JP4659296B2 - 蓄電装置の等価並列抵抗測定方法 - Google Patents

蓄電装置の等価並列抵抗測定方法 Download PDF

Info

Publication number
JP4659296B2
JP4659296B2 JP2001263508A JP2001263508A JP4659296B2 JP 4659296 B2 JP4659296 B2 JP 4659296B2 JP 2001263508 A JP2001263508 A JP 2001263508A JP 2001263508 A JP2001263508 A JP 2001263508A JP 4659296 B2 JP4659296 B2 JP 4659296B2
Authority
JP
Japan
Prior art keywords
voltage
charging
storage device
power storage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001263508A
Other languages
English (en)
Other versions
JP2003075483A (ja
Inventor
淳司 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2001263508A priority Critical patent/JP4659296B2/ja
Publication of JP2003075483A publication Critical patent/JP2003075483A/ja
Application granted granted Critical
Publication of JP4659296B2 publication Critical patent/JP4659296B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、大容量コンデンサやバッテリーなどの蓄電装置が備える等価並列抵抗の測定方法に関し、さらに詳しく言えば、その等価並列抵抗を短時間で、より精度よく測定できるようにした蓄電装置の等価並列抵抗測定方法に関するものである。
【0002】
【従来の技術】
大容量コンデンサやバッテリーは蓄電装置として、各種の電気機器に電力を供給する電力供給源として多くの分野で利用されている。その中でも、近年においては、特に大容量コンデンサとしての電気二重層キャパシタは、急速充電が可能なデバイスとして注目されている。
【0003】
一般的に、蓄電素子はなんらかの固有的なインピーダンスを有しており、それが入出力特性や素子内損失などに関与するため、蓄電装置を使用する上で、そのインピーダンスをあらかじめ測定する必要がある。その一例として、図6に電気二重層キャパシタの等価回路図を示す。
【0004】
電気二重層キャパシタには、そのキャパシタ(容量)Cに付随して等価直列抵抗Rsと等価並列抵抗Rpとが存在する。電気二重層キャパシタを充電する際、キャパシタCには等価直列抵抗Rsを介して充電電流Iaが流れるが、その一部分が漏れ電流Ibとして等価並列抵抗Rpを介してキャパシタCをバイパスして流れる。
【0005】
この内、等価直列抵抗Rsは、電気二重層キャパシタを所定の設定電圧Eにまで例えば定電流Icにて充電した後、その端子間を開放して開放電圧VOPNを測定し、その際の電圧ドロップ分VDROPと定電流IcとからVDROP/Icなる式により求められる。
【0006】
等価並列抵抗Rpも電気二重層キャパシタを充電することにより測定される。この場合の充電方式は基本的には定電圧充電であるが、定電圧充電のみであると測定に長時間を要することになるため、先に定電流充電にて所定の設定電圧にまで充電し、その後に定電圧充電に切り替えることにより、測定時間を短縮することが行われている。
【0007】
図7に、この定電流・定電圧併用充電方式における電気二重層キャパシタDUTの端子電圧VDUTと、キャパシタCの電圧Vcと、電気二重層キャパシタDUTに流れる電流IDUTの波形を示し、これに沿って等価並列抵抗Rpの測定例を説明する。
【0008】
まず、定電流電源にて電気二重層キャパシタDUTをt1時点から定電流Icにて所定の設定電圧(例えば、定格電圧)Eにまで充電する。これにより、電気二重層キャパシタDUTの端子電圧VDUTは、その初期電圧Vから1次直線的に増大していく。
【0009】
t2時点で端子電圧VDUTが設定電圧Eに達すると、電気二重層キャパシタDUTが定電流電源より切り離され、その端子間が開放される。このとき、電気二重層キャパシタDUTの端子電圧VDUTは、VDROP(=等価直列抵抗Rs×定電流Ic)だけ低下する。
【0010】
次に、t3時点から定電圧電源より電気二重層キャパシタDUTに設定電圧Eを印加して定電圧充電する。この定電圧充電により、キャパシタCの電圧Vcは、上記VDROP分低下した電圧VCVOを初期電圧として、下記数1の式(1)に示す指数関数expにしたがって経時的に変化する。なお、式(1)は、定電圧充電回路に関する微分方程式などにより導出されるが、この導出過程は周知の事柄であるため、その説明は省略する。
【0011】
【数1】
Figure 0004659296
【0012】
式(1)においてt=∞とすると、キャパシタCの電圧Vcは、下記の式(2)に示すようなほぼ一定の電圧VCONへと収束していく。
CON=RP/(RS+RP)・E ・・・・・式(2)
【0013】
これに伴って、電気二重層キャパシタDUTに流れる電流IDUTもほぼ一定の電流ICONに収束する。この電流ICONは、下記の式(3)に示すように、印加電圧Eと収束電圧VCONとの間の電位差を等価直列抵抗Rsにより除算して得られる。
CON=(E−VCON)/RS ・・・・・式(3)
【0014】
この式(3)に上記式(2)を代入して整理すると、下記の式(4)に示すように、等価直列抵抗Rsおよび等価並列抵抗Rpに関する関係式が得られる。
Rs+Rp=E/ICON ・・・・・式(4)
【0015】
多くの場合、等価直列抵抗Rsは等価並列抵抗Rpに比べて極めて小さいため(Rs≪Rp)、式(4)に示される関係式は、下記数5の式(5)により近似できる。
Rp≒E/ICON ・・・・・式(5)
【0016】
このようにして、電気二重層キャパシタDUTを定電圧充電し、その時の収束電流ICONを測定することにより、上記式(5)に基づいて電気二重層キャパシタDUTの等価並列抵抗Rpを求めることができる。
【0017】
しかしながら、この定電流・定電圧併用充電方式を採用したとしても、依然として、定電圧充電時に電気二重層キャパシタDUTに流れる電流がほぼ一定値を示すまで待つ必要がある。そればかりでなく、電流が一定値になったかどうかの判定にも微妙なところがあり、その判定次第で測定値が左右される。
【0018】
【発明が解決しようとする課題】
したがって、本発明の課題は、蓄電装置の等価並列抵抗を短時間かつ高精度に測定し得る測定方法を提供することにある。
【0019】
【課題を解決するための手段】
上記課題を解決するため、本発明はいくつかの特徴を備えている。まず、本願の第1発明は、電気二重層キャパシタなどの蓄電装置の等価並列抵抗Rpを測定するにあたって、充電電源としての定電流電源および定電圧電源と、電圧測定手段と、電流測定手段と、制御手段とを含み、上記制御手段は、上記定電流電源にて上記蓄電装置を所定の設定電圧Eにまで充電する定電流充電ステップと、上記蓄電装置を上記設定電圧Eにまで充電した後、上記蓄電装置の端子間を開放し上記電圧測定手段にて上記蓄電装置の開放端子電圧VOPNを測定する開放端子電圧測定ステップと、上記定電圧電源にて上記開放端子電圧VOPNと同電圧で上記蓄電装置を充電する定電圧充電ステップとを順次実行するとともに、上記電流測定手段にて上記定電圧充電ステップの任意の時点における充電電流ICONを測定し、上記開放端子電圧VOPN/上記充電電流ICONなる演算を行って上記蓄電装置の等価並列抵抗Rpを求めることを特徴としている。
【0020】
このように、定電流充電後の定電圧充電時に、開放端子電圧VOPNと同電圧を印加することにより、その充電当初から充電電流ICONが一定値となるため、従来のように収束時間を待つことなく、等価並列抵抗Rpを求めることができる。
【0021】
次に、本願の第2発明においては、電気二重層キャパシタなどの蓄電装置の等価並列抵抗Rpを測定するにあたって、充電電源としての定電流電源および定電圧電源と、電圧測定手段と、電流測定手段と、制御手段とを含み、上記制御手段は、上記定電流電源にて上記蓄電装置を所定の第1設定電圧E1にまで充電する第1定電流充電ステップと、上記蓄電装置を上記第1設定電圧E1にまで充電した後、上記蓄電装置の端子間を開放し上記電圧測定手段にて上記蓄電装置の第1開放端子電圧V1OPNを測定する第1開放端子電圧測定ステップと、上記第1定電流充電ステップにおける充電電流をIとし、上記第1設定電圧E1と上記第1開放端子電圧V1OPNとの差であるドロップ電圧をVDROPとして、VDROP/Iから上記蓄電装置の等価直列抵抗Rsを求める等価直列抵抗測定ステップと、
再度、上記定電流電源より充電電流Iで上記蓄電装置を第2設定電圧E2(上記第1設定電圧E1+(上記等価直列抵抗Rs×上記充電電流I))にまで充電する第2定電流充電ステップと、上記蓄電装置を上記第2設定電圧E2にまで充電した後、上記蓄電装置の端子間を開放し上記電圧測定手段にて上記蓄電装置の第2開放端子電圧V2OPNを測定する第2開放端子電圧測定ステップと、上記定電圧電源にて上記第2開放端子電圧V2OPNと同電圧で上記蓄電装置を充電する定電圧充電ステップとを順次実行するとともに、上記電流測定手段にて上記定電圧充電ステップの任意の時点における充電電流ICONを測定し、上記第2開放端子電圧V2OPN/上記充電電流ICONなる演算を行って上記蓄電装置の等価並列抵抗Rpを求めることを特徴としている。
【0022】
この第2発明によれば、第1設定電圧E1を蓄電装置の例えば定格電圧(満充電電圧)とした場合、定電圧電源よりその定格電圧を印加した状態での等価並列抵抗Rpを求めることができる。なお、第1設定電圧(定格電圧)の測定精度をより高めるには、上記充電電流I<上記充電電流Iとすることが好ましい。
【0023】
また、本願の第3発明においては、上記定電流電源にて上記蓄電装置を所定の設定電圧Eにまで充電する定電流充電ステップと、上記蓄電装置を上記設定電圧Eにまで充電した後、上記蓄電装置の端子間を開放し上記電圧測定手段にて上記蓄電装置の開放端子電圧VOPNを測定する開放端子電圧測定ステップと、上記開放端子電圧VOPNより高い電圧または低い電圧を初期電圧として、上記定電圧電源よりその初期電圧から漸次電圧がそれぞれ低下または上昇するスイープ電圧を上記蓄電装置に印加しながら、上記電流測定手段にて上記蓄電装置に流れる電流の方向が充電する方向から放電する方向または放電する方向から充電する方向へと逆転する時点を監視し、その逆転時点における電圧をもって実開放端子電圧VROPNとする実開放端子電圧測定ステップと、上記定電圧電源にて上記実開放端子電圧VROPNと同電圧で上記蓄電装置を充電する定電圧充電ステップとを順次実行するとともに、上記電流測定手段にて上記定電圧充電ステップの任意の時点における充電電流ICONを測定し、上記実開放端子電圧VROPN/上記充電電流ICONなる演算を行って上記蓄電装置の等価並列抵抗Rpを求めることを特徴としている。
【0024】
この第3発明によれば、電圧印加時の電流方向により、真値にほぼ等しい実際の開放端子電圧が検出されるため、上記第1発明よりも精度よく、等価並列抵抗Rpを求めることができる。なお、測定精度をより高めるには、スイープ電圧を直線的に低下または上昇させることが好ましいが、本発明には階段状に低下または上昇させる場合も含まれる。
【0025】
また、本願の第4発明は、上記第1ないし第3発明を組み合わせてなるもので、多少測定時間がかかるものの、測定精度においては、もっとも高いものが得られる。
【0026】
すなわち、本願の第4発明は、上記定電流電源にて上記蓄電装置を所定の第1設定電圧E1にまで充電する第1定電流充電ステップと、上記蓄電装置を上記第1設定電圧E1にまで充電した後、上記蓄電装置の端子間を開放し上記電圧測定手段にて上記蓄電装置の第1開放端子電圧V1OPNを測定する第1開放端子電圧測定ステップと、上記第1定電流充電ステップにおける充電電流をIとし、上記第1設定電圧E1と上記第1開放端子電圧V1OPNとの差であるドロップ電圧をVDROPとして、VDROP/Iから上記蓄電装置の等価直列抵抗Rsを求める等価直列抵抗測定ステップと、再度、上記定電流電源より充電電流Iで上記蓄電装置を第2設定電圧E2(上記第1設定電圧E1+(上記等価直列抵抗Rs×上記充電電流I))にまで充電する第2定電流充電ステップと、上記蓄電装置を上記第2設定電圧E2にまで充電した後、上記蓄電装置の端子間を開放し上記電圧測定手段にて上記蓄電装置の第2開放端子電圧V2OPNを測定する第2開放端子電圧測定ステップと、上記定電圧電源より上記第2開放端子電圧V2OPNより高い電圧または低い電圧を初期電圧として、その初期電圧から漸次電圧がそれぞれ低下または上昇するスイープ電圧を上記蓄電装置に印加しながら、上記電流測定手段にて上記蓄電装置に流れる電流の方向が充電する方向から放電する方向または放電する方向から充電する方向へと逆転する時点を監視し、その逆転時点における電圧をもって実開放端子電圧VROPNとする実開放端子電圧測定ステップと、上記定電圧電源にて上記実開放端子電圧VROPNと同電圧で上記蓄電装置を充電する定電圧充電ステップとを順次実行するとともに、上記電流測定手段にて上記定電圧充電ステップの任意の時点における充電電流ICONを測定し、上記実開放端子電圧VROPN/上記充電電流ICONなる演算を行って上記蓄電装置の等価並列抵抗Rpを求めることを特徴としている。
【0027】
【発明の実施の形態】
次に、本発明のいくつかの実施形態について説明する。図1に各実施形態に共通に用いられる測定系を示す。測定試料DUTは、先の図6の等価回路で示した電気二重層コンデンサである。
【0028】
電気二重層コンデンサDUTの等価並列抵抗Rpを測定するため、定電流電源10および定電圧電源20の2つの充電電源が用いられる。定電流電源10と定電圧電源20は、スイッチSWにより、電気二重層コンデンサDUTに対して交代的に切り替えられる。
【0029】
また、制御手段としてのCPU30を備えるとともに、電気二重層コンデンサDUTの端子間には電圧計(電圧モニタ)11が接続され、定電圧充電系には電流計(電流モニタ)21が接続される。
【0030】
CPU30は、電圧計11および電流計21の各検出信号に基づいてスイッチSWの切り替え制御や各種の演算を行う。CPU30には、操作部31より充電設定電圧(目標充電電圧)や測定モードなどが入力される。
【0031】
次に、図2の波形図を参照して、第1実施形態としての測定モードについて説明する。なお、図2には電気二重層コンデンサDUTの端子電圧VDUTと、定電流充電時の定電流Iおよび定電圧充電時の充電電流(電気二重層コンデンサDUTに流れる電流)IDUTの各波形が含まれている。
【0032】
操作部31より目標充電電圧Eが設定されると、CPU30はスイッチSWを定電流電源10側に切り替えて、電気二重層コンデンサDUTを定電流Iにて充電する。なお、設定電圧Eは測定者により任意に選択されてよいが、電気二重層コンデンサDUTの定格電圧(満充電電圧)付近に設定されることが好ましい。
【0033】
この定電流充電により、電気二重層コンデンサDUTの端子電圧VDUTは、その初期電圧Vからほぼ直線的に増大して行く。端子電圧VDUTが設定電圧Eに到達すると、CPU30はスイッチSWをニュートラル位置として、電気二重層コンデンサDUTから定電流電源10を切り離し、電圧計11から電気二重層コンデンサDUTの開放端子電圧VOPNを得る。
【0034】
次に、CPU30はスイッチSWを定電圧電源20側に切り替えて、今度は電気二重層コンデンサDUTを定電圧にて充電する。この場合、CPU30は電気二重層コンデンサDUTに印加する定電圧を開放端子電圧VOPNと同電圧のVSET電圧とする。これにより、等価並列抵抗Rpの測定に要する充電時間を大幅に短縮することができる。
【0035】
すなわち、この電圧VSET(=VOPN)による定電圧充電時において、キャパシタCの電圧をVc,等価並列抵抗Rpによる漏れ電流をIbとすると、VSET=Vc+Rs・Ibで表される(Rsは等価直列抵抗)。
【0036】
ここで、キャパシタCの初期電圧をVC0として、電圧VSETを印加すると、キャパシタCの電圧Vcは、下記数2の式(6)に示す指数関数expにしたがって経時的に変化する。
【0037】
【数2】
Figure 0004659296
【0038】
SET=Vc+Rs・Ib=Vc+(Rs/Rp)×VC0
であるから、上記式(6)は下記数3の式(7)に書き換えられる。
【0039】
【数3】
Figure 0004659296
【0040】
この式(7)によれば充電時間をtとして、理論的にt=0のときでも、また、t=∞のときでもVc=VC0である。したがって、定電圧VSETの印加後において、すぐさま充電電流IDUTがほぼ一定の電流ICONに収束するため、VSET/ICONなる除算により等価並列抵抗Rpを求めることができる。
【0041】
上記第1実施形態によれば、等価並列抵抗Rpを短時間で測定できるが、これにより得られる測定値は、測定者が設定した設定電圧Eよりも低い電圧時のものである。より設定電圧の精度を求めるならば、次に説明する第2実施形態の測定モードによることが好ましい。
【0042】
図3に、この第2実施形態の測定モード時における電気二重層コンデンサDUTの端子電圧VDUTと、定電流充電時の定電流I,Iおよび定電圧充電時の充電電流Icの各波形を示す。
【0043】
まず、第1回目の定電流充電として、スイッチSWを定電流電源10側に切り替えて、電気二重層コンデンサDUTを定電流Iにて所定の第1設定電圧E1にまで充電する。この第1設定電圧E1は上記第1実施形態と同じく、電気二重層コンデンサDUTの定格電圧付近であることが好ましい。
【0044】
電気二重層コンデンサDUTを第1設定電圧E1にまで充電した後、スイッチSWをニュートラル位置にして、電圧計11にて電気二重層コンデンサDUTの開放端子電圧(第1回目)V1OPNを測定する。
【0045】
そして、第1設定電圧E1と開放端子電圧V1OPNとの差であるドロップ電圧V1DROPと充電に供された定電流Iとから、VDROP/Iなる除算を行って電気二重層コンデンサDUTの等価直列抵抗Rsを求める。
【0046】
再度、スイッチSWを定電流電源10側に切り替えて、第2回目の定電流充電として、電気二重層コンデンサDUTを第2設定電圧E2まで充電する。この第2回目での充電に供される定電流をIとすると、第2設定電圧E2は、第1設定電圧E1+(等価直列抵抗Rs×定電流I)とされる。
【0047】
すなわち、第2回目の定電流充電後の開放端子電圧が、第1設定電圧E1となるように端子開放時のドロップ電圧(等価直列抵抗Rs×定電流I)を見込んで第2設定電圧E2が設定される。なお、第2回目の定電流充電時の定電流Iと第1回目の定電流充電時の定電流Iは、I<Iであることが好ましい。
【0048】
電気二重層コンデンサDUTを第2設定電圧E2にまで充電した後、スイッチSWを再びニュートラル位置にして、電圧計11にて電気二重層コンデンサDUTの開放端子電圧(第2回目)V2OPNを測定する。この開放端子電圧V2OPNは第1設定電圧E1とほぼ等しい。
【0049】
そして、スイッチSWを定電圧電源20側に切り替えて、今度は電気二重層コンデンサDUTを定電圧にて充電する。この場合、電気二重層コンデンサDUTに印加する定電圧を開放端子電圧V2OPNと同電圧のVSET電圧(=第1設定電圧E1)とする。
【0050】
これにより、電気二重層コンデンサDUTに、その測定者の所望する電圧(試験電圧)とほぼ等しい定電圧を印加することが可能となり、上記第1実施形態と同じく、定電圧VSETの印加後において、すぐさま充電電流IDUTがほぼ一定の電流ICONに収束するため、VSET/ICONなる除算により等価並列抵抗Rpを求めることができる。
【0051】
なお、上記各実施形態では、電気二重層コンデンサDUTの端子開放電圧を電圧計11により測定し、定電圧充電時にその端子開放電圧と同等の定電圧を印加するようにしているため、電圧計11の測定精度により等価並列抵抗Rpの測定値が影響を受ける場合がある。
【0052】
次に説明する第3実施形態の測定モードによれば、電圧計11によることなく電気二重層コンデンサDUTの端子開放電圧VOPNを検出することができる。図4に第3実施形態の測定モード時における波形例を示すが、この例は図2で説明した上記第1実施形態に適用したものである。
【0053】
まず、定電流電源10により電気二重層コンデンサDUTを設定電圧Eにまで充電した後、定電流電源10を切り離して端子間を開放して、その開放端子電圧VOPNを測定する。ここまでは、上記第1実施形態と同じである。
【0054】
次に、定電圧電源20に切り替えて、開放端子電圧VOPNより高い電圧を初期電圧Eとして、定電圧電源20よりその初期電圧Eから漸次電圧が階段状に低下するスイープ電圧Vを電気二重層コンデンサDUTに印加しながら、電流計21により電気二重層コンデンサDUTに流れる電流IDUTの方向が逆転する時点、すなわち充電方向から放電方向へと転ずる時点を監視し、その逆転時点におけるスイープ電圧をホールドして、実開放端子電圧VROPNとする。
【0055】
これによれば、電圧計11によることなく、実開放端子電圧VROPNを高精度に検出できる。以後は、上記第1実施形態と同様に、定電圧電源20にて実開放端子電圧VROPNと同電圧のVSET電圧で電気二重層コンデンサDUTを定電圧充電する。
【0056】
なお、上記第3実施形態ではスイープ電圧Vを階段状に低下させているが、直線状に低下させてもよく、むしろ直線の方がより精度よく実開放端子電圧VROPNを検出できる。また、定電圧電源20とは別の電源を用意して、その電源からスイープ電圧Vを得るようにしてもよい。
【0057】
また、スイープ電圧Vの初期電圧Eを開放端子電圧VOPNより低い電圧として、その初期電圧Eを漸次上昇させて、電気二重層コンデンサDUTに流れる電流IDUTの方向が逆転する時点を監視するようにしてもよい。
【0058】
最後に、図5の波形図を参照して、本発明の第4実施形態の測定モードについて説明する。この第4実施形態は、上記第2実施形態と第3実施形態を組み合わせたものである。
【0059】
まず、上記第2実施形態と同じく、定電流電源10により、充電設定電圧をE1として電気二重層コンデンサDUTを定電流Iにて第1回目の定電流充電を行った後、端子開放電圧V1OPNを測定する。そして、そのドロップ電圧V1DROPと定電流Iとから等価直列抵抗Rsを求める。
【0060】
次に、新たな充電目標電圧として第2設定電圧E2(=第1設定電圧E1+(等価直列抵抗Rs×定電流I))を設定し、定電流電源10により、定電流Iにて第2回目の定電流充電を行う。そして、再び端子開放電圧V2OPNを測定する。
【0061】
しかる後、上記第3実施形態と同じく、その開放端子電圧V2OPNより高い電圧を初期電圧Eとして、定電圧電源20よりその初期電圧Eから漸次電圧が例えば階段状に低下するスイープ電圧Vを電気二重層コンデンサDUTに印加しながら、電気二重層コンデンサDUTに流れる電流の方向が逆転する時点を監視し、その逆転時点におけるスイープ電圧をホールドして、実開放端子電圧VROPNを検出する。
【0062】
そして、定電圧電源20より電気二重層コンデンサDUTに実開放端子電圧VROPNと等しい定電圧VSETを印加し、その定電圧VSETと充電電流IDUTの収束電流ICONとから等価並列抵抗Rpを求める。
【0063】
上記各実施形態では、測定対象を電気二重層キャパシタとしているが、電池についても同様にして、その等価並列抵抗を求めることができる。電圧測定手段および電流測定手段はアナログ式、ディジタル式のいずれのものでもよい。また、制御手段はCPU(中央演算処理装置)と同等の機能を有していれば、名称を問わず適用可能である。
【0064】
【発明の効果】
以上説明したように、本発明によれば、定電流充電と定電圧充電とを併用して電気二重層キャパシタなどの蓄電装置の等価並列抵抗を測定するにあたって、まず、定電流電源にて蓄電装置を所定の設定電圧にまで充電した後、蓄電装置の開放端子電圧VOPNを測定し、次に、定電圧電源にて開放端子電圧VOPNと同電圧で蓄電装置を充電するようにしたことにより、蓄電装置の等価並列抵抗の測定時間を短縮することができる。
【0065】
また、定電流充電を2回行い、第1回目の定電流充電後に蓄電装置の等価直列抵抗を求め、第2回目の定電流充電時には、その充電目標電圧を等価直列抵抗によるドロップ電圧を加味して高めに設定するようにしたことにより、等価並列抵抗を測定する際の設定電圧を、測定者が設定したい電圧により近づけることができる。
【0066】
また、定電流充電後にスイープ電圧を印加しながら、蓄電装置に流れる電流の向きを監視し、その向きが逆転する時点のスイープ電圧をもって実開放端子電圧VROPNを検出するようにしたことによっても、等価並列抵抗をより精度よく測定することができる。
【図面の簡単な説明】
【図1】本発明で使用される測定系を示す回路構成図。
【図2】本発明の第1実施形態を説明するための波形図。
【図3】本発明の第2実施形態を説明するための波形図。
【図4】本発明の第3実施形態を説明するための波形図。
【図5】本発明の第3実施形態を説明するための波形図。
【図6】電気二重層キャパシタの等価回路図。
【図7】従来の測定方法を説明するための波形図。
【符号の説明】
10 定電流電源
11 電圧計(電圧モニタ)
20 定電圧電源
21 電流計(電流モニタ)
30 CPU
DUT 電気二重層キャパシタ(蓄電装置)
Rs 等価直列抵抗
Rp 等価並列抵抗

Claims (6)

  1. 電気二重層キャパシタなどの蓄電装置の等価並列抵抗Rpを測定するにあたって、充電電源としての定電流電源および定電圧電源と、電圧測定手段と、電流測定手段と、制御手段とを含み、上記制御手段は、
    上記定電流電源にて上記蓄電装置を所定の設定電圧Eにまで充電する定電流充電ステップと、
    上記蓄電装置を上記設定電圧Eにまで充電した後、上記蓄電装置の端子間を開放し上記電圧測定手段にて上記蓄電装置の開放端子電圧VOPNを測定する開放端子電圧測定ステップと、
    上記定電圧電源にて上記開放端子電圧VOPNと同電圧で上記蓄電装置を充電する定電圧充電ステップとを順次実行するとともに、
    上記電流測定手段にて上記定電圧充電ステップの任意の時点における充電電流ICONを測定し、上記開放端子電圧VOPN/上記充電電流ICONなる演算を行って上記蓄電装置の等価並列抵抗Rpを求めることを特徴とする蓄電装置の等価並列抵抗測定方法。
  2. 電気二重層キャパシタなどの蓄電装置の等価並列抵抗Rpを測定するにあたって、充電電源としての定電流電源および定電圧電源と、電圧測定手段と、電流測定手段と、制御手段とを含み、上記制御手段は、
    上記定電流電源にて上記蓄電装置を所定の第1設定電圧E1にまで充電する第1定電流充電ステップと、
    上記蓄電装置を上記第1設定電圧E1にまで充電した後、上記蓄電装置の端子間を開放し上記電圧測定手段にて上記蓄電装置の第1開放端子電圧V1OPNを測定する第1開放端子電圧測定ステップと、
    上記第1定電流充電ステップにおける充電電流をIとし、上記第1設定電圧E1と上記第1開放端子電圧V1OPNとの差であるドロップ電圧をVDROPとして、VDROP/Iから上記蓄電装置の等価直列抵抗Rsを求める等価直列抵抗測定ステップと、
    再度、上記定電流電源より充電電流Iで上記蓄電装置を第2設定電圧E2(上記第1設定電圧E1+(上記等価直列抵抗Rs×上記充電電流I))にまで充電する第2定電流充電ステップと、
    上記蓄電装置を上記第2設定電圧E2にまで充電した後、上記蓄電装置の端子間を開放し上記電圧測定手段にて上記蓄電装置の第2開放端子電圧V2OPNを測定する第2開放端子電圧測定ステップと、
    上記定電圧電源にて上記第2開放端子電圧V2OPNと同電圧で上記蓄電装置を充電する定電圧充電ステップとを順次実行するとともに、
    上記電流測定手段にて上記定電圧充電ステップの任意の時点における充電電流ICONを測定し、上記第2開放端子電圧V2OPN/上記充電電流ICONなる演算を行って上記蓄電装置の等価並列抵抗Rpを求めることを特徴とする蓄電装置の等価並列抵抗測定方法。
  3. 上記充電電流I<上記充電電流Iとする請求項2に記載の蓄電装置の等価並列抵抗測定方法。
  4. 電気二重層キャパシタなどの蓄電装置の等価並列抵抗Rpを測定するにあたって、充電電源としての定電流電源および定電圧電源と、電圧測定手段と、電流測定手段と、制御手段とを含み、上記制御手段は、
    上記定電流電源にて上記蓄電装置を所定の設定電圧Eにまで充電する定電流充電ステップと、
    上記蓄電装置を上記設定電圧Eにまで充電した後、上記蓄電装置の端子間を開放し上記電圧測定手段にて上記蓄電装置の開放端子電圧VOPNを測定する開放端子電圧測定ステップと、
    上記開放端子電圧VOPNより高い電圧または低い電圧を初期電圧として、上記定電圧電源よりその初期電圧から漸次電圧がそれぞれ低下または上昇するスイープ電圧を上記蓄電装置に印加しながら、上記電流測定手段にて上記蓄電装置に流れる電流の方向が充電する方向から放電する方向または放電する方向から充電する方向へと逆転する時点を監視し、その逆転時点における電圧をもって実開放端子電圧VROPNとする実開放端子電圧測定ステップと、
    上記定電圧電源にて上記実開放端子電圧VROPNと同電圧で上記蓄電装置を充電する定電圧充電ステップとを順次実行するとともに、
    上記電流測定手段にて上記定電圧充電ステップの任意の時点における充電電流ICONを測定し、上記実開放端子電圧VROPN/上記充電電流ICONなる演算を行って上記蓄電装置の等価並列抵抗Rpを求めることを特徴とする蓄電装置の等価並列抵抗測定方法。
  5. 上記スイープ電圧を階段状もしくは直線的に低下または上昇させる請求項4に記載の蓄電装置の等価並列抵抗測定方法。
  6. 電気二重層キャパシタなどの蓄電装置の等価並列抵抗Rpを測定するにあたって、充電電源としての定電流電源および定電圧電源と、電圧測定手段と、電流測定手段と、制御手段とを含み、上記制御手段は、
    上記定電流電源にて上記蓄電装置を所定の第1設定電圧E1にまで充電する第1定電流充電ステップと、
    上記蓄電装置を上記第1設定電圧E1にまで充電した後、上記蓄電装置の端子間を開放し上記電圧測定手段にて上記蓄電装置の第1開放端子電圧V1OPNを測定する第1開放端子電圧測定ステップと、
    上記第1定電流充電ステップにおける充電電流をIとし、上記第1設定電圧E1と上記第1開放端子電圧V1OPNとの差であるドロップ電圧をVDROPとして、VDROP/Iから上記蓄電装置の等価直列抵抗Rsを求める等価直列抵抗測定ステップと、
    再度、上記定電流電源より充電電流Iで上記蓄電装置を第2設定電圧E2(上記第1設定電圧E1+(上記等価直列抵抗Rs×上記充電電流I))にまで充電する第2定電流充電ステップと、
    上記蓄電装置を上記第2設定電圧E2にまで充電した後、上記蓄電装置の端子間を開放し上記電圧測定手段にて上記蓄電装置の第2開放端子電圧V2OPNを測定する第2開放端子電圧測定ステップと、
    上記定電圧電源より上記第2開放端子電圧V2OPNより高い電圧または低い電圧を初期電圧として、その初期電圧から漸次電圧がそれぞれ低下または上昇するスイープ電圧を上記蓄電装置に印加しながら、上記電流測定手段にて上記蓄電装置に流れる電流の方向が充電する方向から放電する方向または放電する方向から充電する方向へと逆転する時点を監視し、その逆転時点における電圧をもって実開放端子電圧VROPNとする実開放端子電圧測定ステップと、
    上記定電圧電源にて上記実開放端子電圧VROPNと同電圧で上記蓄電装置を充電する定電圧充電ステップとを順次実行するとともに、
    上記電流測定手段にて上記定電圧充電ステップの任意の時点における充電電流ICONを測定し、上記実開放端子電圧VROPN/上記充電電流ICONなる演算を行って上記蓄電装置の等価並列抵抗Rpを求めることを特徴とする蓄電装置の等価並列抵抗測定方法。
JP2001263508A 2001-08-31 2001-08-31 蓄電装置の等価並列抵抗測定方法 Expired - Fee Related JP4659296B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001263508A JP4659296B2 (ja) 2001-08-31 2001-08-31 蓄電装置の等価並列抵抗測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001263508A JP4659296B2 (ja) 2001-08-31 2001-08-31 蓄電装置の等価並列抵抗測定方法

Publications (2)

Publication Number Publication Date
JP2003075483A JP2003075483A (ja) 2003-03-12
JP4659296B2 true JP4659296B2 (ja) 2011-03-30

Family

ID=19090252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001263508A Expired - Fee Related JP4659296B2 (ja) 2001-08-31 2001-08-31 蓄電装置の等価並列抵抗測定方法

Country Status (1)

Country Link
JP (1) JP4659296B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084249A (ja) * 2004-09-15 2006-03-30 Hioki Ee Corp 絶縁検査方法および絶縁検査装置
CN102768304B (zh) * 2012-07-19 2015-01-21 上海交通大学 储能系统蓄电池组内阻的在线检测方法
CN104049146B (zh) * 2014-06-30 2017-01-04 北京四方继保自动化股份有限公司 一种确定链式多电平变流器功率模块静态均压电阻阻值的方法
CN105911373B (zh) * 2016-04-22 2019-01-29 上海市计量测试技术研究院 一种测量超级电容器静电容量的方法及装置
US10330715B2 (en) * 2016-12-11 2019-06-25 Keysight Technologies, Inc. Systems and methods for determining a self-discharge current characteristic of a storage cell
JP7042413B2 (ja) * 2018-08-22 2022-03-28 株式会社オートネットワーク技術研究所 内部抵抗検出装置及び電源装置
JP7414543B2 (ja) * 2020-01-17 2024-01-16 日置電機株式会社 蓄電デバイスの測定装置及び測定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159776U (ja) * 1987-04-07 1988-10-19
JPH05281309A (ja) * 1992-02-03 1993-10-29 Nippon Telegr & Teleph Corp <Ntt> 鉛蓄電池の劣化判定方法及び劣化判定器
JPH09211041A (ja) * 1996-01-30 1997-08-15 Hioki Ee Corp 容量性素子の等価直列抵抗測定方法および等価直列抵抗測定装置
JP2001242204A (ja) * 2000-02-28 2001-09-07 Nippon Chemicon Corp コンデンサの直流抵抗測定方法及びその装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159776U (ja) * 1987-04-07 1988-10-19
JPH05281309A (ja) * 1992-02-03 1993-10-29 Nippon Telegr & Teleph Corp <Ntt> 鉛蓄電池の劣化判定方法及び劣化判定器
JPH09211041A (ja) * 1996-01-30 1997-08-15 Hioki Ee Corp 容量性素子の等価直列抵抗測定方法および等価直列抵抗測定装置
JP2001242204A (ja) * 2000-02-28 2001-09-07 Nippon Chemicon Corp コンデンサの直流抵抗測定方法及びその装置

Also Published As

Publication number Publication date
JP2003075483A (ja) 2003-03-12

Similar Documents

Publication Publication Date Title
US6556019B2 (en) Electronic battery tester
CN109633276B (zh) 基于全桥绝缘检测电路的绝缘电阻检测方法和装置
WO2017152479A1 (zh) 蓄电池剩余容量及健康状态快速检测方法和装置
US6806716B2 (en) Electronic battery tester
WO2017143830A1 (zh) 检测电池健康状态的方法、装置和电池管理系统
JP6277864B2 (ja) 電池内部状態推定装置
JP2020504994A (ja) ハイブリッドバッテリ充電器/試験器
CN104820188B (zh) 用于确定充电状态的方法和装置
WO2004023579A2 (en) Battery test outputs adjusted based upon battery temperature and the state of discharge of the battery
US20150293181A1 (en) Secondary battery tester
CN106970333A (zh) 电池内阻检测的方法及装置
JP2014134467A (ja) 二次電池の状態診断方法
JPH0968563A (ja) 電池残存容量測定装置
JP4659296B2 (ja) 蓄電装置の等価並列抵抗測定方法
JP2011112582A (ja) コンデンサの絶縁抵抗の検査装置および検査方法
JP5625244B2 (ja) 二次電池の容量推定装置
JP3583540B2 (ja) 容量性素子の等価直列抵抗測定方法および等価直列抵抗測定装置
JP4777828B2 (ja) 測定装置および検査装置
CN113376441B (zh) 一种薄膜电容器寄生电感参数的测量系统和方法
JP2001242204A (ja) コンデンサの直流抵抗測定方法及びその装置
CN109342966A (zh) 电池剩余寿命判定方法、装置、计算机设备和存储介质
JP2937796B2 (ja) 電力貯蔵用二次電池の充放電電流測定方法及び残存電力量測定方法並びに測定装置
US11988717B2 (en) Measurement apparatus of power storage device and measurement method
CN107064817A (zh) 一种锌银电池荷电状态检测方法
JP3805478B2 (ja) 容量性素子の等価直列抵抗測定方法および等価直列抵抗測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4659296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees