JP4667940B2 - 慣性センサ装置 - Google Patents

慣性センサ装置 Download PDF

Info

Publication number
JP4667940B2
JP4667940B2 JP2005114640A JP2005114640A JP4667940B2 JP 4667940 B2 JP4667940 B2 JP 4667940B2 JP 2005114640 A JP2005114640 A JP 2005114640A JP 2005114640 A JP2005114640 A JP 2005114640A JP 4667940 B2 JP4667940 B2 JP 4667940B2
Authority
JP
Japan
Prior art keywords
voltage
control
bias
circuit
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005114640A
Other languages
English (en)
Other versions
JP2006292577A (ja
Inventor
雅夫 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Inc filed Critical Tokyo Keiki Inc
Priority to JP2005114640A priority Critical patent/JP4667940B2/ja
Publication of JP2006292577A publication Critical patent/JP2006292577A/ja
Application granted granted Critical
Publication of JP4667940B2 publication Critical patent/JP4667940B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、静電力(静電引力)で駆動される可動体(可動部)を有する慣性センサ装置に関し、特にマイクロマシン技術により製作される慣性センサ装置に好適である。
従来、この種の慣性センサ装置として、一方向だけの加速度検出を行うマイクロセンサ(例えば特許文献1参照)や,多方向の加速度検出を行う静電浮上型ジャイロ装置(例えば特許文献2〜4参照)が知られており、これらは、何れも、導電性の可動部と、これとの対向面に電極が形成されている電気絶縁性の固定部と、その固定部に対する可動部の相対変位を検出して加速度算出等の測定値算出を行うセンサ回路とを備えている。
そのうちマイクロセンサでは(特許文献1)、固定部である平行な絶縁基板の対向面に形成された固定電極の中間に、可動部としての可動電極がカンチレバーで弾性支持されており、その固定電極が、静電サーボ型センサの場合、制御電極となっていて、その制御電極には可動部の相対変位の変動を解消する静電引力を生じる制御電圧が印加される。
また、静電浮上型ジャイロ装置では(特許文献2〜4)、可動部であるジャイロロータが、円板状(特許文献2)や,環状(特許文献3〜4)に形成されており、固定部であるジャイロケースの真空空間内に遊装されている。そのケースは、電気絶縁性の部材からなり、ロータ対向面をなすケース内面には多数の制御電極が形成されている。さらに、それらで構成されるジャイロ機構部には、センサ回路としての電子回路が付設されており、これによって、ケースに対するロータの相対変位が検出され、その変動を解消する静電引力を生じる制御電圧が制御電極に印加されるとともに、相対変位の検出結果に基づいて加速度算出等の測定値算出が行われる。静電浮上型ジャイロ装置の場合、そのような姿勢制御用制御電極の他、ロータを回転駆動するための電極や,相対変位を検出するための検出電極も、ケース内面に設けられている。相対変位の検出手法についても、変位検出用信号を制御電極から検出電極へ流すものと(特許文献2〜3)、変位検出用信号を逆に検出電極から制御電極へ流すものとがある(特許文献4)。
これらのうち本発明の説明に役立つ具体例として、環状ロータ型の静電浮上型ジャイロ装置であってセンス回路がデジタルプロセッサを主体に構成され変位検出用信号を制御電極から検出電極へ流すというものを図示した。図1は、(a)がジャイロ機構部の縦断端面図、(b)がジャイロ機構部における電極配置を示す斜視図、(c)がセンサ回路等のブロック図である。また、図2は、(a)がセンサ動作時の制御電圧波形例、(b)がセンサ停止時の印加電圧波形例である。なお、電極配置の図示に際し、姿勢制御用の制御電極と変位検出用の検出電極は明記したが、回転駆動用の電極は、本発明の説明に不要なので、煩雑化回避のため、省略した。
環状ロータ型のジャイロ機構部10は(図1(a),(b)参照)、環状に形成されたロータ11を静電浮上可能かつ回転可能な状態でケース12に内蔵したものである。ケース12は、ガラス等の絶縁物からなる上側底部材と下側底部材とスペーサとを組み合わせて構成され、内部に環状の真空空間が形成されている。ロータ11は、シリコン等の導電体からなり、1本のスピン軸周りに安定して回転するよう、環状に形成されている。ケース12からロータ11に静電引力を作用させる等のために、ケース12の内側表面には、金属膜パターン等からなる多数の電極13,14が形成されている。それらの電極13,14は、それぞれの役割に応じて、ロータ11との対峙距離やピッチなど所定の関係を満たすよう配置されている。
センサ回路20に接続されるケース12の電極13,14について詳述すると、ロータ11を中間に挟んで対向配置された複数対に分けられる。特に静電支持用の制御電極13については、それぞれの対において更に隣接配置された対に分けられる。例えば、図示の場合、上側底部材において隣り合う制御電極3a,3bが隣接対をなし、下側底部材において隣り合う制御電極3c,3dも隣接対をなし、隣接電極3a,3bと隣接電極3c,3dとが対向対をなしている。他の制御電極13についても同様である。なお、本明細書では、制御電極の隣接状態を意識して個々の電極を区別するときには3a,3b等の符号を付し、個々の電極を意識せずに制御電極すべてについて述べる場合には13の符号を付す。
それらの制御電極13の具体的な役割を説明するため、空間で直交する3軸をそれぞれX軸,Y軸,Z軸とし、図1(a)で、紙面の左右方向にX軸を置き、紙面を貫く向きにY軸を置き、紙面の上下方向にZ軸を置き、X軸周りの回転をφとし、Y軸周りの回転をθとする。そうすると、ケース12のうちスペーサに形成されX軸方向に並べられた制御電極13は、制御電圧を印加されてそれに応じたX方向の静電引力を出すとともに、ロータ11のX方向変位に応じてロータ11との静電容量を変えるものとなっている。ケース12のうちスペーサに形成されY軸方向に並べられた制御電極13はY方向に関して同様の機能を発揮し、ケース12のうち上側底部材や下側底部材に形成されY軸方向に並べられた制御電極13は±Z±φ方向に関して同様の機能を発揮し、ケース12のうち上側底部材や下側底部材に形成されX軸方向に並べられた制御電極13は±Z±θ方向に関して同様の機能を発揮するものとなっている。更に細分化すると、例えば、隣接電極3a,3bは+Z+φ方向に係り、隣接電極3c,3dは−Z−φ方向に係るものである。
センサ回路20は(図1(c)参照)、このようなジャイロケース12の制御電極13及び検出電極14に接続されてジャイロ機構部10と共に静電浮上型ジャイロを構成するものであり、変位検出用信号に周波数弁別可能な複数信号を用い、それらを各制御電圧に重畳して制御電極13に印加し、検出アンプ21にて検出電極14から検出するようになっている。演算部22は、デジタルシグナルプロセッサやマイクロプロセッサからなるデジタルプロセッサ24を用いてデジタル化されており、検出アンプ21の出力を入力する側にはA/D変換回路23(アナログ−デジタル変換回路)が付設され、制御電圧を規定する制御量の出力側にはD/A変換回路25(デジタル−アナログ変換回路)が付設されている。そして、変位検出用信号の検出値からケース12に対するロータ11の相対変位を算出し、更にその相対変位から加速度Aを算出するようになっている。加速度Aは慣性センサ装置で求められる測定値の典型例であり、測定値は速度や位置の場合もある。
また、演算部22は、相対変位の検出結果に基づいてその変動を解消するための制御量を算出するようにもなっており、その制御量がD/A変換回路25を介して出力アンプ26に送出されると、それに対応した制御電圧が出力アンプ26から制御電極13に印加され、これによってケース12の制御電極13形成部位とロータ11対向部位との間に静電引力が生じて、両者の11,12の相対変位が一定に維持される。そのような制御電圧の生成やジャイロ出力用の加速度Aの算出は(特許文献2図7,特許文献3図9,特許文献4図9等を参照)、ジャイロの場合は5方向X,Y,Z,θ,φについて行われるが、先ず、変位検出用検出信号から各方向の変位を算出し(例えば特許文献2図7のΔX,ΔY,ΔZ,Δθ,Δφ)、それにPID演算等を施して必要な浮上力を算出してから(例えば特許文献2図7のfX,fY,fZ,fθ,fφ)、行われる。
それらの算出した浮上力を制御電極13の配置や容量に応じて各電極に分配する等のことで姿勢制御用の制御電圧を生成し(例えば特許文献2図7の±V1A〜±V4A)、それらの浮上力をロータ11の質量に応じて外力加速度に変換する等のことでジャイロ出力用の加速度等を算出するようになっている(例えば特許文献2図7のαX,αY,αZ,dθ/dt,dφ/dt)。
このような制御電圧の有効成分はロータ11を運動させるため概ね数十kHz以下であるのに対し、ロータ11の運動に影響を与えずに相対変位を測定するための変位検出用信号は、それより十分に周波数が高く、例えばMHzのオーダーの信号であり、変位検出信号発生回路27で例えば5つの周波数成分を持たされ、出力アンプ26の入力側で制御電圧に重畳されるようになっている。
さらに、演算部22は、各制御電圧を生成する際に、対向対をなす制御電極および隣接対をなす制御電極に印加されるものについては、正負の異なる相補的な電圧を生成するようになっている。具体例として、環状ロータ型の6対の制御電極13のうち隣接電極3a,3bと隣接電極3c,3dとの対向対について(図1(c)参照)、波形例を参照しながら制御電圧の印加状況を詳述する(図2(a)参照)。ロータ11がZ軸中心の回転は別として中立位置に静止しているときに制御電極13に印加される一定のオフセット電圧をVofとし、姿勢制御のために算出され変化する±Z±θ方向の制御電圧成分をVxとすると、印加電圧V3aの主成分は−Vof−Vxにされ、印加電圧V3bの主成分は+Vof+Vxにされ、印加電圧V3cの主成分は−Vof+Vxにされ、印加電圧V3dの主成分は+Vof−Vxにされる。
それらの印加電圧は、高周波の変位検出用信号が重畳されたことの影響を受けるが、この高周波で同相の重畳成分を無視すると、隣接電極3a,3bの印加電圧V3a,V3bは、正負反転の波形を持った相補的なものとなり、隣接電極3c,3dの印加電圧V3c,V3dも、正負反転の波形を持った相補的なものとなる。
もっとも、そのような制御電圧が印加されるのはセンサ回路20に動作電力が供給されてセンサ回路20が正常に動作している場合であり、センサ回路20への給電が停止されてセンサ回路20が動作していないときには制御電極13の印加電圧V3a等は0Vになる(図2(b)参照)。
特開平5−172846号公報 特開平08−320231号公報 特開2001−235329号公報 特開2004−191296号公報
[特許文献5] 特願2004−363704号
これに開示された発明は、上述した静電浮上型ジャイロ装置(特許文献2〜4)の改良であり、変位検出用信号を各制御電圧に重畳する際に重畳先が時分割されるとともに、制御電圧出力が変位検出用信号の印加中の電極から外されるようになっている。また、相対変位の検出結果から直ちに加速度算出等の測定値算出を行うのでなく、相対変位を打ち消すための制御電圧に基づいて加速度算出等の測定値算出を行うようになっている。そのため、加速度等の算出は精度を優先して動作速度を落とし、制御量等の算出は動作速度を優先して精度を落とすことにより、センサ回路が小形で安価なものとなる。
要するに、このような未公開の慣性センサ装置や上述した従来の慣性センサ装置では、各軸に対応した電極に時分割で又は重畳して制御電圧とセンス電圧(変位検出用信号の電圧)が印加される。センス電圧の極性は、座標の向きに対応して逆となる。位置検出用電極(検出電極)にはロータの位置(相対変位)に対応した振幅の電荷が現われる。これを電圧信号に変換して制御電圧が計算され、その制御電圧は、時分割方式ではセンス電圧の印加されない期間にのみ印加され、重畳方式ではセンス電圧と一緒に印加される。電極に印加される電圧から、あるいは検出したロータの位置(相対変位)から、ロータにかかる力が計算され、結果として慣性センサ装置として動作させることができる。ロータを回転させれば、ジャイロ装置として動作させることができる。
[発明が解決しようとする問題点]
しかしながら、このような従来の慣性センサ装置や未公開の慣性センサ装置は、何れも、制御電圧として正負の異なる相補的な電圧を生成してそれらを制御電極のうち隣り合っている電極に印加するようになっており、これに起因する測定精度阻害要因をはらんでいると推測されるに至った。すなわち、長期に及ぶ実験と観測の結果、絶縁体からなるケース等の固定部の内部に存在しているイオンの分布状態がゆっくりではあるが変化して、やがて測定精度に無視できない影響を与えるようになることが判ってきた。
図3は、そのような問題点を説明するための機構部縦断面一部拡大模式図であり、(a)がセンサ動作開始直後のイオン分布、(b)がセンサ動作継続後のイオン分布を示している。イオンは、イオントラップをイメージした丸い白抜き領域の中に「+」や「−」で図示したが、電界を掛ける前は、ケース12の内部にほぼ均等な状態で分布している。ケース12は絶縁体なので制御電極13に制御電圧を印加しても少なくとも暫くはその均等な分布状態が維持され(図3(a)参照)、その状態では、制御電極13とロータ11との間に、設計時に期待した通りの静電引力が働く。ところが、数時間から十数時間以上の長い時間継続して慣性センサ装置を動作させると、絶縁体内部のイオンが絶縁体内部を移動して、具体的には(図3(b)参照)、負の制御電圧(−Vof−Vx)の印加されている電極3a側に「+」イオンが偏在し、正の制御電圧(+Vof+Vx)の印加されている電極3b側に「−」イオンが偏在し、これらの偏在イオンによる電界によってロータ11に対する電界が変化する。
これによってロータ11に対する電界が一部打ち消されることから(図3(b)の点線部分を参照)、静電引力の一部が失われるので、ケース12とロータ11との間に設計通りの静電引力が生じず、静電引力の不足は姿勢制御の能力低下ばかりか加速度測定の不安定化を招来するため、結果として慣性センサ装置としての測定精度が悪化することとなる。また、長時間の動作によって絶縁体内のイオンが偏在した後に、センス回路への給電を断って動作を停止させると、絶縁体内部のイオンが長時間かけて今度は分散するため、次回の動作時の不安定要因が復活する。
そこで、絶縁体(固定部)内部のイオンの移動を抑制することにより測定精度の不安定要因を取り除いて測定精度の向上を図ることが技術的な課題となる。
本発明の慣性センサ装置は(解決手段1)、このような課題を解決するために創案されたものであり、導電性の可動部と、これとの対向面に複数の制御電極が形成されている電気絶縁性の固定部と、前記固定部に対する前記可動部の相対変位を検出して、その変動を解消する静電引力を生じる制御電圧を前記制御電極に印加するとともに、前記相対変位の検出結果または前記制御電圧に基づいて加速度算出等の測定値算出を行うセンサ回路とを備え、前記制御電圧として正負の異なる相補的な電圧を生成してそれらを前記制御電極のうち隣り合っている電極に印加する慣性センサ装置において、前記センサ回路への給電停止時も受電可能なところに設けられ正負の異なる相補的な一定のバイアス電圧を生成するバイアス回路と、前記センサ回路への給電停止時には前記制御電圧に代えて前記バイアス電圧を前記制御電極のうち隣り合っている電極に印加させる切替回路とを具備したことを特徴とする。
また、本発明の慣性センサ装置は(解決手段2)、上記解決手段1の慣性センサ装置であって、前記バイアス電圧が前記制御電圧の平均電圧であることを特徴とする。
さらに、本発明の慣性センサ装置は(解決手段3)、導電性の可動部と、これとの対向面に複数の制御電極が形成されている電気絶縁性の固定部と、前記固定部に対する前記可動部の相対変位を検出して、その変動を解消する静電引力を生じる制御電圧を前記制御電極に印加するとともに、前記相対変位の検出結果または前記制御電圧に基づいて加速度算出等の測定値算出を行うセンサ回路とを備え、前記制御電圧として正負の異なる相補的な電圧を生成してそれらを前記制御電極のうち隣り合っている電極に印加する慣性センサ装置において、前記固定部のうち前記可動部との対向面以外の部位に形成された複数のバイアス電極と、前記センサ回路への給電停止時も受電可能なところに設けられ正負の異なる相補的な一定のバイアス電圧を生成して前記バイアス電極に印加するバイアス回路とを具備したことを特徴とする。
また、本発明の慣性センサ装置は(解決手段4)、上記解決手段3の慣性センサ装置であって、前記バイアス回路が電池から受電してその電圧を前記バイアス電圧とするものであることを特徴とする。
このような本発明の慣性センサ装置にあっては(解決手段1)、センサ回路への給電が断たれてセンサ回路が動作を停止した後は、バイアス回路で生成された正負の異なる相補的な一定のバイアス電圧が、切替回路を介して、正負の異なる相補的な制御電圧に代わって、制御電極のうち隣り合っている電極に印加される。
これにより、電気絶縁性の固定部の内部のイオンがセンサ回路の動作時も非動作時も制御電極の近傍に偏在し続けることから、イオンの移動が抑制されるので、イオンの分布状態が安定して、測定精度の不安定要因が無くなる。
なお、バイアス電圧が静的なので、バイアス回路や切替回路で消費する電力は、僅少であり、小形の専用電池,充電式のバックアップ電源,あるいは後述する実施例のような電池の継続使用などで供給可能である。
したがって、この発明によれば、電気絶縁性の固定部の内部のイオンを制御電極近傍へ積極的に偏在させることにより、長時間に亘って測定精度の良い慣性センサ装置を実現することができる。
また、本発明の慣性センサ装置にあっては(解決手段2)、バイアス電圧を制御電圧の平均電圧にしたことにより、電気絶縁性の固定部の内部のイオンの偏在状態がセンサ回路の動作時も非動作時もほぼ同じになるので、制御性も測定精度も最も安定する。
さらに、本発明の慣性センサ装置にあっては(解決手段3)、バイアス回路で生成された正負の異なる相補的な一定のバイアス電圧が、センサ回路への給電の有無に拘わらず常に、バイアス電極に印加される。バイアス電極は固定部のうち可動部との対向面以外の部位に形成されているので、それに引き寄せられてイオンは可動部対向面から離れる。
これにより、電気絶縁性の固定部の内部のイオンがセンサ回路の動作時も非動作時も制御電極の遠隔部に偏在し続けることから、イオンの移動が抑制されるので、イオンの分布状態が安定して、測定精度の不安定要因が無くなる。
なお、この場合も、バイアス電圧が静的なので、バイアス回路や切替回路で消費する電力は、僅少であり、小形の専用電池,充電式のバックアップ電源,あるいは後述する実施例のような電池の継続使用などで供給可能である。
したがって、この発明によれば、電気絶縁性の固定部の内部のイオンを制御電極の遠くへ積極的に偏在させることにより、長時間に亘って測定精度の良い慣性センサ装置を実現することができる。
また、本発明の慣性センサ装置にあっては(解決手段4)、電池から受電した電圧をそのままバイアス電圧にすることで、バイアス回路が配線主体の最も簡素なものとなる。ここで、配線主体の回路には、配線だけの回路の他、それにコネクタ等の準配線部材を組み合わせたものや、サージアブソーバ等の付帯部材を組み合わせたものも、該当する。
このような本発明の慣性センサ装置について、これを実施するための具体的な形態を、以下の実施例1〜3により説明する。
図4に示した実施例1は、上述した解決手段1〜2(出願当初の請求項1〜2)を具現化したものであり、図5の実施例2は、その変形例である。また、図6に示した実施例3は、上述した解決手段3〜4(出願当初の請求項3〜4)を具現化したものである。
なお、それらの図示に際し従来と同様の構成要素には同一の符号を付して示したので、重複する再度の説明は割愛し、以下、従来との相違点を中心に説明する。また、以下の実施例の説明でも、従来例の説明と同様、ジャイロロータ回転駆動用の電極や制御手段に関する説明は割愛する。
本発明の慣性センサ装置の実施例1について、その具体的な構成を、図面を引用して説明する。図4(a)は、慣性センサ装置の典型例である静電浮上型ジャイロ装置について、センサ回路20等のブロック図である。
図4(a)の静電浮上型ジャイロ装置が既述した図1の従来例と相違するのは、バイアス手段30が追加された点である。ジャイロ機構部10及びセンサ回路20は同じ状態で引き継がれている。
バイアス手段30は、センサ回路20の出力アンプ26からジャイロ機構部10の制御電極13に至る制御電圧伝送ラインに介挿接続された切替回路31と、バイアス電圧として既述のオフセット電圧±Vofと同じ一定電圧を発生して切替回路31へ送出するバイアス回路32と、例えば外部の操作部材から与えられる作動指令Bに応じてセンサ回路20への給電を遂行/停止する開閉器33とを具えている。
この静電浮上型ジャイロ装置は、正負の電源電圧±Vccを発生する電池34からの給電を受けて稼動する電池駆動タイプのものであり、電池34からセンサ回路20への給電は開閉器33を介して断続制御可能になっているが、電池34からバイアス回路32への給電は常時行われるようになっている。
バイアス回路32は、抵抗分圧回路でも良いが、消費電力を少なくするため、例えば、スイッチトキャパシタ回路を含む降圧回路などの降圧回路が採用されている。
切替回路31は、例えばMOS−FETからなる低消費電力のアナログスイッチで構成され、制御電圧の各ライン毎に設けられる。そして、作動指令Bに応じて切り替わり、作動指令Bが電池34からセンサ回路20への給電遂行を指示しているときには、出力アンプ26からの制御電圧を選択して制御電極13へ出力し、作動指令Bが電池34からセンサ回路20への給電停止を指示しているときには、バイアス回路32からのバイアス電圧(+Vof又は−Vof)を選択して制御電極13へ出力するようになっている。
この実施例1の静電浮上型ジャイロ装置(慣性センサ装置)について、その使用態様及び動作を、図面を引用して説明する。図4(b)は、センサ停止時の印加電圧波形例であり、従来例の図2(b)と対比されるものである。
作動指令Bが給電遂行を指示しているときには、電池34から開閉器33を介してセンサ回路20に動作電力が供給されるとともに、切替回路31によってバイアス回路32が制御電極13から切り離され出力アンプ26から出力された制御電圧が従来と同様に制御電極13に印加される(図2(a)参照)。そのと共に変位検出用信号も変位検出信号発生回路27から制御電極13に印加され、更に変位検出用信号は検出電極14を経て検出アンプ21にて検出されるので、ケース12に対するロータ11の相対変位が演算部22によって算出される。また、演算部22によって、相対変位から加速度Aが算出されるとともに、相対変位からそれを打ち消すための制御量が算出され、この制御量がD/A変換回路25及び出力アンプ26を経て制御電圧となり、この制御電圧が制御電極13に印加される。こうして、従来同様、適切に、静電浮上力を利用した姿勢制御と加速度検出が行われる。
これに対し、作動指令Bが給電停止を指示しているときには、従来(図2(b)参照)と異なり、電池34からセンサ回路20への給電が開閉器33によって停止されるとともに、切替回路31によってセンサ回路20が制御電極13から切り離されてその代わりにバイアス回路32から出力されたバイアス電圧が制御電極13に印加される(図4(b)参照)。センサ回路20動作時に負の制御電圧が印加されていた制御電極13例えば電極3a,3c等への印加電圧V3a,V3c等は、その平均電圧に対応したバイアス電圧−Vofになり、センサ回路20動作時に正の制御電圧が印加されていた制御電極13例えば電極3b,3d等への印加電圧V3b,V3d等は、その平均電圧に対応したバイアス電圧+Vofになる。そのため、センサ回路20の非動作時にも、動作時に準じた電圧が、各制御電極13に継続して印加される。
そうすると、何時もケース12内のイオンが制御電極13の近傍に偏在し続け(図3(b)参照)、その状態が安定維持されるので、センサ回路20の動作/非動作に拘わらず何時でも、制御電極13に印加される制御電圧と、ロータ11とケース12との間に生じる静電引力とが、長時間に亘って安定な一定の関係になる。
したがって、この実施例によれば、センサ回路20非動作時とセンサ回路20動作時における制御電極の印加電圧がほぼ同じとなるため、絶縁体からなるケース12内部のイオンはほぼ定位置にとどまることとなり、結果として絶縁体内部のイオンの動きが原因の慣性センサの加速度A測定値の変動を防止することが可能となる。
図5にセンサ回路等のブロック図を示した本発明の静電浮上型ジャイロ装置(慣性センサ装置)が上述した実施例1のものと相違するのは、演算部22に時分割手段28(TDM)が追加された点と、二入力の切替回路31が時分割の機能も分担するため三入力の切替回路35に拡張された点である。
時分割手段28は、変位検出用信号を各制御電圧に重畳する際に重畳先を時分割するとともに、変位検出用信号の印加中の電極から制御電圧出力を外すために(特許文献5参照)、時分割信号Cや他のタイミング信号を生成してデジタルプロセッサ24や切替回路35へ送出するようになっている。ここではデジタルプロセッサ24と別の回路で示したが、デジタルプロセッサ24のプログラムで具体化しても良い。何れにしても、D/A変換回路25から出力された制御電圧(±Vof±Vx)と、変位検出信号発生回路27から出力された変位検出用信号とを、直に重畳させることなく択一的に選択させるような時分割信号Cを生成し、これを切替回路35に送出するようになっている。時分割信号Cの周波数は、制御電圧の数十kHzより高く、変位検出用信号のMHzオーダより低く、中間の例えば数百kHzになっている。変位検出用信号と制御電圧は、電圧振幅に関する相互の制約が無くなって、信号レベルが例えば電源電圧±Vccの近くまで高められている。
切替回路35は、切替回路31同様、やはり低消費電力のアナログスイッチからなり、制御電圧の各ライン毎に設けられていて、作動指令Bに応じて切り替わり、作動指令Bが電池34からセンサ回路20への給電停止を指示しているときには、バイアス回路32からのバイアス電圧(+Vof又は−Vof)を選択して制御電極13へ出力するようになっている。一方、作動指令Bが電池34からセンサ回路20への給電遂行を指示しているときには、切替回路31の拡張機能を発揮すべく、更に時分割信号Cに応じて切り替わり、変位検出信号発生回路27からの変位検出用信号と出力アンプ26からの制御電圧とを交互に選択して制御電極13へ出力するようになっている。変位検出用信号の選択出力は、複数の制御電極13で重複することがないよう、時差式で行われる。
この場合、センサ回路20に給電が行われてセンサ回路20が動作しているときには、各軸±X,±Y,±Z,±Z±θ,±Z±φに対応した制御電極13に時分割で交互に制御電圧とセンス電圧(変位検出用信号)が印加される。センス電圧の極性は、座標の向き(各軸の±)に対応して逆となる。例えば、制御電極13のうち隣接電極3a,3bには同相のセンス電圧が印加され、隣接電極3c,3dにも同相のセンス電圧が印加されるが、対向電極3a,3cや対向電極3b,3dについてはセンス電圧が逆相になる。そして、検出電極14にはロータ11の位置(ケース12に対するロータ11の相対変位)に対応した振幅の電荷が現われる。
これが、検出アンプ21で検出されて、演算部22に入力され、時分割手段28のタイミング信号に応じて各軸毎に分配されるので、この場合も、変位算出等が適切に行われ、静電浮上型ジャイロ装置として適切に動作する(特許文献5参照)。
また、センサ回路20への給電が断たれてセンサ回路20が動作を停止しているときには、上述した実施例1のときと同様にして、センサ回路20動作時における制御電極の印加電圧の平均に等しいバイアス電圧が各制御電極13に印加されることから、この場合も、制御電圧と静電引力とが長時間に亘って安定な一定関係になるので、絶縁体からなるケース12内部のイオンはほぼ定位置にとどまることとなり、結果として絶縁体内部のイオンの動きが原因の慣性センサの加速度A測定値の変動を防止することが可能となる。
なお、変位検出用信号と制御電圧との時分割だけでなく、図示は割愛したが測定値算出に係る拡張も本発明と併用することができる。すなわち(特許文献5参照)、相対変位の検出結果からデジタルプロセッサ24にて直ちに加速度A等の測定値を算出するのでなく、相対変位を打ち消すための制御電圧に基づいて測定値算出を行うようにしても良い。具体的には、制御量算出を行うため高速動作の要求されるデジタルプロセッサ24から加速度算出のプログラムをアンインストールして、そのプログラムを低速で安価な別のプロセッサに移植するとともに、D/A変換回路25の出力や出力アンプ26の出力からローパスフィルタで制御電圧の有効成分を抽出し、この抽出成分に基づいて加速度Aの算出を行うのである。このようにしても、制御電極13に印加される制御電圧からロータ11にかかる力を計算で求めることができ、適正な加速度Aが算出される。これにより、センサ回路20を小形で安価なものにすることができる。
本発明の慣性センサ装置の実施例3としての静電浮上型ジャイロ装置について、その具体的な構成を、図面を引用して説明する。図6は、(a)がジャイロ機構部の縦断端面図、(b)がジャイロ機構部の平面図、(c)がセンサ回路等のブロック図である。
この静電浮上型ジャイロ装置が上述した実施例1,2のものと相違するのは、ジャイロ機構部10に複数のバイアス電極42が追加された点と、バイアス手段30を改造したバイアス手段40がバイアス電圧を制御電極13でなくバイアス電極42に印加するようになっている点である。
バイアス電極42は、イオン移動制御専用の電極であり、ケース12におけるロータ11対向面上の制御電極13や検出電極14とは別の部位に設けられる。具体的には、ジャイロ機構部10のケース12(固定部)のうち、ロータ11(可動部)と対向する内面でなく、ロータ11から離隔しているケース12外面に、形成されている(図示の例では半円状に2個形成されている)。例えば、ロータ径1mmの場合、ロータ11と制御電極13との離隔距離は10数μm程度なのに対し、ロータ11とバイアス電極42との離隔距離は約500μm程度であり、ロータ11との距離は両種電極で桁違いに異なる。
バイアス手段40は、電池34の出力端子とバイアス電極42とを繋ぐ配線だけで具現化されたバイアス回路からなる。電池34には開閉器33より手前で接続されていて、センサ回路20への給電停止時も受電しうるものとなっている。また、電池34の出力する正の電源電圧+Vccを対角位置のバイアス電極42に印加し(図6(a)の+付き24を参照)、電池34の出力する負の電源電圧−Vccを他の対角位置のバイアス電極42に印加することで(図6(a)の−付き24を参照)、正負の異なる相補的な一定のバイアス電圧±Vccを隣り合うバイアス電極42に印加するものとなっている。
この場合、センサ回路20への給電状態に係わらず常に、バイアス手段40を介して相補的なバイアス電圧±Vccがバイアス電極42に印加される。バイアス電極42はケース12の外面上に形成されているので、それに引き寄せられてケース12内部のイオンは制御電極13から離れ、バイアス電極42の近傍に偏在する。
そうすると、何時もケース12内のイオンがバイアス電極42の近傍すなわち制御電極13の遠隔部に偏在し続け、その状態が安定維持されるので、センサ回路20の動作/非動作に拘わらず何時でも、制御電極13に印加される制御電圧と、ロータ11とケース12との間に生じる静電引力とが、長時間に亘って安定な一定の関係になる。
なお、バイアス電極42へのバイアス電圧印加がセンサ回路20の動作時に継続されていても、ロータ11との距離がバイアス電極42は制御電極13より桁違いに大きいので、制御電極13とロータ11との間の静電引力が不所望に損なわれることは無い。
したがって、この実施例によれば、絶縁体からなるケース12内部のイオンはセンサ回路20の動作状態に拘わらずほぼ定位置にとどまることとなり、結果として絶縁体内部のイオンの動きが原因の慣性センサの加速度A測定値の変動を防止することが可能となる。また、バイアス手段40が消費する電力は、絶縁部からのリーク電流によるものだけなので、極めて少ない。
[その他]
上記実施例では、慣性センサ装置として静電浮上型ジャイロ装置を挙げたが、本発明の適用は、それに限定される訳でない。例えば、既述したカンチレバー支持方式のマイクロセンサのようなものでも、静電サーボ型センサであって、隣り合う制御電極に正負の異なる相補的な制御電圧を印加するようになっている場合は、本発明の適用が可能である。
従来の慣性センサ装置について、(a)が機構部の縦断端面図、(b)が機構部における電極配置を示す斜視図、(c)がセンサ回路等のブロック図である。 (a)がセンサ動作時の制御電圧波形例、(b)がセンサ停止時の印加電圧波形例である。 課題説明用の機構部縦断面一部拡大模式図であり、(a)がセンサ動作開始直後のイオン分布、(b)がセンサ動作継続後のイオン分布を示している。 本発明の慣性センサ装置の実施例1について、(a)がセンサ回路等のブロック図、(b)がセンサ停止時の印加電圧波形例である。 本発明の慣性センサ装置の実施例2について、センサ回路等のブロック図である。 本発明の慣性センサ装置の実施例3について、(a)が機構部の縦断端面図、(b)が機構部の平面図、(c)がセンサ回路等のブロック図である。
符号の説明
10…ジャイロ機構部、11…ロータ(可動部)、12…ケース(固定部)、
13…制御電極、3a,3b、3c,3d…隣接電極、14…検出電極、
20…センサ回路、21…検出アンプ、22…演算部、
23…A/D変換回路、24…デジタルプロセッサ、25…D/A変換回路、
26…出力アンプ、27…変位検出信号発生回路、28…時分割手段、
30…バイアス手段、31…切替回路、32…バイアス回路、33…開閉器、
40…バイアス手段、41…ジャイロ機構部、42…バイアス電極、
A…加速度(測定値)、B…作動指令、C…時分割信号、Vcc…電源電圧、
Vof…オフセット電圧、V3a,V3b,V3c,V3d…印加電圧

Claims (5)

  1. 導電性の可動部と、これとの対向面に複数の制御電極が形成されている電気絶縁性の固定部と、前記固定部に対する前記可動部の相対変位を検出して、その変動を解消する静電引力を生じる制御電圧を前記制御電極に印加するとともに、前記相対変位の検出結果または前記制御電圧に基づいて加速度算出等の測定値算出を行うセンサ回路とを備え、前記制御電圧として正負の異なる相補的な電圧を生成してそれらを前記制御電極のうち隣り合っている電極に同時に印加する慣性センサ装置において、前記センサ回路への給電停止時も受電可能なところに設けられ正負の異なる相補的な一定のバイアス電圧を生成するバイアス回路と、前記センサ回路への給電停止時には前記制御電圧に代えて前記バイアス電圧を前記制御電極のうち隣り合っている電極に同時に印加させる切替回路とを具備したことを特徴とする慣性センサ装置。
  2. 前記バイアス電圧が前記制御電圧の平均電圧であることを特徴とする請求項1記載の慣性センサ装置。
  3. 導電性の可動部と、これに静電引力を作用させうる対向面を有するとともに静電引力を無視できるほど前記可動部から離隔している非対向面も有しており前記対向面に複数の制御電極が形成されている電気絶縁性の固定部と、前記固定部に対する前記可動部の相対変位を検出して、その変動を解消する静電引力を生じる制御電圧を前記制御電極に印加するとともに、前記相対変位の検出結果または前記制御電圧に基づいて加速度算出等の測定値算出を行うセンサ回路とを備え、前記制御電圧として正負の異なる相補的な電圧を生成してそれらを前記制御電極のうち隣り合っている電極に印加する慣性センサ装置において、前記固定部のうち前記非対向面に形成された複数のバイアス電極と、前記センサ回路への給電停止時も受電可能なところに設けられ正負の異なる相補的な一定のバイアス電圧を生成して前記バイアス電極に印加するバイアス回路とを具備したことを特徴とする慣性センサ装置。
  4. 前記バイアス回路が電池から受電してその電圧を前記バイアス電圧とするものであることを特徴とする請求項3記載の慣性センサ装置。
  5. 前記可動部をロータとし前記固定部をケースとする静電浮上型ジャイロ装置であることを特徴とする請求項1乃至請求項4の何れかに記載された慣性センサ装置。
JP2005114640A 2005-04-12 2005-04-12 慣性センサ装置 Expired - Fee Related JP4667940B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005114640A JP4667940B2 (ja) 2005-04-12 2005-04-12 慣性センサ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005114640A JP4667940B2 (ja) 2005-04-12 2005-04-12 慣性センサ装置

Publications (2)

Publication Number Publication Date
JP2006292577A JP2006292577A (ja) 2006-10-26
JP4667940B2 true JP4667940B2 (ja) 2011-04-13

Family

ID=37413294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005114640A Expired - Fee Related JP4667940B2 (ja) 2005-04-12 2005-04-12 慣性センサ装置

Country Status (1)

Country Link
JP (1) JP4667940B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822877B2 (ja) 2006-03-01 2011-11-24 東京計器株式会社 静電浮上型ジャイロ装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191296A (ja) * 2002-12-13 2004-07-08 Tokimec Inc 静電浮上型ジャイロの信号検出回路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105011A (ja) * 1985-10-31 1987-05-15 Yokogawa Electric Corp ジヤイロコンパス
JP3008074B2 (ja) * 1995-05-24 2000-02-14 株式会社トキメック ジャイロ装置及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191296A (ja) * 2002-12-13 2004-07-08 Tokimec Inc 静電浮上型ジャイロの信号検出回路

Also Published As

Publication number Publication date
JP2006292577A (ja) 2006-10-26

Similar Documents

Publication Publication Date Title
EP1953499B1 (en) Sensor for detecting acceleration and angular velocity
US7886597B2 (en) Dynamic amount sensor
US9631928B2 (en) Gyroscope structure and gyroscope with improved quadrature compensation
US10545167B2 (en) Multiple-axis resonant accelerometers
JP4822877B2 (ja) 静電浮上型ジャイロ装置
JP2007304099A5 (ja)
US9897447B2 (en) Quadrature compensation
JPH09189557A (ja) マイクロジャイロスコープ
JP4248222B2 (ja) 角速度センサ
JP3135181U (ja) 加速度と角速度との双方を検出するセンサ
JP4667940B2 (ja) 慣性センサ装置
JP2009128164A (ja) 加速度・角速度・磁気方位検出用複合センサ及びこれを用いた装置
JP2011503557A (ja) 2つの受感軸を備えるヨーレートセンサ
JP2017509878A (ja) ガルバニック絶縁した分割動作構造を有する微小機械コンポーネント、およびその駆動方法
JP2001091535A (ja) 容量式物理量検出装置
JP2009222475A (ja) 複合センサ
JP5036218B2 (ja) 角速度センサ
JP2015037828A (ja) Mems装置内のガラス帯電の効果の低減
JPH10227644A (ja) 振動子を用いた角速度センサ
US10126323B2 (en) Capacitive physical quantity sensor
JPH11248741A (ja) 静電容量型多軸加速度センサ
JP2001099861A (ja) 容量式物理量検出装置
JP2005098892A (ja) 角速度センサ
JP6080752B2 (ja) 加速度センサ
JP4425066B2 (ja) 静電浮上型ジャイロ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees