WO2017152479A1 - 蓄电池剩余容量及健康状态快速检测方法和装置 - Google Patents

蓄电池剩余容量及健康状态快速检测方法和装置 Download PDF

Info

Publication number
WO2017152479A1
WO2017152479A1 PCT/CN2016/081064 CN2016081064W WO2017152479A1 WO 2017152479 A1 WO2017152479 A1 WO 2017152479A1 CN 2016081064 W CN2016081064 W CN 2016081064W WO 2017152479 A1 WO2017152479 A1 WO 2017152479A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
circuit
discharge
current
internal resistance
Prior art date
Application number
PCT/CN2016/081064
Other languages
English (en)
French (fr)
Inventor
郑贵林
陶志浩
Original Assignee
郑贵林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑贵林 filed Critical 郑贵林
Publication of WO2017152479A1 publication Critical patent/WO2017152479A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a battery residual capacity detecting method, and a battery health state evaluation method based on the remaining capacity detecting method.
  • the present invention also relates to a battery remaining capacity and a health state rapid detecting device.
  • Lead-acid batteries are widely used in many fields, such as automotive, communications, electric power, medical, military, and shipbuilding, due to their mature technology, low cost, high current discharge, large capacity, and reliable performance.
  • lead-acid batteries In the long-term use of lead-acid batteries, there is bound to be a loss of battery deterioration and aging. If the lossy battery is used in series with a good battery for a long time, it will not only aggravate the decline of the service life of the lost battery, but also the service life of other batteries. The impact is caused, so accurately measuring the remaining capacity of the battery to assess its health status, in order to rationally utilize and recover lead-acid batteries, is of great practical significance for extending battery life, improving energy efficiency and reducing environmental pollution.
  • the state of the battery generally refers to the state of charge (SOC) and the state of health (SOH) of the battery.
  • the battery state of charge SOC represents the charge storage capacity of the battery, also known as the capacity of the battery, which is equal to the percentage of the battery's remaining capacity as a percentage of its total capacity. It is an important parameter in the battery use process and directly reflects the remaining capacity of the battery. It not only indicates the remaining capacity of the battery, but also reflects the capacity consumed by the battery.
  • the currently widely accepted definition method is the ratio of the remaining capacity of the battery to the rated capacity under the same conditions, as in equation (1):
  • C i represents the remaining capacity of the battery
  • C 0 represents the rated capacity of the battery
  • the state of health of the battery SOH represents the degree of deterioration and aging of the battery, which is defined as the percentage of the capacity that the battery can be charged or discharged under a certain condition as a percentage of the rated capacity of the battery, as shown in equation (2).
  • SOH reflects the service life of the battery. For a new battery that has just been manufactured, its SOH value is 100%. With the use and decline of the battery, the battery SOH value will continue to decrease. According to the IEEE standard, the capacity of the power battery When the value drops to 80%, the battery is aging and cannot be used. The battery should be replaced in time.
  • C f represents the capacity that the battery can be charged or discharged
  • C 0 represents the rated capacity of the battery
  • the state of charge of the battery is closely related to the health of the battery.
  • the current state of health of the battery can be assessed based on the state of charge of the battery. Therefore, it is a key issue for the battery management system to accurately detect the state of charge of the battery and accurately estimate its remaining capacity and health status.
  • the currently recognized battery capacity detection method is the load discharge test method. Although this method is reliable, it has problems such as troublesome test, long cycle, inability to measure online, and serious energy waste.
  • the commonly used capacity detection methods include density method, open circuit voltage method, Ampere method, internal resistance method, and the like.
  • Density method The remaining capacity of the battery is predicted by detecting the density of the electrolyte of the lead-acid battery. If the density of the electrolyte of the lead-acid battery is measured by fiber optic sensor, ultrasonic wave or low-energy gamma ray, and the remaining capacity of the battery is predicted according to the measured density, the prediction effect is good, but the published literature does not clearly specify the electrolyte density. Relationship with remaining capacity. Moreover, the density method is only applicable to open-type lead-acid batteries, and the use range is narrow. In addition, as the battery ages, the error of the prediction result becomes large.
  • Open circuit voltage method The remaining capacity of the battery is predicted by measuring the open circuit voltage of the battery.
  • the prediction formula is usually obtained by using the recovery curve of the open circuit voltage, and the relative error between the predicted result and the measured value is within 6%, but the battery with different aging degrees is not studied.
  • the disadvantage of the open circuit voltage method is that the battery needs to be left standing for a long time, and as the battery ages, the open circuit voltage is obviously high and the battery remaining capacity cannot be accurately predicted.
  • An-time method The remaining capacity is obtained by integrating the current capacity of the battery by integrating the current.
  • the Ampere method is compensated variously, and the capacity prediction accuracy is within 6%.
  • the Anshi method has problems such as initial capacity calibration and large temperature influence, and the detection process is cumbersome, and a large amount of compensation correction is required.
  • the internal resistance of a battery refers to the "resistance" of electrons that is received when current passes through the interior of the battery.
  • Battery The internal resistance is not constant because during the charging and discharging of the battery, the composition of the active material inside the battery, the electrolyte concentration and the temperature are constantly changing with time.
  • the internal resistance of the battery includes two parts: ohmic internal resistance and polarization internal resistance, and the polarization internal resistance includes concentration polarization internal resistance and activation polarization internal resistance.
  • the internal resistance model of the battery is shown in Figure 1.
  • the ohmic internal resistance R1 accounts for about 60% of the total resistance of the battery
  • the polarization internal resistance R2 accounts for about 40% of the total resistance
  • the equivalent capacitance C is 100 AH. In the case, the value is about 1.3 to 1.7F.
  • the DC discharge method can effectively avoid the influence of the capacitor C.
  • the principle is: a large load is generated by the battery through a load, and then the voltage at the upper end of the battery pole and the discharge current are measured, as shown in FIG. 2, The voltage drop and discharge current at the moment when the load is turned on are measured, and the internal resistance value of the battery is derived.
  • the equivalent model of the battery can be considered as an ideal voltage source E 0 and internal resistance r series (Davinan equivalent model), as shown in Figure 3 (capacitor C is equivalent to open circuit in the case of DC).
  • the process of measuring the internal resistance of the battery by the DC discharge method is as follows: disconnecting the switch S, measuring the open circuit voltage E 0 , and then closing the switch S to measure the current I and the load voltage V Load , which are obtained by Ohm's law:
  • V Load IR Load (4)
  • E 0 is the battery open circuit voltage
  • r is the battery internal resistance
  • R Load is the load resistance
  • V Load is the load voltage
  • I is the current value
  • ⁇ V is the battery terminal voltage drop.
  • the internal resistance of the battery is very small, generally u ⁇ ⁇ m ⁇ level, so the cable resistance of the connecting wire between the measuring instrument and the battery terminal, and the contact resistance between the connecting wire connector and the battery terminal, the influence on the measurement results Can not be ignored, that is, the resistors R wire1 , R wire2 , R wire3 , R wire4 in Figure 3 . Therefore, it is necessary to exclude the cable resistance and the contact resistance by measuring the internal resistance of the battery by the DC discharge method.
  • the correlation coefficient between battery internal resistance and battery capacity can reach 0.92.
  • the internal resistance of the battery is at its full capacity, if the resistance increases by 25% (relative to the internal resistance of the new full-capacity battery), At least 80% of its capacity cannot be output. Therefore, the internal resistance of the battery is to check the remaining capacity of the battery.
  • An important parameter for estimating the health of a battery since the internal resistance of the battery is substantially unchanged when the remaining capacity of the battery is greater than 40%, it is not possible to detect the remaining capacity of the battery and evaluate the health of the battery only by the internal resistance of the battery.
  • the first technical problem to be solved by the present invention is to provide a method for quickly detecting the remaining capacity of the battery and the health state, and the method of the invention can accurately and accurately detect the remaining capacity and the health state of the battery.
  • the first technical problem of the present invention is solved by the following technical solution: a method for quickly detecting remaining capacity and health state of a battery, comprising the following steps:
  • the health state SOH of the battery is predicted based on the relationship between the state of health of the battery SOH and the remaining capacity SOC and internal resistance of the battery.
  • the DC discharge method measures the internal resistance of the battery, that is, the battery is instantaneously discharged through a discharge circuit, and then the open circuit voltage and the load voltage during the discharge process of the battery are measured by a voltage sensing circuit, and the load voltage is the end of the battery after the discharge circuit is turned on.
  • the voltage that is, the terminal voltage of the battery after the S1 is closed in FIG. 3, and the discharge current in the discharge circuit is measured by the current sensing circuit, and then the internal resistance r of the battery is calculated according to the formula (5), which is the above-mentioned maximum discharge current.
  • the maximum discharge current detected that is, the milliohm-level resistance is used to short-circuit the two ends of the battery and the maximum current output.
  • Kelvin four-wire measurement method is an electrical impedance measurement technology. It eliminates the measurement error caused by cable resistance and contact resistance by paralleling the discharge circuit and voltage sensing circuit of the battery to the two output terminals of the battery. The internal resistance r obtained is more accurate.
  • the relationship between the remaining capacity SOC of the battery and the maximum discharge current, load voltage and internal resistance of the battery is obtained by fitting a mathematical model based on a large number of experimental results.
  • the relationship between the state of health SOH of the battery and the remaining capacity SOC and internal resistance of the battery is obtained by fitting a mathematical model based on experimental results.
  • the method of the present invention is applicable to all kinds of batteries, and only the correlation coefficient and parameters are different when the types of the batteries are different.
  • the relationship between the remaining capacity SOC of the battery and the maximum discharge current, load voltage, and internal resistance of the battery is:
  • V Load is the load voltage
  • r is the internal resistance of the battery
  • I max is the maximum discharge current of the battery.
  • the maximum discharge current is obtained by:
  • the battery is discharged through a discharge circuit connected in parallel by more than two branches, and the discharge current in one of the branches is measured by a current sensing circuit, according to the measurement of the current sensing circuit. As a result, the maximum discharge current is calculated.
  • the second technical problem to be solved by the present invention is to provide a battery rapid capacity and health state rapid detecting device, comprising a microprocessor as a control center, further comprising a voltage sampling circuit, a current sampling circuit, a large current discharging circuit, and a first Isolating the driving circuit and the first electronic switch;
  • the large current discharge circuit and the voltage sampling circuit are connected in parallel on the two terminals of the battery to measure the internal resistance of the battery by using a Kelvin four-wire measurement method, the first electronic switch being connected in series
