第2主面35aに向けて開口した複数の開口部35b内には、上記配線層33内の配線37が露出し、その表面に薄いNiおよびAuメッキを被覆され、図示しないマザーボードなどと接続するための接続端子を形成している。かかる接続端子となる配線37には、ピン(コバール、Fe−42wt%Ni合金、銅など)がハンダ付けされていても良い。
【0019】
ここで、上記配線基板1の製造方法の主要な工程を図3により説明する。
図3(A)は、平面視が正方形で一辺が31mm、厚さ0.8mmのガラスクロス入りのコア基板2の所定位置(中央)に穿孔した一辺が12mmの正方形を呈する貫通孔6内に、一辺が9mmの正方形で厚さが0.75mmの電子部品ユニット10を挿入する状態を示す。
貫通孔6における裏面4側の開口部は、図3(A)に示すように、粘着面5aを上向きにしたテープ5により、予め閉塞されている。貫通孔6内に挿入された電子部品ユニット10は、その裏面側に突出する各チップコンデンサ12の複数の電極16がテープ5の粘着面5aに接着することにより、位置決めされる。
【0020】
上記ユニット10が位置決めされた状態で、貫通孔6内に表面3側からエポキシ樹脂を主成分とする溶けた樹脂11を注入した後、キュア処理を施して固化する。この結果、図3(B)に示すように、電子部品ユニット10は貫通孔6内で固化した樹脂11に固着し且つ内蔵される。上記電子部品ユニット10のモールド樹脂18は、キュア処理後に樹脂11と一体化して、電子部品12,12を固着し且つ内する樹脂11となる(即ち、モールド樹脂18と樹脂11とは、同一の熱膨張率を有するため、実質的に同一物となる)。
更に、テープ5を剥離するとこれに倣った樹脂11の平坦な裏面11bには、前記各電極16の下端面が露出する。
次いで、図3(B)に示す樹脂11の盛り上がった表面11aを、例えばバフ研磨により平坦に整面する。この結果、図3(C)に示すように、樹脂11の新たな表面11cには、前記複数の電極14の上端面が露出する。
【0021】
これ以降は、前述した方法によって絶縁層22,23などおよび配線層20,21,26,27などからなるビルドアップ層BU1,BU2、ビア導体24,25など、および前記バンプ36や接続端子用の配線37が形成される。
尚、樹脂11の裏面11bも上記と同様に整面すると、一層望ましくなる。また、上記製造方法では、複数の電子部品12を予め一体化した前記ユニット10を用いたが、各電子部品12毎にチップマウンタなどを用いて貫通孔6内に個別に内蔵した後、樹脂11を充填してキュア処理を行うこともできる。
ところで、コア基板2、樹脂11、電子部品たるチップコンデンサ12、および、ビルドアップ層BU1,BU2を形成する絶縁層22,23などの各熱膨張率α1,α2,α3,α5は、数式の関係になるように予め設定されている。
【0022】
【数5】
α3<α1≦α2≦α5
【0023】
本実施形態では、α1:15ppm/℃、α2:32ppm/℃、α3:10ppm/℃とした。これにより、前記樹脂11のキュア処理時の加熱や第1主面34a上にICチップ38を搭載する際の前記バンプ36の加熱時において、各コンデンサ12が膨張してもコア基板2や樹脂11は更に大きく膨張し、コア基板2の貫通孔6および各コンデンサ12を包囲する樹脂11自体が大きくなる。
従って、樹脂11やコア基板2が割れたり破損する事態を防止できるので、各コンデンサ12と内部の配線層20,21などとの間における導通を安定した状態で確実に取ることが可能となる。尚、前記電子部品ユニット10に用いるモールド樹脂18の熱膨張率は、樹脂11の熱膨張率α2とほぼ同じ値である。
また、前記コア基板2、樹脂11、電子部品であるチップコンデンサ12の熱膨張率α1〜α3に更にICチップ(半導体素子)38の熱膨張率α4を加えると、数式6の関係になる。
【0024】
【数6】
α4≦α3<α1≦α2
【0025】
本実施形態では、α4:4ppm/℃とした。このため、例えば第1主面34a上にICチップ38を搭載する際の前記バンプ36の加熱時にて、ICチップ38が熱膨してもその熱膨張率α4は各コンデンサ(電子部品)12と同じかそれ以下であるため、コア基板2やコンデンサ12を埋設する樹脂11に影響しなくなる。従って、搭載したICチップ38と各コンデンサ12とを、配線層20などを介して確実且つ安定して導通させることができる
【0027】
本実施形態では、α5:60ppm/℃とした。このため、前記数式5のように、絶縁層22,23などの熱膨張率α5は、樹脂の熱膨張率α2と同じかそれ以上の関係となる。この結果、樹脂11を固化させる際や別途の位置での加熱に際し、上記各コンデンサ(電子部品)12、配線基板本体2、および樹脂11が膨張しても、絶縁層22,23などはこれらよりも更に大きく膨張するので、樹脂11などの膨張を吸収できる。従って、樹脂11や配線基板本体2が割れたり破損する事態を防止できるため、各コンデンサ12と絶縁層22,23,28,29間などの配線層26,27などとの間における導通を安定して確実に取ることが可能となる。
【0028】
以上のような配線基板1によれば、コア基板(配線基板本体)2の貫通孔6に、樹脂11を介して内臓される電子部品ユニット10中の各チップコンデンサ12における電極14,16と配線層20,21との接続部分も断線しにくくなり、その導通が安定する。
尚、各コンデンサ12の電極14,16およびこれらに接続する配線層20,21は、上記Cu同士のような同じ材料で且つハンダよりも高融点の材料が適用される。これによりICチップ38を搭載する際のハンダ製の前記バンプ36の加熱時にも断線を防止できる。
【0029】
このため、各コンデンサ12と第1主面34a上に搭載したICチップ38との間も比較的短い配線で安定した導通を得ることができる。また、各コンデンサ12の電極16と第2主面35側の配線(接続端子)37との間も比較的短い配線で安定した導通が得られ、且つ配線基板1自体を搭載するマザーボードなどとの導通も確実となる。従って、小型化し且つ配線が高密度する配線基板1において、そのコア基板2に内蔵する電子部品たるコンデンサ12を安定して活用することができ、且つそれらの耐久性に優れたものとすることができる。
尚、配線層20,21は、各コンデンサ12とは別にスルーホール導体8を介して互いに導通される。また、ビア導体24,25,30,31は、前記図1で示したフィルドビアとし且つ厚さ方向に直線状に積み上がるスタックドビアにすることが望ましい。これにより、各コンデンサ12と第1主面34a上に搭載するICチップ38との間を最短距離で接続できるため、電気的特性が向上すると共に、各コンデンサ12とマザーボードとの間も短い距離で接続することができる。
【0030】
【実施例】
ここで本発明の配線基板の具体的な実施例を比較例と共に説明する。
前記と同じサイズのコア基板2を複数個用意し、それらの貫通孔6内に前記電子部品ユニット10を、熱膨張率α2が互いに異なる樹脂11を用い同じ条件にて、前記図3(C)に示すように固着して内蔵した。これらのうち、樹脂11の熱膨張率α2が15ppm/℃、32ppm/℃のものを実施例1,2とし、熱膨張率α2が45ppm/℃のものを比較例1とした。
実施例1,2および比較例1の一部を、前記図1のような配線基板1に形成すると共に、その第1主面34a上に熱膨張率が30ppm/℃以下のアンダーフィル材39aを介して、熱膨張率α4が4ppm/℃のICチップ38を搭載した。このうち実施例1,2の前記コア基板2などを用いたものを実施例3,4、比較例1のコア基板2などを用いたものを比較例2とした。
尚、実施例1,2および比較例1は、絶縁層の熱膨張率を除いた前記数式を、実施例3,4および比較例2は前記数式をそれぞれ満たしている。
各例について3個ずつ用意したものに対して、+125℃と−55℃との間を1000回(サイクル)ずつ加熱・冷却する信頼性(熱衝撃)テストを行った。かかるテストにおいて、各例の樹脂11に割れが生じたか否かを、1000回終了後においてそれぞれ観察した。それらの結果を表1に示す。
【0031】
【表1】

Figure 0004685979
【0032】
表1の結果によれば、実施例1〜4では、何れも樹脂11に割れが生じていなかったのに対し、比較例1,2では、3個全てが樹脂11に割れが生じていた。
かかる結果から、コア基板2、樹脂11、チップコンデンサ12、およびICチップ38の熱膨張率α1,α2,α3,α4が前記数式5の関係と、数式6を満たすと共に、樹脂11の熱膨張率α2を40ppm/℃以下、好ましくは35ppm/℃以下にすることが肝要であることが理解される。これにより、本発明の配線基板の効果が裏付けられたことも容易に理解されよう。
【0033】
図4は異なる形態の配線基板における製造方法の主要な工程に関する。尚、以下において、前記形態と同じ部分や要素には前記と共通する符号を用いる。
図4(A)は、ガラスクロス入りのコア基板(配線基板本体)40の表面41側に開口する凹部44内に前記と同じ電子部品ユニット10を挿入する状態を示す。
尚、上記凹部44を有するコア基板40は、貫通孔を有する図示しない厚肉の絶縁板と薄肉で平板の絶縁板とを、予め接着シートを介して積層し加熱および圧着することにより形成されるが、凹部44を単一の絶縁板からルータなどを用いて座ぐり加工により形成したものを用いても良い。
図4(A)に示すように、凹部44の底面45とコア基板40の裏面42との間には、複数のスルーホール46が貫通し、各ホール46内には円筒形のスルーホール導体48および充填樹脂47が貫通して形成されている。
【0034】
図4(B)に示すように、各スルーホール導体48の上端部と、挿入された電子部品ユニット10の各コンデンサ12の底面における電極16とを、Sn−Ag系合金からなるロウ材(低融点合金)49を介して個別に予め接続しておく。かかる状態で、凹部44内に溶けた樹脂11を注入した後、キュア処理を施す。その結果、図4(B)に示すように、凹部44内において電子部品ユニット10は、固化した樹脂11に固着および埋設され且つ凹部44に内される。
更に、樹脂11の盛り上がった表面11aを研磨して平坦に整面することにより、図4(C)に示すように、新たに形成される樹脂11の表面11cには、上記ユニット10中における各コンデンサ12の電極14の上端面が露出する。
【0035】
以降は、前記図1に示したように、コア基板40の表・裏面41,42上に前記図1で示した絶縁層22,23など、配線層20,21などからなるビルドアップ層BU1,BU2、およびフィルドビア導体24,25などが形成される。
この際、各電極14は前記配線層20と接続され、上記スルーホール導体48の下端は前記配線層21/27と接続される。また、図1と同様にコア基板40の表・裏面41,42間を貫通するスルーホール導体8(図示せず)が形成されると共に、第1・第2主面34a,35a側に前記バンプ36や配線(接続端子)37が形成される。これにより、凹部44に複数のチップコンデンサ12を有する電子部品ユニット10を内蔵したコア基板40を備える配線基板が得られる。
【0036】
尚、上記コア基板(配線基板本体)40、樹脂11、チップコンデンサ(電子部品)12の熱膨張率α1,α2,α3は、前記数式の関係下に設定されている。
また、ICチップ(半導体素子)38および絶縁層22などの熱膨張率α4,α5は、前記数式の関係下に設定されている。本実施形態では、配線基板本体(コア基板)40の熱膨張率α1:16ppm/℃、樹脂11の熱膨張率α2:23ppm/℃、チップコンデンサ(電子部品)12の熱膨張率α3:8ppm/℃、ICチップ(半導体素子)38の熱膨張率α4:4ppm/℃、絶縁層22などの熱膨張率α5:60ppm/℃、とした。
【0037】
本発明は、以上において説明した各形態や実施例に限定されるものではない。
例えば、前記電子部品には、インダクタ、抵抗、フィルタなどの受動部品や、ローノイズアンプ(LNA)、メモリ、半導体素子、FET、またはトランジスタなどの能動部品、あるいは、SAWフィルタ、LCフィルタ、アンテナスイッチモジュール、ダイプレクサなどや、これらをチップ状にしたもの、更には、これらのうち異種のもの同士を同じ貫通孔や凹部内に内蔵しても良い。
また、電子部品は、一つのみを配線基板本体(コア基板)の貫通孔や凹部内に内蔵しても良い。この場合、電子部品の電極をハンダ付けにより、配線層やこれに接続するランドに接続することも可能である。
【0038】
更に、配線基板本体(コア基板)には、複数の貫通孔または凹部を形成しても良く、あるいは、かかる貫通孔と凹部とを隣接して併設することも可能である。
また、配線基板本体(コア基板)2,40の材質は、前記ガラス−エポキシ樹脂複合材料の他、同様の耐熱性、機械強度、可撓性、加工容易性などを有するガラス織布や、ガラス織布などのガラス繊維とエポキシ樹脂、ポリイミド樹脂、BT樹脂などの樹脂との複合材料であるガラス繊維−樹脂材料を用いても良い。あるいは、ポリイミド繊維などの有機繊維と樹脂との複合材料、連続気孔を有するPTFEなどの3次元網目構造のフッ素系樹脂にエポキシ樹脂などの樹脂を含浸させた樹脂−樹脂複合材料などを用いることも可能である。
【0039】
更に、絶縁層22,23などの材質は、前記エポキシ樹脂を主成分とするものの他、同様の耐熱性、パターン成形性等を有するポリイミド樹脂、BT樹脂、PPE樹脂、あるいは、連続気孔を有するPTFEなど3次元網目構造のフッ素系樹脂にエポキシ樹脂などの樹脂を含浸させた樹脂−樹脂系の複合材料などを用いることもできる。
また、配線層20,21などの材質は、前記銅メッキの他、Niや、Ni−Auなどにしても良く、あるいは、金属メッキを用いず、導電性樹脂を塗布するなどの方法によって形成することも可能である。
更に、ICチップ38との接続端子には、前記フリップチップバンプ36の他、フリップチップパッド、ワイヤボンディングパッド、あるいはTAB接続用パッドを形成したものなどを用いても良い。
【0040】
また、前記電子部品12のコンデンサでは、BaTiOを主成分とする高誘電体セラミックを用いたが、PbTiO,PbZrO,TiO,SrTiO,CaTiO,MgTiO,KNbO,NaTiO,KTaO,PbTaO,(Na1/2Bi1/2)TiO,Pb(Mg1/21/2)O,(K1/2Bi1/2)TiOなどを主成分とするものを用いても良い。
更に、前記電子部品12の電極14,16の材質は、Cuを主成分としたが、電子部品12との適合性を有するPt,Ag,Ag−Pt,Ag−Pd,Cu,Au,Niなどを用いることができる。
加えて、前記電子部品のコンデンサ12は、高誘電体セラミックを主成分とする誘電体層やAg−Pdなどからなる電極層と、樹脂やCuメッキ、Niメッキなどからなるビア導体や配線層とを複合させたコンデンサとしたものとしても良い。尚、本発明の配線基板には、前記コア基板2,40の表面3,41と裏面4,42上に配線層20,21と絶縁層22,23のみを有する形態も含まれる。
【0041】
【発明の効果】
以上において説明した本発明の配線基板(請求項1)によれば、配線基板本体の熱膨張率α1は、電子部品の熱膨張率α3よりも大きく、且つ上記電子部品が埋設される樹脂の熱膨張率α2と等しいかまたはそれより小さいと共に、絶縁層の熱膨張率α5は、上記樹脂の熱膨張率α2と同じかそれ以上の関係にある。
このため、溶けた上記樹脂を固化させる際や別途の位置での加熱に際し、上記電子部品、配線基板本体、および樹脂が膨張しても、絶縁層は更に大きく膨張する。その結果、かかる配線基板本体の貫通孔または凹部、あるいは上記電子部品を包囲し内する樹脂が大きくなっても、これらを絶縁層の膨張が吸収できる。従って、樹脂や配線基板本体が割れたり破損する事態を防止できるので、電子部品と内部の配線層との間における導通を安定して確実に取ることが可能となる。
【0042】
また、請求項2の配線基板によれば、上記に加えて、半導体素子の熱膨張率が内臓される電子部品の熱膨張率と同じかそれ以下の関係になるため、例えば第1主面上などに半導体素子を搭載する際のハンダ付け時において、半導体素子が熱膨してもその熱膨張率は電子部品と同じかそれ以下となる。このため、配線基板本体や電子部品を埋設する樹脂に影響しなくなる。従って、搭載した半導体素子と電子部品とを直に、または内部の配線層を介して確実且つ安定して導通できると共に、かかる配線基板を効率良く製造することも可能となる。
【0043】
更に、請求項3の配線基板によれば、前記樹脂や配線基板本体が割れたり破損する事態を防止したり、半導体素子の膨張による配線基板本体などへの影響を一層確実に阻止することが可能となる。
【図面の簡単な説明】
【図1】本発明による1形態の配線基板における主要部を示す断面図。
【図2】図1の配線基板に内蔵する電子部品ユニットの斜視図。
【図3】 (A)乃至(C)は図1の配線基板の製造方法における主要な工程を示す概略図。
【図4】 (A)乃至(C)は、異なる形態の配線基板の製造方法における主要な工程を示す概略図。
【図5】 (A)および(B)は、従来の配線基板を示す概略図。
【符号の説明】
1………………………………………配線基板
2,40………………………………配線基板本体(コア基板)
3,41………………………………表面
4,42………………………………裏面
6………………………………………貫通孔
12……………………………………チップコンデンサ(電子部品)
11……………………………………樹脂
22,23,28,29,34,35…絶縁層
34a…………………………………第1主面(配線基板本体の表面上方)
38……………………………………ICチップ(半導体素子)
44……………………………………凹部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wiring board in which an electronic component is built in a wiring board main body, and a wiring board in which a semiconductor element such as an IC chip is mounted above the surface of the wiring board.
[0002]
[Prior art]
In order to cope with the recent miniaturization of the wiring board and the high density of wiring in the wiring board, not only electronic components such as IC chips are mounted on the first main surface of the wiring board, but also the electronics inside the core board. A wiring board with a built-in component has been proposed.
For example, in the wiring board 50 shown in FIG. 5A, the chip capacitor 53 is inserted into the through hole 52 opened in the insulating substrate 51, and the electrodes 54, 54 at both ends thereof are connected to the insulating substrate 51 and the adjacent one via the solder 58. The land 57 formed between the insulating layers 56 to be connected is connected. By filling the through hole 52 with the resin 59, the capacitor 53 is fixed and built in. An internal electrode 55 is provided in the capacitor 53.
[0003]
Further, in the wiring board 60 shown in FIG. 5B, one opening portion of the through hole 62 opened in the insulating substrate 61 is closed in advance with an adhesive temporary fixing film (not shown), and the internal electrode 65 is covered with the temporary fixing film. In a state where the chip capacitor 63 having the above is pasted, the through hole 62 is filled with a resin 69 and solidified, and then the temporary fixing film is removed.
As shown in FIG. 5B, the wiring board 60 is a land in which electrodes 64 and 64 located at both ends of the capacitor 63 are previously provided between the insulating board 61 and an insulating layer 66 adjacent thereto. 67 and 67 are connected via a solder 68.
[0004]
[Problems to be Solved by the Invention]
However, in the above wiring boards 50 and 60, between the insulating substrates 51 and 61 and the resins 59 and 69 filled in the through holes 52 and 62, and between the resins 59 and 69 and capacitors embedded therein (electronics) In at least one of the components) 53 and 63, the insulating substrates 51 and 61 and the resins 59 and 69 may be cracked in the vicinity of the boundary due to the difference in thermal expansion coefficient during heating in the manufacturing process. For this reason, since the solders 58 and 68 are cracked or peeled off, there is a problem that conduction between the electronic components 53 and 63 and the wiring layers inside the wiring boards 50 and 60 becomes unstable or is disconnected.
The present invention solves the problems in the prior art described above, and in a wiring board in which an electronic component is built in the wiring board body via resin, the resin and the wiring board body are not cracked or damaged, It is an object of the present invention to provide a wiring board capable of reliably and stably establishing conduction between a component and an internal wiring layer.
[0005]
[Means for Solving the Problems]
  In order to solve the above-described problems, the present invention has been made by paying attention to the relationship between the thermal expansion coefficients of the wiring board body, the resin, and the embedded electronic component.
  That is, this departureMysteriousThe wiring board (Claim 1) includes an insulating wiring board main body having front and back surfaces, a through hole or a recess provided in the wiring board main body, and is fixed in the through hole or the recess through a resin. And an insulating layer formed on at least one of the front and back surfaces of the wiring board bodyAnd a wiring layer made of a material having a melting point higher than that of solderAnd includingOnly,The electronic component is surrounded by the resin in the through hole or recess, and the wiring layer is connected to an end portion of the electrode of the electronic component exposed on at least one of the front surface and the back surface of the resin.Along with the wiring board body, resin,Electronic components,and,Insulation layerCoefficient of thermal expansion α1, α2, α3α5Is a formula3A wiring board characterized by the following relationship:
[0006]
[Equation 3]
                  α3 <α1 ≦ α2≦ α5
[0007]
  According to this, the thermal expansion coefficient α1 of the wiring board body is larger than the thermal expansion coefficient α3 of the electronic component, and is equal to or smaller than the thermal expansion coefficient α2 of the resin in which the electronic component is embedded.In addition, the thermal expansion coefficient α5 of the insulating layer is equal to or higher than the thermal expansion coefficient α2 of the resin.There is a relationship.
  Therefore, when the molten resin is solidified or heated at a separate position, the electronic componentEven if the wiring board body and resin expand, the insulating layerExpands further. As a result, the resin surrounding the through hole or recess of the wiring board body or the electronic componentCan be absorbed by the expansion of the insulating layer. Therefore, it is possible to prevent the resin and the wiring board main body from being broken or damaged, and thus it is possible to stably and reliably establish electrical conduction between the electronic component and the internal wiring layer.
[0008]
  In this specification, the coefficient of thermal expansion means the coefficient of thermal expansion in the vertical and horizontal directions (XY, the direction perpendicular to the thickness direction of the wiring board) of the object..
[0009]
  The present invention further includes a semiconductor element mounted above the surface of the wiring board body and electrically connected to the electronic component, and the coefficient of thermal expansion of the wiring board body, resin, electronic component, and semiconductor element. α1, α2, α3, α4 (that is, the thermal expansion coefficient of the wiring board body: α1, the thermal expansion coefficient of the resin: α2, the thermal expansion coefficient of the electronic component: α3, and the thermal expansion coefficient of the semiconductor element: α4) 4 includes a wiring board (Claim 2)..
[0010]
[Expression 4]
                 α4 ≦ α3 <α1 ≦ α2
[0011]
  According to this, in addition to the relationship of Formula 3, the thermal expansion coefficient α4 of the semiconductor element is the same as or less than the thermal expansion coefficient α3 of the built-in electronic component..For this reason, for example, when soldering when mounting a semiconductor element on the first main surface of the wiring board, even if the semiconductor element thermally expands, it becomes the same as or lower than the electronic component, and the wiring board body and the electronic component are embedded. No effect on resin.Therefore, the semiconductor element mounted on the first main surface or the like and the electronic component can be reliably and stably conducted directly or through the internal wiring layer, and the wiring board can be efficiently manufactured..
[0013]
  Furthermore, the present invention includes a wiring board (Claim 3) in which the thermal expansion coefficient α2 of the resin is smaller than 40 ppm / ° C..
  According to this, it is possible to prevent the resin and the wiring board main body from being broken or damaged, or to more reliably prevent the influence of the expansion of the semiconductor element on the wiring board main body and the like..The thermal expansion coefficient α2 is more desirably 35 ppm / ° C. or less (preferably 30 ppm / ° C. or less, more desirably 25 ppm / ° C. or less, more desirably 20 ppm / ° C. or less, but the lower limit is 10 ppm / ° C. or more)..
[0014]
stillAny of the above-described wiring board bodies includes an insulating board having internal wiring and a multilayer board such as a board in which a plurality of insulating plates and wiring are laminated. And these wiring board main bodies are good also as a wiring board main body containing glass cloth or glass filler.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the following, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a cross section of a main part of a wiring board 1 according to one embodiment of the present invention.
The wiring board 1 includes a wiring board main body (hereinafter referred to as a core board) 2, a plurality of insulating layers 22, 23, 28, 29, 34, 35 on the front and back surfaces 3, 4, and wiring layers 20, 21, 26. , 27, 32, 33. The wiring layers 20, 26, 32 and the insulating layers 22, 28, 34 above the surface 3 of the core substrate 2 constitute a buildup layer BU 1, and the wiring layers 21, 27, 33 and the insulating layer 23 below the back surface 4. , 29, and 35 constitute a build-up layer BU2.
The core substrate 2 is an insulating plate made of a glass cloth-epoxy resin composite material and having a rectangular shape in plan view. The through-hole 6 penetrates between the front and back surfaces 3 and 4 in a substantially square shape in plan view. Have A box-shaped electronic component unit 10 is fixedly embedded and embedded in the through-hole 6 via a resin 11 mainly composed of an epoxy resin. In the present embodiment, a resin having a thermal expansion coefficient α2 of 32 ppm / ° C. is used as the resin 11.
[0016]
As shown in FIG. 2, the electronic component unit 10 is obtained by integrally fixing eight chip capacitors (electronic components) 12 having the same shape with a mold resin 18 made of an epoxy resin. As the mold resin 18, a resin having a thermal expansion coefficient α2 of 32 ppm / ° C. which is the same as that of the resin 11 is used.
A pair of electrodes 14 made of Cu are formed in the front-rear direction in FIG. 2 on the upper surface of each chip capacitor 12, and electrodes 16 (not shown) are formed at the same position on the bottom surface of each chip capacitor 12. The upper ends of the electrodes 14 and 16 protrude from the front and back surfaces of the mold resin 18 by about several tens of micrometers. As each capacitor 12, for example, a ceramic capacitor in which dielectric layers mainly composed of barium titanate and electrode layers mainly composed of Ni are alternately stacked is used.
[0017]
As shown in FIG. 1, through holes 7 are formed on the left and right sides of the through holes 6 of the core substrate 2, and cylindrical through hole conductors 8 and a filling resin 9 are formed therein. A copper wiring layer having a predetermined pattern is formed on the front and back surfaces 3, 4 of the core substrate 2 and the front and back surfaces of the resin 11 by a known build-up process (subtractive method, full additive method, semi-additive method, etc.) 20 and 21 are formed by Cu plating. The wiring layers 20 and 21 are connected to the upper and lower ends of the electrodes 14 and 16 of the electronic component 12.
On the wiring layers 20 and 21, insulating layers 22 and 23 mainly composed of an epoxy resin and containing an inorganic filler such as silica and wiring layers 26 and 27 thereon are formed, and the upper and lower wiring layers 20, Filled via conductors 24 and 25 that connect the wiring layers 26 and the wiring layers 21 and 27 are formed through the insulating layers 22 and 23 by copper plating.
The formation of the via hole before the formation of the via conductor 24 or the like is performed by photolithography or laser (YAG, CO2, Excimer, etc.) by irradiation. The electrodes 14 and 16 of the capacitors 12 are connected to each other via wiring layers 26 and 27 that also serve as conversion layers continuous in the left-right direction immediately above the capacitors 14 and 16. For this reason, the eight capacitors 12 are connected in parallel to form a composite capacitor having a large capacitance.
[0018]
Similarly, insulating layers 28 and 29, wiring layers 32 and 33, and filled via conductors 30 and 31 are formed on the wiring layers 26 and 27. Further, a solder resist layer (insulating layer) 34 formed on the insulating layer 28 and the wiring layer 32 is a solder flip chip located on the wiring layer 32 and having an upper end protruding higher than the first main surface 34a. A plurality of bumps 36 penetrates. Connection terminals 39 on the bottom surface of an IC chip (semiconductor element) 38 mounted on the first main surface 34a are individually connected to each bump 36, and an underfill material 39a mainly composed of epoxy resin is provided around these terminals. Is filled to a thickness of about 60 μm.
On the other hand, a solder resist (insulating layer) layer 35 is formed under the insulating layer 29 and the wiring layer 33. Within the plurality of openings 35b opened toward the second main surface 35a, The wiring 37 is exposed and the surface thereof is coated with thin Ni and Au plating to form connection terminals for connection to a mother board (not shown). A pin (Kovar, Fe-42 wt% Ni alloy, copper, or the like) may be soldered to the wiring 37 serving as the connection terminal.
[0019]
Here, the main steps of the method of manufacturing the wiring board 1 will be described with reference to FIG.
FIG. 3A shows a plan view of a through hole 6 having a square shape with a side of 12 mm perforated at a predetermined position (center) of a core substrate 2 containing glass cloth having a square shape, a side of 31 mm, and a thickness of 0.8 mm. The state where the electronic component unit 10 having a square of 9 mm on a side and a thickness of 0.75 mm is inserted is shown.
As shown in FIG. 3A, the opening on the back surface 4 side in the through hole 6 is closed in advance by a tape 5 with the adhesive surface 5a facing upward. The electronic component unit 10 inserted into the through-hole 6 is positioned by bonding a plurality of electrodes 16 of each chip capacitor 12 projecting to the back side thereof to the adhesive surface 5 a of the tape 5.
[0020]
  In a state where the unit 10 is positioned, a molten resin 11 mainly composed of an epoxy resin is injected into the through-hole 6 from the surface 3 side, and then cured and solidified. As a result, as shown in FIG. 3B, the electronic component unit 10 is fixed to and built in the resin 11 solidified in the through hole 6. The mold resin 18 of the electronic component unit 10 is integrated with the resin 11 after the curing process to fix the electronic components 12 and 12 andWarehouse(That is, since the mold resin 18 and the resin 11 have the same coefficient of thermal expansion, they are substantially the same).
  Further, when the tape 5 is peeled off, the lower end surface of each electrode 16 is exposed on the flat back surface 11b of the resin 11 following this.
  Next, the raised surface 11a of the resin 11 shown in FIG. 3B is leveled by, for example, buffing. As a result, as shown in FIG. 3C, the upper end surfaces of the plurality of electrodes 14 are exposed on the new surface 11 c of the resin 11.
[0021]
  Thereafter, the build-up layers BU1 and BU2 including the insulating layers 22 and 23 and the wiring layers 20, 21, 26 and 27, the via conductors 24 and 25, and the like for the bump 36 and the connection terminal are formed by the method described above. A wiring 37 is formed.
  Note that it is more desirable if the back surface 11b of the resin 11 is also leveled in the same manner as described above. Further, in the above manufacturing method, the unit 10 in which a plurality of electronic components 12 are integrated in advance is used. However, after each electronic component 12 is individually incorporated in the through hole 6 using a chip mounter or the like, the resin 11 It is also possible to carry out a curing process by filling in.
  By the way, the core substrate 2 and the resin 11, ElectricChip capacitor 12, And insulating layers 22 and 23 forming the build-up layers BU1 and BU2, etc.Coefficient of thermal expansion α1, α2, α3, Α5Is the formula5Is set in advance so as to satisfy the following relationship.
[0022]
[Equation 5]
                  α3 <α1 ≦ α2≦ α5
[0023]
  In this embodiment, α1: 15 ppm / ° C., α2: 32 ppm / ° C., and α3: 10 ppm / ° C. Thereby, even when each capacitor 12 expands during heating of the resin 11 during the curing process or heating of the bump 36 when mounting the IC chip 38 on the first main surface 34a, the core substrate 2 or the resin 11 Expands further, and the resin 11 itself surrounding the through hole 6 and each capacitor 12 of the core substrate 2 becomes larger.
  Accordingly, since the resin 11 and the core substrate 2 can be prevented from being broken or damaged, the conduction between each capacitor 12 and the internal wiring layers 20 and 21 can be reliably ensured. The thermal expansion coefficient of the mold resin 18 used for the electronic component unit 10 is substantially the same value as the thermal expansion coefficient α2 of the resin 11.
  Also,Thermal expansion coefficients α1 to α3 of the core substrate 2, the resin 11, and the chip capacitor 12 which is an electronic componentIf the coefficient of thermal expansion α4 of the IC chip (semiconductor element) 38 is further added, the relationship of Equation 6 is obtained.
[0024]
[Formula 6]
                  α4 ≦ α3 <α1 ≦ α2
[0025]
  In the present embodiment, α4 is set to 4 ppm / ° C. For this reason, even when the IC chip 38 is heated when the IC chip 38 is mounted on the first main surface 34a, for example, even if the IC chip 38 is thermally expanded, the coefficient of thermal expansion α4 is the same as that of each capacitor (electronic component) 12. Since it is the same or less, it does not affect the resin 11 in which the core substrate 2 and the capacitor 12 are embedded. Therefore, the mounted IC chip 38 and each capacitor 12 can be reliably and stably conducted via the wiring layer 20 and the like..
[0027]
  In the present embodiment, α5 is set to 60 ppm / ° C. Therefore, the formula 5likeThe thermal expansion coefficient α5 of the insulating layers 22, 23, etc. is the same as or higher than the thermal expansion coefficient α2 of the resin. As a result, even when each of the capacitors (electronic parts) 12, the wiring board body 2, and the resin 11 expands when the resin 11 is solidified or heated at a separate position, the insulating layers 22, 23 and the like are Furthermore, the expansion of the resin 11 and the like can be absorbed. Accordingly, since the resin 11 and the wiring board body 2 can be prevented from being broken or damaged, the conduction between each capacitor 12 and the wiring layers 26, 27 such as between the insulating layers 22, 23, 28, 29 is stabilized. Can be taken reliably.
[0028]
  According to the wiring board 1 as described above, the electrodes 14 and 16 and the wirings in each chip capacitor 12 in the electronic component unit 10 incorporated in the through hole 6 of the core board (wiring board body) 2 via the resin 11 are connected. Connection portions with the layers 20 and 21 are also difficult to be disconnected, and the conduction is stabilized.
  It should be noted that the electrodes 14 and 16 of each capacitor 12 and the wiring layers 20 and 21 connected thereto.InIs the same material as the above Cu and a material having a higher melting point than solder.Apply. Thereby, disconnection can be prevented even when the solder bumps 36 are heated when the IC chip 38 is mounted.
[0029]
For this reason, stable conduction can be obtained with relatively short wiring between each capacitor 12 and the IC chip 38 mounted on the first main surface 34a. Further, stable conduction can be obtained with relatively short wiring between the electrode 16 of each capacitor 12 and the wiring (connection terminal) 37 on the second main surface 35 side, and the wiring board 1 itself can be connected to a mother board or the like. Continuity is also ensured. Therefore, in the wiring board 1 that is miniaturized and the wiring density is high, the capacitor 12 that is an electronic component built in the core board 2 can be stably used and has excellent durability. it can.
The wiring layers 20 and 21 are electrically connected to each other through the through-hole conductor 8 separately from the capacitors 12. The via conductors 24, 25, 30, and 31 are preferably filled vias as shown in FIG. 1 and stacked vias stacked linearly in the thickness direction. As a result, each capacitor 12 and the IC chip 38 mounted on the first main surface 34a can be connected with the shortest distance, so that the electrical characteristics are improved and the distance between each capacitor 12 and the motherboard is also short. Can be connected.
[0030]
【Example】
  Here, specific examples of the wiring board of the present invention will be described together with comparative examples.
  A plurality of core substrates 2 of the same size as described above are prepared, and the electronic component unit 10 is placed in the through hole 6 using the resin 11 having different thermal expansion coefficients α2 under the same conditions as in FIG. It was fixed and built in as shown in Among these, the resins 11 having thermal expansion coefficients α2 of 15 ppm / ° C. and 32 ppm / ° C. were designated as Examples 1 and 2, and those having a thermal expansion coefficient α2 of 45 ppm / ° C. were designated as Comparative Example 1.
  A part of Examples 1 and 2 and Comparative Example 1 are formed on the wiring board 1 as shown in FIG. 1, and an underfill material 39a having a thermal expansion coefficient of 30 ppm / ° C. or less is formed on the first main surface 34a. Then, an IC chip 38 having a thermal expansion coefficient α4 of 4 ppm / ° C. was mounted. Of these, the examples using the core substrate 2 of Examples 1 and 2 were Examples 3 and 4, and the one using the core substrate 2 of Comparative Example 1 was Comparative Example 2.
  Examples 1 and 2 and Comparative Example 1 are, Excluding the coefficient of thermal expansion of the insulating layerThe formula5Examples 3 and 4 and Comparative Example 2,Is the above formula6Each of them.
  Three (3) samples were prepared for each example, and a reliability (thermal shock) test was performed by heating and cooling between + 125 ° C. and −55 ° C. 1000 times (cycles). In such a test, whether or not the resin 11 of each example was cracked was observed after 1000 times. The results are shown in Table 1.
[0031]
[Table 1]
Figure 0004685979
[0032]
  According to the results of Table 1, in Examples 1 to 4, none of the resin 11 was cracked, but in Comparative Examples 1 and 2, all three were cracked in the resin 11.
  From these results, the thermal expansion coefficients α1, α2, α3, α4 of the core substrate 2, the resin 11, the chip capacitor 12, and the IC chip 38 are expressed by the above formula.5 and Equation 6It is understood that it is important that the thermal expansion coefficient α2 of the resin 11 is 40 ppm / ° C. or less, preferably 35 ppm / ° C. or less. It will be easily understood that the effect of the wiring board according to the present invention is supported by this.
[0033]
FIG. 4 relates to the main steps of the manufacturing method for different forms of wiring boards. In the following, the same reference numerals are used for the same parts and elements as those in the above embodiment.
FIG. 4A shows a state in which the same electronic component unit 10 as described above is inserted into the concave portion 44 opened on the surface 41 side of the core substrate (wiring board main body) 40 containing glass cloth.
The core substrate 40 having the recess 44 is formed by previously laminating a thick insulating plate (not shown) having a through hole and a thin and flat insulating plate via an adhesive sheet, and heating and pressing. However, you may use what formed the recessed part 44 by spot facing using the router etc. from the single insulating board.
As shown in FIG. 4A, a plurality of through holes 46 penetrate between the bottom surface 45 of the recess 44 and the back surface 42 of the core substrate 40, and a cylindrical through hole conductor 48 is formed in each hole 46. And the filling resin 47 is formed to penetrate therethrough.
[0034]
  As shown in FIG. 4B, the upper end portion of each through-hole conductor 48 and the electrode 16 on the bottom surface of each capacitor 12 of the inserted electronic component unit 10 are made of a brazing material (low low) made of Sn—Ag alloy. Individually connected in advance through a melting point alloy) 49. In this state, after the molten resin 11 is injected into the recess 44, a curing process is performed. As a result, as shown in FIG. 4B, the electronic component unit 10 is fixed and embedded in the solidified resin 11 in the concave portion 44 and is embedded in the concave portion 44.WarehouseIs done.
  Further, by polishing and flattening the raised surface 11a of the resin 11, the surface 11c of the newly formed resin 11 has each surface in the unit 10 as shown in FIG. 4C. The upper end surface of the electrode 14 of the capacitor 12 is exposed.
[0035]
Thereafter, as shown in FIG. 1, the build-up layer BU1, which is composed of the wiring layers 20, 21, such as the insulating layers 22, 23 shown in FIG. BU2 and filled via conductors 24 and 25 are formed.
At this time, each electrode 14 is connected to the wiring layer 20, and the lower end of the through-hole conductor 48 is connected to the wiring layer 21/27. As in FIG. 1, a through-hole conductor 8 (not shown) penetrating between the front and back surfaces 41, 42 of the core substrate 40 is formed, and the bumps are formed on the first and second main surfaces 34a, 35a. 36 and wiring (connection terminal) 37 are formed. Thereby, a wiring board provided with the core substrate 40 incorporating the electronic component unit 10 having the plurality of chip capacitors 12 in the recess 44 is obtained.
[0036]
  The thermal expansion coefficients α1, α2, and α3 of the core substrate (wiring substrate body) 40, the resin 11, and the chip capacitor (electronic component) 12 are expressed by the above formula.5It is set under the relationship.
  Further, the coefficients of thermal expansion α4 and α5 of the IC chip (semiconductor element) 38 and the insulating layer 22 are expressed by the above formula.5It is set under the relationship. In the present embodiment, the thermal expansion coefficient α1: 16 ppm / ° C. of the wiring board main body (core substrate) 40, the thermal expansion coefficient α2 of the resin 11: 23 ppm / ° C., and the thermal expansion coefficient α3 of the chip capacitor (electronic component) 12: 8 ppm / The thermal expansion coefficient α4 of the IC chip (semiconductor element) 38 is 4 ppm / ° C, and the thermal expansion coefficient α5 of the insulating layer 22 is 60 ppm / ° C.
[0037]
The present invention is not limited to the embodiments and examples described above.
For example, the electronic components include passive components such as inductors, resistors, and filters, active components such as low noise amplifiers (LNA), memories, semiconductor elements, FETs, and transistors, or SAW filters, LC filters, and antenna switch modules. A diplexer or the like, a chip-like one of them, or a different one of them may be built in the same through hole or recess.
Further, only one electronic component may be built in the through hole or the recess of the wiring board main body (core substrate). In this case, it is also possible to connect the electrode of the electronic component to the wiring layer or the land connected thereto by soldering.
[0038]
Further, a plurality of through holes or recesses may be formed in the wiring board main body (core substrate), or the through holes and the recesses may be provided adjacent to each other.
In addition to the glass-epoxy resin composite material, the wiring board main body (core substrate) 2 and 40 are made of glass woven cloth or glass having the same heat resistance, mechanical strength, flexibility, processability, etc. A glass fiber-resin material that is a composite material of a glass fiber such as a woven fabric and a resin such as an epoxy resin, a polyimide resin, or a BT resin may be used. Alternatively, a composite material of an organic fiber such as polyimide fiber and a resin, or a resin-resin composite material in which a fluororesin having a three-dimensional network structure such as PTFE having continuous pores is impregnated with a resin such as an epoxy resin may be used. Is possible.
[0039]
In addition, the insulating layers 22 and 23 are made of the above-mentioned epoxy resin as a main component, as well as polyimide resin, BT resin, PPE resin, or PTFE having continuous pores having the same heat resistance and pattern formability. It is also possible to use a resin-resin composite material obtained by impregnating a resin such as an epoxy resin with a fluorine resin having a three-dimensional network structure.
In addition to the copper plating, the wiring layers 20 and 21 may be made of Ni, Ni-Au, or the like, or formed by a method such as applying a conductive resin without using metal plating. It is also possible.
Further, as the connection terminal with the IC chip 38, in addition to the flip chip bump 36, a flip chip pad, a wire bonding pad, or a TAB connection pad may be used.
[0040]
In the capacitor of the electronic component 12, BaTiO3A high-dielectric ceramic mainly composed of PbTiO is used.3, PbZrO3, TiO2, SrTiO3, CaTiO3, MgTiO3, KNbO3, NaTiO3, KTaO3, PbTaO3, (Na1/2Bi1/2) TiO3, Pb (Mg1/2W1/2) O3, (K1/2Bi1/2) TiO3You may use what has these as a main component.
Further, although the material of the electrodes 14 and 16 of the electronic component 12 is mainly composed of Cu, Pt, Ag, Ag—Pt, Ag—Pd, Cu, Au, Ni, etc. having compatibility with the electronic component 12 are used. Can be used.
In addition, the capacitor 12 of the electronic component includes a dielectric layer mainly composed of a high dielectric ceramic, an electrode layer made of Ag-Pd, and the like, and a via conductor and a wiring layer made of resin, Cu plating, Ni plating, etc. It is good also as what made the capacitor which compounded. The wiring board of the present invention includes a configuration in which only the wiring layers 20 and 21 and the insulating layers 22 and 23 are provided on the front surfaces 3 and 41 and the back surfaces 4 and 42 of the core substrates 2 and 40.
[0041]
【The invention's effect】
  According to the wiring board of the present invention described above (Claim 1), the thermal expansion coefficient α1 of the wiring board body is larger than the thermal expansion coefficient α3 of the electronic component, and the heat of the resin in which the electronic component is embedded. Less than or equal to expansion coefficient α2In addition, the thermal expansion coefficient α5 of the insulating layer is equal to or higher than the thermal expansion coefficient α2 of the resin.There is a relationship.
  Therefore, when the molten resin is solidified or heated at a separate position, the electronic componentEven if the wiring board body and resin expand, the insulating layerExpands even more. as a resultA through hole or recess of the wiring board body, or surrounding the electronic componentWarehouseResinCan be absorbed by the expansion of the insulating layer. Therefore, it is possible to prevent the resin and the wiring board main body from being broken or damaged, and thus it is possible to stably and reliably establish electrical conduction between the electronic component and the internal wiring layer.
[0042]
According to the wiring board of claim 2, in addition to the above, the thermal expansion coefficient of the semiconductor element is the same as or lower than that of the built-in electronic component. Even when the semiconductor element is thermally expanded at the time of soldering when the semiconductor element is mounted on the semiconductor device, the coefficient of thermal expansion is the same as or lower than that of the electronic component. For this reason, it does not affect the resin for embedding the wiring board main body and the electronic component. Accordingly, the mounted semiconductor element and the electronic component can be reliably and stably conducted directly or via the internal wiring layer, and such a wiring board can be efficiently manufactured.
[0043]
  Further, according to the wiring board of claim 3BeforeIt is possible to prevent the resin and the wiring board body from being broken or damaged, and to more reliably prevent the influence of the expansion of the semiconductor element on the wiring board body.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a main part of a wiring board according to an embodiment of the present invention.
2 is a perspective view of an electronic component unit built in the wiring board of FIG. 1. FIG.
FIGS. 3A to 3C are schematic views showing main steps in the method of manufacturing the wiring board of FIG.
FIGS. 4A to 4C are schematic views showing main steps in a method for manufacturing a wiring board of a different form. FIGS.
FIGS. 5A and 5B are schematic views showing a conventional wiring board. FIGS.
[Explanation of symbols]
1 ………………………………………… Wiring board
2,40 ……………………………… Wiring board body (core board)
3,41 ……………………………… Surface
4,42 ……………………………… Back side
6 ……………………………………… Through hole
12 …………………………………… Chip Capacitors (Electronic Components)
11 …………………………………… Resin
22, 23, 28, 29, 34, 35 ... insulating layer
34a …………………………………… The first main surface (above the surface of the wiring board body)
38 …………………………………… IC chip (semiconductor element)
44 …………………………………… Recess

Claims (3)

表・裏面を有する絶縁性の配線基板本体と、この配線基板本体に設けた貫通孔または凹部と、かかる貫通孔または凹部内に内蔵され且つ樹脂を介して固着される電子部品と、上記配線基板本体の表面および裏面の少なくとも一方の上に形成される絶縁層およびハンダよりも高融点の材料からなる配線層と、を含
上記電子部品は、上記貫通孔または凹部内で上記樹脂に包囲され
上記配線層は、上記樹脂の表面および裏面の少なくとも一方に露出する上記電子部品の電極の端部と接続されると共に、
上記配線基板本体、樹脂、電子部品、および、絶縁層の熱膨張率α1,α2,α3,α5が数式1の関係にある、ことを特徴とする配線基板。
【数1】
α3<α1≦α2≦α5
Insulating wiring board body having front and back surfaces, through-holes or recesses provided in the wiring board body, electronic components built into the through-holes or recesses and fixed via resin, and the wiring board look including a wiring layer made of a refractory material than the front and back surfaces of at least one insulating layer and the solder formed on the body,
The electronic component is surrounded by the resin in the through hole or recess ,
The wiring layer is connected to an end portion of the electrode of the electronic component exposed on at least one of the front surface and the back surface of the resin ,
A wiring board, wherein the thermal expansion coefficients α1, α2, α3, and α5 of the wiring board main body, the resin, the electronic component , and the insulating layer have a relationship of Formula 1.
[Expression 1]
α3 <α1 ≦ α2 ≦ α5
前記配線基板本体の表面上方に搭載され且つ前記電子部品と導通される半導体素子を更に含むと共に
上記配線基板本体、樹脂、電子部品、および、半導体素子の熱膨張率α1,α2,α3,α4が数式2の関係にある、
ことを特徴とする請求項1に記載の配線基板。
【数2】
α4≦α3<α1≦α2
The semiconductor device further includes a semiconductor element mounted above the surface of the wiring board body and electrically connected to the electronic component ,
The thermal expansion coefficients α1, α2, α3, α4 of the wiring board main body, resin, electronic component, and semiconductor element are in the relationship of Formula 2.
The wiring board according to claim 1 .
[Expression 2]
α4 ≦ α3 <α1 ≦ α2
前記樹脂の熱膨張率α2が、40ppm/℃よりも小さい、
ことを特徴とする請求項1または2に記載の配線基板。
The thermal expansion coefficient α2 of the resin is smaller than 40 ppm / ° C.
The wiring board according to claim 1 or 2, wherein
JP2001043625A 2000-02-21 2001-02-20 Wiring board Expired - Fee Related JP4685979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001043625A JP4685979B2 (en) 2000-02-21 2001-02-20 Wiring board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-43619 2000-02-21
JP2000043619 2000-02-21
JP2001043625A JP4685979B2 (en) 2000-02-21 2001-02-20 Wiring board

Publications (2)

Publication Number Publication Date
JP2001313467A JP2001313467A (en) 2001-11-09
JP4685979B2 true JP4685979B2 (en) 2011-05-18

Family

ID=26585785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001043625A Expired - Fee Related JP4685979B2 (en) 2000-02-21 2001-02-20 Wiring board

Country Status (1)

Country Link
JP (1) JP4685979B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006828A (en) * 2002-04-26 2004-01-08 Ngk Spark Plug Co Ltd Wiring board
JP4546415B2 (en) * 2005-09-01 2010-09-15 日本特殊陶業株式会社 Wiring board, ceramic capacitor
JP5292848B2 (en) * 2007-02-27 2013-09-18 富士通株式会社 Component built-in substrate and manufacturing method thereof
JP2010212595A (en) * 2009-03-12 2010-09-24 Murata Mfg Co Ltd Package substrate
US8299366B2 (en) * 2009-05-29 2012-10-30 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
WO2011121993A1 (en) * 2010-03-30 2011-10-06 株式会社村田製作所 Component assembly
JP5241909B2 (en) 2011-12-22 2013-07-17 太陽誘電株式会社 Circuit board
JP5241910B2 (en) * 2011-12-22 2013-07-17 太陽誘電株式会社 Circuit board
JP5882100B2 (en) * 2012-03-26 2016-03-09 大日本印刷株式会社 Component built-in circuit board
KR20140016081A (en) * 2012-07-30 2014-02-07 삼성전기주식회사 Method for manufacturing substrate with electronic device embedded therein
JP6987972B2 (en) * 2018-03-28 2022-01-05 株式会社Fuji Circuit forming method and circuit forming device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214444A (en) * 1985-03-18 1986-09-24 Fujitsu Ltd Semiconductor device
JPH0283963A (en) * 1988-09-21 1990-03-26 Hitachi Ltd Organic and inorganic composite multilayer board
JPH04283987A (en) * 1991-03-13 1992-10-08 Matsushita Electric Ind Co Ltd Electronic circuit device and manufacture thereof
JPH04315458A (en) * 1991-04-15 1992-11-06 Sony Corp Multilayered wiring board
JPH0555299A (en) * 1991-08-26 1993-03-05 Hitachi Cable Ltd Tape carrier for tab
JPH08330352A (en) * 1995-05-31 1996-12-13 Nec Corp Semiconductor device
JPH11312868A (en) * 1998-04-28 1999-11-09 Kyocera Corp Multilayer wiring board with built-in element and its manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214444A (en) * 1985-03-18 1986-09-24 Fujitsu Ltd Semiconductor device
JPH0283963A (en) * 1988-09-21 1990-03-26 Hitachi Ltd Organic and inorganic composite multilayer board
JPH04283987A (en) * 1991-03-13 1992-10-08 Matsushita Electric Ind Co Ltd Electronic circuit device and manufacture thereof
JPH04315458A (en) * 1991-04-15 1992-11-06 Sony Corp Multilayered wiring board
JPH0555299A (en) * 1991-08-26 1993-03-05 Hitachi Cable Ltd Tape carrier for tab
JPH08330352A (en) * 1995-05-31 1996-12-13 Nec Corp Semiconductor device
JPH11312868A (en) * 1998-04-28 1999-11-09 Kyocera Corp Multilayer wiring board with built-in element and its manufacture

Also Published As

Publication number Publication date
JP2001313467A (en) 2001-11-09

Similar Documents

Publication Publication Date Title
US7102085B2 (en) Wiring substrate
US6952049B1 (en) Capacitor-built-in type printed wiring substrate, printed wiring substrate, and capacitor
US6961230B2 (en) Capacitor, capacitor equipped semiconductor device assembly, capacitor equipped circuit substrate assembly and electronic unit including semiconductor device, capacitor and circuit substrate
US7821795B2 (en) Multilayer wiring board
JP4740406B2 (en) Wiring board and manufacturing method thereof
JP3640560B2 (en) Wiring board, core board with built-in capacitor, and manufacturing method thereof
US20140360760A1 (en) Wiring substrate and manufacturing method of wiring substrate
JP4685979B2 (en) Wiring board
JP4685251B2 (en) Wiring board manufacturing method
US20100236822A1 (en) Wiring board and method for manufacturing the same
JP4885366B2 (en) Wiring board manufacturing method
US11019725B2 (en) Wiring substrate
JP4851652B2 (en) Wiring board and manufacturing method thereof
JP2002237683A (en) Method for manufacturing circuit board
JP2002151847A (en) Wiring substrate and method of manufacturing the same
JP5286072B2 (en) Wiring board and manufacturing method thereof
JP4778148B2 (en) Multilayer wiring board
JP4695289B2 (en) Wiring board manufacturing method
JP2004241583A (en) Wiring board
JP2005129899A (en) Wiring board and semiconductor device
JP2001313474A (en) Wiring board
JP4179407B2 (en) Wiring board
JP4668822B2 (en) Wiring board manufacturing method
JP4814129B2 (en) Wiring board with built-in components, Wiring board built-in components
JP2002043500A (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees