JP2009128164A - 加速度・角速度・磁気方位検出用複合センサ及びこれを用いた装置 - Google Patents

加速度・角速度・磁気方位検出用複合センサ及びこれを用いた装置 Download PDF

Info

Publication number
JP2009128164A
JP2009128164A JP2007303082A JP2007303082A JP2009128164A JP 2009128164 A JP2009128164 A JP 2009128164A JP 2007303082 A JP2007303082 A JP 2007303082A JP 2007303082 A JP2007303082 A JP 2007303082A JP 2009128164 A JP2009128164 A JP 2009128164A
Authority
JP
Japan
Prior art keywords
magnetic
acceleration
excitation
angular velocity
excitation coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007303082A
Other languages
English (en)
Inventor
Kosuke Uga
耕介 宇賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2007303082A priority Critical patent/JP2009128164A/ja
Publication of JP2009128164A publication Critical patent/JP2009128164A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】小型かつ低コストにして制御演算部の負担が小さく、加速度・角速度及び磁気方位を高精度に検出可能なセンサ及びこれを用いた検出装置を提供する。
【解決手段】基体2と、下部封止板3及び上部封止板4と、一端が基体2の内面に連結された弾性梁部5と、弾性梁部5の中心部に取り付けられた重錘部6と、重錘部6の下面に形成された励磁コイル7と、下部封止板3の上面の重錘部6と対向する部分に配置された磁気検出素子8と、重錘部6の上面と上部封止板4の下面とに対向に形成された一対の加振機構9とから複合センサ1を構成する。励磁コイル7への励磁電流の供給及び加振機構9への加振電流の供給を制御し、磁気検出素子8の出力から、互いに直交する3方向についての加速度と角速度と磁気方位を検出する。
【選択図】図1

Description

本発明は、加速度と角速度と磁気方位を検出可能な複合センサと、これを用いた加速度と角速度と磁気方位の検出装置とに関する。
従来、携帯電話、カメラ、自動車及びロボットなどの産業機器等に搭載されるセンサとして、加速度、磁気方位(地磁気)及び角速度から選択される2種類の物理量を測定可能な複合センサが知られている(特許文献1〜4参照。)。加速度センサは、歩数計やアプリケーションの切換などに利用され、磁気方位センサは、ナビゲーションシステムにおける方位検出などに利用される。また、角速度センサは、手ぶれ補正などに利用される。
特許文献1に記載のセンサは、重り部に設けられた可動コイルと、当該可動コイルの外側に配置された2軸のGMR素子を備え、2軸方向についての加速度又は角加速度の検出と磁気方位の検出を行うもので、角速度については検出することができない。
特許文献2に記載の複合センサは、振動子と、振動子を加振する駆動電極と、振動子に作用する加速度及びコリオリ力を検出する検出電極及び圧電素子を備え、3軸方向についての加速度の検出と角速度の検出を行うもので、磁気方位については検出することができない。また、特許文献2に記載の複合センサは、検出された加速度に起因する力と角速度に起因する力を、デジタルフィルタ又はアナログフィルタを用いて分離する構成になっている。
特許文献3に記載の複合センサは、質量体と、質量体の変位に応じて変形する可撓部と、可撓部を支持する周辺支持体と、質量体を加振する駆動電極と、質量体の3軸方向における変位を独立に検出する抵抗素子を備え、最大で3軸方向についての加速度の検出と2軸方向についての角速度の検出を同時に行うもので、磁気方位については検出することができない。また、この特許文献3に記載の複合センサも、検出された加速度に起因する力と角速度に起因する力を、デジタルフィルタ又はアナログフィルタを用いて分離する構成になっている。
特許文献4に記載の複合センサは、重錘体と、重錘体の振動により撓みが生じる梁と、梁を支持する支持部と、重錘体を加振する駆動電極と、梁の撓みを検出するピエゾ抵抗素子を備え、3軸方向についての加速度の検出と角速度の検出を同時に行うもので、磁気方位については検出することができない。また、この特許文献4に記載の複合センサにおいては、検出された加速度に起因する力と角速度に起因する力の分離を、検出信号のサンプリングタイミングを調整することにより行う構成になっている。
このように、従来知られているセンサ又は複合センサは、いずれも2軸方向又は3軸方向について、加速度、磁気方位及び角速度から選択される2種類の物理量を測定するものであり、互いに直交する3軸方向について加速度、磁気方位及び角速度の全てを測定可能な複合センサについては、本願出願人が調査した範囲では提案されていない。
特開2006−98078号公報 特開2005−31096号公報 特開平8−136265号公報 特開2005−31096号公報
近年、多くの産業分野においては、製品のより一層の高性能化及び多機能化を図るため、互いに直交する3軸方向について、加速度、磁気方位及び角速度の全てを測定可能な複合センサが強く求められている。なお、測定する物理量の種類に応じた各種の検出素子を必要な数だけ複合的に組合わせることで、この種の複合センサを得ることができるが、かかる構成によると、検出素子の種類及び数が多くなり、複合センサが大型化及び高コスト化するため、実用的な複合センサとすることは困難である。
一方、1種類の検出素子を用いて加速度、磁気方位及び角速度の全てを測定可能な複合センサを作製できれば、大型化及び高コスト化の問題は解決することができるが、検出信号からの加速度、磁気方位及び角速度の分離が複雑化するため、検出信号からの容易かつ高精度に加速度、磁気方位及び角速度を分離可能な、新たな信号の分離手段を工夫することが必要になる。
本発明は、かかる従来技術の問題点を解決するためになされたものであり、その目的は、小型かつ低コストに製造でき、かつ互いに直交する3軸方向について加速度、磁気方位及び角速度を容易かつ高精度に検出可能な加速度・角速度・磁気方位検出用複合センサを提供すること、及びこの複合センサを備えた加速度・角速度・磁気方位検出装置を提供することにある。
本発明は、上記の課題を解決するため、加速度・角速度・磁気方位検出用複合センサに関しては、第1に、1乃至複数個の磁気検出素子と、これら1乃至複数個の磁気検出素子に磁界を印加する励磁コイルと、当該励磁コイルを支持する弾性梁部と、当該弾性梁部を介して前記励磁コイルを一方向に加振する静電振動用電極などの加振機構を備えるという構成にした。
かかる構成によると、1乃至複数個の磁気検出素子を備えるだけで、必要な方位に関する加速度検出と角速度検出と磁気方位検出を行うことができるので、複数種類の検出素子を用いる場合に比べて構成を簡略化することができ、複合センサの小型化と低コスト化を図ることができる。
本発明は、加速度・角速度・磁気方位検出用複合センサに関して第2に、前記第1の構成の加速度・角速度・磁気方位検出用複合センサにおいて、前記磁気検出素子として、磁気検出方位が互いに直交する3方向に向けられた3個の磁気検出素子を備えるという構成にした。
かかる構成によると、互いに直交する3方向に関して、それぞれ加速度と角速度と磁気方位を検出することができるので、当該複合センサを搭載する機器の高性能化及び多機能化を図ることができる。
本発明は、加速度・角速度・磁気方位検出用複合センサに関して第3に、前記第1の構成の加速度・角速度・磁気方位検出用複合センサにおいて、前記磁気検出素子として、互いに直交する3方向の磁気を検出可能な1個の磁気検出素子を備えるという構成にした。
かかる構成によると、検出素子を集約化できるので、複合センサのより一層の小型化を図れると共に、各検出素子間の接続作業を省略できるので、複合センサのより一層の低コスト化を図れる。
本発明は、加速度・角速度・磁気方位検出用複合センサに関して第4に、前記第1乃至第3の構成の加速度・角速度・磁気方位検出用複合センサにおいて、前記弾性梁部と前記励磁コイルと前記加振機構を互いに電気的に絶縁状態に形成すると共に、前記弾性梁部の表面に所要の配線パターンを形成し、当該配線パターンを通じて前記励磁コイルへの励磁電流の供給及び前記加振機構への加振電流の供給を行うという構成にした。
かかる構成によると、弾性梁部の作製時に所要の配線パターンを同時に形成できるので、励磁コイル及び加振機構と、これら励磁コイル及び加振機構に所要の電流を供給する制御演算部との接続配線を容易化でき、複合センサのより一層の低コスト化を図ることができる。なお、弾性梁部の作製は、MEMS(Micro Electro Mechanical System)技術を応用することにより行うことができる。
本発明は、加速度・角速度・磁気方位検出用複合センサに関して第5に、前記第1乃至第3の構成の加速度・角速度・磁気方位検出用複合センサにおいて、前記弾性梁部と前記励磁コイルと前記加振機構を互いに同電位に設定し、前記弾性梁部を通じて前記励磁コイルへの励磁電流の供給及び前記加振機構への加振電流の供給を行うという構成にした。
かかる構成によると、励磁コイル及び加振機構と、これら励磁コイル及び加振機構に所要の電流を供給する制御演算部との接続配線を省略又は簡略化できるので、複合センサのより一層の低コスト化を図ることができる。
本発明は、加速度・角速度・磁気方位検出用複合センサに関して第6に、前記第4又は第5の構成の加速度・角速度・磁気方位検出用複合センサにおいて、前記弾性梁部にCR回路を形成し、当該CR回路により前記励磁コイルに供給される前記励磁電流の波形及び前記加振機構に供給される前記加振電流の波形を切り換えるという構成にした。
かかる構成によると、波形が異なる複数種類の励磁電流及び加振電流をそれぞれ励磁コイル及び加振機構に供給する場合においても、1系統の配線を備えれば足りるので、励磁コイル及び加振機構と、これら励磁コイル及び加振機構に所要の電流を供給する制御演算部との接続配線を簡略化することができ、複合センサのより一層の低コスト化を図ることができる。
本発明は、加速度・角速度・磁気方位検出用複合センサに関して第7に、前記第1乃至第6の構成の加速度・角速度・磁気方位検出用複合センサにおいて、前記弾性梁部の片面に、前記励磁コイルと前記加振機構を配置するという構成にした。
励磁コイル及び加振機構は、フォトリソグラフィ技術を応用することにより弾性梁部の表面に形成されるが、これら励磁コイル及び加振機構を弾性梁部の片面に形成すると、弾性梁部への金属膜の形成、金属膜上へのフォトレジスト層の形成、フォトレジスト層の露光、及び余剰の金属膜のエッチング等を1回の作業で行うことができるので、弾性梁部の表裏両面に励磁コイル及び加振機構を形成する場合に比べて、複合センサの製造を容易なものにすることができる。
一方、本発明は、加速度・角速度・磁気方位検出装置に関して、第1に、1乃至複数個の磁気検出素子と、これら1乃至複数個の磁気検出素子に磁界を印加する励磁コイルと、当該励磁コイルを支持する弾性梁部と、当該弾性梁部を介して前記励磁コイルを一方向に加振する加振機構を有する加速度・角速度・磁気方位検出用複合センサと、前記励磁コイルへの励磁電流の供給及び前記加振機構への加振電流の供給を制御すると共に、前記磁気検出素子の出力を入力し、入力された前記磁気検出素子の出力に応じた加速度の算出、角速度の算出及び磁気方位の算出を行う制御演算部を備えるという構成にした。
かかる構成によると、加速度、角速度及び磁気方位を検出するための複合センサとして、1乃至複数個の磁気検出素子を備えたものを用いるので、複数種類の検出素子を備えた複合センサを用いる場合に比べて構成を簡略化することができ、検出装置の小型化及び低コスト化を図れると共に、検出信号を得るためのアルゴリズムを簡略化することができ、加速度、角速度及び磁気方位の各検出信号を高精度に検出することができる。
本発明に係る検出装置を用いた加速度・角速度及び磁気方位の検出原理は、以下の通りである。即ち、本発明の検出装置に搭載された複合センサは、加速度を受けたとき、弾性梁部にf=m・α(但し、mは弾性梁部及び励磁コイルを含む系の質量、αはその系に作用する加速度)なる力が作用し、弾性梁部が加速度の向きに応じた方向に力fに応じた量だけ変位するので、それに伴い、磁気検出素子に対する弾性梁部に支持された励磁コイルの姿勢が変化する。よって、励磁コイルに励磁電流を通電した状態においては、磁気検出素子に対する励磁コイルからの発生磁界の向き及び大きさが加速度の向き及び大きさに応じて変化するので、加速度の向き及び大きさに応じたレベルの出力を磁気検出素子から取り出すことができる。また、励磁電流の切り替えにより、検出レンジの切替も容易に行うことができる。
また、本発明の検出装置に搭載された複合センサは、加振機構を備えているので、加振機構に交番電流を供給することにより、弾性梁部を介して励磁コイルを一方向に加振することができる。この状態で、複合センサに角速度が作用すると、励磁コイルの加振方向及び角速度の作用方向のそれぞれに直交する方向にF=2m・v・ω(但し、mは弾性梁部及び励磁コイルを含む系の質量、vはその系の振動についての瞬時の速度、ωはその系に作用する瞬時の角速度)なるコリオリ力Fが発生し、励磁コイルがコリオリ力Fの作用方向にコリオリ力の大きさに応じた量だけ変位する。即ち、互いに直交するX軸、Y軸及びZ軸を有するX,Y,Z三次元座標系において、例えばX軸方向に励磁コイルが振動している状態において、例えばZ軸回りに励磁コイルを回転させる角速度が作用すると、励磁コイルには角速度の大きさに応じたY軸方向のコリオリ力Fが作用し、励磁コイルがY軸方向に変位する。したがって、磁気検出素子に対する弾性梁部に支持された励磁コイルの姿勢が変化し、励磁コイルに励磁電流を通電した状態においては、磁気検出素子に対する励磁コイルからの発生磁界の向き及び大きさがコリオリ力Fの向き及び大きさに応じて変化するので、角速度の向き及び大きさに応じたレベルの出力を磁気検出素子から取り出すことができる。また、励磁電流の切り換えにより、検出レンジの切替も容易に行うことができる。
なお、複合センサには加速度と角速度とが同時に作用する場合があり、通常の使用状態においては、むしろこの方が普通である。複合センサに加速度と角速度とが同時に作用した場合、弾性梁部及び励磁コイルを含む系には、加速度による力fと角速度によるコリオリ力Fの合成力が作用し、励磁コイルは、この合成力の作用方向に合成力の大きさに応じた量だけ変位する。しかしながら、加速度による力fは、振動の周波数成分を含まないため、合成力の中にあって単なるバイアス成分としてのみ含まれるのに対して、コリオリ力Fは、弾性梁部及び励磁コイルを含む系の振動を搬送波として角速度を振幅変調した力であり、合成力の中にあって振幅成分としてのみ含まれている。したがって、フィルタを通すなどの手段を適用すれば、磁気検出素子の出力から加速度による力fとコリオリ力Fを分離することができ、複合センサに作用する加速度と角速度を個別に検出することができる。
一方、地磁気などの外部磁場は、励磁コイルの対する励磁電流の通電時においては磁気検出素子の出力の直流成分として算出することができ、励磁電流の遮断時においては磁気検出素子の出力値として求めることができるので、加速度の検出に利用する磁気検出素子を用いて磁気方位の検出も行うことができる。
このように、本発明の複合センサ及び検出装置は、同一の磁気検出素子を用いて加速度の検出と角速度の検出と磁気方位の検出と角速度の検出を行うことから、これら各物理量の検出アルゴリズムを同一にすることができて、演算プログラムの開発の容易化と必要なメモリ容量の削減を図ることができる。また、励磁コイルにより印加される磁界が磁気方位の検出時においてノイズとならないので、磁気方位を高精度に検出できる。さらに、励磁コイルに供給される励磁電流を増減することにより加速度及び角速度の検出レンジを適宜変更できるので、高感度の磁気検出素子を備える必要がなく、加速度及び角速度の検出時における外部磁場の影響を受けにくくすることができる。
本発明は、加速度・角速度・磁気方位検出装置に関して第2に、前記第1の構成の加速度・角速度・磁気方位検出装置において、前記制御演算部は、前記励磁コイルへの励磁電流の供給と前記加振機構への加振電流の供給を同時に行い、前記磁気検出素子の出力から加速度、角速度及び磁気方位を並行して算出するという構成にした。
前述したように、複合センサに作用する加速度、角速度及び磁気方位は、これらの合成力として出力される磁気検出素子の出力からそれぞれ分離可能であり、個別に検出することができる。したがって、励磁コイルへの励磁電流の供給と加振機構への加振電流の供給を同時に行い、磁気検出素子の出力から加速度、角速度及び磁気方位を並行して算出すると、各物理量の検出を時系列的に繰り返す必要がないので、各物理量の検出を短時間のうち行えると共に、ごく短時間に作用する加速度及び角速度も漏れなく検出できるので、それらの物理量の検出精度を高めることができる。また、演算時間を短縮化できることから、検出装置の周波数応答性を良好なものにすることができる。
本発明は、加速度・角速度・磁気方位検出装置に関して第3に、前記第1の構成の加速度・角速度・磁気方位検出装置において、前記制御演算部は、前記励磁コイルに交流励磁電流を供給し、前記磁気検出素子の出力の交流成分から加速度及び角速度を算出すると共に、直流成分から磁気方位を算出するという構成にした。
かかる構成により、加速度及び角速度の算出と磁気方位の算出を比較的簡便な演算プログラムを用いて行うことができる。なお、この場合においても、励磁コイルに供給される交流励磁電流と弾性梁部及び励磁コイルを含む系に付与される振動の周波数差を十分に大きくしておけば、磁気検出素子の出力から加速度と角速度を分離することが可能である。
本発明は、加速度・角速度・磁気方位検出装置に関して第4に、前記第1の構成の加速度・角速度・磁気方位検出装置において、前記制御演算部は、前記励磁コイルに励磁電流を供給したときの前記磁気検出素子の出力から加速度及び角速度を算出し、前記励磁コイルへの励磁電流の供給を遮断したときの前記磁気検出素子の出力から磁気方位を算出するという構成にした。
かかる構成によると、加速度及び角速度と磁気方位を切り分けて算出するので、加速度及び角速度の算出と磁気方位の算出との間に相互作用が起こらず、外乱に強い検出装置とすることができる。
本発明は、加速度・角速度・磁気方位検出装置に関して第5に、前記第1の構成の加速度・角速度・磁気方位検出装置において、前記制御演算部は、前記励磁コイルへの励磁電流の供給と前記加振機構への弾性梁部制動電流の供給を同時に行い、前記弾性梁部を制動した状態で、前記磁気検出素子の出力から加速度及び磁気方位を並行して算出するという構成にした。
加振機構に供給される加振電流は、その波形及び向きによって、弾性梁部及び励磁コイルを含む系を加振する力を生じたり、弾性梁部及び励磁コイルを含む系に制動をかける力を生じる。本明細書においては、加振機構に供給される電流のうち、弾性梁部及び励磁コイルを含む系に制動をかける力を発生する電流を、特に「弾性梁部制動電流」という。加振機構に弾性梁部制動電流を供給すると、弾性梁部及び励磁コイルを含む系の振動が強制的に制動され、磁気検出素子の出力から角速度に応じた成分が除かれるので、加速度及び磁気方位の算出を容易なものにすることができる。
本発明は、加速度・角速度・磁気方位検出装置に関して第6に、前記第1の構成の加速度・角速度・磁気方位検出装置において、前記制御演算部は、前記励磁コイル及び前記加振機構にそれぞれ逆位相の励磁電流及び加振電流を同時に供給し、前記磁気検出素子の出力から磁気方位を算出するという構成にした。
かかる構成によると、加速度検出時及び磁気方位検出時に励磁電流が供給された励磁コイルが振動した場合にも、弾性梁部及び励磁コイルを含む系の振動に起因する磁界の変化をキャンセルできるので、加速度及び磁気方位の検出を容易かつ高精度に行うことができ、これらの検出時間の短縮化を図ることができる。
本発明は、加速度・角速度・磁気方位検出装置に関して第7に、前記第1の構成の加速度・角速度・磁気方位検出装置において、前記制御演算部は、前記励磁コイル及び前記加振機構にそれぞれ振幅及び周期が異なる励磁電流及び加振電流を同時に供給し、前記磁気検出素子の出力から加速度、角速度及び磁気方位を並行して算出するという構成にした。
かかる構成によると、励磁電流の振幅及び周期並びに加振電流の振幅及び周期を適宜組合わせをすることにより、励磁コイルから発生する磁界の波形を、加振電流を調整するだけでは実現できない種々の波形にすることができるので、加速度、角速度及び磁気方位を様々なアルゴリズムで検出することが可能になり、各物理量の検出をより高精度化することができる。
本発明は、加速度・角速度・磁気方位検出装置に関して第8に、前記第1の構成の加速度・角速度・磁気方位検出装置において、前記制御演算部は、前記励磁コイルへのオフセットが反転された励磁電流の供給と前記加振機構への加振電流の供給を同時に行い、前記磁気検出素子の出力から加速度及び角速度を並行して算出するという構成にした。
かかる構成によると、励磁電流にオフセットを与えることで、励磁コイルから発生する磁界の波形に、加振電流を調整するだけでは実現できないオフセット成分を加えることができるので、加速度、角速度及び磁気方位を様々なアルゴリズムで検出することが可能になり、各物理量の検出をより高精度化することができる。
本発明は、加速度・角速度・磁気方位検出装置に関して第9に、前記第1の構成の加速度・角速度・磁気方位検出装置において、前記制御演算部は、セルフテストを実行するためのアルゴリズムを記憶しており、定期的又はユーザからの指令により、前記アルゴリズムを起動して、前記励磁コイルへの励磁電流の供給と前記加振機構への加振電流の供給を同時に行い、加速度及び角速度についてのセルフテストを実行するという構成にした。
かかる構成によると、定期的又はユーザからの指令により、検出装置のみを用いて加速度の検出精度及び角速度の検出精度をセルフテストできるので、これら各物理量に関する検出データの信頼性が高い検出装置とすることができる。
本発明によると、1乃至複数個の磁気検出素子と、これら1乃至複数個の磁気検出素子に磁界を印加する励磁コイルと、当該励磁コイルを支持する弾性梁部と、当該弾性梁部を介して前記励磁コイルを一方向に加振する加振機構を備えた加速度・角速度・磁気方位検出用複合センサを用いて加速度の検出と角速度の検出と磁気方位の検出を行うので、加速度検出に必要な磁気検出素子と角速度検出に必要な磁気検出素子と磁気方位検出に必要な磁気検出素子との共用化を図ることができ、加速度・角速度・磁気方位検出装置の小型化と低コスト化を図ることができる。また、加速度の算出と角速度の算出と磁気方位の算出を同一の検出アルゴリズムで行うことができるので、制御演算部の負担を軽減することができる。さらに、励磁コイルへの励磁電流の供給を制御することにより、励磁コイルから発生する磁界を適宜調整できるので、加速度及び角速度の検出レンジを適宜変更できると共に、各物理量の算出時におけるノイズの影響を解消若しくは軽減することができる。
以下、本発明に係る加速度・角速度・磁気方位検出用複合センサの構成及びこれを用いた加速度・角速度・磁気方位検出装置の構成を、図1乃至図4を用いて説明する。図1は実施形態に係る加速度・角速度・磁気方位検出用複合センサの断面図、図2は実施形態に係る加速度・角速度・磁気方位検出用複合センサの封止板を除去した平面図、図3は弾性梁部に対する励磁コイル及び静電振動用電極の形成状態を示す要部拡大断面図、図4は実施形態に係る加速度・角速度・磁気方位検出装置の構成図である。
図1及び図2に示すように、実施形態に係る加速度・角速度・磁気方位検出用複合センサ1は、枠形に形成された基体2と、基体2の上下面を封止する下部封止板3及び上部封止板4と、一端が基体2の内面に連結された十文字形状の弾性梁部5と、弾性梁部5の中心部(可動部分)に取り付けられた重錘部6と、重錘部6の下面に形成された励磁コイル7と、下部封止板3の上面の重錘部6と対向する部分に配置された磁気検出素子8と、重錘部6の上面と上部封止板4の下面に対向に形成された一対の静電振動用電極(加振機構)9とから主に構成される。また、実施形態に係る加速度・角速度・磁気方位検出装置20は、図4に示すように、前記実施形態に係る加速度・角速度・磁気方位検出用複合センサ1と、当該複合センサ1に備えられた励磁コイル7への励磁電流の供給及び静電振動用電極9への加振電流の供給を制御すると共に、磁気検出素子8の出力を入力し、磁気検出素子8の出力に応じた加速度の算出と角速度の算出と磁気方位の算出を行う制御演算部21とから主に構成される。
基体2、下部封止板3、上部封止板4、弾性梁部5及び重錘部6は、MEMS技術を用いて作製することができる。基体2は、金属等の高弾性材料をもって、弾性梁部5及び重錘部6と一体に形成される。下部封止板3は、所要の部分に磁気検出素子8が実装された配線基板からなり、上部封止板4は、所要の部分に静電振動用電極9が形成されたシリコン板又はガラス板からなる。なお、重錘部6は、加速度を受けたときの弾性梁部5の変形、ひいては磁気検出素子8に対する励磁コイル7の変位をある程度大きくして、加速度の検出感度を高めるためのものであり、励磁コイル7として必要な重量をもつものを用いる場合には、省略することができる。また、下部封止板3としては、磁気センサと信号回路を一体化してワンチップ化したモノリシック磁気検出素子を用いることもできる。
励磁コイル7は、通電時、重錘部6の励磁コイル形成面と垂直をなす方向に磁場を発生するもので、フォトリソグラフィ技術を用いて形成することができる。また、静電振動用電極9は、通電時、重錘部6を図1及び図2のZ方向に加振するもので、これについても、フォトリソグラフィ技術を用いて形成することができる。
磁気検出素子8としては、互いに直交する3方向に磁気検出方位を有する3軸の磁気検出素子を用いることもできるし、1軸の磁気検出素子を3個組合わせて、互いに直交する3方向の磁気を検出できるようにしたものを用いることもできる。磁気検出素子8として、3軸の磁気検出素子を用いると、磁気検出素子8を集約化できて、複合センサ1のより一層の小型化を図れると共に、各磁気検出素子間の接続作業を省略できて、複合センサ1のより一層の低コスト化が図れる。いずれの場合にも、図1及び図2のX方向、Y方向及びZ方向にそれぞれ磁気検出方位を向けて、下部封止板3上に実装される。なお、磁気検出素子8としては、例えば磁気抵抗素子やホール素子などを用いることができる。
なお、励磁コイル6及び静電振動用電極9は、図3(a)に示すように、絶縁層10を介して重錘部6の上下面にそれぞれ形成し、弾性梁部5の表面に絶縁層10を介して形成された配線パターン11により制御演算部21に接続することもできるし、図3(b)に示すように、絶縁層10を介して弾性梁部5及び重錘部6の表面に形成された導電層12を加工することによって所要の配線パターン11と共に一体形成し、励磁コイル7と静電振動用電極9とが同電位になるようにすることもできる。なお、弾性梁部5及び重錘部6が絶縁材をもって形成される場合には、図3(a)及び図3(b)の例における絶縁層10を省略することができる。また、弾性梁部5及び重錘部6が導電材をもって形成される場合には、図3(b)の例における絶縁層10及び導電層12を省略することができる。このように、弾性梁部5の表面に所要の配線パターン11を形成すると、弾性梁部5の作製時に所要の励磁コイル7、静電振動用電極9及び配線パターン11を同時に形成できるので、事後的な配線を省略することができて、複合センサの低コスト化を図ることができる。また、励磁コイル7と静電振動用電極9を同電位に設定すると、励磁コイル7及び静電振動用電極9と制御演算部21を接続する配線を省略又は簡略化できるので、複合センサのより一層の低コスト化を図ることができる。
以下、実施形態に係る加速度・角速度・磁気方位検出装置の動作を、図5乃至図9を用いて説明する。図5は励磁コイルの発生磁場と静電振動用電極への通電時に生じる重錘部の振動方向と地磁気の向きを示す説明図、図6はX方向又はY方向に加速度による力及びコリオリ力を受けたときの複合センサの動きを示す動作説明図、図7はZ方向に加速度による力及びコリオリ力を受けたときの複合センサの動きを示す動作説明図、図8は静電振動用電極への通電時に生じる重錘部の振動と角速度とコリオリ力と加速度による力を示すグラフ図、図9は加速度による力とコリオリ力との合成力を示すグラフ図である。
図5に示すように、励磁コイル7は、重錘部6の下面に平面状に形成されているので、励磁電流の供給時、複合センサ1のZ方向に磁場を発生する。また、静電振動用電極9は、重錘部6の上面と上部封止板4の下面に形成されているので、加振電流の供給時、励磁コイル7は、複合センサ1のZ方向に振動する。さらに、複合センサ1を水平に保持したとき、地磁気は、X方向又はY方向に作用する。
弾性梁部5は、十文字形状に形成され、その中心部に重錘部6が取り付けられているので、X方向又はY方向の加速度を受けた場合には、f=m・α(但し、mは弾性梁部5、重錘部6及び励磁コイル7を含む系の質量、αはその系に作用する加速度)なる力がX方向又はY方向に作用し、図6に示すように、基体2に対して重錘部6が傾斜するように弾性梁部5が変形する。また、Z方向の加速度を受けた場合には、f=m・αなる力がZ方向に作用し、図7に示すように、基体1に対して重錘部6が接近又は離隔するように弾性梁部5が変形する。
また、静電振動用電極9に加振電流が供給され、弾性梁部5、重錘部6及び励磁コイル7を含む系が振動している状態において、複合センサ1に角速度が作用した場合にも、これと同様に弾性梁部5が変形する。即ち、弾性梁部5、重錘部6及び励磁コイル7を含む系がZ方向に振動している状態で、X軸の回りに励磁コイル7を回転させる角速度が複合センサ1に作用すると、Y軸方向にF=2m・v・ω(但し、mは弾性梁部5、重錘部6及び励磁コイル7を含む系の質量、vはその系の振動についての瞬時の速度、ωはその系に作用する瞬時の角速度)なるコリオリ力Fが発生し、Y軸方向に弾性梁部5が変形する。また、弾性梁部5、重錘部6及び励磁コイル7を含む系がZ方向に振動している状態で、Y軸の回りに励磁コイル7を回転させる角速度が複合センサ1に作用した場合には、X軸方向にコリオリ力Fが発生して、X軸方向に弾性梁部5が変形し、弾性梁部5、重錘部6及び励磁コイル7を含む系がX方向に振動している状態で、Y軸の回りに励磁コイル7を回転させる角速度が複合センサ1に作用した場合には、Z軸方向にコリオリ力Fが発生し、Z軸方向に弾性梁部5が変形する。
したがって、弾性梁部5、重錘部6及び励磁コイル7を含む系には、図9の合成力、即ち、図8(a)に示す振動Uと、図8(b)に示すコリオリ力Fと、図8(c)に示す加速度による力fの合成力が作用し、励磁コイル7がこの合成力の方向に変位する。これにより、磁気検出素子8に印加される励磁コイル7の発生磁場が変化する。また、この励磁コイル7の発生磁場には、地磁気などの外部磁場が重畳する。よって、制御演算部21は、磁気検出素子8の出力の変化から、重錘部6に作用する加速度の方向及び大きさ、並びに重錘部6に作用する加速度の方向及び大きさを算出することができる。また、制御演算部8は、磁気検出素子8の出力の直流成分から、地磁気などの外部磁場の方向及び大きさを算出することができる。
以下、制御演算部21によって行われる加速度、角速度及び磁気方位の算出手順を、図10乃至図20を用いて説明する。
図10は、制御演算部21によって行われる加速度、角速度及び磁気方位の算出手順の基礎となる磁気方位検出アルゴリズムの説明図である。まず、制御演算部21は、励磁コイル7に方形波の励磁電流を供給し、励磁コイル7に磁場を発生させる。X方向に感度を持つ磁気検出素子は、その最大出力Xmax及び最小出力Xminから、(Xmax−Xmin)/2及び(Xmax+Xmin)/2を算出し、X方向のAC成分Ax及びDC成分Cxを算出する。これと同時に、Y方向に感度を持つ磁気検出素子は、その最大出力Ymax及び最小出力Yminから、(Ymax−Ymin)/2及び(Ymax+Ymin)/2を算出し、Y方向のAC成分Ay及びDC成分Cyを算出する。次いで、制御演算部21は、先に求められたX方向のAC成分AxにX方向のゲイン補正係数αx及びX方向のオフセット補正係数βxを加味してX方向の加速度A(x)=Ax×αx+βxを算出すると共に、先に求められたY方向のAC成分AyにY方向のゲイン補正係数αy及びY方向のオフセット補正係数βyを加味してY方向の加速度A(y)=Ay×αy+βyを算出する。次いで、制御演算部21は、先に求められたX方向の加速度A(x)及びY方向の加速度A(y)を用いて数1の演算を行い、加速度の大きさ|A|とその向きθaを算出する。また、これと同時に、制御演算部8は、先に求められたX方向のDC成分Cx及びY方向のDC成分Cyを用いて数1の演算を行い、地磁気の方位θcを算出する。なお、ゲイン補正係数αx,αy及びオフセット補正係数βx,βyは、加速度と励磁コイル7の変位との関係から、予め求めておく。また、図10のフロー図では、方位算出時におけるゲイン補正及びオフセット補正が省略されているが、加速度算出時と同様に、ゲイン補正及びオフセット補正が行われる。
Figure 2009128164
Figure 2009128164
図11乃至図15は、制御演算部21によって行われる加速度、角速度及び磁気方位の算出手順の基礎となる加速度・角速度分離アルゴリズムの説明図である。まず、図11に示すように、図9に示した合成力の変極点P1〜P9を抽出する。次に、図12に示すように、各変極点P1〜P9の時間軸t上の位置を示す区画線Q1〜Q9を定義し、隣接する各区各線の中間位置を通る参照線Q12〜Q89を定義する。そして、各参照線上に、その両側にある変極点の信号値の平均値をもった参照点m1〜m8をプロットして、図13のグラフを得る。このようにして参照点m1〜m8が得られたら、図14に示すように、これらを順に結んだ信号波形を求める。こうして得られた信号波形は、元の合成力のバイアス成分に対応するものになり、加速度による力fに相当する。一方、角速度ωの大きさは、図15に示すように、図8(c)に示したコリオリ力の信号波形の包絡線を抽出することで得られる。また、角速度ωの向きは、得られたコリオリ力Fと振動Uとの位相差により得ることができる。したがって、図11乃至図15のアルゴリズムをデジタル的に実行することにより、磁気検出素子8の出力から、加速度と角速度を分離することができる。
図16は、制御演算部21によって行われる加速度、角速度及び磁気方位の算出手順の第1例を示すフロー図である。本例の算出手順は、制御演算部21から静電振動用電極9に加振電流を供給し、弾性梁部5、重錘部6及び励磁コイル7を含む系をZ軸方向に振動させた状態で、励磁コイル7への励磁電流の供給を断ち、磁気検出素子8による磁気センシングを実行する。そして、磁気検出素子8の出力を制御演算部21に入力して、図10に示す方位検出アルゴリズムを実行し、地磁気の方位を算出する。また、重錘部6及び励磁コイル7を含む系をZ軸方向に振動させた状態で、励磁コイル7に励磁電流を供給し、磁気検出素子8による磁気センシングを実行する。そして、磁気検出素子8の出力をハイパスフィルタ及びローパスフィルタを通して制御演算部21に入力し、ハイパスフィルタの出力から角速度を算出すると共に、ローパスフィルタの出力から加速度を算出する。
図17は、制御演算部21によって行われる加速度、角速度及び磁気方位の算出手順の第2例を示すフロー図である。本例の算出手順は、制御演算部21から静電振動用電極9に加振電流を供給し、弾性梁部5、重錘部6及び励磁コイル7を含む系をZ軸方向に振動させた状態で、励磁コイル7への励磁電流の供給を断ち、磁気検出素子8による磁気センシングを実行する。そして、磁気検出素子8の出力をハイパスフィルタ及びローパスフィルタを通して制御演算部21に入力し、ハイパスフィルタの出力から加速度を算出すると共に、ローパスフィルタの出力から図10に示す方位検出アルゴリズムを実行して、地磁気の方位を算出する。また、重錘部6及び励磁コイル7を含む系をZ軸方向に振動させた状態で、励磁コイル7に励磁電流を供給し、磁気検出素子8による磁気センシングを実行する。そして、磁気検出素子8の出力をハイパスフィルタ及びローパスフィルタを通して制御演算部21に入力し、ハイパスフィルタの出力から角速度を算出すると共に、ローパスフィルタの出力から加速度を算出する。
このように、本例の算出手順によると、互いに直交するX方向、Y方向及びZ方向について加速度の大きさ及び向きと角速度の大きさ及び向きと地磁気の方位を求めることができるので、例えばナビゲーションシステム等に適用可能な実用性の高い検出装置とすることができる。また、ハイパスフィルタ及びローパスフィルタを通して各成分を分離すると、出力の交流成分及び直流成分の演算を省略できるので、制御演算部8の負担を軽減することができ、検出装置の周波数応答性をさらに良好なものにすることができる。
図18は、制御演算部21によって行われる加速度、角速度及び磁気方位の算出手順の第3例を示すフロー図である。本例の算出手順は、加速度の大きさ及び向きと角速度の大きさ及び向きと地磁気の方位を並行に算出するのではなく、励磁コイル7への通電を遮断した状態で地磁気の方位を算出し、励磁コイル7及び静電振動用電極9に通電した状態で角速度を算出し、静電振動用電極9に弾性梁部制動電流を供給し、弾性梁部5、重錘部6及び励磁コイル7を含む系を強制的に制動し、かつ励磁コイル7に通電している状態で加速度を算出することを特徴とする。本例の算出手順によると、磁気方位と角速度と加速度を切り分けて算出するので、加速度の算出と磁気方位の算出との間に相互作用が起こらず、外乱に強い検出装置とすることができる。
図19は、制御演算部21によって行われる加速度、角速度及び磁気方位の算出手順の第4例を示すフロー図である。本例の算出手順は、制御演算部21から静電振動用電極9に加振電流を供給し、弾性梁部5、重錘部6及び励磁コイル7を含む系をZ軸方向に振動させた状態で、励磁コイル7への励磁電流の供給を断ち、磁気検出素子8による磁気センシングを実行する。そして、磁気検出素子8の出力を制御演算部21に入力して、図10に示す方位検出アルゴリズムを実行し、地磁気の方位を算出する。また、重錘部6及び励磁コイル7を含む系をZ軸方向に振動させた状態で、励磁コイル7に励磁電流を供給し、磁気検出素子8による磁気センシングを実行する。そして、磁気検出素子8の出力を制御演算部21に入力して、図11乃至図15を用いて説明した加速度・角速度分離アルゴリズムを実行し、加速度と角速度を算出する。
図20は、制御演算部21によって行われる加速度、角速度及び磁気方位の算出手順の第5例を示すフロー図である。本例の算出手順は、制御演算部21から励磁コイル7に励磁電流の供給した状態で、制御演算部21から静電振動用電極9への加振電流の供給を断ち、磁気検出素子8による磁気センシングを実行する。そして、磁気検出素子8の出力を制御演算部21に入力し、図11乃至図15を用いて説明した加速度・角速度分離アルゴリズムを実行して、加速度を算出する。次いで、図10に示す方位検出アルゴリズムを実行し、地磁気の方位を算出する。また、制御演算部21から励磁コイル7に励磁電流の供給した状態で、制御演算部21から静電振動用電極9に加振電流を供給して、弾性梁部5、重錘部6及び励磁コイル7を含む系をZ軸方向に振動させ、磁気検出素子8による磁気センシングを実行する。そして、磁気検出素子8の出力を制御演算部21に入力し、図11乃至図15を用いて説明した加速度・角速度分離アルゴリズムを実行して、角速度を算出する。次いで、図10に示す方位検出アルゴリズムを実行し、地磁気の方位を算出する。
これらの加速度、角速度及び磁気方位の算出手順は、同一の検出アルゴリズムを用いて加速度と磁気方位の分離又は加速度と角速度の分離を行うことができるので、制御演算部8の負担を軽減することができる。
なお、本発明は、1乃至複数個の磁気検出素子と、これら1乃至複数個の磁気検出素子に磁界を印加する励磁コイルと、当該励磁コイルを支持する弾性梁部と、当該弾性梁部を介して前記励磁コイルを一方向に加振する加振機構をもって加速度・角速度・磁気方位検出用複合センサを構成したことを特徴とするものであり、これを逸脱しない範囲で、種々の変形が可能である。以下に、本発明に含まれる変形例を挙げる。
(1)前記実施形態においては、複合センサ1に、静電振動用電極として、弾性梁部5、重錘部6及び励磁コイル7を含む系をZ軸方向に振動させる静電振動用電極9のみを備えたが、本発明の要旨はこれに限定されるものではなく、図21に示すように、前記系をZ軸方向に振動させる静電振動用電極9のほかに、前記系をX軸方向及び/又はY軸方向に振動させる静電振動用電極9aを併せて備えることもできる。かかる複合センサ1を用いると、静電振動用電極9,9aへの加振電流の供給及び励磁コイル7への励磁電流の供給を調整することにより、複合センサ1のセルフテストが可能になり、信頼性の高い検出装置とすることができる。
(2)前記実施形態においては、重錘部6の下面に励磁コイル7を形成し、重錘部6の上面に静電振動用電極9を形成したが、本発明の要旨はこれに限定されるものではなく、図22に示すように、励磁コイル7及び静電振動用電極9を重錘部6の片面に形成することもできる。かかる構成によると、励磁コイル7及び静電振動用電極9の形成を容易なものにすることができ、複合センサ1及び検出装置20の低コスト化を図ることができる。
(3)前記実施形態においては、重錘部6の上面と上部封止板4の下面に対向に形成された静電振動用電極9を加振機構として用いたが、かかる構成に代えて、弾性梁部5に圧電素子を作製し、これを加振機構として用いることもできる。この場合、圧電素子は、弾性梁部5の上面にのみ形成してモノモルフ構造とすることもできるし、弾性梁部5の上下面の双方に形成してバイモルフ構造とすることもできる。
(4)前記実施形態においては、弾性梁部5及び重錘部6を金属材料をもって形成したが、水晶をもって形成することもできる。このように、弾性梁部5及び重錘部6を水晶をもって形成すると、加振機構である圧電素子の作り込みが容易になり、複合センサの製造を容易化することができる。
(5)また、弾性梁部5及び重錘部6の双方を水晶をもって形成する構成に代えて、弾性梁部5とその周辺部分のみを水晶をもって形成し、重錘部6についてはシリコンをもって形成し、水晶製の弾性梁部5に張り合わせるという構成にすることもできる。かかる構成によると、水晶の使用量を減少できるので、複合センサの製造コストを削減することができる。
実施形態に係る加速度・角速度・磁気方位検出用複合センサの断面図である。 実施形態に係る加速度・角速度・磁気方位検出用複合センサの封止板を除去した平面図である。 弾性梁部に対する励磁コイル及び静電振動用電極の形成状態を示す要部拡大断面図である。 実施形態に係る加速度・角速度・磁気方位検出装置の構成図である。 励磁コイルの発生磁場と静電振動用電極への通電時に生じる重錘部の振動方向と地磁気の向きを示す説明図である。 X方向又はY方向に加速度による力及びコリオリ力を受けたときの複合センサの動きを示す動作説明図である。 Z方向に加速度による力及びコリオリ力を受けたときの複合センサの動きを示す動作説明図である。 静電振動用電極への通電時に生じる重錘部の振動と角速度とコリオリ力と加速度による力を示すグラフ図である。 加速度による力とコリオリ力との合成力を示すグラフ図である。 制御演算部によって行われる加速度、角速度及び磁気方位の算出手順の基礎となる磁気方位検出アルゴリズムの説明図である。 加速度と角速度の合成力の変極点を示す図である。 参照線を定義する図である。 参照点m1〜m8をプロットした図である。 加速度による力の信号波形を示す図である。 角速度ωの向きの信号波形を示す図である。 加速度、角速度及び磁気方位の算出手順の第1例を示す図である。 加速度、角速度及び磁気方位の算出手順の第2例を示す図である。 加速度、角速度及び磁気方位の算出手順の第3例を示す図である。 加速度、角速度及び磁気方位の算出手順の第4例を示す図である。 加速度、角速度及び磁気方位の算出手順の第5例を示す図である。 本発明に係る複合センサの他の例を示す図である。 本発明に係る複合センサのさらに他の例を示す図である。
符号の説明
1 複合素子
2 基体
3 下部封止板
4 上部封止板
5 弾性梁部
6 重錘部
7 励磁コイル
8 磁気検出素子
9,9a 静電振動用電極
20 検出装置
21 制御演算部

Claims (16)

  1. 1乃至複数個の磁気検出素子と、これら1乃至複数個の磁気検出素子に磁界を印加する励磁コイルと、当該励磁コイルを支持する弾性梁部と、当該弾性梁部を介して前記励磁コイルを一方向に加振する加振機構を備えたことを特徴とする加速度・角速度・磁気方位検出用複合センサ。
  2. 前記磁気検出素子として、磁気検出方位が互いに直交する3方向に向けられた3個の磁気検出素子を備えたことを特徴とする請求項1に記載の加速度・角速度・磁気方位検出用複合センサ。
  3. 前記磁気検出素子として、互いに直交する3方向の磁気を検出可能な1個の磁気検出素子を備えたことを特徴とする請求項1に記載の加速度・角速度・磁気方位検出用複合センサ。
  4. 前記弾性梁部と前記励磁コイルと前記加振機構を互いに電気的に絶縁状態に形成すると共に、前記弾性梁部の表面に所要の配線パターンを形成し、当該配線パターンを通じて前記励磁コイルへの励磁電流の供給及び前記加振機構への加振電流の供給を行うことを特徴とする請求項1乃至請求項3のいずれか1項に記載の加速度・角速度・磁気方位検出用複合センサ。
  5. 前記弾性梁部と前記励磁コイルと前記加振機構を互いに同電位に設定し、前記弾性梁部を通じて前記励磁コイルへの励磁電流の供給及び前記加振機構への加振電流の供給を行うことを特徴とする請求項1乃至請求項3のいずれか1項に記載の加速度・角速度・磁気方位検出用複合センサ。
  6. 前記弾性梁部にCR回路を形成し、当該CR回路により前記励磁コイルに供給される前記励磁電流の波形及び前記加振機構に供給される前記加振電流の波形を切換可能としたことを特徴とする請求項4又は請求項5に記載の加速度・角速度・磁気方位検出用複合センサ。
  7. 前記弾性梁部の片面に、前記励磁コイルと前記加振機構を配置したことを特徴とする請求項1乃至請求項6のいずれか1項に記載の加速度・角速度・磁気方位検出用複合センサ。
  8. 1乃至複数個の磁気検出素子と、これら1乃至複数個の磁気検出素子に磁界を印加する励磁コイルと、当該励磁コイルを支持する弾性梁部と、当該弾性梁部を介して前記励磁コイルを一方向に加振する加振機構を有する加速度・角速度・磁気方位検出用複合センサと、前記励磁コイルへの励磁電流の供給及び前記加振機構への加振電流の供給を制御すると共に、前記磁気検出素子の出力を入力し、入力された前記磁気検出素子の出力に応じた加速度の算出、角速度の算出及び磁気方位の算出を行う制御演算部を備えたことを特徴とする加速度・角速度・磁気方位検出装置。
  9. 前記制御演算部は、前記励磁コイルへの励磁電流の供給と前記加振機構への加振電流の供給を同時に行い、前記磁気検出素子の出力から加速度、角速度及び磁気方位を並行して算出することを特徴とする請求項8に記載の加速度・角速度・磁気方位検出装置。
  10. 前記制御演算部は、前記励磁コイルに交流励磁電流を供給し、前記磁気検出素子の出力の交流成分から加速度及び角速度を算出すると共に、直流成分から磁気方位を算出することを特徴とする請求項8に記載の加速度・角速度・磁気方位検出装置。
  11. 前記制御演算部は、前記励磁コイルに励磁電流を供給したときの前記磁気検出素子の出力から加速度及び角速度を算出し、前記励磁コイルへの励磁電流の供給を遮断したときの前記磁気検出素子の出力から磁気方位を算出することを特徴とする請求項8に記載の加速度・角速度・磁気方位検出装置。
  12. 前記制御演算部は、前記励磁コイルへの励磁電流の供給と前記加振機構への弾性梁部制動電流の供給を同時に行い、前記弾性梁部を制動した状態で、前記磁気検出素子の出力から加速度及び磁気方位を並行して算出することを特徴とする請求項8に記載の加速度・角速度・磁気方位検出装置。
  13. 前記制御演算部は、前記励磁コイル及び前記加振機構にそれぞれ逆位相の励磁電流及び加振電流を同時に供給し、前記磁気検出素子の出力から磁気方位を算出することを特徴とする請求項8に記載の加速度・角速度・磁気方位検出装置。
  14. 前記制御演算部は、前記励磁コイル及び前記加振機構にそれぞれ振幅及び周期が異なる励磁電流及び加振電流を同時に供給し、前記磁気検出素子の出力から加速度、角速度及び磁気方位を並行して算出することを特徴とする請求項8に記載の加速度・角速度・磁気方位検出装置。
  15. 前記制御演算部は、前記励磁コイルへのオフセットが反転された励磁電流の供給と前記加振機構への加振電流の供給を同時に行い、前記磁気検出素子の出力から加速度及び角速度を並行して算出することを特徴とする請求項8に記載の加速度・角速度・磁気方位検出装置。
  16. 前記制御演算部は、セルフテストを実行するためのアルゴリズムを記憶しており、定期的又はユーザからの指令により、前記アルゴリズムを起動して、前記励磁コイルへの励磁電流の供給と前記加振機構への加振電流の供給を同時に行い、加速度及び角速度についてのセルフテストを実行することを特徴とする請求項8に記載の加速度・角速度・磁気方位検出装置。
JP2007303082A 2007-11-22 2007-11-22 加速度・角速度・磁気方位検出用複合センサ及びこれを用いた装置 Withdrawn JP2009128164A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007303082A JP2009128164A (ja) 2007-11-22 2007-11-22 加速度・角速度・磁気方位検出用複合センサ及びこれを用いた装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007303082A JP2009128164A (ja) 2007-11-22 2007-11-22 加速度・角速度・磁気方位検出用複合センサ及びこれを用いた装置

Publications (1)

Publication Number Publication Date
JP2009128164A true JP2009128164A (ja) 2009-06-11

Family

ID=40819245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007303082A Withdrawn JP2009128164A (ja) 2007-11-22 2007-11-22 加速度・角速度・磁気方位検出用複合センサ及びこれを用いた装置

Country Status (1)

Country Link
JP (1) JP2009128164A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099818A (ja) * 2009-11-09 2011-05-19 Yamaha Corp 振動型角速度センサ
JP2014006182A (ja) * 2012-06-26 2014-01-16 Hitachi Automotive Systems Ltd 慣性センサ
JP2015509585A (ja) * 2012-12-19 2015-03-30 インテル コーポレイション 誘導慣性センサアーキテクチャ及びパッケージビルドアップ層の製造
JP2017519995A (ja) * 2014-07-10 2017-07-20 エプコス アクチエンゲゼルシャフトEpcos Ag センサ
US9858914B2 (en) 2014-02-21 2018-01-02 Mitsubishi Electric Corporation Acceleration detector and active noise-control device
US9933261B2 (en) 2015-01-06 2018-04-03 Seiko Epson Corporation Physical quantity sensor, electronic apparatus and moving object
CN111579818A (zh) * 2020-07-06 2020-08-25 吉林大学 一种高灵敏度低噪声加速度检测装置及方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099818A (ja) * 2009-11-09 2011-05-19 Yamaha Corp 振動型角速度センサ
JP2014006182A (ja) * 2012-06-26 2014-01-16 Hitachi Automotive Systems Ltd 慣性センサ
JP2015509585A (ja) * 2012-12-19 2015-03-30 インテル コーポレイション 誘導慣性センサアーキテクチャ及びパッケージビルドアップ層の製造
US9858914B2 (en) 2014-02-21 2018-01-02 Mitsubishi Electric Corporation Acceleration detector and active noise-control device
JP2017519995A (ja) * 2014-07-10 2017-07-20 エプコス アクチエンゲゼルシャフトEpcos Ag センサ
US9933261B2 (en) 2015-01-06 2018-04-03 Seiko Epson Corporation Physical quantity sensor, electronic apparatus and moving object
CN111579818A (zh) * 2020-07-06 2020-08-25 吉林大学 一种高灵敏度低噪声加速度检测装置及方法
CN111579818B (zh) * 2020-07-06 2021-09-28 吉林大学 一种高灵敏度低噪声加速度检测装置及方法

Similar Documents

Publication Publication Date Title
JP4508230B2 (ja) 慣性センサ及びその検出装置
EP2972417B1 (en) Magnetometer using magnetic materials on accelerometer
JP5615383B2 (ja) 補正ユニットを有するコリオリジャイロスコープおよび直交バイアスを低減するための方法
US8176780B2 (en) Angular velocity sensor
US9452921B2 (en) Gyroscope structure and gyroscope
RU2405126C1 (ru) Датчик угловой скорости
JP2009128164A (ja) 加速度・角速度・磁気方位検出用複合センサ及びこれを用いた装置
EP2202484A1 (en) Microelectromechanical gyroscope with enhanced rejection of acceleration noise
JP2006525514A (ja) 1軸の加速度検知及び2軸の角速度検知を与える微細加工マルチセンサ
JPH11352143A (ja) 加速度センサ
WO1996010184A1 (fr) Capteur d'acceleration utilisant un element piezoelectrique
JP2010071793A (ja) 多軸加速度センサ及び角速度センサ
JP2010078500A (ja) 慣性センサ
JP2008514968A (ja) 回転速度センサ
JPH08145683A (ja) 加速度・角速度検出装置
JP2007506112A (ja) 共振磁力計デバイス
US6598455B1 (en) Non-inertial calibration of vibratory gyroscopes
EP3044541A1 (en) Gyroscope structure and gyroscope with improved quadrature compensation
JP6367458B2 (ja) センサ
JP2009122041A (ja) 複合センサー
JP2010071758A (ja) 角速度センサ素子、角速度センサ及び電子機器
JP2009529697A (ja) 微小機械回転速度センサ
JP2011503557A (ja) 2つの受感軸を備えるヨーレートセンサ
JP2009222475A (ja) 複合センサ
JP5036218B2 (ja) 角速度センサ

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201