  • the microprocessor is connected to the first electronic switch through the first isolation driving circuit to control whether the first electronic switch is turned on or off, thereby controlling whether the battery passes
  • the large current discharge circuit is discharged
  • the current sampling circuit is connected to the large current discharge circuit
  • the discharge current of the large current discharge circuit is measured by induction power taking
  • the current sampling circuit and the voltage sampling circuit The output ends are respectively connected to the microprocessor, and respectively output the collected voltage signals and current signals to the microprocessor;
  • the microprocessor has:
  • State prediction judging module judging whether to perform battery state prediction
  • a first electronic switch control module after receiving the predicted start command of the state prediction determining module, controlling, by the first isolated driving circuit, the first electronic switch to be briefly turned on, so that the battery passes the high current
  • the discharge circuit performs an instantaneous large current discharge to measure the internal resistance of the battery according to the DC discharge method
  • a data acquisition module obtaining, according to the input of the voltage sampling circuit and the current sampling circuit, a maximum discharge current, a load voltage, and an internal resistance data of the battery during the large current discharge process;
  • Calculation module calculating the relationship between the remaining capacity SOC of the battery and the maximum discharge current, load voltage and internal resistance of the battery, and the relationship between the state of the battery SOH and the remaining capacity SOC and internal resistance of the battery Remaining capacity SOC and health status SOH.
  • the fast detecting device further includes a BUCK discharging circuit having a terminal for connecting to two terminals of the battery, and the fast detecting device further includes a second electronic switch and a second isolating driving circuit, wherein the second electronic switch is connected in series in the BUCK discharging circuit, and the microprocessor is connected to the second electronic switch through the second isolated driving circuit
  • the second isolation driving circuit controls whether the second electronic switch is turned on or off, thereby controlling whether the battery is discharged through the BUCK discharging circuit, and the current sampling circuit is further connected to the BUCK discharging circuit through induction Measuring the discharge current of the BUCK discharge circuit by means of power taking;
  • the microprocessor further includes:
  • Complete discharge test judgment module determine whether to perform a full discharge test
  • a second electronic switch control module after receiving the discharge start command of the full discharge test determination module, controlling the second electronic switch to be turned on, so that the battery performs normal constant current discharge through the BUCK discharge circuit;
  • the cutoff voltage determination module determines whether the terminal voltage of the battery reaches the cutoff voltage according to the input of the voltage sampling circuit.
  • the microprocessor further includes an overcurrent protection module, the overcurrent protection module, configured to compare an input of the current sampling circuit with a set current limit, when an input of the current sampling circuit exceeds the current limit And controlling the large current discharge circuit or the BUCK discharge circuit to be turned off, such as controlling to trip the first or second electronic switch.
  • an overcurrent protection module configured to compare an input of the current sampling circuit with a set current limit, when an input of the current sampling circuit exceeds the current limit And controlling the large current discharge circuit or the BUCK discharge circuit to be turned off, such as controlling to trip the first or second electronic switch.
  • the BUCK discharge circuit is composed of an inductor L1, L2, a capacitor C1, a diode D1, and a resistor RL.
  • the inductors L1, L2 and RL are sequentially connected in series between the two terminals VIN+ and VIN- of the BUCK discharge circuit.
  • the capacitor C1 is connected in parallel with the series branch of the inductor L2 and the resistor RL.
  • the diode D1 is connected in anti-parallel between the capacitor C1 and the series branch, and the second electronic switch Q2 is connected in series. The connection between the capacitor C1 and the diode D1.
  • C1 When the second electronic switch Q2 is turned on, C1 operates in the discharge mode. When the second electronic switch Q2 is turned off, the battery charges C1, and the combination of C1 and L1 can stabilize the discharge current of the battery, and L2 and D1 continue. The role of the flow.
  • the large current discharge circuit is composed of a plurality of shunt resistors connected in parallel, and the plurality of shunt resistors form a milliohm-level load circuit, and the current sampling circuit is connected in series with one of the shunt resistors.
  • the voltage sampling circuit is composed of a voltage dividing network composed of a precision resistor and a voltage follower, and an output end of the voltage dividing network is connected to an input end of the voltage follower.
  • the voltage dividing network divides the output voltage of the battery to obtain a voltage suitable for the sampling range of the microprocessor, and the voltage follower mainly serves as an isolation function, so that the circuits of the front and rear stages do not affect each other. .
  • Both the current sampling circuit and the current sensing circuit are composed of a Hall current sensor.
  • the present invention has the following beneficial effects:
  • the method of the invention has the advantages of accurate detection result, fast detection speed, online detection, and simple detection and calculation process, and the specific performance is as follows:
  • the invention uses the internal resistance method to measure the remaining capacity of the battery. Compared with the method of measuring the remaining capacity of the battery by the load discharge test method, the invention has the advantages of simple test process, fast detection speed, on-line detection, and basically no energy waste. ;
  • the invention selects the internal resistance method to detect the remaining capacity and health state of the battery. Compared with the density method, the method of the invention has wide application range, can be used for the internal resistance measurement of various types of batteries, and because of internal resistance and The remaining capacity of the battery is directly related to the state of health, so it also has the advantage that the detection error does not increase with the aging of the battery;
  • the method of the invention has the advantages of rapid detection and on-line detection, and the detection precision of the method of the invention is high after the battery is aged;
  • the method of the invention selects the DC resistance method in the internal resistance method to detect the internal resistance of the battery, and can effectively avoid the influence of the capacitance compared with the AC signal injection method, so that the detection result is more accurate, and at the same time, the remaining capacity and health of the storage battery of the invention
  • the state detection method also predicts the remaining capacity and health state of the battery by combining the parameters that are monitored by the internal resistance measurement process: the maximum discharge current and the load voltage, so that the remaining capacity and health status of the battery are made. The detection result is more accurate.
  • the internal resistance is basically inconvenient, and the problem that the remaining capacity and the health state of the battery cannot be accurately detected only through the internal resistance;
  • the invention adopts the Kelvin four-wire measuring method to measure the internal resistance of the battery, can eliminate the influence of the cable resistance and the contact resistance on the measurement result of the internal resistance of the battery, and improve the accuracy of the detection result of the internal resistance of the battery;
  • the device of the invention has the advantages of simple structure, small volume, convenient carrying and low cost, and can perform online and rapid detection on the remaining battery capacity and health state of the battery, and the detection result is accurate, and can be widely applied in the fields of automobile, communication, electric power and the like.
  • Figure 1 is a battery internal resistance model
  • Figure 3 is an equivalent model of the battery under DC conditions
  • FIG. 4 is a schematic block diagram of a battery rapid detecting device for remaining capacity and health state of the present invention.
  • Figure 5 is a wiring diagram of the Kelvin four-wire measuring method
  • FIG. 6 is a circuit schematic diagram of an internal resistance measuring circuit and a control circuit thereof according to the present invention.
  • FIG. 7 is a circuit schematic diagram of a BUCK discharge circuit and a control circuit thereof according to the present invention.
  • Figure 8 is a flow chart of the program of the microprocessor of the present invention.
  • Figure 9 is a comparison diagram of experimental results of remaining battery capacity
  • Figure 10 is a comparison of experimental results of battery health.
  • the present invention will be described by taking a lead-acid battery as an example.
  • the detection mechanism is the same as that of a lead-acid battery.
  • the battery residual capacity and health state rapid detecting device of the present invention uses a microprocessor, that is, a single chip microcomputer MC9S12XS128 as a control center.
  • the microprocessor can also select other models to be selected without being limited to the model, and mainly includes overcurrent. Protection circuit, voltage sampling circuit, current sampling circuit, isolated drive circuit, high current discharge circuit for measuring internal resistance of battery, BUCK discharge circuit, touch screen, LCD liquid crystal display, LED indicator and communication interface.
  • a large current discharge circuit for internal resistance measurement and a voltage sampling circuit for voltage sampling are connected in parallel to the two terminals of the battery to measure the internal resistance of the battery using the Kelvin four-wire measurement method.
  • the large current discharge circuit mainly refers to a load circuit LOAD composed of a resistor in the figure.
  • the first electronic switch that is, the SWITCH in FIG. 5 is connected in series in the large current discharge circuit, and the microprocessor is connected to the first electronic switch through the first isolated driving circuit OP to control the on or off of the first electronic switch, thereby controlling the battery. Whether to discharge through a large current discharge circuit.
  • the current sampling circuit is connected to the large current discharging circuit, and the discharging current of the large current discharging circuit is measured by the induction power taking method.
  • the output ends of the current sampling circuit and the voltage sampling circuit are respectively connected to the microprocessor, and the collected voltage signals and current signals are respectively output to the microprocessor.
  • the invention adopts the DC discharge method to measure the internal resistance of the battery, and the specific process is as follows: the microprocessor controls the first MOS tube to be turned on briefly by the first isolation driving circuit OP, so that the battery performs an instantaneous large current discharge through the large current discharge circuit, and the micro processing The machine detects the discharge current I during the discharge process through the current sampling circuit and the voltage sampling circuit, and the battery open circuit voltage E 0 and the load voltage V load obtain the battery terminal voltage drop ⁇ V, and then calculate the internal resistance r of the battery according to the formula (5).
  • the internal resistance of the battery is usually very small, generally u ⁇ ⁇ m ⁇ level, so in the above internal resistance measurement process, the cable resistance between the connecting wire between the large current discharge circuit and the battery terminal and the connection between the wire connector and the battery terminal Contact resistance is not negligible.
  • the invention adopts the Kelvin four-wire measuring method, and the principle thereof is as shown in Figs. 3 and 5.
  • the voltage sensing circuit (the circuit formed by the battery and the voltage sampling circuit) and the discharge circuit of the battery (the circuit formed by the battery and the large current discharging circuit) are used. Separate to eliminate measurement errors caused by cable resistance and contact resistance. As shown in FIG.
  • the line resistance and the contact resistance of the four connecting wires are equivalent to R wire1 , R wire 2 , R wire 3 , and R wire 4 , respectively .
  • R wire1 and R wire2 in the voltage sensing circuit do not pass current, so according to Ohm's law:
  • V Load I(R Load +R wire3 +R wire4 ) (7)
  • Equation (8) is exactly the same as equation (5) above, so the Kelvin four-wire measurement method can eliminate the measurement error caused by cable resistance and contact resistance.
  • E 0 is the open circuit voltage of the battery
  • r is the internal resistance of the battery
  • R Load is the load resistance
  • V Load is the load voltage
  • I is the discharge current
  • ⁇ V is the voltage drop of the battery terminal
  • R wire3 and R wire4 are the cable resistance.
  • contact resistance
  • the Kelvin four-wire measurement method can eliminate the measurement error caused by the cable resistance and the contact resistance of the internal resistance measurement process, improve the accuracy and stability of the internal resistance measurement, and thus accurately measure the battery internal resistance and predict the remaining capacity of the battery.
  • the basis for assessing the health of the battery is laid.
  • the device of the present invention can also perform a complete discharge test on the battery.
  • the battery of the present invention is also connected to the BUCK discharge circuit, the second electronic switch is connected in series in the BUCK discharge circuit, and the microprocessor is connected to the second electronic switch through the second drive circuit to control the conduction of the second electronic switch. Or turn off to control whether the battery is discharged through the BUCK discharge circuit.
  • the first and second electronic switches, the first and second isolated drive circuits are not separated. This figure mainly shows the control principle.
  • the current sampling circuit is also connected to the BUCK discharge circuit to measure the discharge current of the BUCK discharge circuit by means of induction power.
  • the overcurrent protection circuit is mainly used for controlling the on and off of the BUCK discharge circuit and the large current discharge circuit, so as to control the disconnection of the corresponding discharge circuit when the microprocessor detects that an overcurrent occurs through the current sampling circuit.
  • the voltage sampling circuit and the current sampling circuit of the invention are independent of each other, and can eliminate line voltage drop interference caused by current measurement.
  • the battery is controlled by the microprocessor, and the battery is discharged through the BUCK discharge circuit at a discharge rate of 0.1 C for 3 minutes to obtain the voltage and current data of the continuous discharge of the battery, and the battery is continuously discharged after the discharge of the large current. Characteristics, and finally calculate the remaining capacity of the battery and its health status based on all test data.
  • the touch screen, LCD liquid crystal display, LED indicator light, cooling fan and communication interface are respectively connected with the microprocessor, the cooling fan is mainly used for heat dissipation of the microprocessor, the touch screen, the LCD liquid crystal display, and the LED indicator are mainly used for human-computer interaction and communication.
  • the interface is mainly used for information transmission between the microprocessor and the outside world.
  • the communication interface has RS485, WiFi, Ethernet, etc., in order to expand the application range of the device instrument.
  • the voltage collecting circuit is composed of a voltage dividing network composed of a precision resistor and a voltage follower AMP.
  • the precision resistor is connected in series between the two terminals of the battery, and the midpoint of the series is output to the voltage follower AMP.
  • the voltage divider network is used to divide the terminal voltage of the battery into the sampling range of the microprocessor of the microprocessor, and then output the attenuation voltage through the voltage follower AMP to the ADC analog-to-digital conversion port of the microprocessor, so that the microprocessor converts according to the ADC.
  • the value calculates the terminal voltage of the battery.
  • the current sampling circuit is used for current sampling.
  • the present invention uses the Hall current sensor ACS758LCB-100B to measure current.
  • the series of sensors provide an accurate instantaneous current sensing solution for AC or DC current measurement.
  • the device consists of a precise, low-offset linear Hall sensor circuit with a copper current path close to the wafer through which the current applied by the copper current path can be induced and converted into a linear Hall sensor. Proportional voltage.
  • the accurate, proportional output voltage is provided by a stable chopper-type, low-biased BiCMOS Hall IC that is factory-precisely programmed with precision.
  • the application circuit of the Hall current sensor is also shown in Figure 5.
  • the detection range of the ACS758LCB-100B is ⁇ 100A
  • the sensitivity is 20mV/A
  • the response time is 4uS.
  • the internal resistance of the battery is one of the important parameters that indicate the discharge capacity of the battery. It is an important indicator for characterizing the remaining capacity of the battery and the SOH of the health state. It embodies the difficulty of transporting ions and electrons inside the battery between the positive and negative electrodes during chemical reaction. Studies have shown that the internal resistance of the battery is closely related to the remaining capacity of the battery and the state of health.
  • the present invention measures the internal resistance of the battery through a large current discharge circuit, as shown in FIG. 6.
  • SW is the driving signal sent by the microprocessor
  • A is the Hall current sensor.
  • the large current discharge circuit is composed of three shunt resistors R1, R2, and R3 connected in parallel to form a milliohm-level load circuit, and the Hall current sensor A is connected in series on one of the parallel branches.
  • the invention adopts a shunt measurement method to measure a large current.
  • the advantage of the method is that, in order to measure a large discharge current, by using the shunting principle, only the current of one of the symmetric shunt circuits can be detected, and the current measured several times can be detected. Current capacity at full scale of Hull components In the case of accuracy, the detection accuracy is well improved.
  • the invention measures the internal resistance of the battery by the DC discharge method, and the first isolated driving circuit formed by the high-speed photocoupler TLP155E drives the first electronic switch, that is, the MOS tube Q1, so that the battery can be instantaneously discharged with a large current through the large current discharging circuit.
  • the present invention In order to measure the actual internal resistance of the battery under normal working conditions, and accurately measure the maximum discharge current, load voltage and other parameters of the battery, it is necessary to discharge the battery. Therefore, in addition to setting a large current discharge circuit, the present invention also sets a BUCK discharge.
  • the circuit acts as a conventional constant current discharge circuit to perform discharge at a conventional discharge rate, such as discharging characteristics of the battery at a discharge rate of 0.1 C. Conventional here means that the discharge current is within the nominal range of the battery, mainly in relation to the instantaneous high current discharge.
  • the structure of the BUCK discharge circuit of the present invention is as shown in FIG. 7. It consists of an inductor L1, L2, a capacitor C1, a diode D1, and a resistor RL.
  • the inductors L1, L2 and RL are sequentially connected in series at the terminal VIN+ of the BUCK discharge circuit. Between VIN and VIN, the capacitor C1 is connected in parallel with the series branch of the inductor L2 and the resistor RL.
  • the diode D1 is connected in anti-parallel between the capacitor C1 and the series branch, the second The electronic switch is connected in series in the connection line of the capacitor C1 and the diode D1.
  • the BUCK discharge circuit of the invention removes the capacitance of the resistance end of the conventional BUCK converter, and the discharge resistor RL (power resistance) terminal does not need to be regulated.
  • the present invention places the capacitor C1 in the front stage.
  • C1 operates in the discharge mode when the second electronic switch, that is, the MOS transistor Q2 is turned on, and operates in the charging mode when Q2 is turned off.
  • the combination of C1 and L1 stabilizes the discharge current of the battery, and L2 and D1 function as a freewheeling.
  • the PWM is a driving signal sent by the microprocessor, and the microprocessor drives the second electronic switch, that is, the MOS transistor Q2, through the second isolated driving circuit formed by the high-speed photocoupler TLP155E in FIG. 10, so that the battery passes through the BUCK discharging circuit for 0.1C.
  • the discharge rate is discharged.
  • the apparatus of the present invention can perform a full discharge test on the battery.
  • the software design of the microprocessor of the present invention is shown in FIG.
  • the software design is mainly divided into two parts.
  • One is the battery residual capacity SOC and the health state SOH prediction, that is, the internal resistance, maximum current, load voltage, voltage drop speed and other parameters of the battery are measured by DC discharge method, and combined with the preset relationship model calculation.
  • the SOC and SOH of the battery; the second is the battery full discharge test, so that the battery through the BUCK discharge circuit for 0.1C constant current discharge until the battery terminal voltage drops to the cut-off voltage (typically 10.8V).
  • the processing procedure of the microprocessor is as follows, after the microprocessor system is initialized:
  • the remaining capacity of the battery is calculated. SOC and health status SOH;
  • the relevant parameters are sent to a display module such as an LCD liquid crystal display module for display or sent out through the communication interface.
  • a display module such as an LCD liquid crystal display module for display or sent out through the communication interface.
  • the voltage, current data and discharge capacity data in the process are sent to the display module or sent out through the communication interface.
  • the apparatus of the present invention was used as an experimental apparatus, and the battery charging and discharging monitoring instrument ART-5780 was used as an inspection apparatus.
  • V Load is the load voltage
  • r is the internal resistance of the battery
  • I max is the maximum discharge current of the battery.
  • the lead-acid batteries with capacity of 100AH, 150AH, and 300AH are used as test objects, and the models are DJM12100, FT12-150, and DJ300 respectively.
  • the remaining capacity of the battery designed by the present invention and the rapid detection device of the health state are measured.
  • Fig. 9 the predicted value of the remaining capacity of the battery has a good linear relationship with the actual value.
  • the values are basically the same, the prediction error is small, and the same prediction effect is applied to the batteries of different nominal capacities, that is, the SOC prediction for various nominal capacity batteries.
  • the battery is tested for cyclic charge and discharge in different years of use, and the real health state SOH is obtained according to formula (2). Then, the battery designed to be in a healthy state is tested by the device designed by the present invention, and the current remaining capacity of the battery is first measured. The SOC then calculates the health status SOH of the battery according to equation (9), and finally compares the experimental results with the actual value of SOH to verify the accuracy of the device of the present invention.
  • the battery health test results are as follows.
  • the SOH evaluation value of the battery health state has a good linear relationship with the actual value.
  • the invention studies the working and failure mechanism of the lead-acid battery, and uses the combination of the internal resistance of the battery, the maximum current and the load voltage to detect the remaining capacity of the battery and evaluate the health state of the battery, and has the test time compared with the conventional load discharge method. Short, does not affect the battery life advantages.
  • the device based on the method of the invention can detect the remaining capacity and the health state of the battery in real time online, and the device also has the advantages of short detection time, simple structure, portability, low cost, rich communication interface and convenient expansion.
  • the device of the invention is beneficial to improve the use, maintenance and management level of the battery, and has important significance for improving the utilization rate of the lead-acid battery, prolonging the life of the lead-acid battery and reducing the environmental pollution of the waste lead-acid battery.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

一种蓄电池剩余容量及健康状态快速检测方法和装置,所述方法包括如下步骤:使蓄电池通过一个可控的放电电路进行瞬间大电流放电,通过电流采样电路监测该过程中所述放电电路中的放电电流,并通过电压采样电路同步监测所述蓄电池的端电压,根据直流放电法测量所述蓄电池的内阻,其中,所述放电电路和所述电压采样电路与所述蓄电池的两接线柱并联,以便根据开尔文四线制测量法测量所述蓄电池的内阻,获取所述蓄电池的最大放电电流、负载电压和内阻数据;根据相关关系模型,计算蓄电池的SOC和SOH。利用该方法可以在线准确的检测蓄电池的剩余容量和健康状态。

Description

蓄电池剩余容量及健康状态快速检测方法和装置 技术领域
本发明涉及一种蓄电池剩余容量检测方法,和一种基于所述剩余容量检测方法的蓄电池健康状态评估方法,另外,本发明还涉及一种蓄电池剩余容量及健康状态快速检测装置。
背景技术
铅酸蓄电池以其成熟的技术、较低的成本、大电流放电、大容量、可靠的性能等优点被广泛地应用在诸多领域,如汽车、通讯、电力、医疗、军工、舰船等领域。铅酸蓄电池在长期使用下,势必会出现蓄电池劣化、老化等亏损问题,若亏损蓄电池长时间与好蓄电池串联使用,不仅会加剧亏损蓄电池使用寿命的下降速度,而且还会对其他蓄电池的使用寿命造成影响,所以准确地检测蓄电池的剩余容量评估其健康状态,以便合理利用和回收铅酸蓄电池,对延长蓄电池使用寿命、提高能源利用率和减少环境污染具有十分重要的现实意义。
蓄电池状态一般是指蓄电池的荷电状态(State of Charge,简称SOC)和健康状态(State of Health,简称SOH)。
蓄电池荷电状态SOC代表蓄电池的电荷储存能力,也称为蓄电池的容量,其数值上等于蓄电池剩余容量占其总容量的百分比,是蓄电池使用过程中的重要参数,直接反映了蓄电池的剩余容量。它不仅可以表示蓄电池的剩余容量,还反应了蓄电池消耗的容量。对蓄电池SOC的定义有很多不同的方法,目前世界上普遍认同的定义方法是蓄电池的剩余容量与额定容量在同一条件下的比,如式(1):
Figure PCTCN2016081064-appb-000001
上式中,Ci表示蓄电池剩余容量,C0表示蓄电池的额定容量。
蓄电池的健康状态SOH代表蓄电池的劣化、老化程度,其定义为在一定条件下,蓄电池能够充入或放出的容量占蓄电池额定容量的百分比,如式(2)所示。SOH反映的是蓄电池的使用寿命,对一块刚出厂的新蓄电池,其SOH值为100%,随着蓄电池的使用、衰退,蓄电池SOH值将不断减小,根据IEEE标准规定,当动力蓄电池的容量值下降到80%时,蓄电池已老化且不能使用,应及时更换蓄电池。
Figure PCTCN2016081064-appb-000002
上式中,Cf表示蓄电池能够充入或放出的容量,C0表示蓄电池的额定容量。
蓄电池的荷电状态与蓄电池的健康状态密切相关,根据蓄电池的荷电状态可以评估蓄电池当前的健康状态。所以准确对蓄电池的荷电状态进行检测,进而对其剩余容量及健康状态进行准确估算,是蓄电池管理系统关注的一个关键问题。
目前公认的蓄电池容量检测方法是负载放电测试法,这种方法虽然可靠,但是具有测试麻烦、周期长、无法在线测量以及能源浪费严重等问题。目前常用的容量检测方法还包括密度法、开路电压法、安时法、内阻法等。
(1)密度法:通过检测铅酸蓄电池电解液的密度来预测蓄电池的剩余容量。如采用光纤传感器、超声波或低能γ射线对铅酸蓄电池的电解液密度进行测量,并根据测量的密度预测蓄电池的剩余容量,预测效果较好,但目前公开的文献均未明确给出电解液密度与剩余容量的关系。而且密度法只适用于开口式铅酸蓄电池,使用范围窄,另外,随着蓄电池的老化,预测结果误差变大。
(2)开路电压法:通过测量蓄电池的开路电压来预测其剩余容量。通常利用开路电压的恢复曲线得到预测公式,预测结果与测量值相对误差在6%以内,但是并未对不同老化程度的蓄电池进行研究。开路电压法的缺点在于蓄电池需要长时间静置,而且随着蓄电池老化,开路电压明显虚高,无法准确预测蓄电池剩余容量。
(3)安时法:通过对电流积分获得蓄电池的容量变化量,从而得到剩余容量。通常利用开路电压法得到初始容量后,对安时法进行各种补偿,其容量预测精度在6%以内。但是安时法具有初始容量标定、受温度影响大等问题,而且检测过程繁琐,需要进行大量的补偿修正。
(4)内阻法:利用蓄电池内阻与剩余容量的相关性来预测蓄电池的剩余容量。通过实验测试和理论分析的方法对蓄电池内阻(电导)与剩余容量的关系进行研究分析,然后通过检测蓄电池的内阻,根据内阻预测蓄电池的剩余容量。结果表明:阀控密封铅蓄电池SOC在50%或40%以上时,其内阻(或电导)基本没有变化,只有SOC低于40%时,蓄电池的内阻才很快升高,也就是说在蓄电池容量高于40%时,通过蓄电池内阻无法准确预测蓄电池的剩余容量。
蓄电池的内阻是指电流通过蓄电池内部时所受到的电子“阻力”。蓄电池的 内阻不是常数,因为在蓄电池充放电过程中,蓄电池内部的活性物质的构成、电解液浓度和温度都在随着时间的变化而不断变化。蓄电池内阻包括欧姆内阻和极化内阻两大部分,而极化内阻又包括浓差极化内阻和活化极化内阻。蓄电池内阻模型如图1所示,其中欧姆内阻R1约占蓄电池总阻值的60%,极化内阻R2约占总阻值的40%,而等效电容C在蓄电池容量为100AH的情况下其值在1.3~1.7F左右。
蓄电池内阻的测量方法有两种:直流放电法和交流信号注入法。由于图1中电容C的电容效应影响,用交流注入法测量蓄电池内阻具有准确性不高,尤其当测试信号的频率越高时,内阻的测量值就越不准确。直流放电法可以有效地避开电容C的影响,其原理是:由蓄电池通过一个负载产生一个瞬间负载大电流,然后测出蓄电池极柱上端电压及放电电流的变化,如图2所示,通过测量负载接通瞬间的电压降和放电电流,推导出蓄电池的内阻值。在直流情况下,蓄电池的等效模型可认为是一个理想的电压源E0和内阻r串联(戴维南等效模型)构成,如图3所示(直流情况下,电容C相当于开路)。采用直流放电法测量蓄电池内阻的过程如下:断开开关S,测量开路电压E0,然后闭合开关S测量电流I和负载电压VLoad,由欧姆定律可得:
E0=I(r+RLoad)                    (3)
VLoad=IRLoad                       (4)
因此,内阻计算公式为
Figure PCTCN2016081064-appb-000003
上式中E0为蓄电池开路电压,r为蓄电池内阻,RLoad为负载电阻,VLoad为负载电压,I为电流值,ΔV为蓄电池端电压压降。
直流放电法由于可以避开图1中电容C的影响,所以通过其测量的蓄电池内阻值较为准确。
但蓄电池内阻都非常小,一般为uΩ~mΩ级,所以测量仪器与蓄电池接线柱之间的连接导线的电缆电阻,和连接导线接头与蓄电池接线柱之间的接触电阻,对测量结果的影响不可忽略,即图3中的电阻Rwire1、Rwire2、Rwire3、Rwire4。因此,采用直流放电法测量蓄电池内阻,还必需排除所述电缆电阻和所述接触电阻。
在直流测试的情况下,蓄电池内阻与蓄电池容量的相关系数可达0.92,当蓄电池的内阻在其满容量时若阻值增加25%(相对于新的满容量蓄电池的内阻值),至少其容量的80%不能够得到输出。因此,蓄电池内阻是检测蓄电池剩余容量评 估蓄电池健康状态的一个重要参数。但由于蓄电池在其剩余容量大于40%时,其内阻值基本不变,所以不能仅通过蓄电池内阻来检测蓄电池的剩余容量和评估蓄电池的健康状态。
发明内容
本发明所要解决的第一个技术问题是提供一种蓄电池剩余容量及健康状态快速检测方法,利用本发明方法可以在线准确的检测蓄电池的剩余容量和健康状态。
本发明的第一个技术问题通过如下技术方案解决:一种蓄电池剩余容量及健康状态快速检测方法,包括如下步骤:
1)使蓄电池通过一个可控的放电电路进行瞬间大电流放电,通过电流采样电路监测该过程中所述放电电路中的放电电流,并通过电压采样电路同步监测所述蓄电池的端电压,然后根据直流放电法测量所述蓄电池的内阻,其中,所述放电电路和所述电压采样电路与所述蓄电池的两接线柱并联,以便根据开尔文四线制测量法测量所述蓄电池的内阻,获取所述蓄电池的最大放电电流、负载电压和内阻数据;
2)根据蓄电池的剩余容量SOC与蓄电池的最大放电电流、负载电压和内阻的关系模型,计算蓄电池的剩余容量SOC,该方法可以极大的提高蓄电池剩余容量SOC的预测效率;
3)根据蓄电池的健康状态SOH与蓄电池的剩余容量SOC和内阻的关系模型,预测蓄电池的健康状态SOH。
直流放电法测量蓄电池的内阻,即让蓄电池通过一个放电电路进行瞬间大电流放电,然后通过电压感应电路测量蓄电池放电过程中的开路电压和负载电压,负载电压即蓄电池接通放电电路后的端电压,即图3中S1闭合后,蓄电池的端电压,并通过电流感应电路测量放电电路中的放电电流,然后根据式(5)计算蓄电池的内阻r,所述最大放电电流即是指上述直流放电过程中,检测到的最大的放电电流,即瞬间用毫欧级电阻短接蓄电池两端,输出的最大电流。开尔文四线制测量法是一种电阻抗测量技术,它通过将蓄电池的放电电路和电压感应电路分别并联在蓄电池的两输出端,来消除电缆电阻和接触电阻带来的测量误差,从而使测得的内阻r更加准确。
所述蓄电池的剩余容量SOC与蓄电池的最大放电电流、负载电压和内阻的关系模型根据大量实验结果获得拟合数学模型得到。
所述蓄电池的健康状态SOH与所述蓄电池的剩余容量SOC和内阻的关系模型根据实验结果获得拟合数学模型得到。
本发明方法适用于所有种类的蓄电池,在蓄电池的种类不同时,仅相关系数和参数有所不同。例如,针对铅酸蓄电池,所述蓄电池的剩余容量SOC与蓄电池的最大放电电流、负载电压和内阻的关系模型为:
Figure PCTCN2016081064-appb-000004
所述蓄电池的健康状态SOH与所述蓄电池的剩余容量SOC和内阻的关系模型为:
SOH=87.97+5.889r+1.848·SOC-0.5179r2-0.4092r·SOC
上式中,VLoad为负载电压,r为蓄电池的内阻,Imax为蓄电池的最大放电电流。
所述最大放电电流通过如下方式获取:
采用直流放电法测量蓄电池内阻的过程中,使蓄电池通过一个由两条以上支路并联的放电回路放电,通过电流感应电路测量其中一条支路中的放电电流,根据所述电流感应电路的测量结果计算得出所述最大放电电流。
本发明所要解决的第二个技术问题是提供一种蓄电池剩余容量及健康状态快速检测装置,包括作为控制中心的微处理机,还包括电压采样电路、电流采样电路、大电流放电电路、第一隔离驱动电路、第一电子开关;
检测时,所述大电流放电电路和所述电压采样电路并联在所述蓄电池的两接线柱上,以便利用开尔文四线制测量法测量所述蓄电池的内阻,所述第一电子开关串联在所述大电流放电电路中,所述微处理机通过所述第一隔离驱动电路与所述第一电子开关相连,控制所述第一电子开关导通或关断,从而控制所述蓄电池是否通过所述大电流放电电路放电,所述电流采样电路与所述大电流放电电路相连,通过感应取电的方式测量所述大电流放电电路的放电电流,所述电流采样电路和所述电压采样电路的输出端分别与所述微处理机相连,分别将采集的电压信号、电流信号输出到所述微处理机;
所述微处理机具有:
状态预测判断模块:判断是否进行蓄电池状态预测;
第一电子开关控制模块:在收到所述状态预测判断模块的预测开始指令后,通过所述第一隔离驱动电路控制所述第一电子开关短暂导通,使所述蓄电池通过所述大电流放电电路进行一个瞬间大电流放电,以便根据直流放电法测量所述蓄电池的内阻;
数据获取模块:根据所述电压采样电路、电流采样电路的输入,获取上述大电流放电过程中,所述蓄电池的最大放电电流、负载电压和内阻数据;
计算模块:根据预设的蓄电池的剩余容量SOC与蓄电池的最大放电电流、负载电压和内阻的关系模型,和蓄电池的健康状态SOH与蓄电池的剩余容量SOC和内阻的关系模型,计算蓄电池的剩余容量SOC和健康状态SOH。
作为本发明快速检测装置的一种改进,所述快速检测装置还包括BUCK放电电路,所述BUCK放电电路具有用于与所述蓄电池的两接线柱相连的接线端,所述快速检测装置还包括第二电子开关和第二隔离驱动电路,所述第二电子开关串联在所述BUCK放电电路中,所述微处理机通过所述第二隔离驱动电路与所述第二电子开关相连,通过所述第二隔离驱动电路控制所述第二电子开关的导通或关断,从而控制所述蓄电池是否通过所述BUCK放电电路放电,所述电流采样电路还与所述BUCK放电电路相连,通过感应取电的方式测量所述BUCK放电电路的放电电流;
所述微处理机还包括:
完全放电测试判断模块:判断是否进行完全放电测试;
第二电子开关控制模块:在收到所述完全放电测试判断模块的放电开始指令后,控制所述第二电子开关导通,使所述蓄电池通过所述BUCK放电电路进行常规恒流放电;
截止电压判断模块:根据所述电压采样电路的输入判断所述蓄电池的端电压是否到达截止电压。
所述微处理机还包括过电流保护模块,过电流保护模块,用于比较所述电流采样电路的输入与设定的电流限值,在所述电流采样电路的输入超过所述电流限值时,控制所述大电流放电电路或所述BUCK放电电路关断,如控制跳开所述第一或第二电子开关。
所述BUCK放电电路由电感L1、L2、电容C1、二极管D1、电阻RL组成,所述电感L1、L2、电阻RL依次串联在所述BUCK放电电路的两接线端VIN+、VIN-之间,所述电容C1与所述电感L2和电阻RL组成的串联支路并联,所述二极管D1反向并联在所述电容C1与所述串联支路之间,所述第二电子开关Q2串联在所述电容C1和二极管D1的连接线路中。
在第二电子开关Q2导通时,C1工作在放电模式,在第二电子开关Q2关断时,蓄电池对C1充电,C1和L1的结合能使蓄电池的放电电流稳定,L2和D1起到续流的作用。
作为本发明的具体实施方式:所述大电流放电电路由若干个并联的分流电阻构成,若干个所述分流电阻形成一个毫欧级的负载电路,所述电流采样电路与其中一个分流电阻串联。
所述电压采样电路由精密电阻组成的分压网络和电压跟随器组成,所述分压网络的输出端与所述电压跟随器的输入端相连。
所述分压网络对蓄电池的输出电压进行分压,从而获得适合所述微处理机采样范围的电压,所述电压跟随器主要起隔离作用,使其前、后级的电路之间互不影响。
所述电流采样电路和电流感应电路都由霍尔电流传感器构成。
相对于现有技术,本发明具有如下有益效果:
本发明方法相比于现有技术具有检测结果准确,检测速度快,可在线检测,且检测、计算过程简单的优点,具体表现如下:
1)本发明采用内阻法测量蓄电池的剩余容量,相比于通过负载放电测试法测量蓄电池剩余容量的方式,本发明具有测试过程简单、检测速度快、可在线检测、基本无能源浪费的优点;
2)本发明选用内阻法检测蓄电池的剩余容量和健康状态,相比于密度法,本发明方法具有适用范围广,可用于各种类型的蓄电池的内阻测量的优点,而且因为内阻与蓄电池的剩余容量和健康状态直接相关,所以还具有检测误差不会随蓄电池老化而增大的优点;
3)本发明方法相比于开路电压法,具有能快速检测和在线检测的优点,而且在蓄电池老化后,本发明方法的检测精度较高;
4)本发明方法相比于安时法,检测、计算过程简单,检测结果受外界影响小;
5)本发明方法选用内阻法中的直流放电法检测蓄电池内阻,相比于交流信号注入法,可有效避开电容的影响,使检测结果更加准确,同时,本发明蓄电池剩余容量、健康状态检测方法除测量蓄电池内阻外,还通过结合内阻测量过程中本身就会监测到的参数:最大放电电流和负载电压来预测蓄电池的剩余容量和健康状态,使对蓄电池剩余容量和健康状态的检测结果更加准确,解决现有技术中在蓄电池剩余容量超过40%时,内阻基本不便,仅通过内阻无法准确检测蓄电池剩余容量和健康状态的问题;
6)本发明采用开尔文四线制测量法测量蓄电池的内阻,可消除电缆电阻和接触电阻对蓄电池内阻测量结果的影响,提高蓄电池内阻检测结果的准确性;
7)本发明装置结构简单,体积小,便于携带,成本低,可对蓄电池的剩余电量和健康状态进行在线、快速检测,而且检测结果准确,可广泛应用在汽车、通讯、电力等领域。
附图说明
图1为蓄电池内阻模型;
图2为直流放电法测量蓄电池内阻时,蓄电池端电压和放电电流的变化曲线;
图3为直流情况下,蓄电池的等效模型;
图4为本发明蓄电池剩余容量及健康状态快速检测装置的原理框图;
图5为开尔文四线制测量方法的接线图;
图6为本发明内阻测量电路及其控制电路的电路原理图;
图7为本发明BUCK放电电路及其控制电路的电路原理图;
图8为本发明微处理机的程序流程图;
图9为蓄电池剩余容量的实验结果的对照图;
图10为蓄电池健康状态的实验结果的对照图。
具体实施方式
下面以铅酸蓄电池为例对本发明进行描述,其他种类的蓄电池,检测机理与铅酸蓄电池相同。
下面主要详细介绍下本发明的蓄电池剩余容量及健康状态快速检测装置,蓄 电池剩余容量、健康状态快速方法在发明内容部分已详细交代,在此不再重复。
如图4所示,本发明蓄电池剩余容量及健康状态快速检测装置以微处理机即单片机MC9S12XS128为控制中心,当然微处理机也可以选择其它型号选型不限制于该型号,主要还包括过流保护电路、电压采样电路、电流采样电路、隔离驱动电路、用于测量蓄电池内阻的大电流放电电路、BUCK放电电路、触摸屏、LCD液晶显示、LED指示灯和通信接口等组成。
如图5所示,用于内阻测量的大电流放电电路和用于电压采样的电压采样电路并联在蓄电池的两接线柱上,以便利用开尔文四线制测量法测量蓄电池的内阻。大电流放电电路主要是指图中由电阻构成的负载电路LOAD。第一电子开关即图5中的SWITCH串联在大电流放电电路中,微处理机通过第一隔离驱动电路OP与第一电子开关相连,控制第一电子开关的导通或关断,从而控制蓄电池是否通过大电流放电电路放电。电流采样电路与大电流放电电路相连,通过感应取电的方式测量大电流放电电路的放电电流。电流采样电路和电压采样电路的输出端分别与微处理机相连,分别将采集的电压信号、电流信号输出到微处理机。
本发明采用直流放电法测量蓄电池内阻,具体过程如下:微处理机通过第一隔离驱动电路OP控制第一MOS管短暂导通,使蓄电池通过大电流放电电路进行一个瞬间大电流放电,微处理机通过电流采样电路和电压采样电路检测该放电过程中的放电电流I,蓄电池开路电压E0和负载电压Vload得到蓄电池端电压压降ΔV,然后根据式(5)计算蓄电池的内阻r。
蓄电池内阻通常都非常小,一般为uΩ~mΩ级,所以上述内阻测量过程中,大电流放电电路与蓄电池接线柱之间的连接导线的电缆电阻和连接导线接头与蓄电池接线柱之间的接触电阻不可忽略。本发明采用开尔文四线制测量法,其原理如图3、5所示,将电压感应回路(蓄电池与电压采样电路构成的回路)、蓄电池的放电回路(蓄电池与大电流放电电路构成的回路)分离,以便消除电缆电阻和接触电阻带来的测量误差。如图3所示,四根连接导线的线电阻和接触电阻分别等效为Rwire1、Rwire2、Rwire3、Rwire4。在放电过程中,电压感应回路中的Rwire1和Rwire2并没有电流经过,所以根据欧姆定律有:
E0=I(r+RLoad+Rwire3+Rwire4)             (6)
VLoad=I(RLoad+Rwire3+Rwire4)               (7)
由上式可得:
Figure PCTCN2016081064-appb-000005
式(8)与上面式(5)完全相同,所以开尔文四线制测量法可以消除电缆电阻和接触电阻带来的测量误差。上式中E0为蓄电池的开路电压,r为蓄电池内阻,RLoad为负载电阻,VLoad为负载电压,I为放电电流,ΔV为蓄电池端电压压降,Rwire3、Rwire4为电缆电阻和接触电阻。
可见,采用开尔文四线制测量法可消除内阻测量过程电缆电阻和接触电阻带来的测量误差,提高内阻测量的精度度和稳定性,从而为准确测量蓄电池内阻进而预测蓄电池剩余容量和评估蓄电池健康状态奠定了基础。
本发明装置除了能通过直流放电法测量蓄电池内阻外,还能对蓄电池进行完全放电测试。
如图4所示,本发明的蓄电池还与BUCK放电电路相连,第二电子开关串联在BUCK放电电路中,微处理机通过第二驱动电路与第二电子开关相连,控制第二电子开关导通或关断,以便控制蓄电池是否通过BUCK放电电路放电。图4中,并没有将第一、第二电子开关,第一、第二隔离驱动电路分开,本图主要体现其控制原理。
电流采样电路还与BUCK放电电路相连,以便通过感应取电的方式测量BUCK放电电路的放电电流。
过流保护电路主要用于控制BUCK放电电路和大电流放电电路的通断,以便在微处理机通过电流采样电路监测到过电流发生时,控制断开相应的放电电路。
本发明电压采样电路与电流采样电路相互独立,可以消除电流测量引起的线路电压压降干扰。
本发明进行瞬间大电流放电后,再通过微处理机控制,使蓄电池通过BUCK放电电路以0.1C放电率放电3分钟,得到蓄电池连续放电的电压、电流数据,获得大电流放电后的电池持续放电特性,最后根据所有检测数据计算蓄电池的剩余容量及其健康状态。
触摸屏、LCD液晶显示、LED指示灯、散热风扇和通信接口分别与微处理机相连,散热风扇主要用于为微处理机散热,触摸屏、LCD液晶显示、LED指示灯主要用于人机交互,通信接口主要用于微处理机与外界的信息传递。通信接口有RS485、WiFi、以太网等,以便扩展装置仪器的应用范围。
下面介绍下本发明装置各部分的具体电路结构,需要注意的是,本发明不限于上述电路。
电压采集电路
如图5所示,电压采集电路由精密电阻组成的分压网络和电压跟随器AMP组成,精密电阻串联在蓄电池的两接线柱间,串联中点输出到电压跟随器AMP。分压网络用于将蓄电池的端电压分压到微处理机的ADC的采样范围,然后通过电压跟随器AMP输出衰减电压到微处理机的ADC模数转换端口,以便微处理机根据ADC的转换值计算蓄电池的端电压。
电流采样电路
电流采样电路用于电流的采样,本发明采用霍尔电流传感器ACS758LCB-100B测量电流,该系列传感器可为交流或直流电流测量提供精确的瞬时电流检测解决方案。该器件由一个精确、低偏移的线性霍尔传感器电路组成,且其铜制的电流路径靠近晶片,通过该铜制的电流路径施加的电流能够生成可被线性霍尔传感器感应并转化为成比例的电压。精确的、成比例的输出电压由稳定斩波型低偏置BiCMOS霍尔IC提供,该IC出厂时已进行精确度编程。
霍尔电流传感器的应用电路同样如图5所示,ACS758LCB-100B的检测范围为±100A,灵敏度为20mV/A,响应时间为4uS。
大电流放电电路
蓄电池的内阻是标志蓄电池放电能力的重要参数之一,是表征蓄电池剩余容量SOC和健康状态SOH的重要指标,体现了化学反应时蓄电池内部离子和电子在正负电极间传输的难易程度。研究表明,蓄电池内阻与蓄电池剩余容量、健康状态具有紧密地联系。
为了对蓄电池剩余容量及健康状态进行评估,通常需要测量蓄电池内阻,本发明通过大电流放电电路测量蓄电池的内阻,具体如图6所示。图中SW为微处理机发送的驱动信号,A为霍尔电流传感器。如图6所示,大电流放电电路由三个分流电阻R1、R2、R3并联构成,形成一个毫欧级的负载电路,霍尔电流传感器A串联在其中一条并联支路上。本发明采用了分流测量法来测量大电流,该方法的优点在于,为了测量较大的放电电流,利用分流原理,仅检测其中一个对称分流回路的电流,就可以检测数倍于被测电流的电流容量,在赫尔元件满量程 精度的情况下,可很好地提升检测精度。本发明通过直流放电法测量蓄电池内阻,采用高速光电耦合器TLP155E构成的第一隔离驱动电路驱动第一电子开关即MOS管Q1,以便使蓄电池通过大电流放电电路进行瞬间大电流放电。
BUCK放电电路
为了测量蓄电池在正常工作状态时的实际内阻,以及精确测量蓄电池的最大放电电流、负载电压等参数,需要对蓄电池进行放电,所以本发明在设置大电流放电电路之外,还设置了BUCK放电电路作为常规恒流放电电路,以实施常规放电率的放电,如以0.1C放电率对蓄电池进行放电特性检测。这里所说的常规是指其放电电流在蓄电池的标称额度范围内,主要相对于瞬间大电流放电而言。
本发明BUCK放电电路的结构如图7所示,由电感L1、L2、电容C1、二极管D1、电阻RL组成,所述电感L1、L2、电阻RL依次串联在所述BUCK放电电路的接线端VIN+、VIN-之间,所述电容C1与所述电感L2和电阻RL组成的串联支路并联,所述二极管D1反向并联在所述电容C1与所述串联支路之间,所述第二电子开关串联在所述电容C1和二极管D1的连接线路中。
本发明BUCK放电电路,去掉了传统BUCK变换器电阻端的电容,放电电阻RL(功率电阻)端无需稳压,本发明将电容C1放到了前级。C1在第二电子开关即MOS管Q2导通时工作在放电模式,在Q2关断时工作在充电模式,同时,C1和L1的结合使蓄电池放电电流稳定,L2和D1起到续流作用。
PWM为微处理机发送的驱动信号,微处理机通过由图10中高速光电耦合器TLP155E构成的第二隔离驱动电路驱动第二电子开关即MOS管Q2,以便使蓄电池通过BUCK放电电路进行0.1C放电率放电。
利用本发明BUCK放电电路,本发明装置可对蓄电池进行完全放电测试。
本发明的微处理机的软件设计如图8所示。软件设计主要分为两部分,一是蓄电池剩余容量SOC及健康状态SOH预测,即通过直流放电法测量蓄电池的内阻、最大电流、负载电压、电压下降速度等参数,结合预设的关系模型计算蓄电池的SOC和SOH;二是蓄电池完全放电测试,使蓄电池通过BUCK放电电路进行0.1C恒流放电,直到蓄电池端电压降低到截至电压(一般为10.8V)。
进行蓄电池剩余容量SOC及健康状态SOH预测时,微处理机的处理过程如下,微处理机系统初始化完毕后:
首先,判断是否进行蓄电池状态预测;
是则控制第一电子开关短暂导通,使蓄电池通过所述放电电路进行一个瞬间大电流放电,以便根据直流放电法测量蓄电池的内阻;
并根据所述电压采样电路、电流感应电路的输入,获取蓄电池的最大放电电流、负载电压和内阻数据;
然后根据预设的蓄电池的剩余容量SOC与蓄电池的最大放电电流、负载电压和内阻的关系模型,和蓄电池的健康状态SOH与蓄电池的剩余容量SOC和内阻的关系模型,计算蓄电池的剩余容量SOC和健康状态SOH;
将相关参数发送到显示模块如LCD液晶显示模块进行显示或通过通信接口发送出去。
进行蓄电池完全放电测试时,微处理机的处理过程如下,微处理机系统初始化完毕后:
判断是否进行完全放电测试;
是则控制所述第二电子开关导通,使蓄电池通过所述BUCK放电电路进行恒流放电;
根据所述电压采样电路的输入判断蓄电池的端电压是否到达截止电压;
是则控制所述第二电子开关关断,使蓄电池停止放电;
然后根据电压采样电路和电流采样电路的输入,将该过程中的电压、电流数据及放电容量数据发送到显示模块或通过通信接口发送出去。
本发明蓄电池剩余容量及健康状态快速检测方法和装置的效果实验和原理论证
实验平台
以本发明装置作为实验装置,以蓄电池充放电监测仪器ART-5780作为检验装置。
通过大量的实验,拟合得出了铅酸蓄电池剩余容量SOC及健康状态SOH的关系模型如下:
Figure PCTCN2016081064-appb-000006
SOH=87.97+5.889r+1.848·SOC-0.5179r2-0.4092r·SOC           (10)
上式中,VLoad为负载电压,r为蓄电池的内阻,Imax为蓄电池的最大放电电流。注,不同种类蓄电池,上式(9)、(10)中的参数和系数会有所不同。
剩余容量预测案例
以容量为100AH、150AH、300AH的铅酸蓄电池作为测试对象,型号分别为DJM12100、FT12-150、DJ300,在蓄电池处于不同容量状态下,利用本发明设计的蓄电池剩余容量及健康状态快速检测装置测量蓄电池的各项参数,并根据式(9)计算出蓄电池的剩余容量SOC。然后使用蓄电池充放电监测仪器ART-5780进行连续放电测试,获得蓄电池的实际剩余容量SOC,实验结果如下所示。
表1 SOC测量实验数据(100AH)
Figure PCTCN2016081064-appb-000007
表2 SOC测量实验数据(150AH)
Figure PCTCN2016081064-appb-000008
表3 SOC测量实验数据(300AH)
Figure PCTCN2016081064-appb-000009
Figure PCTCN2016081064-appb-000010
图9可见,蓄电池剩余容量SOC预测值与实际值呈良好的线性关系,线性回归方程为y=0.9856x-0.0507,相关系数为0.9658,均方差为5.68,说明本系统对SOC的预测结果与实际值基本一致,预测误差较小,而且对不同标称容量的蓄电池均具有同样的预测效果,即适用于各种标称容量蓄电池的SOC预测。
健康状态估计
对不同使用年份的蓄电池进行循环充放电测试,根据式(2)得到其真实健康状态SOH,然后利用本发明设计的装置对已知健康状态的蓄电池进行测试实验,先测量出蓄电池当前的剩余容量SOC,然后根据式(9)计算出蓄电池的健康状态SOH,最后将实验结果与SOH真实值相对比以验证本发明装置的准确性。蓄电池健康状态测试实验结果如下。
表4 SOH估计实验数据
Figure PCTCN2016081064-appb-000011
图10可见,蓄电池健康状态SOH评估值与实际值呈良好的线性关系,线性回归方程为y=1.003x-0.3095,相关系数为0.9962,均方差为2.094。说明本系统对SOH的评估结果与真实值基本一致,评估误差较小,而且对不同的蓄电池均 具有同样的评估效果,由此验证了本系统对蓄电池的健康状态SOH的评估结果准确可靠。
综上所述,上述实验表明,利用本发明装置得到的蓄电池SOC和SOH的预测值与实际值具有良好的线性关系,预测精度和准确度较高。
本发明对铅酸蓄电池的工作及失效机理进行研究,采用蓄电池内阻、最大电流、负载电压的组合来检测蓄电池的剩余容量及评估蓄电池的健康状态,与常规的负载放电法相比,具有测试时间短、不影响蓄电池寿命的优点。基于本发明方法的装置可实时在线检测蓄电池的剩余容量及健康状态,该装置还具有检测时间短、结构简单、便于携带、成本低、通信接口丰富便于扩展等优点。本发明装置有利于提高蓄电池的使用、维护和管理水平,对提高铅酸蓄电池的利用率、延长铅酸蓄电池的寿命以及减少废旧铅酸蓄电池对环境的污染具有重要的意义。

Claims (10)

  1. 一种蓄电池剩余容量及健康状态快速检测方法,其特征在于,包括如下步骤:
    1)使蓄电池通过一个可控的放电电路进行瞬间大电流放电,通过电流采样电路监测该过程中所述放电电路中的放电电流,并通过电压采样电路同步监测所述蓄电池的端电压,然后根据直流放电法测量所述蓄电池的内阻,其中,所述放电电路和所述电压采样电路与所述蓄电池的两接线柱并联,以便根据开尔文四线制测量法测量所述蓄电池的内阻,获取所述蓄电池的最大放电电流、负载电压和内阻数据;
    2)根据蓄电池的剩余容量SOC与蓄电池的最大放电电流、负载电压和内阻的关系模型,计算蓄电池的剩余容量SOC;
    3)根据蓄电池的健康状态SOH与蓄电池的剩余容量SOC和内阻的关系模型,预测蓄电池的健康状态SOH。
  2. 根据权利要求1所述的蓄电池剩余容量及健康状态快速检测方法,其特征在于,所述蓄电池的剩余容量SOC与蓄电池的最大放电电流、负载电压和内阻的关系模型根据实验结果获得拟合数学模型得到;
    所述蓄电池的健康状态SOH与所述蓄电池的剩余容量SOC和内阻的关系模型根据实验结果获得拟合数学模型得到。
  3. 根据权利要求2所述的蓄电池剩余容量及健康状态快速检测方法,其特征在于,所述蓄电池为铅酸蓄电池,所述蓄电池的剩余容量SOC与蓄电池的最大放电电流、负载电压和内阻的关系模型为:
    Figure PCTCN2016081064-appb-100001
    所述蓄电池的健康状态SOH与所述蓄电池的剩余容量SOC和内阻的关系模型为:
    SOH=87.97+5.889r+1.848·SOC-0.5179r2-0.4092r·SOC
    上式中,VLoad为负载电压,r为蓄电池的内阻,Imax为蓄电池的最大放电电流。
  4. 根据权利要求3所述的蓄电池剩余容量及健康状态快速检测方法,其特征 在于,所述最大放电电流通过如下方式获取:
    采用直流放电法测量蓄电池内阻的过程中,使蓄电池通过一个由两条以上支路并联的放电回路放电,通过电流感应电路测量其中一条支路中的放电电流,根据所述电流感应电路的测量结果计算得出所述最大放电电流。
  5. 一种蓄电池剩余容量及健康状态快速检测装置,其特征在于,包括作为控制中心的微处理机,还包括电压采样电路、电流采样电路、大电流放电电路、第一隔离驱动电路、第一电子开关;
    检测时,所述大电流放电电路和所述电压采样电路并联在所述蓄电池的两接线柱上,以便利用开尔文四线制测量法测量所述蓄电池的内阻,所述第一电子开关串联在所述大电流放电电路中,所述微处理机通过所述第一隔离驱动电路与所述第一电子开关相连,控制所述第一电子开关导通或关断,从而控制所述蓄电池是否通过所述大电流放电电路放电,所述电流采样电路与所述大电流放电电路相连,通过感应取电的方式测量所述大电流放电电路的放电电流,所述电流采样电路和所述电压采样电路的输出端分别与所述微处理机相连,分别将采集的电压信号、电流信号输出到所述微处理机;
    所述微处理机具有:
    状态预测判断模块:判断是否进行蓄电池状态预测;
    第一电子开关控制模块:在收到所述状态预测判断模块的预测开始指令后,通过所述第一隔离驱动电路控制所述第一电子开关短暂导通,使所述蓄电池通过所述大电流放电电路进行一个瞬间大电流放电,以便根据直流放电法测量所述蓄电池的内阻;
    数据获取模块:根据所述电压采样电路、电流采样电路的输入,获取上述大电流放电过程中,所述蓄电池的最大放电电流、负载电压和内阻数据;
    计算模块:根据预设的蓄电池的剩余容量SOC与蓄电池的最大放电电流、负载电压和内阻的关系模型,和蓄电池的健康状态SOH与蓄电池的剩余容量SOC和内阻的关系模型,计算蓄电池的剩余容量SOC和健康状态SOH。
  6. 根据权利要求5所述的蓄电池剩余容量及健康状态快速检测装置,其特征在于,所述快速检测装置还包括BUCK放电电路,所述BUCK放电电路具有用于 与所述蓄电池的两接线柱相连的接线端,所述快速检测装置还包括第二电子开关和第二隔离驱动电路,所述第二电子开关串联在所述BUCK放电电路中,所述微处理机通过所述第二隔离驱动电路与所述第二电子开关相连,控制所述第二电子开关导通或关断,从而控制所述蓄电池是否通过所述BUCK放电电路放电,所述电流采样电路还与所述BUCK放电电路相连,通过感应取电的方式测量所述BUCK放电电路的放电电流;
    所述微处理机还包括:
    完全放电测试判断模块:判断是否进行完全放电测试;
    第二电子开关控制模块:在收到所述完全放电测试判断模块的放电开始指令后,通过所述第二隔离驱动电路控制所述第二电子开关导通,使所述蓄电池通过所述BUCK放电电路进行常规恒流放电;
    截止电压判断模块:根据所述电压采样电路的输入判断所述蓄电池的端电压是否到达截止电压。
  7. 根据权利要求6所述的蓄电池剩余容量及健康状态快速检测装置,其特征在于,所述微处理机还包括过电流保护模块,过电流保护模块,用于比较所述电流采样电路的输入与设定的电流限值,在所述电流采样电路的输入超过所述电流限值时,控制所述大电流放电电路或所述BUCK放电电路关断。
  8. 根据权利要求7所述的蓄电池剩余容量及健康状态快速检测装置,其特征在于,所述BUCK放电电路由电感L1、L2、电容C1、二极管D1、电阻RL组成,所述电感L1、L2、电阻RL依次串联在所述BUCK放电电路的两接线端VIN+、VIN-之间,所述电容C1与所述电感L2和电阻RL组成的串联支路并联,所述二极管D1反向并联在所述电容C1与所述串联支路之间,所述第二电子开关Q2串联在所述电容C1和二极管D1的连接线路中。
  9. 根据权利要求8所述的蓄电池剩余容量及健康状态快速检测装置,其特征在于,所述大电流放电电路由若干个并联的分流电阻构成,若干个所述分流电阻形成一个毫欧级的负载电路,所述电流采样电路与其中一个分流电阻串联。
  10. 根据权利要求9所述的蓄电池剩余容量及健康状态快速检测装置,其特征在于,所述电压采样电路由精密电阻组成的分压网络和电压跟随器组成,所述分压网络的输出端与所述电压跟随器的输入端相连。
PCT/CN2016/081064 2016-03-11 2016-05-05 蓄电池剩余容量及健康状态快速检测方法和装置 WO2017152479A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610142038.1 2016-03-11
CN201610142038.1A CN105807230B (zh) 2016-03-11 2016-03-11 蓄电池剩余容量及健康状态快速检测方法和装置

Publications (1)

Publication Number Publication Date
WO2017152479A1 true WO2017152479A1 (zh) 2017-09-14

Family

ID=56467334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081064 WO2017152479A1 (zh) 2016-03-11 2016-05-05 蓄电池剩余容量及健康状态快速检测方法和装置

Country Status (2)

Country Link
CN (1) CN105807230B (zh)
WO (1) WO2017152479A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160267579A1 (en) * 2015-03-09 2016-09-15 Panasonic Intellectual Property Management Co., Ltd. Rental system and rental management method
CN107579569A (zh) * 2017-09-28 2018-01-12 国网上海市电力公司 一种基于容量监测的变电站蓄电池组充放电控制系统
CN109917279A (zh) * 2017-12-13 2019-06-21 上海五零盛同信息科技有限公司 在线非恒定负载下电池容量检测电路及其检测方法
CN110888058A (zh) * 2019-12-02 2020-03-17 西安科技大学 一种基于动力电池soc和soh联合估计的算法
CN111781522A (zh) * 2020-07-13 2020-10-16 深圳市道通科技股份有限公司 一种蓄电池检测方法、设备及存储介质
CN112172608A (zh) * 2020-09-11 2021-01-05 广州小鹏汽车科技有限公司 电池监测方法、装置、车辆及存储介质
CN113016116A (zh) * 2020-05-07 2021-06-22 深圳市大疆创新科技有限公司 供电电路、电源装置、移动平台和剩余电量的调节方法
CN113075572A (zh) * 2021-03-25 2021-07-06 辽宁工业大学 一种基于新能源汽车电池管理系统的温度检测方法
CN113764749A (zh) * 2021-08-31 2021-12-07 东风商用车有限公司 一种车载蓄电池的电源管理方法和系统
CN114076899A (zh) * 2020-08-18 2022-02-22 深圳市比亚迪锂电池有限公司 电池寿命的分档预估方法、装置、设备、系统及介质
CN115343627A (zh) * 2022-10-19 2022-11-15 力高(山东)新能源技术股份有限公司 一种动力电池的soh估算方法
CN115441133A (zh) * 2022-10-09 2022-12-06 南京新城现代有轨电车有限公司 一种加液车用蓄电池自动加液系统
CN116913970A (zh) * 2023-06-28 2023-10-20 上海格州微电子技术有限公司 一种提供过内阻检测的mosfet及mosfet的制造方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106569140A (zh) * 2016-11-03 2017-04-19 东莞市哈维电子科技有限公司 电池检测装置
US10345392B2 (en) * 2016-11-18 2019-07-09 Semiconductor Components Industries, Llc Methods and apparatus for estimating a state of health of a battery
CN108072839A (zh) * 2016-11-18 2018-05-25 北京铁路信号有限公司 模式电池地址装置中电池电量的测试装置
CN108205077A (zh) * 2016-12-16 2018-06-26 联合汽车电子有限公司 电流检测装置、电流检测系统及电流检测方法
CN106680730B (zh) * 2017-03-01 2023-06-30 侬泰轲(上海)检测科技有限责任公司 一种可检测荷电状态的充放电装置及荷电状态的检测方法
CN108572321B (zh) * 2017-03-10 2020-10-02 郑州宇通客车股份有限公司 一种新能源汽车及锂离子电池安全电流测试方法
US10132867B1 (en) * 2017-05-15 2018-11-20 Semiconductor Components Industries, Llc Methods and apparatus for measuring battery characteristics
CN109473703B (zh) * 2017-09-28 2021-11-09 大连融科储能技术发展有限公司 一种用于实时监测全钒液流电池电解液浓度的方法及系统
CN109693545B (zh) * 2017-10-24 2021-02-23 河南森源重工有限公司 一种电池剩余能量、车辆剩余里程的估算方法及装置
CN107797070B (zh) * 2017-10-24 2020-10-13 北京普莱德新能源电池科技有限公司 动力电池健康状态的评估方法及评估装置
CN108008312A (zh) * 2017-11-27 2018-05-08 广州市扬新技术研究有限责任公司 蓄电池组状态在线测量电路及方法
CN107728079B (zh) * 2017-11-28 2021-04-16 西藏大学 一种光伏储能电池快速检测系统
CN108896919B (zh) * 2018-06-19 2020-09-25 爱驰汽车有限公司 电池老化状态的估算方法、装置及电池管理系统
CN109143081A (zh) * 2018-10-09 2019-01-04 北京长城华冠汽车科技股份有限公司 一种电动汽车锂离子电池容量在线估算方法和装置
CN109633464A (zh) * 2018-11-26 2019-04-16 国网浙江省电力有限公司台州供电公司 蓄电池动静态放电测试方法
CN109581239A (zh) * 2018-11-26 2019-04-05 漳州市华威电源科技有限公司 一种蓄电池管理装置及监测系统
CN109669138B (zh) * 2018-12-28 2021-02-19 天能电池集团股份有限公司 一种精准测定动力铅蓄电池组剩余容量的方法
CN109870654B (zh) * 2019-02-02 2021-07-13 福州大学 基于冲击负载响应特性的蓄电池容量在线动态估计方法
CN110673064B (zh) * 2019-09-29 2021-11-30 上海裕达实业有限公司 适用于磁场测试的操作指示装置
CN111323720B (zh) * 2020-01-07 2022-08-16 苏州热工研究院有限公司 蓄电池老化状态诊断装置和蓄电池老化状态修复装置
CN111308163B (zh) * 2020-02-21 2022-08-30 青岛力神新能源科技有限公司 一种锂离子动力电池脉冲放电最大电流的确定方法
CN111525197B (zh) * 2020-04-30 2021-07-30 镇江市百汇电器有限公司 一种蓄电池soh实时估算系统及方法
CN111596220A (zh) * 2020-06-24 2020-08-28 深圳市道通科技股份有限公司 一种测量蓄电池的电池储备容量的方法及电池检测设备
CN111856307B (zh) * 2020-07-09 2023-09-15 深圳市欣旺达能源科技有限公司 估算电池SoH的方法、装置、存储介质及智能设备
US11668756B2 (en) 2020-09-25 2023-06-06 Google Llc Battery degradation monitoring system and methods
US11680918B2 (en) 2020-09-25 2023-06-20 Google Llc Thermal gradient battery monitoring system and methods
CN112255554A (zh) * 2020-10-29 2021-01-22 国网江苏省电力有限公司盐城供电分公司 一种直流系统蓄电池健康状况及内部故障监测装置
CN112698231A (zh) * 2020-11-20 2021-04-23 深圳供电局有限公司 电池健康状态检测方法、装置、控制设备和存储介质
CN113009367A (zh) * 2021-02-19 2021-06-22 哈尔滨理工大学 一种电池健康度的在线测试装置及方法
CN113466730A (zh) * 2021-06-30 2021-10-01 郑州易能科技有限公司 一种蓄电池内阻闪测装置及方法
CN114325427B (zh) * 2021-11-16 2023-07-28 深圳供电局有限公司 蓄电池剩余容量的预估方法、装置和存储介质
CN113945740B (zh) * 2021-11-19 2024-07-09 北京海博思创科技股份有限公司 接触电阻的确定方法、装置、设备及存储介质
CN114295997A (zh) * 2021-12-20 2022-04-08 江苏纵帆微电子有限公司 一种使用tbox监测汽车低压蓄电池健康状态的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050134282A1 (en) * 2003-12-19 2005-06-23 Moshe Averbuch [method and apparatus for battery testing and measuring]
CN102253343A (zh) * 2011-04-21 2011-11-23 北京世纪瑞尔技术股份有限公司 一种蓄电池的健康度与荷电状态的估算方法
CN103762624A (zh) * 2013-12-28 2014-04-30 华为技术有限公司 一种电池管理方法及装置
CN104749533A (zh) * 2015-03-25 2015-07-01 上海应用技术学院 一种锂离子电池健康状态在线估算方法
CN105092977A (zh) * 2015-06-05 2015-11-25 郑贵林 蓄电池内阻测量方法和电路、健康状态检测方法和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1892536B1 (de) * 2006-08-22 2012-04-11 Delphi Technologies, Inc. Batterieüberwachungssystem
JP2010060300A (ja) * 2008-09-01 2010-03-18 Panasonic Corp 2次電池の充電状態検出方法、充電状態検出装置およびこの装置を備えた機器
CN202939223U (zh) * 2012-10-23 2013-05-15 江苏省电力公司苏州供电公司 蓄电池在线内阻测试装置
CN103308864B (zh) * 2013-07-09 2015-06-24 中国人民解放军国防科学技术大学 二次电池soh值估算和剩余寿命测试方法
CN103744030B (zh) * 2014-01-12 2016-06-01 中国科学院电工研究所 电池组健康状态和荷电状态在线估算装置及估算方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050134282A1 (en) * 2003-12-19 2005-06-23 Moshe Averbuch [method and apparatus for battery testing and measuring]
CN102253343A (zh) * 2011-04-21 2011-11-23 北京世纪瑞尔技术股份有限公司 一种蓄电池的健康度与荷电状态的估算方法
CN103762624A (zh) * 2013-12-28 2014-04-30 华为技术有限公司 一种电池管理方法及装置
CN104749533A (zh) * 2015-03-25 2015-07-01 上海应用技术学院 一种锂离子电池健康状态在线估算方法
CN105092977A (zh) * 2015-06-05 2015-11-25 郑贵林 蓄电池内阻测量方法和电路、健康状态检测方法和系统

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230059968A1 (en) * 2015-03-09 2023-02-23 Panasonic Intellectual Property Management Co., Ltd. Rental system and rental management method
US20160267579A1 (en) * 2015-03-09 2016-09-15 Panasonic Intellectual Property Management Co., Ltd. Rental system and rental management method
CN107579569A (zh) * 2017-09-28 2018-01-12 国网上海市电力公司 一种基于容量监测的变电站蓄电池组充放电控制系统
CN109917279B (zh) * 2017-12-13 2023-02-17 上海五零盛同信息科技有限公司 在线非恒定负载下电池容量检测电路及其检测方法
CN109917279A (zh) * 2017-12-13 2019-06-21 上海五零盛同信息科技有限公司 在线非恒定负载下电池容量检测电路及其检测方法
CN110888058A (zh) * 2019-12-02 2020-03-17 西安科技大学 一种基于动力电池soc和soh联合估计的算法
CN113016116A (zh) * 2020-05-07 2021-06-22 深圳市大疆创新科技有限公司 供电电路、电源装置、移动平台和剩余电量的调节方法
CN111781522A (zh) * 2020-07-13 2020-10-16 深圳市道通科技股份有限公司 一种蓄电池检测方法、设备及存储介质
CN114076899B (zh) * 2020-08-18 2024-04-12 深圳市比亚迪锂电池有限公司 电池寿命的分档预估方法、装置、设备、系统及介质
CN114076899A (zh) * 2020-08-18 2022-02-22 深圳市比亚迪锂电池有限公司 电池寿命的分档预估方法、装置、设备、系统及介质
CN112172608A (zh) * 2020-09-11 2021-01-05 广州小鹏汽车科技有限公司 电池监测方法、装置、车辆及存储介质
CN113075572B (zh) * 2021-03-25 2024-05-31 辽宁工业大学 一种基于新能源汽车电池管理系统的温度检测方法
CN113075572A (zh) * 2021-03-25 2021-07-06 辽宁工业大学 一种基于新能源汽车电池管理系统的温度检测方法
CN113764749A (zh) * 2021-08-31 2021-12-07 东风商用车有限公司 一种车载蓄电池的电源管理方法和系统
CN115441133B (zh) * 2022-10-09 2024-02-09 南京新城现代有轨电车有限公司 一种加液车用蓄电池自动加液系统
CN115441133A (zh) * 2022-10-09 2022-12-06 南京新城现代有轨电车有限公司 一种加液车用蓄电池自动加液系统
CN115343627A (zh) * 2022-10-19 2022-11-15 力高(山东)新能源技术股份有限公司 一种动力电池的soh估算方法
CN115343627B (zh) * 2022-10-19 2023-02-10 力高(山东)新能源技术股份有限公司 一种动力电池的soh估算方法
CN116913970B (zh) * 2023-06-28 2024-04-09 上海格州微电子技术有限公司 一种提供过内阻检测的mosfet及mosfet的制造方法
CN116913970A (zh) * 2023-06-28 2023-10-20 上海格州微电子技术有限公司 一种提供过内阻检测的mosfet及mosfet的制造方法

Also Published As

Publication number Publication date
CN105807230A (zh) 2016-07-27
CN105807230B (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
WO2017152479A1 (zh) 蓄电池剩余容量及健康状态快速检测方法和装置
TWI641855B (zh) Battery and battery pack state detecting method and device
US8242738B2 (en) Systems and methods for determining battery parameters following active operation of the battery
TWI705261B (zh) 電池殘量預測裝置以及電池包
CN105356528A (zh) 电池管理系统
JP2020504994A (ja) ハイブリッドバッテリ充電器/試験器
US20140081585A1 (en) System and method for the measurement and prediction of the charging efficiency of accumulators
CN106772072A (zh) 一种基于电池特性曲线的soc估算方法及装置
TWI579575B (zh) Battery health detection method and its circuit
CN108627688A (zh) 一种电动车高压母线监测装置及监测方法
US20160266211A1 (en) Remaining battery life prediction device and battery pack
CN110949175B (zh) 一种电动汽车用电池寿命控制方法
CN201141894Y (zh) 高压开关设备微电阻测量系统
WO2018032557A1 (zh) 锂离子电池剩余电量的计量方法和装置
WO2016106501A1 (zh) 一种电池等效电路模型
CN105929338A (zh) 一种测量电池状态的方法及其应用
CN105068016A (zh) 电池电量显示控制方法及控制电路
CN105738833B (zh) 一种诊断汽车电池健康状况的方法及诊断仪
CN112180276A (zh) 电池的soh估算方法、装置、电池状态显示方法和电池包的充电控制方法
Frivaldsky et al. Design of measuring and evaluation unit for multi-cell traction battery system of industrial AGV
CN109061511B (zh) 一种电池管理系统中实时计算电池单体soh的方法
CN111976542B (zh) 一种电动车的铅酸电池soc估算方法和装置
CN103135063A (zh) 一种铅酸蓄电池的检测及监控方法
CN202041630U (zh) 汽车电池电导测试系统
CN107219493A (zh) 一种基于虚负荷测试非车载充电机电能计量性能的系统和方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893127

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893127

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.02.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16893127

Country of ref document: EP

Kind code of ref document: A1