JP4656578B2 - 塗布装置および塗布方法 - Google Patents

塗布装置および塗布方法 Download PDF

Info

Publication number
JP4656578B2
JP4656578B2 JP2006091061A JP2006091061A JP4656578B2 JP 4656578 B2 JP4656578 B2 JP 4656578B2 JP 2006091061 A JP2006091061 A JP 2006091061A JP 2006091061 A JP2006091061 A JP 2006091061A JP 4656578 B2 JP4656578 B2 JP 4656578B2
Authority
JP
Japan
Prior art keywords
space
box
predetermined
oxygen concentration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006091061A
Other languages
English (en)
Other versions
JP2007260600A (ja
Inventor
順一 吉田
幹雄 増市
毅 松家
理史 川越
博之 上野
幸宏 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2006091061A priority Critical patent/JP4656578B2/ja
Priority to KR1020060124240A priority patent/KR100840482B1/ko
Priority to TW096104999A priority patent/TW200740530A/zh
Priority to CN2010102668071A priority patent/CN101912833B/zh
Priority to CN200710084320XA priority patent/CN101028617B/zh
Publication of JP2007260600A publication Critical patent/JP2007260600A/ja
Application granted granted Critical
Publication of JP4656578B2 publication Critical patent/JP4656578B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、塗布装置および塗布方法に関し、より特定的には、ステージ上に載置した基板にノズルから有機EL材料等の塗布液を吐出して塗布する塗布装置および塗布方法に関する。
従来、基板等の被処理体に塗布液を塗布する塗布装置が各種開発されている。例えば、有機EL(Electro Luminescence)表示装置を製造する装置では、ステージ上に載置されたガラス基板等の基板の主面に所定のパターン形状で正孔輸送材料や有機EL材料をノズル塗布する塗布装置が用いられる。この塗布装置では、ノズルから塗布液(有機EL材料や正孔輸送材料)が所定の圧力で吐出される。具体的には、塗布装置に備えられたタンク等の供給源に塗布液が貯留され、供給源から供給される塗布液をポンプで増圧し、配管内に設けられたフィルタで異物を除去した後、ノズルから吐出される。
一般的に、有機EL材料は、酸化することによって品質が劣化することが知られている。したがって、有機EL材料を基板に塗布する際には、当該有機EL材料の酸化を防止しなければならない。このような有機EL材料の品質劣化を防止するために、酸素濃度を管理しながら製造する技術が開示されている(例えば、特許文献1参照)。特許文献1で開示された製造装置は、塗工装置、乾燥装置、熱硬化装置、基板積層装置等をチャンバ内に配列し、当該チャンバ内を窒素雰囲気にして製造が行われる。
特開2004−164873号公報
しかしながら、上記特許文献1で開示された製造装置では、複数の装置を1つのチャンバ内に設置するため、チャンバ内の容積が大きくなる。つまり、チャンバ内を窒素雰囲気にするためには、膨大な窒素を供給しなければならない。また、上記チャンバに窒素を供給して所望の酸素濃度に保つためには、多くの吸気/排気ポンプやゲートを設ける必要があり、装置自体が複雑となる。したがって、製造コストや装置コストが増大する問題がある。また、大きな空間を窒素雰囲気にする場合、人間がその空間に入り込むことによって窒息等の危険要素を生み出すことになり、安全面での課題も生じる。
それ故に、本発明の目的は、塗布液の酸化を防止しながら基板に塗布を行う塗布装置および塗布方法を提供することである。
上記目的を達成するために、本発明は、以下に述べるような特徴を有している。
第1の発明は、基板上に塗布液を塗布する塗布装置である。塗布装置は、ノズル、ステージ、ノズル移動機構、第1ボックス、第2ボックス、第1の供給口、第1の排気口、および第2の排気口を備える。ノズルは、その先端部から塗布液を吐出する。ステージは、基板をその上面に載置する。ノズル移動機構は、ステージ上の空間において、そのステージ面を横断する方向にノズルを往復移動させる。第1ボックスは、ステージを包囲して設けられ、ノズル移動機構が配置される空間とそのステージが配置される空間とを仕切り、その上面にノズル移動機構側からノズルの少なくとも一部が突出して往復移動する開口部が形成される。第2ボックスは、ノズル移動機構を包囲して第1ボックスの上部に設けられる。第1の供給口は、第1ボックスに設けられ、その第1ボックスの内部空間へ所定の気体を供給する。第1の排気口は、第1ボックスに設けられ、その第1ボックスの内部空間内の気体を外部へ排出する。第2の排気口は、第2ボックスに設けられ、その第2ボックスの内部空間内の気体を外部へ排出する。第1ボックス内の所定空間が所定酸素濃度に達するまで、第1の供給口から供給された気体を第1および第2の排気口から排出する。所定空間が所定酸素濃度に到達したとき、第1の供給口から供給された気体を第2の排気口から排出する。
第2の発明は、上記第1の発明において、酸素濃度検出手段、第1のバルブ、および制御手段を、さらに備える。酸素濃度検出手段は、第1ボックス内の所定空間における酸素濃度を検出する。第1のバルブは、第1の排気口に設けられる。制御手段は、酸素濃度検出手段が検出した酸素濃度が所定酸素濃度に未達のときに第1のバルブを開栓し、酸素濃度検出手段が検出した酸素濃度が所定酸素濃度に到達したときに第1のバルブを閉栓する。
第3の発明は、上記第1の発明において、制御手段を、さらに備える。制御手段は、所定空間が所定酸素濃度に到達したとき、ノズル移動機構によるノズルの往復移動を開始させて基板に対する塗布処理を行う。
第4の発明は、上記第1の発明において、所定空間は、第1ボックス内におけるステージ上の空間である。
第5の発明は、上記第4の発明において、相対移動機構を、さらに備える。相対移動機構は、ノズルおよびステージの少なくとも一方をそのステージの載置面に平行な方向に相対的に移動させる。所定空間は、第1ボックス内において、ノズルが塗布液を吐出する空間および相対移動機構によるステージの相対移動に伴って塗布液が塗布された基板の塗布部位が相対移動するそのステージ上の空間である。
第6の発明は、上記第5の発明において、第2の供給口を、さらに備える。第2の供給口は、第1ボックス内に固設され、所定空間へ所定の気体を供給してその所定空間を通って開口部に向かう方向にその気体の流れを形成する。
第7の発明は、上記第5の発明において、第1ボックスは、ステージが基板を載置して相対移動する空間を包囲して設けられる。塗布装置は、第3の排気口を、さらに備える。第3の排気口は、第1ボックスの底部で、かつ、ステージが相対移動の後方位置に設けられ、その第1ボックスの内部空間内の気体を外部へ排出する。
第8の発明は、上記第1の発明において、第1の供給口および第1の排気口は、第1ボックスに対してそれぞれ複数設けられる。
第9の発明は、ステージ面を横断する方向にそのステージ上の空間をノズル移動機構に支持されて往復移動するノズルから吐出された塗布液をそのステージ上面に載置された基板に塗布する塗布方法である。所定空間が所定酸素濃度に達するまで、その所定空間の一方側から所定気体を供給し、その所定空間の他方側とノズルおよびノズル移動機構が配置された空間を通ってステージ上部とからそれぞれ気体を排出する。所定空間が所定酸素濃度に到達したとき、その所定空間の一方側から所定気体を供給し、ノズルおよびノズル移動機構が配置された空間を通ってステージ上部から気体を排出する状態で基板に塗布液を塗布する。
第10の発明は、上記第9の発明において、所定空間は、チャンバ内の空間に含まれている。チャンバは、ノズルがチャンバの外部から所定空間へ突出するための開口部が形成されている。所定空間が所定酸素濃度に達するまで、チャンバの一方側から所定気体を供給し、そのチャンバの他方側と開口部とからそれぞれそのチャンバ内の気体を排出する。所定空間が所定酸素濃度に到達したとき、チャンバの一方側から所定気体を供給し、開口部からそのチャンバ内の気体を排出する状態で基板に塗布液を塗布する。
上記第1の発明によれば、局所的に所定の気体を供給して、塗布液の塗布を所定酸素濃度雰囲気で行うことにより、塗布処理における塗布液の酸化を防止することができる。そして、限られた空間を所定酸素濃度雰囲気に置換するため、置換のために供給される気体の消費量を抑えることができる。また、基板を搬入してから酸素濃度が所定酸素濃度に到達するまでの到達時間を短縮する効果に優れた接続態様と、所定酸素濃度に到達した後に塗布処理中等における酸素濃度が安定する効果に優れた接続態様とを切り替えることによって、両者の効果を両立させることができる。
上記第2の発明によれば、塗布処理における酸素濃度を自動的に検出して、適切なタイミングで流路を切り替えることができる。
上記第3の発明によれば、ノズルの往復移動が開始されて第2ボックス内の気体が攪拌されても、第1ボックス→開口部→第2ボックスへ流れる気体フローが形成されているため、第2ボックス内の気体が第1ボックス内へ流出することが少なく、開口部から所定空間への方向へ気体が流れることもない。したがって、第2ボックス内に酸素が残存していたとしても所定空間へ酸素が流出することを防止することができ、塗布処理時間中の酸素濃度が上昇することを防止することができる。
上記第4および第5の発明によれば、塗布液が吐出される空間および塗布液が塗布されて基板が載置される空間の酸素濃度が管理されるため、塗布中および塗布後の塗布液の酸化を防止することができる。
上記第6の発明によれば、直接的に所定空間へ所定気体が供給されるため、さらに塗布処理中における酸素濃度の上昇を防止することができる。例えば、第2ボックス内の気体が開口部から第1ボックスへ流出した場合でも、所定空間から開口部へ向かう気体の流れが形成されているため、第2ボックスからの気体が第1ボックスの所定空間とは逆の方向、すなわち塗布前の基板が載置されている方向に流れる。したがって、仮に第2ボックス内に酸素が残存していたとしても所定空間へ酸素が流出することを防止することができ、塗布処理時間中等の酸素濃度が上昇することを防止することができる。
上記第7の発明によれば、第1ボックス内の気体が当該第1ボックスの底部に設けられた第3の排気口から排出される流れが形成されているため、第1ボックス内に落下する粉塵等を第1ボックス外へ排出することができ、第1ボックス内の粉塵対策としての効果が期待できる。
上記第8の発明によれば、所定空間に複数箇所から所定気体が供給されるため、当該所定空間内への気体供給が一部分に集中することがない。また、所定空間内の気体が複数箇所から排出されるため、当該所定空間内からの気体排出が一部分に集中することがない。したがって、供給する所定気体を所定空間内全体に等しく行き渡らせることができる。
また、本発明の塗布方法によれば、上述した塗布装置と同様の効果を得ることができる。
本発明の具体的な各実施形態を説明する前に、図面を参照して、本発明に係る塗布装置の概要について説明する。説明を具体的にするために、当該塗布装置が有機EL材料や正孔輸送材料等を塗布液として用いる有機EL表示装置を製造する塗布装置に適用された例を用いて、以下の説明を行う。当該塗布装置は、有機EL材料や正孔輸送材料等をステージ上に載置されたガラス基板上に所定のパターン形状に塗布して有機EL表示装置を製造するものである。図1は、塗布装置1の要部概略構成を示す平面図および正面図である。なお、塗布装置1は、上述したように有機EL材料や正孔輸送材料等の複数の塗布液を用いるが、それらの代表として有機EL材料を塗布液として説明を行う。
図1において、塗布装置1は、大略的に、基板載置装置2および有機EL塗布機構5を備えている。有機EL塗布機構5は、ノズル移動機構部51、ノズルユニット50、および液受部53Lおよび53Rを有している。ノズル移動機構部51は、ガイド部材511が図示X軸方向に延設されており、ノズルユニット50をガイド部材511に沿って図示X軸方向に移動させる。ノズルユニット50は、赤、緑、および青色の何れか1色の有機EL材料を吐出するノズル52a〜52cを並設した状態で保持する。各ノズル52a〜52cへは、それぞれ供給部(図2参照)から赤、緑、および青色の何れか1色の有機EL材料が供給される。このように、典型的には3本のノズル52a〜52cから同じ色の有機EL材料が吐出されるが、説明を具体的にするために赤色の有機EL材料が3本のノズル52a〜52cから吐出される例を用いる。なお、塗布装置1は、その周囲や内部が第1〜第3ボックス61〜63等で仕切られているが、詳細は後述する。
基板載置装置2は、ステージ21、旋回部22、平行移動テーブル23、ガイド受け部24、およびガイド部材25を有している。ステージ21は、被塗布体となるガラス基板等の基板Pをそのステージ上面に載置する。ステージ21の下部は、旋回部22によって支持されており、旋回部22の回動動作によって図示θ方向にステージ21が回動可能に構成されている。また、ステージ21の内部には、有機EL材料が塗布された基板Pをステージ面上で予備加熱処理するための加熱機構や基板Pの吸着機構や受け渡しピン機構が設けられている。
有機EL塗布機構5の下方を通るように、ガイド部材25が上記X軸方向と垂直の図示Y軸方向に延設されて固定される。平行移動テーブル23の下面にはガイド部材25と当接してガイド部材25上を滑動するガイド受け部24が固設されている。また、平行移動テーブル23の上面には、旋回部22が固設される。これによって、平行移動テーブル23が、例えばリニアモータ(図示せず)からの駆動力を受けてガイド部材25に沿った図示Y軸方向に移動可能になり、旋回部22に支持されたステージ21の移動も可能になる。
受け渡しピン機構を介してステージ21上に基板Pを載置し吸着して、平行移動テーブル23が有機EL塗布機構5の下方まで移動したとき、当該基板Pが赤色の有機EL材料の塗布をノズル52a〜52cから受ける位置となる。そして、制御部(図2参照)がノズルユニット50をX軸方向に往復移動させるようにノズル移動機構部51を制御し、ステージ21をY軸方向へ当該直線移動毎に所定ピッチだけ移動させるように平行移動テーブル23を制御し、ノズル52a〜52cから所定流量の有機EL材料を吐出する。また、ノズル52a〜52cのX軸方向吐出位置において、ステージ21に載置された基板Pから逸脱する両サイド空間には、基板Pから外れて吐出された有機EL材料を受ける液受部53Lおよび53Rがそれぞれ固設されている。ノズル移動機構部51は、基板Pの一方サイド外側に配設されている液受部53の上部空間から、基板Pを横断して基板Pの他方サイド外側に配設されている液受部53の上部空間まで、ノズルユニット50を往復移動させる。また、平行移動テーブル23は、ノズルユニット50が液受部53の上部空間に配置されている際、ノズル往復移動方向とは垂直の所定方向(図示Y軸方向)に所定ピッチだけステージ21を移動させる。このようなノズル移動機構部51および平行移動テーブル23の動作と同時にノズル52a〜52cから有機EL材料を液柱状態で吐出することによって、赤色の有機EL材料が基板Pに形成されたストライプ状の溝毎に配列された、いわゆる、ストライプ配列が基板P上に形成される。
次に、図2を参照して、塗布装置1における制御機能および供給部の概略構成について説明する。なお、図2は、塗布装置1の制御機能および供給部を示すブロック図である。
図2において、塗布装置1は、上述した構成部の他に、制御部3、第1供給部54a、第2供給部54b、および第3供給部54cを備えている。第1〜第3供給部54a〜54cは、共に赤色の有機EL材料をそれぞれノズル52a〜52cに配管を介して供給する。なお、供給源541a〜541cからノズル52a〜52cに至るそれぞれの配管は、PE(ポリエチレン)、PP(ポリプロピレン)、テフロン(登録商標)等を材料とする管部材が用いられる。
第1供給部54aは、有機EL材料の供給源541aと、供給源541aから有機EL材料を取り出すためのポンプ542aと、有機EL材料の流量を検出する流量計543aとを備えている。また、第2供給部54bは、有機EL材料の供給源541bと、供給源541bから有機EL材料を取り出すためのポンプ542bと、有機EL材料の流量を検出する流量計543bとを備えている。第3供給部54cは、有機EL材料の供給源541cと、供給源541cから有機EL材料を取り出すためのポンプ542cと、有機EL材料の流量を検出する流量計543cとを備えている。そして、制御部3は、第1〜第3供給部54a〜54c、旋回部22、平行移動テーブル23、およびノズル移動機構部51のそれぞれの動作を制御する。
ノズル52aは、供給部54aから供給された有機EL材料中の異物を除去するためのフィルタ部521aを有している。ノズル52bは、供給部54bから供給された有機EL材料中の異物を除去するためのフィルタ部521bを有している。ノズル52cは、供給部54cから供給された有機EL材料中の異物を除去するためのフィルタ部521cを有している。なお、ノズル52a〜52cは、それぞれ同一の構造であるため、総称して説明する場合は参照符号「52」を付して説明を行う。
ここで、赤色の有機EL材料の塗布を受ける基板Pの表面には、有機EL材料を塗布すべき所定のパターン形状に応じたストライプ状の溝が複数本並設されるように形成されている。有機EL材料としては、例えば、基板P上の溝内に拡がるように流動する程度の粘性を有する有機性のEL材料が用いられ、具体的には各色毎の高分子タイプの有機EL材料が用いられる。ノズルユニット50は、所定の支持軸周りに回動自在に支持されており、制御部3の制御によって当該支持軸周りに回動させることで、塗布ピッチ間隔を調整することができる。
制御部3は、ステージ21に載置された基板Pの位置や方向に基づいて、基板Pに形成された溝の方向が上記X軸方向になるように旋回部22の角度を調整し、塗布のスタートポイント、すなわち、基板Pに形成された溝の一方の端部側で塗布を開始する塗布開始位置を算出する。なお、上記塗布開始位置は、一方の液受部53の上部空間となる。そして、制御部3は、上述したように平行移動テーブル23およびノズル移動機構部51を駆動させる。
上記塗布開始位置において、制御部3は、各ノズル52a〜52cから有機EL材料の吐出開始を各ポンプ542a〜542cに指示する。このとき、制御部3は、ストライプ状の溝の各ポイントにおける有機EL材料の塗布量が均一となり、液柱状態で有機EL材料が吐出されるように、ノズル52a〜52cの移動速度に応じてその塗布量を制御しており、流量計543a〜543cからの流量情報をフィードバックして制御する。そして、制御部3は、基板P上の溝内への有機EL材料の流し込むために、有機EL材料を基板P上の溝に沿わせながらこの溝内に流し込むようにノズルユニット50をガイド部材511に沿わせて移動させるように制御する。この動作によって、液柱状態で各ノズル52a〜52cから吐出される赤色の有機EL材料が同時にそれぞれの溝に流し込まれていく。
制御部3は、基板P上をノズルユニット50が横断して溝の他方端部の外側に固設されている他方の液受部53上に位置すると、ノズル52a〜52cからの有機EL材料の吐出を継続したまま、ノズル移動機構部51によるノズルユニット50の移動を停止する。この1回の移動によって、3列分の溝への有機EL材料の塗布が完了する。具体的には、同色の有機EL材料を各ノズル52a〜52cから吐出しているので、3列毎に1列の溝を塗布対象とした合計3列分の溝に有機EL材料が塗布される。
次に、制御部3は、平行移動テーブル23をY軸正方向に所定距離(例えば、溝9列分)だけピッチ送りして、次に塗布対象となる溝への有機EL材料の塗布を行えるようにする。そして、制御部3は、他方の液受部53の上部空間からノズルユニット50を逆の方向へ基板P上を横断させて一方の液受部53上に位置すると、ノズル52a〜52cからの有機EL材料の吐出を継続したまま、ノズル移動機構部51によるノズルユニット50の移動を停止する。この2回目の移動によって、次の3列分の溝への有機EL材料の塗布が完了する。このような動作を繰り返すことによって、赤色の有機EL材料が赤色を塗布対象とした溝に流し込まれる。
以下、図3〜図9を参照して、塗布装置1に設置される局所雰囲気生成機構について説明する。なお、図3は、塗布装置1に設けられる局所雰囲気生成機構の概略構成を示す平面図である。図4は、塗布装置1に設けられる局所雰囲気生成機構の概略構成を示す側断面図である。図5は、第3ボックス63の外観を示す斜視図である。図6は、窒素投入口の構造を示す断面図である。図7は、拡散板731の構造を示す斜視図である。図8は、ポイントCにおける酸素濃度管理値を説明するためのグラフである。図9は、局所雰囲気生成機構における窒素供給の流れを示すブロック図である。
図3〜図5において、塗布装置1は、第1ボックス61、第2ボックス62、および第3ボックス63によって、それぞれ外部から遮蔽されて設置される。第1ボックス61は、基板載置装置2が図示Y軸方向へ往復移動する空間(以下、チャンバ空間と記載する)を包囲して外部から遮蔽するように設けられる。また、第1ボックス61は、ノズル52がチャンバ空間へ突出して往復移動するための開口部S1を除いて、チャンバ空間と有機EL塗布機構5が設置される空間との間を仕切るように設置される。第3ボックス63は、有機EL塗布機構5が設置される空間を含み、ノズルユニット50等が図示X軸方向へ往復移動する空間(以下、スライダ空間と記載する)を包囲して設けられる。なお、第3ボックス63も、ノズル52がスライダ空間からチャンバ空間へ突出して往復移動するための開口部S1が形成されている(図5参照)。また、第3ボックス63の上面には、第1〜第3供給部54a〜54cから有機EL材料をそれぞれノズル52a〜52cに供給するための配管(図示せず)を通すための開口部S2が形成される。また、ノズルユニット50に静圧軸受が設けられている場合、当該静圧軸受に気体を供給するための配管も開口部S2を通して接続される。第2ボックス62は、第1ボックス61の上部空間を包囲して設けられる。第2ボックス62の内部には、有機EL塗布機構5および第3ボックス63が設置され、第2ボックス62にもノズル52がスライダ空間からチャンバ空間へ突出して往復移動するための開口部S1が形成されている。なお、第2ボックス62で包囲された空間の内、スライダ空間を除いた空間をボックス空間と記載する。このように、塗布装置1は、第1〜第3ボックス61〜63によって、チャンバ空間、スライダ空間、およびボックス空間にそれぞれ仕切られて設置される。なお、第1〜第3ボックス61〜63は、全て上面が形成されているが、図3においては内部との関係をわかりやすくするために上面や下面を省略し、斜線または交線領域で側壁のみを示している。
第1〜第3ボックス61〜63には、その内部空間に窒素等の不活性ガス(以下、単に窒素と記載する)を供給するための供給管71と、その内部空間の気体を排出するための排気管72とが接続される。図4の例では、供給管71が第1ボックス61のY軸負方向側の壁面(以下、Y軸負方向側の壁面を前面とする)および第3ボックス63の前面に接続されている。図4の例では、複数の供給管71a〜71cが第1ボックス61の壁面に接続され、供給管71dが第3ボックス63の壁面に接続されている。なお、図3では、供給管71dを省略している。
また、排気管72が第1ボックス61のY軸正方向側の壁面(以下、Y軸正方向側の壁面を背面と記載する)、第2ボックス62の背面、および第3ボックス63の背面に接続されている。図4の例では、複数の排気管72aおよび72bが第1ボックス61の壁面に接続され、排気管72dが第2ボックス62の壁面に接続され、排気管72cが第3ボックス63の壁面に接続されている。なお、図3では、排気管72cを省略している。
図4に示すように供給管71および排気管72を接続した場合、供給管71a〜71cから供給された窒素は、チャンバ空間へ供給されてその背面の排気管72aおよび72bから流出する。また、供給管71a〜71cから供給された窒素は、開口部S1を通ってスライダ空間へ流入し、供給管71dから供給された窒素と合流する。そして、合流した窒素は、スライダ空間の背面の排気管72cから流出する、あるいは開口部S2を通ってボックス空間へ流入した後、排気管72dから流出するような流れとなる。
また、第1ボックス61には、基板Pの搬入および搬出を行うための投入口611が設けられている。投入口611は、回転軸を中心に回動(図示矢印方向)するゲートにより開閉可能となっている。基板Pは、投入口611が開放された状態で、搬送ロボット(図示せず)によりチャンバ空間内に搬入され、ステージ21上に載置される。また、塗布装置1によって塗布処理が行われるときは、上記ゲートを閉鎖してチャンバ空間内が外部から遮蔽される。
第1ボックス61と供給管71aおよび71bとを接続する付近および第3ボックス63と供給管71dとを接続する付近には、拡散部73が設けられる。具体的には、拡散部73は、供給管71a、71b、および71dから内部空間に流入する入り口付近の当該内部空間側に設けられる。図6および図7に示すように、拡散部73は、拡散板731およびパンチングメタル732を含んでいる。拡散板731は、供給管71a、71b、および71dから上記内部空間へ流入する窒素を妨げる位置に固設された板状部材であり、その周囲に所定の隙間が形成されている。供給管71a、71b、および71dから上記内部空間へ流入する窒素は、拡散板731によって妨げられて直接的に上記内部空間に流入することなく、拡散板731の周囲へ流れる方向を変えて流動する。パンチングメタル732は、多数の孔が打ち抜き加工された板状部材であり、拡散板731に対して上記内部空間側に固設される。また、パンチングメタル732は、拡散板731の周囲から流動する窒素の流動路上に配置される。つまり、供給管71a、71b、および71dから供給された窒素は、必ずパンチングメタル732に形成された孔を通って上記内部空間内に流入することになる。したがって、拡散部73では、供給管71a、71b、および71dから供給された窒素を拡散して第1〜第3ボックス61〜63内に供給することができる。
また、投入口611付近に供給管71cが接続されている。一般的に、投入口611付近は、基板Pの搬入/搬出の際の開閉によって外気が侵入しやすく酸素濃度が高くなりやすいが、そのような箇所に窒素を供給することによって、侵入した酸素を拡散することができる。なお、供給管71cから内部空間に流入する入り口付近は、その流路が曲げられており、当該入り口付近に拡散部は設けられていない。
排気管72と第1〜第3ボックス61〜63との接続部には、パンチングメタル733が設けられる。このパンチングメタル733は、排気管72の内部空間側に固設され、排気管72に向かって流動する気体の流動路上に配置される。つまり、排気管72へ排出される気体は、必ずパンチングメタル733に形成された孔を通って排出されることになる。このように、排出口付近にパンチングメタル733を配置することによって、気体が排出される箇所が集中することを防止することができ、内部空間全体の気体をバラツキなく排出することができる。
供給管71から第1〜第3ボックス61〜63内に窒素を供給しながら第1〜第3ボックス61〜63内の気体を排気管72から排出することによって、第1〜第3ボックス61〜63内部が窒素雰囲気となり、内部の酸素濃度が低下する。これによって、塗布装置1は、有機EL材料を基板Pに塗布する際の酸化を防止することができる。ここで、有機EL材料の酸化を防止するためにはチャンバ空間内全ての酸素濃度を低下させればよいが、最も酸素濃度を低下させなければならない空間は、ノズル52から有機EL材料を吐出する空間および塗布後の基板P面がY軸正方向側に順次送られていく空間(図4に示すポイントC)である。例えば、有機EL材料を基板Pに塗布する際の酸素濃度上限を酸素濃度管理値(例えば、10ppm)とした場合、少なくともポイントCにおける酸素濃度が酸素濃度管理値を満たさなければならない。なお、第1ボックス61内には、上記ポイントCにおける酸素濃度を検出する酸素濃度検知部88が設けられる。酸素濃度検知部88は、ポイントCにおける酸素濃度の検出結果を図示しない表示装置に表示して塗布装置のユーザに報知したり、当該検出結果を塗布装置の制御部(例えば、制御部3(図2参照))へ出力したりする。
ポイントCにおける酸素濃度が酸素濃度管理値を満たした状態で塗布処理を行うためには、ポイントCにおける酸素濃度を酸素濃度管理値以下に低下させた後、塗布処理を開始しなければならない。したがって、基板Pを搬入してからポイントCにおける酸素濃度が酸素濃度管理値以下に低下するまでの時間(図8に示す「到達時間」)を短縮することによって、塗布装置1を効率よく稼働させることができる。また、塗布処理中において、ポイントCにおける酸素濃度が酸素濃度管理値を越えることを防止しなければならないため(図8に示す「塗布処理時間」)、塗布処理中においても供給管71からの窒素供給および排気管72からの気体排出が継続される。ここで、ノズルユニット50やノズル52がX軸方向に往復移動することによって、スライダ空間内の気体や開口部S1付近の気体が攪拌される。したがって、例えばスライダ空間内に酸素が残存している場合、当該酸素が攪拌によってポイントCへ流出してポイントCにおける酸素濃度を上昇させることがある。つまり、ポイントCにおける酸素濃度の管理においては、塗布処理前および塗布処理中の流体バランスを考慮する必要がある。後述する実施例においては、スライダ空間内やボックス空間内も低酸素雰囲気に置換したり、スライダ空間内から流出する気体が上記ポイントC側へ流れないようにしたりすることによって、塗布処理中の上記ポイントCにおける酸素濃度の上昇を防止している。
また、ポイントCにおける酸素濃度を安定させるためには、第1〜第3ボックス61〜63内の圧力も重要である。例えば、第1〜第3ボックス61〜63が外部に対して完全密閉構造でない場合、第1〜第3ボックス61〜63内の圧力が大気圧未満(つまり、外部より低い圧力)に維持されると外部の気体が第1〜第3ボックス61〜63内に流入する。したがって、本実施形態では、第1〜第3ボックス61〜63内の圧力を大気圧以上(つまり、外部と同じまたは高い圧力)に維持できるように、塗布処理前および塗布処理中の流体バランスが調整される。これによって、第1〜第3ボックス61〜63が外部に対して完全密閉構造でなくても、ポイントCにおける酸素濃度の管理を行うことができる。このように、第1〜第3ボックス61〜63内は、局所的な雰囲気を管理することが可能となり、特に低下させた内部の酸素濃度を管理することが可能となる。
図9において、局所雰囲気生成機構は、上述した構成部の他に、窒素ボンベ81、フィルタ83、圧力調整部84、供給側の流量調整部85、排気側の流量調整部86、および吸引部87を備えており、互いに配管等で接続されている。ここで、窒素ボンベ81、フィルタ83、圧力調整部84、および流量調整部85が、供給管71から窒素を供給するための供給系に相当する。一方、流量調整部86および吸引部87が、排気管72から気体を排出するための排気系に相当する。なお、これらの機構は、塗布装置1に内蔵してもいいし、塗布装置1の外部装置として設けてもかまわない。塗布装置1の外部装置として設ける場合、設置場所に予め設けられている設備(例えば、工場の窒素供給装置や吸引装置)を用いてもかまわない。
窒素ボンベ81には、液体窒素等がその内部に貯蔵されている。窒素ボンベ81から窒素は、気体状態で取り出され、工場の用力として供給されてフィルタ83へ流動する。フィルタ83は、流動する窒素中の異物を除去して圧力調整部84および流量調整部85に送る。そして、圧力調整部84によって塗布装置1へ供給する窒素圧力が調整され、流量調整部85によって塗布装置1へ供給する窒素流量が調整された後、供給管71に窒素が供給される。一方、吸引部87は、排気管72から気体を吸引して第1〜第3ボックス61〜63内の気体を外部へ排出する。そして、流量調整部86によって、排気管72から気体を吸引して外部へ排出する流量が調整される。ユーザは、圧力調整部84、流量調整部85、および流量調整部86に設けられた流路の絞りや設定値等を調整することによって、上述した塗布装置1に対する流体バランスを調整することができる。
(第1の実施形態)
以下、図10および図11を参照して、本発明の第1の実施形態に係る塗布装置1について説明する。第1の実施形態は、塗布処理中においては、チャンバ空間から開口部S1を通ってスライダ空間(ボックス空間)への気体流動を積極的に形成して、ポイントCの酸素濃度を安定させる態様である。なお、図10は、第1の実施形態に係る塗布装置1における窒素流動フローを示す模式図である。図11は、塗布装置1が塗布処理を行う際の動作を示すフローチャートである。なお、図10においては、説明を簡単にするために、塗布装置1について、第1〜第3ボックス61〜63、チャンバ空間、ボックス空間、およびチャンバ空間のみを図示して簡略化している。
図10において、第1ボックス61の前面に複数の供給管71が接続され、複数の供給管71を介して窒素がチャンバ空間に供給される(図示矢印Ci×n;供給Ci×nとする)。そして、第1ボックス61と接続する各供給管71にそれぞれバルブVci(バルブVci×nとする)が設けられる。例えば、供給Ci×nは、図4に示した供給管71a〜71cに相当する。具体的には、横に並列して接続される3本の供給管71aおよび横に並列して接続される3本の供給管71bで構成される合計6本の供給管71が第1ボックス61の前面に接続される。これらの供給管71は、図6を参照して説明した構造と同様の接続方式で接続される。なお、上記6本の供給管71に供給管71cを加えて第1ボックス61の前面に接続してもかまわない。さらに、第3ボックス63の前面にバルブVsiが設けられた供給管71が接続され、供給管71を介して窒素がスライダ空間に供給される(図示矢印Si;供給Siとする)。例えば、供給Siは、図4に示した供給管71dに相当する。
また、第1ボックス61の背面に複数の排気管72が接続され、複数の排気管72を介してチャンバ空間内の気体が排出される(図示矢印Co×n;排出Co×nとする)。そして、各排気管72にそれぞれバルブVco(バルブVco×nとする)が設けられる。例えば、排出Co×nは、図4に示した排気管72aおよび72bに相当する。例えば、第1ボックス61の前面に接続される供給管71と同様に合計6本の排気管72が第1ボックス61の背面に接続される。なお、第1ボックス61の背面に接続される複数の排気管72については、図4を参照して説明した構造と同様の接続方式で接続される。また、第2ボックス62の背面にバルブVboが設けられた排気管72が接続され、排気管72を介してボックス空間内の気体が排出される(図示矢印Bo;排出Boとする)。また、第3ボックス63の背面にバルブVsoが設けられた排気管72が接続され、排気管72を介してスライダ空間内の気体が排出される(図示矢印So;排出Soとする)。
次に、図10および図11を参照して、塗布装置1が塗布処理を行う際の動作について説明する。これらの動作は、塗布装置の制御部(例えば、制御部3(図2参照))が行ってもいいし、塗布装置のユーザが各動作を行ってもいいし、ステップ毎に当該制御部または塗布装置のユーザが行ってもかまわない。
まず、投入口611が開放される(ステップS71)。次に、開放された投入口611から搬送ロボット等によって基板Pが搬入され、ステージ21上に基板Pが載置される(ステップS72)。そして、投入口611が閉鎖され(ステップS73)、チャンバ空間が外部から遮蔽された空間となる。
次に、バルブVci×n、Vsi、Vco×n、Vbo、およびVsoが開栓される(ステップS74)。そして、供給管71から第1〜第3ボックス61〜63内へ窒素の供給が開始され、排気管72へ第1〜第3ボックス61〜63内の気体の排出が開始される(ステップS75)。そして、酸素濃度検知部88による酸素濃度検知結果に基づいて、第1〜第3ボックス61〜63内(例えば、ポイントC)の酸素濃度が酸素濃度管理値以下に到達するのを待つ(ステップS76)。
ここで、ステップS75およびS76において供給Ci×nから供給された窒素は、チャンバ空間に流入した後、第1ボックス61の背面にある排出Co×nから排出される。また、供給Ci×nから供給された窒素は、チャンバ空間に流入した後、開口部S1からスライダ空間へ流入する。そして、スライダ空間内に流入した窒素は、供給Siから供給された窒素と合流する。合流した窒素は、排出Soから排出される、または開口部S2からボックス空間へ流入して排出Boから排出される。したがって、バルブVci×n、Vsi、Vco×n、Vbo、およびVsoを開栓した状態では、チャンバ空間の一方側の複数箇所から供給された窒素がチャンバ空間の他方側の複数箇所へおよび開口部S1を通ってスライダ空間へそれぞれ抜ける流れが形成されている。このように、バルブVci×n、Vsi、Vco×n、Vbo、およびVsoを開栓した状態では、複数の供給管を介してチャンバ空間に窒素を供給しながら直接的にチャンバ空間内の気体を複数の排気管から排出するため、チャンバ空間内に流入/排出される気体量が多くなり、チャンバ空間内における気体が窒素雰囲気に置換される速度が速くなる。つまり、図4に示したポイントCにおける酸素濃度の低下も速やかに行われるため、図8に示した到達時間を短縮することができる。
そして、第1〜第3ボックス61〜63内の酸素濃度が酸素濃度管理値以下に到達したとき(ステップS76でYes)、バルブVco×nが閉栓(バルブVci×n、Vsi、Vbo、およびVsoは開栓状態を継続)される(ステップS77)。そして、基板Pに対して塗布処理が行われる(ステップS78)。このとき、塗布装置の制御部が酸素濃度検知部88からの酸素濃度の検出結果を取得している場合、当該制御部は、当該検出結果を用いてポイントCの酸素濃度が酸素濃度管理値以下か否かを判断することができる。そして、制御部は、酸素濃度管理値以下と判断した場合、バルブVco×nを閉栓する。一方、酸素濃度検知部88が酸素濃度の検出結果を表示装置に表示して塗布装置のユーザに報知している場合、報知されたユーザがバルブVco×nを閉栓する。このように、酸素濃度管理値への到達判定およびバルブVco×nの閉栓を、塗布装置の制御部によって自動的に行ってもいいし、当該塗布装置のユーザが行ってもかまわない。
ここで、ステップS78において供給Ci×nから供給された窒素は、チャンバ空間に流入した後、開口部S1からスライダ空間へ流入する。そして、スライダ空間へ流入した窒素は、供給Siから供給された窒素と合流する。合流した窒素は、排出Soから排出される、または開口部S2からボックス空間へ流入して排出Boから排出される。したがって、バルブVco×nを閉栓およびバルブVci×n、Vsi、Vbo、およびVsoを開栓した状態では、チャンバ空間の一方側から供給された窒素が開口部S1を通ってスライダ空間へ抜ける流れが強められて形成されている。つまり、ノズルユニット50の往復移動によってスライダ空間内の気体が攪拌されても、チャンバ空間→開口部S1→スライダ空間の気体フローが形成されているため、スライダ空間内の気体がチャンバ空間へ流出することが少なく、開口部S1からポイントCへの方向へ気体が流れることもない。したがって、仮にスライダ空間に酸素が残存していたとしてもチャンバ空間(ポイントC)へ酸素が流出することを防止することができ、図8で示した塗布処理時間中の酸素濃度が上昇することを防止することができる。
次に、基板Pに対する塗布処理が終了したとき(ステップS79でYes)、供給管71からの窒素の供給が停止され、排気管72への気体の排出が停止される(ステップS80)。次に、投入口611が開放され(ステップS81)、開放された投入口611からステージ21上に載置された塗布処理後の基板Pが搬送ロボット等によって搬出される(ステップS82)。そして、塗布処理を継続する場合(ステップS83でYes)、上記ステップS72に戻って動作が繰り返される。一方、塗布処理を終了する場合(ステップS83でNo)、当該フローチャートによる動作を終了する。
上述したように、基板Pを搬入してからポイントCにおける酸素濃度が酸素濃度管理値以下に低下するまでの到達時間を短縮する効果に優れた接続態様と、塗布処理時間中におけるポイントCの酸素濃度が安定する効果に優れた接続態様とがある。具体的には、前者の効果を上げるためにはチャンバ空間から直接排出することが要求され、後者の効果を上げるためにはチャンバ空間から開口部S1を通ってスライダ空間(ボックス空間)への気体流動を積極的に形成したり、開口部S1からポイントCへの気体流動がないようにしたりすることが要求される。したがって、上述した動作では、これらの効果を両立させるために、複数の接続態様を組み合わせて用いている。
このように、第1の実施形態に係る塗布装置は、ノズルが塗布液を吐出する空間および塗布液が塗布された基板(塗布部位)が送られていく空間を含む塗布空間に対して局所的に窒素を供給して、塗布液の塗布を低酸素雰囲気で行うことにより、塗布処理における塗布液の酸化を防止している。したがって、限られた空間を低酸素雰囲気に置換するため、置換のために供給される窒素等の消費量を抑えることができる。また、当該塗布装置は、基板Pを搬入してからポイントCにおける酸素濃度が酸素濃度管理値以下に低下するまでの到達時間を短縮する効果に優れた接続態様と、塗布処理時間中におけるポイントCの酸素濃度が安定する効果に優れた接続態様とを切り替えることによって、両者の効果を両立させている。
(第2の実施形態)
以下、図12〜図14を参照して、本発明の第2の実施形態に係る塗布装置1について説明する。なお、図12は、第2の実施形態に係る塗布装置1に設けられる局所雰囲気生成機構の概略構成を示す側断面図である。図13は、背面側気体供給部75の概略構造を示す斜視図である。図14は、当該塗布装置1における窒素流動フローを示す模式図である。図14においては、説明を簡単にするために、塗布装置1について、第1〜第3ボックス61〜63、背面側気体供給部75、チャンバ空間、ボックス空間、およびチャンバ空間のみを図示して簡略化している。なお、第2の実施形態は、第1の実施形態に対して、背面側気体供給部75およびその背面側気体供給部75へ気体を供給する供給系をさらに設けることによって、ポイントCの背面側から開口部S1への気体流動を積極的に形成して、ポイントCの酸素濃度を安定させる態様である。第2の実施形態における他の構成要素は、上述した第1の実施形態と同様であるため、同一の構成要素には同一の参照符号を付して詳細な説明を省略する。
図12において、背面側気体供給部75は、第1ボックス61の内部に固設される。そして、背面側気体供給部75には、他の供給管71a〜71dと同様に窒素を供給する供給管71eが接続される。背面側気体供給部75は、基板載置装置2が塗布処理に伴って図示Y軸正方向側へ移動したとき(図12の状態)、基板Pを載置したステージ21上面と近接する位置に固設される。
図13に示すように、背面側気体供給部75は、筐体751、拡散板752、およびパンチングメタル753を備えている。なお、図13は、筐体751の上面を省略して、その内部構造を示している。筐体751は、第1ボックス61の上面内部のX軸方向に延設される中空長尺体であり、その一部がパンチングメタル753で構成されている。そして、少なくとも1本の供給管71e(図13では、3本)が筐体751に接続され、供給管71eから筐体751内部に窒素が供給される。拡散板752は、供給管71eから筐体751内部へ流入する窒素を妨げる位置に固設された板状部材であり、その周囲に所定の隙間が形成されている。供給管71eから筐体751内部へ流入する窒素は、拡散板752によって妨げられて直接的に筐体751内部に流入することなく、拡散板752の周囲へ流れる方向を変えて流動する。パンチングメタル753は、多数の孔が打ち抜き加工された板状部材であり、筐体751のY軸負方向側(つまり、前面側)側面を形成している。
筐体751の長尺寸法(つまり、パンチングメタル753の長巾)は、ステージ21のX軸方向の幅以上で構成される。また、筐体751の高さ寸法(つまり、パンチングメタル753の短巾)は、ポイントCにおけるステージ21と第1ボックス61上面との隙間以上で構成される。したがって、背面側気体供給部75をステージ21上面と近接する第1ボックス61内部上面に固設することによって、筐体751内部に供給された窒素は、パンチングメタル732に形成された孔を通ってポイントCをY軸負方向へ流動する。例えば、図12に示すように、基板載置装置2が塗布処理に伴って図示Y軸正方向側へ移動したとき、背面側気体供給部75から供給される窒素は、ステージ21上に載置された塗布後の基板Pの上面に沿って開口部S1側へ流動する。また、基板載置装置2がY軸正方向側へ移動していなくても、背面側気体供給部75から供給される窒素は、背面側からポイントCを通って開口部S1側へ流動する。つまり、背面側気体供給部75から供給される窒素は、チャンバ空間内のポイントCに局所的に供給されて開口部S1側へ向かう流れを形成する。
図14において、背面側気体供給部75に供給管71が接続され、供給管71を介して窒素がチャンバ空間に供給される(図示矢印Cir;供給Cirとする)。そして、背面側気体供給部75と接続する供給管71にバルブVcir(バルブVcirとする)が設けられる。例えば、供給Ccirは、図12に示した供給管71eに相当する。他の供給および排気については、図10を用いて説明した第1の実施形態と同様であるため、詳細な説明を省略する。
次に、第2の実施形態に係る塗布装置1が塗布処理を行う際の動作について説明する。まず、第1の実施形態と同様に、投入口611から基板Pが搬入され、ステージ21上に基板Pが載置される。そして、投入口611が閉鎖され、チャンバ空間が外部から遮蔽された空間となる。
次に、バルブVci×n、Vsi、Vcir、Vco×n、Vbo、およびVsoが開栓される。そして、供給管71から第1〜第3ボックス61〜63内へ窒素の供給が開始され、排気管72へ第1〜第3ボックス61〜63内の気体の排出が開始される。このとき、背面側気体供給部75からも窒素が局所的にポイントCに供給される(供給Cir)。そして、酸素濃度検知部88による酸素濃度検知結果に基づいて、第1〜第3ボックス61〜63内(例えば、ポイントC)の酸素濃度が酸素濃度管理値以下に到達するのを待つ。
ここで、供給Ci×nから供給された窒素は、チャンバ空間に流入した後、供給Cirから供給された窒素と合流する。そして、チャンバ空間内で合流した窒素は、第1ボックス61の背面にある排出Co×nから排出される。また、チャンバ空間内で合流した窒素は、開口部S1からスライダ空間へ流入する。そして、スライダ空間内に流入した窒素は、供給Siから供給された窒素と合流する。スライダ空間内で合流した窒素は、排出Soから排出される、または開口部S2からボックス空間へ流入して排出Boから排出される。したがって、バルブVci×n、Vsi、Vcir、Vco×n、Vbo、およびVsoを開栓した状態では、チャンバ空間の前面側および背面側の複数箇所からそれぞれ供給された窒素がチャンバ空間の背面側の複数箇所へおよび開口部S1を通ってスライダ空間へそれぞれ抜ける流れが形成されている。このように、バルブVci×n、Vsi、Vcir、Vco×n、Vbo、およびVsoを開栓した状態では、複数の供給管を介してチャンバ空間に窒素を供給しながら直接的にチャンバ空間内の気体を複数の排気管から排出するため、チャンバ空間内に流入/排出される気体量が多くなり、チャンバ空間内における気体が窒素雰囲気に置換される速度が速くなる。つまり、図12に示したポイントCにおける酸素濃度の低下も速やかに行われるため、図8に示した到達時間を短縮することができる。
そして、第1〜第3ボックス61〜63内の酸素濃度が酸素濃度管理値以下に到達したとき、バルブVco×nが閉栓(バルブVci×n、Vsi、Vcir、Vbo、およびVsoは開栓状態を継続)される。そして、基板Pに対して塗布処理が行われる。このとき、上述した第1の実施形態と同様に、塗布装置の制御部が酸素濃度検知部88からの酸素濃度の検出結果を取得している場合、当該制御部は、当該検出結果を用いてポイントCの酸素濃度が酸素濃度管理値以下か否かを判断することができる。そして、制御部は、酸素濃度管理値以下と判断した場合、バルブVco×nを閉栓する。一方、酸素濃度検知部88が酸素濃度の検出結果を表示装置に表示して塗布装置のユーザに報知している場合、報知されたユーザがバルブVco×nを閉栓する。このように、酸素濃度管理値への到達判定およびバルブVco×nの閉栓を、塗布装置の制御部によって自動的に行ってもいいし、当該塗布装置のユーザが行ってもかまわない。
ここで、供給Ci×nから供給された窒素は、チャンバ空間に流入した後、開口部S1からスライダ空間へ流入する。また、供給Cirから供給された窒素は、チャンバ空間のポイントCを流動した後、開口部S1からスライダ空間へ流入する。そして、スライダ空間へ流入した窒素は、供給Siから供給された窒素と合流する。合流した窒素は、排出Soから排出される、または開口部S2からボックス空間へ流入して排出Boから排出される。したがって、バルブVco×nを閉栓およびバルブVci×n、Vsi、Vcir、Vbo、およびVsoを開栓した状態では、供給Ci×nから供給された窒素が開口部S1を通ってスライダ空間へ抜ける流れが強められて形成されている。また、供給Cirから供給された窒素がポイントCから開口部S1を通ってスライダ空間へ抜ける流れも形成されている。つまり、ノズルユニット50の往復移動によってスライダ空間内の気体が攪拌されても、チャンバ空間→開口部S1→スライダ空間の気体フローが形成されているため、スライダ空間内の気体がチャンバ空間へ流出することが少ない。また、スライダ空間内の気体がチャンバ空間へ流出した場合でも、ポイントCから開口部S1へ向かう窒素の流れが形成されているため、スライダ空間からの気体がチャンバ空間の前面方向、すなわち塗布前の基板Pが載置されている方向に流れる。したがって、仮にスライダ空間に酸素が残存していたとしてもポイントCへ酸素が流出することを防止することができ、図8で示した塗布処理時間中の酸素濃度が上昇することを防止することができる。つまり、基板Pに塗布後の塗布液が酸化することを防止することができる。
このように、第2の実施形態では、第1の実施形態における効果に加えて、さらに塗布処理中におけるポイントCの酸素濃度の上昇を防止することができる。なお、上述した動作では、背面側気体供給部75から常に窒素が供給されるが、塗布動作の一部の期間でのみ背面側気体供給部75から窒素を供給してもかまわない。少なくとも基板Pに対する塗布処理中において背面側気体供給部75から窒素をポイントCに供給すれば、他の期間においてバルブVcirを閉栓してもかまわない。
また、図15に示すように、第1ボックス61の底面付近にさらに排気を設けてもかまわない。図15において、第1ボックス61の前面側底部近傍に排気管72がさらに接続され、排気管72を介してチャンバ空間内の気体が排出される(図示矢印Cou;排出Couとする)。そして、第1ボックス61の前面側底部近傍に接続される排気管72にバルブVcou(バルブVcouとする)が設けられる。
塗布処理前にバルブVci×n、Vsi、Vcir、Vco×n、Vcou、Vbo、およびVsoを開栓した場合、供給Ci×nから供給された窒素は、チャンバ空間に流入して供給Cirから供給された窒素と合流した後、第1ボックス61の背面にある排出Co×nおよび排出Couから排出される。また、チャンバ空間内で合流した窒素は、開口部S1からスライダ空間へ流入する。そして、スライダ空間内に流入した窒素は、供給Siから供給された窒素と合流する。スライダ空間内で合流した窒素は、排出Soから排出される、または開口部S2からボックス空間へ流入して排出Boから排出される。したがって、塗布処理前にチャンバ空間内の気体が当該チャンバ空間の底部に設けられた排出Couから排出される流れが形成されている。これによって、上述した効果に加えてチャンバ空間内に落下する粉塵をチャンバ空間外へ排出することができ、チャンバ空間内の粉塵対策としての効果が期待できる。
一方、塗布処理中にバルブVco×nを閉栓およびバルブVci×n、Vsi、Vcir、Vcou、Vbo、およびVsoを開栓した場合、供給Ci×nから供給された窒素は、チャンバ空間に流入した後、開口部S1からスライダ空間へ流入または排出Couから排出される。また、供給Cirから供給された窒素は、チャンバ空間のポイントCを流動した後、開口部S1からスライダ空間へ流入する。そして、スライダ空間へ流入した窒素は、供給Siから供給された窒素と合流する。合流した窒素は、排出Soから排出される、または開口部S2からボックス空間へ流入して排出Boから排出される。したがって、バルブVco×nを閉栓およびバルブVci×n、Vsi、Vcir、Vcou、Vbo、およびVsoを開栓した状態では、供給Ci×nから供給された窒素が排出Couから排出される流れが形成されているが、開口部S1を通ってスライダ空間へ抜ける流れが塗布処理前より強められて形成されている。また、供給Cirから供給された窒素がポイントCから開口部S1を通ってスライダ空間へ抜ける流れも形成されている。排出Couが設けられても、チャンバ空間→開口部S1→スライダ空間の気体フローが形成されているため、スライダ空間内の気体がチャンバ空間へ流出することが少ない。また、スライダ空間内の気体がチャンバ空間へ流出した場合でも、ポイントCから開口部S1へ向かう窒素の流れが形成されており、流出した気体がチャンバ空間前方へ流れて排出Couから排出される。つまり、塗布処理中および塗布処理後の塗布液が存在する空間(開口部S1よりY軸正方向側となるチャンバ空間後方)へスライダ空間から流出した気体が流れないため、スライダ空間からの気体がチャンバ空間の前面方向、すなわち塗布前の基板Pが載置されている方向に流れる。したがって、仮にスライダ空間に酸素が残存していたとしてもポイントCへ酸素が流出することを防止することができ、図8で示した塗布処理時間中の酸素濃度が上昇することを防止することができる。つまり、基板Pに塗布後の塗布液が酸化することを防止することができる。また、塗布処理中においても、チャンバ空間内の気体が当該チャンバ空間の底部に設けられた排出Couから排出される流れが形成されているため、塗布処理中にチャンバ空間内に落下する粉塵をチャンバ空間外へ排出することができ、チャンバ空間内の粉塵対策としての効果が期待できる。
なお、上述した第1および第2の実施形態におけるボックス空間やスライダ空間に設けられる供給管および排気管(すなわち、供給Si、排出So、排出Bo)は、それぞれ複数本であってもかまわない。また、チャンバ空間に設けられた供給管および排気管(すなわち、供給Ci×n、排出Co×n)は、それぞれ1本の配管であってもかまわない。上述したような流体バランスを調整すれば、1本の配管であっても複数本の配管であっても本発明の効果を得ることができる。
また、上述した第1および第2の実施形態におけるスライダ空間に設けられる供給管(すなわち、供給Si)は、設けなくてもかまわない。供給Siがない場合、スライダ空間で合流する窒素がなくなるだけであり、上述した流体バランスを調整すれば同様の効果が得られることは言うまでもない。
また、上述した第1および第2の実施形態における第3ボックス63、排出So、および供給Siを省略してもかまわない。つまり、有機EL塗布機構5は、第2ボックス62で包囲されるボックス空間内に設置されることになる。この場合、塗布処理前については、チャンバ空間に供給された窒素は、排出Co×nから排出、または開口部S1→ボックス空間へ流動して排出Boから排出される。また、塗布処理中については、チャンバ空間に供給された窒素は、開口部S1→ボックス空間へ流動して、排出Boから排出される。つまり、第3ボックス63、排出So、および供給Siを設けなくても、チャンバ空間に供給された窒素が開口部S1を通ってボックス空間へ抜ける流れが形成されている。つまり、ノズルユニット50の往復移動によってボックス空間内の気体が攪拌されても、チャンバ空間→開口部S1→ボックス空間の気体フローが形成されているため、ボックス空間内の気体がチャンバ空間へ流出することが少ない。したがって、仮にボックス空間に酸素が残存していたとしてもチャンバ空間へ酸素が流出することを防止することができる。
また、上記ステップS76等の動作では、酸素濃度検知部88による酸素濃度検知結果が酸素濃度管理値以下を示すのを待って、その後に塗布処理が開始される手順を示したが、他の方法で塗布処理を開始してもかまわない。例えば、予め塗布装置に供給する窒素の流量や圧力とポイントCが酸素濃度管理値以下となる到達時間(図8参照)との関係を調査しておく。そして、実際に供給する窒素の流量や圧力と供給時間とを用いて、ポイントCにおける酸素濃度管理を行ってもかまわない。この場合、窒素の供給を開始した後に所定の時間(到達時間)が経過することを待って、その後に塗布処理を開始することになる。
また、ノズルユニット50に静圧軸受が設けられている場合、当該静圧軸受に窒素等の不活性ガスを供給してもかまわない。これによって、静圧軸受を構成するために供給する気体に酸素が含まれないため、さらにスライダ空間内の酸素濃度を低下させることができる。
また、上述した実施形態では、赤、緑、および青色のうち、赤色の有機EL材料を3個1組のノズル52a〜52cで基板Pの溝内に流し込んでいるが、この塗布工程は、有機EL表示装置を製造する途中工程である。有機EL表示装置を製造するときの処理手順は、正孔輸送材料(PEDOT)塗布→乾燥→赤色の有機EL材料塗布→乾燥→緑色の有機EL材料塗布→乾燥→青色の有機EL材料塗布→乾燥という手順となる。この場合、本発明の塗布装置は、正孔輸送材料、赤色の有機EL材料、緑色の有機EL材料、および青色の有機EL材料をそれぞれ塗布する工程に用いることができる。
また、ノズル52a〜52cから赤、緑、および青色の有機EL材料をそれぞれ吐出してもかまわない。この場合、赤、緑、および青色の順に配列された、いわゆる、ストライプ配列が1つの塗布工程で形成される。また、上述した実施形態では、3個1組のノズル52a〜52cで基板Pの各溝内に有機EL材料を流し込んでいるが、この3個1組のノズル52a〜52cを複数組設けて基板Pの各溝内に有機EL材料を流し込んでもかまわない。
また、上述した実施形態では、塗布液として有機EL材料や正孔輸送材料を塗布液とした有機EL表示装置の製造装置を一例にして説明したが、本発明は他の塗布装置にも適用できる。例えば、レジスト液やSOG(Spin On Glass)液やPDP(プラズマディスプレイパネル)を製造するのに使用される蛍光材料を塗布する装置にも適用することができる。また、液晶カラーディスプレイをカラー表示するために液晶セル内に構成されるカラーフィルタを製造するために使用される色材を塗布する装置にも適用することができる。
本発明に係る塗布方法および塗布装置は、基板に塗布液を塗布するとき当該塗布液の酸化を防止することができ、様々な塗布液をノズルから吐出する装置や方法等として有用である。
本発明の一実施形態に係る塗布装置1の要部概略構成を示す平面図および正面図 図1の塗布装置1の制御機能および供給部を示すブロック図 図1の塗布装置1に設けられる局所雰囲気生成機構の概略構成を示す平面図 図1の塗布装置1に設けられる局所雰囲気生成機構の概略構成を示す側断面図 第3ボックス63の外観を示す斜視図 窒素投入口の構造を示す断面図 拡散板731の構造を示す斜視図 ポイントCにおける酸素濃度管理値を説明するためのグラフ 局所雰囲気生成機構における窒素供給の流れを示すブロック図 本発明の第1の実施形態に係る塗布装置1における窒素流動フローを示す模式図 塗布装置1が塗布処理を行う際の動作を示すフローチャート 本発明の第2の実施形態に係る塗布装置1に設けられる局所雰囲気生成機構の概略構成を示す側断面図 図12の背面側気体供給部75の概略構造を示す斜視図 図12の塗布装置1における窒素流動フローを示す模式図 図12の塗布装置1における窒素流動フローの変形例を示す模式図
符号の説明
1…塗布装置
2…基板載置装置
21…ステージ
22…旋回部
23…平行移動テーブル
24…ガイド受け部
25、511…ガイド部材
3…制御部
5…有機EL塗布機構
50…ノズルユニット
51…ノズル移動機構部
52a、52b、52c…ノズル
521…フィルタ部
53…液受部
54…供給部
541…供給源
542…ポンプ
543…流量計
61…第1ボックス
611…投入口
62…第2ボックス
63…第3ボックス
64…仕切板
71…供給管
72…排気管
73…拡散部
731、752…拡散板
732、733、753…パンチングメタル
75…背面側気体供給部
751…筐体
81…窒素ボンベ
83…フィルタ
84…圧力調整部
85、86…流量調整部
87…吸引部
88…酸素濃度検知部

Claims (10)

  1. 基板上に塗布液を塗布する塗布装置であって、
    その先端部から前記塗布液を吐出するノズルと、
    前記基板をその上面に載置するステージと、
    前記ステージ上の空間において、当該ステージ面を横断する方向に前記ノズルを往復移動させるノズル移動機構と、
    前記ステージを包囲して設けられ、前記ノズル移動機構が配置される空間と当該ステージが配置される空間とを仕切り、その上面に前記ノズル移動機構側から前記ノズルの少なくとも一部が突出して往復移動する開口部が形成された第1ボックスと、
    前記ノズル移動機構を包囲して前記第1ボックスの上部に設けられる第2ボックスと、
    前記第1ボックスに設けられ、当該第1ボックスの内部空間へ所定の気体を供給する第1の供給口と、
    前記第1ボックスに設けられ、当該第1ボックスの内部空間内の気体を外部へ排出する第1の排気口と、
    前記第2ボックスに設けられ、当該第2ボックスの内部空間内の気体を外部へ排出する第2の排気口とを備え、
    前記第1ボックス内の所定空間が所定酸素濃度に達するまで、前記第1の供給口から供給された気体を前記第1および第2の排気口から排出し、
    前記所定空間が所定酸素濃度に到達したとき、前記第1の供給口から供給された気体を前記第2の排気口から排出する、塗布装置。
  2. 前記第1ボックス内の所定空間における酸素濃度を検出する酸素濃度検出手段と、
    前記第1の排気口に設けられた第1のバルブと、
    前記酸素濃度検出手段が検出した酸素濃度が前記所定酸素濃度に未達のときに前記第1のバルブを開栓し、前記酸素濃度検出手段が検出した酸素濃度が前記所定酸素濃度に到達したときに前記第1のバルブを閉栓する制御手段とを、さらに備える、請求項1に記載の塗布装置。
  3. 前記所定空間が所定酸素濃度に到達したとき、前記ノズル移動機構による前記ノズルの往復移動を開始させて前記基板に対する塗布処理を行う制御手段を、さらに備える、請求項1に記載の塗布装置。
  4. 前記所定空間は、前記第1ボックス内における前記ステージ上の空間である、請求項1に記載の塗布装置。
  5. 前記ノズルおよび前記ステージの少なくとも一方を当該ステージの載置面に平行な方向に相対的に移動させる相対移動機構を、さらに備え、
    前記所定空間は、前記第1ボックス内において、前記ノズルが塗布液を吐出する空間および前記相対移動機構による前記ステージの相対移動に伴って前記塗布液が塗布された基板の塗布部位が相対移動する当該ステージ上の空間である、請求項4に記載の塗布装置。
  6. 前記第1ボックス内に固設され、前記所定空間へ前記所定の気体を供給して当該所定空間を通って前記開口部に向かう方向に当該気体の流れを形成する第2の供給口を、さらに備える、請求項5に記載の塗布装置。
  7. 前記第1ボックスは、前記ステージが前記基板を載置して相対移動する空間を包囲して設けられ、
    前記塗布装置は、前記第1ボックスの底部で、かつ、前記ステージが相対移動の後方位置に設けられ、当該第1ボックスの内部空間内の気体を外部へ排出する第3の排気口を、さらに備える、請求項5に記載の塗布装置。
  8. 前記第1の供給口および前記第1の排気口は、前記第1ボックスに対してそれぞれ複数設けられる、請求項1に記載の塗布装置。
  9. ステージ面を横断する方向に当該ステージ上の空間をノズル移動機構に支持されて往復移動するノズルから吐出された塗布液を当該ステージ上面に載置された基板に塗布する塗布方法であって、
    所定空間が所定酸素濃度に達するまで、当該所定空間の一方側から所定気体を供給し、当該所定空間の他方側と前記ノズルおよび前記ノズル移動機構が配置された空間を通って前記ステージ上部とからそれぞれ気体を排出し、
    前記所定空間が所定酸素濃度に到達したとき、当該所定空間の一方側から前記所定気体を供給し、前記ノズルおよび前記ノズル移動機構が配置された空間を通って前記ステージ上部から気体を排出する状態で前記基板に前記塗布液を塗布する、塗布方法。
  10. 前記所定空間は、チャンバ内の空間に含まれており、
    前記チャンバは、前記ノズルが前記チャンバの外部から前記所定空間へ突出するための開口部が形成されており、
    前記所定空間が所定酸素濃度に達するまで、前記チャンバの一方側から前記所定気体を供給し、当該チャンバの他方側と前記開口部とからそれぞれ当該チャンバ内の気体を排出し、
    前記所定空間が所定酸素濃度に到達したとき、前記チャンバの一方側から前記所定気体を供給し、前記開口部から当該チャンバ内の気体を排出する状態で前記基板に前記塗布液を塗布する、請求項9に記載の塗布方法。

JP2006091061A 2006-02-27 2006-03-29 塗布装置および塗布方法 Expired - Fee Related JP4656578B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006091061A JP4656578B2 (ja) 2006-03-29 2006-03-29 塗布装置および塗布方法
KR1020060124240A KR100840482B1 (ko) 2006-02-27 2006-12-08 도포 장치 및 도포 방법
TW096104999A TW200740530A (en) 2006-02-27 2007-02-12 Coating device and coating method
CN2010102668071A CN101912833B (zh) 2006-02-27 2007-02-27 涂布装置
CN200710084320XA CN101028617B (zh) 2006-02-27 2007-02-27 涂布装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006091061A JP4656578B2 (ja) 2006-03-29 2006-03-29 塗布装置および塗布方法

Publications (2)

Publication Number Publication Date
JP2007260600A JP2007260600A (ja) 2007-10-11
JP4656578B2 true JP4656578B2 (ja) 2011-03-23

Family

ID=38634118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091061A Expired - Fee Related JP4656578B2 (ja) 2006-02-27 2006-03-29 塗布装置および塗布方法

Country Status (1)

Country Link
JP (1) JP4656578B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5335514B2 (ja) 2009-03-27 2013-11-06 大日本スクリーン製造株式会社 塗布装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003284985A (ja) * 2002-03-28 2003-10-07 Hitachi Industries Co Ltd ペースト塗布機
JP2004164873A (ja) * 2002-11-08 2004-06-10 Hirano Tecseed Co Ltd 毛管現象による塗工ノズルを用いた有機elパネルの製造装置及び製造方法
JP2005087844A (ja) * 2003-09-16 2005-04-07 Toshiba Corp インクジェット塗布装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003284985A (ja) * 2002-03-28 2003-10-07 Hitachi Industries Co Ltd ペースト塗布機
JP2004164873A (ja) * 2002-11-08 2004-06-10 Hirano Tecseed Co Ltd 毛管現象による塗工ノズルを用いた有機elパネルの製造装置及び製造方法
JP2005087844A (ja) * 2003-09-16 2005-04-07 Toshiba Corp インクジェット塗布装置

Also Published As

Publication number Publication date
JP2007260600A (ja) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4789652B2 (ja) 塗布装置
US9732424B2 (en) Gas injection apparatus and substrate processing apparatus using same
JP4716509B2 (ja) 塗布装置および塗布方法
KR102297567B1 (ko) 가스 주입 장치 및 이를 포함하는 박막 증착 장비
KR100840482B1 (ko) 도포 장치 및 도포 방법
JP2017055105A (ja) 基板処理装置
JP5116978B2 (ja) 塗布方法および塗布装置
JP4656578B2 (ja) 塗布装置および塗布方法
JP4780656B2 (ja) 塗布装置
JP4656580B2 (ja) 塗布装置
JP4331443B2 (ja) 基板処理装置
KR101499467B1 (ko) 대면적 기판용 수평형 원자층 증착장치
KR101131547B1 (ko) 보트 및 그 보트를 포함하는 반도체 증착 장치 및 방법
KR102201882B1 (ko) 기판 처리 장치 및 방법
KR101213965B1 (ko) 스핀노즐 방식의 가스분사 유닛 및 이를 구비하는 직립방식 증착장치
CN103288356B (zh) 涂布装置
KR101635761B1 (ko) 공정챔버 및 이를 포함하는 화소 형성 장치
KR20160081342A (ko) 대면적 원자층 증착장치
KR101687303B1 (ko) 기판 증착시스템
KR20130125161A (ko) 기판 처리 장치 및 기판 반입 방법
KR101204577B1 (ko) 도포 장치 및 도포 방법
KR20140028578A (ko) 노즐
JP4544470B2 (ja) 塗布装置
KR20160108714A (ko) 기판처리장치의 가스공급방법
TW201420790A (zh) 成膜裝置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees