JP5116978B2 - 塗布方法および塗布装置 - Google Patents

塗布方法および塗布装置 Download PDF

Info

Publication number
JP5116978B2
JP5116978B2 JP2006050727A JP2006050727A JP5116978B2 JP 5116978 B2 JP5116978 B2 JP 5116978B2 JP 2006050727 A JP2006050727 A JP 2006050727A JP 2006050727 A JP2006050727 A JP 2006050727A JP 5116978 B2 JP5116978 B2 JP 5116978B2
Authority
JP
Japan
Prior art keywords
space
coating
box
nitrogen
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006050727A
Other languages
English (en)
Other versions
JP2007229542A (ja
Inventor
順一 吉田
幸宏 高村
博之 上野
理史 川越
幹雄 増市
毅 松家
Original Assignee
大日本スクリーン製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本スクリーン製造株式会社 filed Critical 大日本スクリーン製造株式会社
Priority to JP2006050727A priority Critical patent/JP5116978B2/ja
Priority claimed from KR1020060124240A external-priority patent/KR100840482B1/ko
Priority claimed from CN200710084320XA external-priority patent/CN101028617B/zh
Publication of JP2007229542A publication Critical patent/JP2007229542A/ja
Application granted granted Critical
Publication of JP5116978B2 publication Critical patent/JP5116978B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、塗布方法および塗布装置に関し、より特定的には、ステージ上に載置した基板にノズルから有機EL材料等の塗布液を吐出して塗布する塗布方法および塗布装置に関する。
従来、基板等の被処理体に塗布液を塗布する塗布装置が各種開発されている。例えば、有機EL(Electro Luminescence)表示装置を製造する装置では、ステージ上に載置されたガラス基板等の基板の主面に所定のパターン形状で正孔輸送材料や有機EL材料をノズル塗布する塗布装置が用いられる。この塗布装置では、ノズルから塗布液(有機EL材料や正孔輸送材料)が所定の圧力で吐出される。具体的には、塗布装置に備えられたタンク等の供給源に塗布液が貯留され、供給源から供給される塗布液をポンプで増圧し、配管内に設けられたフィルタで異物を除去した後、ノズルから吐出される。
一般的に、有機EL材料は、酸化することによって品質が劣化することが知られている。したがって、有機EL材料を基板に塗布する際には、当該有機EL材料の酸化を防止しなければならない。このような有機EL材料の品質劣化を防止するために、酸素濃度を管理しながら製造する技術が開示されている(例えば、特許文献1参照)。特許文献1で開示された製造装置は、塗工装置、乾燥装置、熱硬化装置、基板積層装置等をチャンバ内に配列し、当該チャンバ内を窒素雰囲気にして製造が行われる。
特開2004−164873号公報
しかしながら、上記特許文献1で開示された製造装置では、複数の装置を1つのチャンバ内に設置するため、チャンバ内の容積が大きくなる。つまり、チャンバ内を窒素雰囲気にするためには、膨大な窒素を供給しなければならない。また、上記チャンバに窒素を供給して所望の酸素濃度に保つためには、多くの吸気/排気ポンプやゲートを設ける必要があり、装置自体が複雑となる。したがって、製造コストや装置コストが増大する問題がある。また、大きな空間を窒素雰囲気にする場合、人間がその空間に入り込むことによって窒息等の危険要素を生み出すことになり、安全面での課題も生じる。
それ故に、本発明の目的は、塗布液の酸化を防止しながらコスト面および安全面を考慮した塗布方法および塗布装置を提供することである。
上記目的を達成するために、本発明は、以下に述べるような特徴を有している。
第1の発明は、ステージ上に配置されたノズルから吐出された塗布液をそのステージ上面に載置された基板に塗布する塗布方法である。塗布方法は、局所雰囲気生成工程を含む。ノズルは、チャンバ空間の上方でチャンバ空間と連通する包囲された空間に設置され、ノズル移動機構に支持されてステージ面を横断する方向にステージ上方で包囲された空間で往復移動する。局所雰囲気生成工程は、ノズルが塗布液を吐出する空間および塗布液が塗布された基板の塗布部位を含む包囲されたチャンバ空間で塗布空間に対して局所的に所定気体を供給し、塗布空間内の気体を塗布空間からノズルおよびノズル移動機構が配置された包囲された空間内へ流入させることによって、塗布空間内の気体をステージ上方部から塗布空間外へ排出して、塗布液の塗布を所定の雰囲気で行う。
第2の発明は、上記第1の発明において、局所雰囲気生成工程は、塗布空間に対して、その塗布空間の一方側から所定気体を供給し、その塗布空間の他方側からその塗布空間内の気体を排出する。
第3の発明は、上記第2の発明において、局所雰囲気生成工程は、塗布空間の一方側の複数箇所から所定気体を供給し、その塗布空間の他方側の複数箇所からその塗布空間内の気体を排出する。
の発明は、上記第の発明において、局所雰囲気生成工程は、塗布空間に対して、その塗布空間の一方側から所定気体を供給し、その塗布空間の他方側とノズルおよびノズル移動機構が配置された包囲された空間を通ってステージ上部とからそれぞれその塗布空間内の気体を塗布空間外へ排出する。
の発明は、上記第の発明において、局所雰囲気生成工程は、塗布空間に対して、その塗布空間の一方側および他方側からそれぞれ所定気体を供給し、その塗布空間内の気体をその塗布空間からノズルおよびノズル移動機構が配置された包囲された空間へ流入させることによってステージ上部からその塗布空間内の気体を排出する。
の発明は、上記第1の発明において、ノズルは、ノズル移動機構に支持されてそのステージ面を横断する方向にステージ上方で包囲された空間で往復移動する。局所雰囲気生成工程は、塗布空間に加え、ノズルおよびノズル移動機構が配置された空間に所定気体を供給する。
の発明は、基板上に塗布液を塗布する塗布装置である。塗布装置は、ステージ、ノズル、および局所雰囲気生成機構を備える。ステージは、基板をその上面に載置する。ノズルは、ステージ上の空間において、その先端部から塗布液を吐出する。局所雰囲気生成機構は、ノズルが塗布液を吐出する空間および塗布液が塗布された基板の塗布部位を含む包囲されたチャンバ空間で塗布空間に対して局所的に所定気体を供給して、塗布液の塗布を所定の雰囲気で行う。ノズルは、チャンバ空間の上方でチャンバ空間と連通する包囲された空間に設置され、ノズル移動機構に支持されてそのステージ面を横断する方向にステージ上方で包囲された空間で往復移動し、局所雰囲気生成機構は、塗布空間に対して、その塗布空間の一方側から所定気体を供給し、その塗布空間内の気体をその塗布空間からノズルおよびノズル移動機構が配置された包囲された空間内へ流出させることによって、その塗布空間内の気体をステージ上方部からその塗布空間外へ排出する。
上記第1の発明によれば、局所的な空間を所定の気体に置換して塗布処理を行うことができる。例えば、窒素等の不活性ガスを局所的に供給することによって、局所的な低酸素雰囲気を生成することが可能となり、塗布処理における塗布液の酸化を防止することができる。したがって、限られた空間を所望の雰囲気に置換して塗布処理を行うことができるため、所望の塗布環境における処理を行いながら置換のために供給される気体の消費量を抑えることができる。また、限られた範囲の空間内の気体を置換するため、人間がその空間に入り込むことによる危険要素を排除することができる。さらに、塗布処理の際にノズル等が往復移動することによって生じる気体攪拌の影響が塗布空間内に及ぶことが考えられるが、当該塗布空間から当該往復移動のための空間に向かって気体を排出することによって当該往復移動のための空間の気体も所定気体に置換される。また、気体の流れが塗布空間から往復移動のための空間に向かっているため、塗布空間へ逆流することがなくなるため、ノズル動作中においても塗布空間内の気体雰囲気を安定させることができる。
上記第2の発明によれば、塗布空間へ直接的に所定気体の供給が行われ、塗布空間の気体が直接的に排出されるため、塗布空間内の気体の置換が速やかに行われる。また、供給と排気とが塗布空間に対して相対する位置から行われるため、供給された気体が塗布空間を通過してから排出される。したがって、塗布空間に置換前に存在した気体が残存することを防止することができ、所定気体を塗布空間内全体に等しく行き渡らせることができる。
上記第3の発明によれば、塗布空間に複数箇所から所定気体が供給されるため、当該塗布空間内への気体供給が一部分に集中することがない。また、塗布空間内の気体が複数箇所から排出されるため、当該塗布空間内からの気体排出が一部分に集中することがない。したがって、供給する所定気体を塗布空間内全体に等しく行き渡らせることができる。
上記第の発明によれば、塗布空間の前後から所定気体を供給することによって、塗布空間内の気体バラツキを低減することができ、局所雰囲気を安定させることができる。
上記第の発明によれば、塗布処理の際にノズル等が往復移動することによって生じる気体攪拌の影響が塗布空間内に及ぶことが考えられるが、当該往復移動のための空間をさらに所定気体に置換することによって、気体攪拌の影響が塗布空間内に及んでも、置換後の気体が流出することになる。したがって、ノズル動作中においても塗布空間内の気体雰囲気を安定させることができる。
また、本発明の塗布装置によれば、上述した塗布方法と同様の効果を得ることができる。
本発明の具体的な各実施形態を説明する前に、図面を参照して、本発明に係る塗布装置の概要について説明する。説明を具体的にするために、当該塗布装置が有機EL材料や正孔輸送材料等を塗布液として用いる有機EL表示装置を製造する塗布装置に適用された例を用いて、以下の説明を行う。当該塗布装置は、有機EL材料や正孔輸送材料等をステージ上に載置されたガラス基板上に所定のパターン形状に塗布して有機EL表示装置を製造するものである。図1は、塗布装置1の要部概略構成を示す平面図および正面図である。なお、塗布装置1は、上述したように有機EL材料や正孔輸送材料等の複数の塗布液を用いるが、それらの代表として有機EL材料を塗布液として説明を行う。
図1において、塗布装置1は、大略的に、基板載置装置2および有機EL塗布機構5を備えている。有機EL塗布機構5は、ノズル移動機構部51、ノズルユニット50、および液受部53Lおよび53Rを有している。ノズル移動機構部51は、ガイド部材511が図示X軸方向に延設されており、ノズルユニット50をガイド部材511に沿って図示X軸方向に移動させる。ノズルユニット50は、赤、緑、および青色の何れか1色の有機EL材料を吐出するノズル52a〜52cを並設した状態で保持する。各ノズル52a〜52cへは、それぞれ供給部(図2参照)から赤、緑、および青色の何れか1色の有機EL材料が供給される。このように、典型的には3本のノズル52a〜52cから同じ色の有機EL材料が吐出されるが、説明を具体的にするために赤色の有機EL材料が3本のノズル52a〜52cから吐出される例を用いる。なお、塗布装置1は、その周囲や内部が第1〜第3ボックス61〜63等で仕切られているが、詳細は後述する。
基板載置装置2は、ステージ21、旋回部22、平行移動テーブル23、ガイド受け部24、およびガイド部材25を有している。ステージ21は、被塗布体となるガラス基板等の基板Pをそのステージ上面に載置する。ステージ21の下部は、旋回部22によって支持されており、旋回部22の回動動作によって図示θ方向にステージ21が回動可能に構成されている。また、ステージ21の内部には、有機EL材料が塗布された基板Pをステージ面上で予備加熱処理するための加熱機構や基板Pの吸着機構や受け渡しピン機構設けられている。
有機EL塗布機構5の下方を通るように、ガイド部材25が上記X軸方向と垂直の図示Y軸方向に延設されて固定される。平行移動テーブル23の下面にはガイド部材25と当接してガイド部材25上を滑動するガイド受け部24が固設されている。また、平行移動テーブル23の上面には、旋回部22が固設される。これによって、平行移動テーブル23が、例えばリニアモータ(図示せず)からの駆動力を受けてガイド部材25に沿った図示Y軸方向に移動可能になり、旋回部22に支持されたステージ21の移動も可能になる。
受け渡しピン機構を介してステージ21上に基板Pを載置し吸着して、平行移動テーブル23が有機EL塗布機構5の下方まで移動したとき、当該基板Pが赤色の有機EL材料の塗布をノズル52a〜52cから受ける位置となる。そして、制御部(図2参照)がノズルユニット50をX軸方向に往復移動させるようにノズル移動機構部51を制御し、ステージ21をY軸方向へ当該直線移動毎に所定ピッチだけ移動させるように平行移動テーブル23を制御し、ノズル52a〜52cから所定流量の有機EL材料を吐出する。また、ノズル52a〜52cのX軸方向吐出位置において、ステージ21に載置された基板Pから逸脱する両サイド空間には、基板Pから外れて吐出された有機EL材料を受ける液受部53Lおよび53Rがそれぞれ固設されている。ノズル移動機構部51は、基板Pの一方サイド外側に配設されている液受部53の上部空間から、基板Pを横断して基板Pの他方サイド外側に配設されている液受部53の上部空間まで、ノズルユニット50を往復移動させる。また、平行移動テーブル23は、ノズルユニット50が液受部53の上部空間に配置されている際、ノズル往復移動方向とは垂直の所定方向(図示Y軸方向)に所定ピッチだけステージ21を移動させる。このようなノズル移動機構部51および平行移動テーブル23の動作と同時にノズル52a〜52cから有機EL材料を液柱状態で吐出することによって、赤色の有機EL材料が基板Pに形成されたストライプ状の溝毎に配列された、いわゆる、ストライプ配列が基板P上に形成される。
次に、図2を参照して、塗布装置1における制御機能および供給部の概略構成について説明する。なお、図2は、塗布装置1の制御機能および供給部を示すブロック図である。
図2において、塗布装置1は、上述した構成部の他に、制御部3、第1供給部54a、第2供給部54b、および第3供給部54cを備えている。第1〜第3供給部54a〜54cは、共に赤色の有機EL材料をそれぞれノズル52a〜52cに配管を介して供給する。なお、供給源541a〜541cからノズル52a〜52cに至るそれぞれの配管は、PE(ポリエチレン)、PP(ポリプロピレン)、テフロン(登録商標)等を材料とする管部材が用いられる。
第1供給部54aは、有機EL材料の供給源541aと、供給源541aから有機EL材料を取り出すためのポンプ542aと、有機EL材料の流量を検出する流量計543aとを備えている。また、第2供給部54bは、有機EL材料の供給源541bと、供給源541bから有機EL材料を取り出すためのポンプ542bと、有機EL材料の流量を検出する流量計543bとを備えている。第3供給部54cは、有機EL材料の供給源541cと、供給源541cから有機EL材料を取り出すためのポンプ542cと、有機EL材料の流量を検出する流量計543cとを備えている。そして、制御部3は、第1〜第3供給部54a〜54c、旋回部22、平行移動テーブル23、およびノズル移動機構部51のそれぞれの動作を制御する。
ノズル52aは、供給部54aから供給された有機EL材料中の異物を除去するためのフィルタ部521aを有している。ノズル52bは、供給部54bから供給された有機EL材料中の異物を除去するためのフィルタ部521bを有している。ノズル52cは、供給部54cから供給された有機EL材料中の異物を除去するためのフィルタ部521cを有している。なお、ノズル52a〜52cは、それぞれ同一の構造であるため、総称して説明する場合は参照符号「52」を付して説明を行う。
ここで、赤色の有機EL材料の塗布を受ける基板Pの表面には、有機EL材料を塗布すべき所定のパターン形状に応じたストライプ状の溝が複数本並設されるように形成されている。有機EL材料としては、例えば、基板P上の溝内に拡がるように流動する程度の粘性を有する有機性のEL材料が用いられ、具体的には各色毎の高分子タイプの有機EL材料が用いられる。ノズルユニット50は、所定の支持軸周りに回動自在に支持されており、制御部3の制御によって当該支持軸周りに回動させることで、塗布ピッチ間隔を調整することができる。
制御部3は、ステージ21に載置された基板Pの位置や方向に基づいて、基板Pに形成された溝の方向が上記X軸方向になるように旋回部22の角度を調整し、塗布のスタートポイント、すなわち、基板Pに形成された溝の一方の端部側で塗布を開始する塗布開始位置を算出する。なお、上記塗布開始位置は、一方の液受部53の上部空間となる。そして、制御部3は、上述したように平行移動テーブル23およびノズル移動機構部51を駆動させる。
上記塗布開始位置において、制御部3は、各ノズル52a〜52cから有機EL材料の吐出開始を各ポンプ542a〜542cに指示する。このとき、制御部3は、ストライプ状の溝の各ポイントにおける有機EL材料の塗布量が均一となり、液柱状態で有機EL材料が吐出されるように、ノズル52a〜52cの移動速度に応じてその塗布量を制御しており、流量計543a〜543cからの流量情報をフィードバックして制御する。そして、制御部3は、基板P上の溝内への有機EL材料の流し込むために、有機EL材料を基板P上の溝に沿わせながらこの溝内に流し込むようにノズルユニット50をガイド部材511に沿わせて移動させるように制御する。この動作によって、液柱状態で各ノズル52a〜52cから吐出される赤色の有機EL材料が同時にそれぞれの溝に流し込まれていく。
制御部3は、基板P上をノズルユニット50が横断して溝の他方端部の外側に固設されている他方の液受部53上に位置すると、ノズル52a〜52cからの有機EL材料の吐出を継続したまま、ノズル移動機構部51によるノズルユニット50の移動を停止する。この1回の移動によって、3列分の溝への有機EL材料の塗布が完了する。具体的には、同色の有機EL材料を各ノズル52a〜52cから吐出しているので、3列毎に1列の溝を塗布対象とした合計3列分の溝に有機EL材料が塗布される。
次に、制御部3は、平行移動テーブル23をY軸正方向に所定距離(例えば、溝9列分)だけピッチ送りして、次に塗布対象となる溝への有機EL材料の塗布を行えるようにする。そして、制御部3は、他方の液受部53の上部空間からノズルユニット50を逆の方向へ基板P上を横断させて一方の液受部53上に位置すると、ノズル52a〜52cからの有機EL材料の吐出を継続したまま、ノズル移動機構部51によるノズルユニット50の移動を停止する。この2回目の移動によって、次の3列分の溝への有機EL材料の塗布が完了する。このような動作を繰り返すことによって、赤色の有機EL材料が赤色を塗布対象とした溝に流し込まれる。
以下、図3〜図10を参照して、塗布装置1に設置される局所雰囲気生成機構について説明する。なお、図3は、塗布装置1に設けられる局所雰囲気生成機構の概略構成を示す平面図である。図4は、塗布装置1に設けられる局所雰囲気生成機構の概略構成を示す側断面図である。図5は、第3ボックス63の外観を示す斜視図である。図6は、窒素投入口の構造を示す断面図である。図7は、拡散板731の構造を示す斜視図である。図8は、ポイントCにおける酸素濃度管理値を説明するためのグラフである。図9は、局所雰囲気生成機構における窒素供給の流れを示すブロック図である。図10は、塗布装置1が塗布処理を行う際の動作の一例を示すフローチャートである。
図3〜図5において、塗布装置1は、第1ボックス61、第2ボックス62、および第3ボックス63によって、それぞれ外部から遮蔽されて設置される。第1ボックス61は、基板載置装置2が図示Y軸方向へ往復移動する空間(以下、チャンバ空間と記載する)を包囲して外部から遮蔽するように設けられる。また、第1ボックス61は、ノズル52がチャンバ空間へ突出して往復移動するための開口部S1を除いて、チャンバ空間と有機EL塗布機構5が設置される空間との間を仕切るように設置される。第3ボックス63は、有機EL塗布機構5が設置される空間を含み、ノズルユニット50等が図示X軸方向へ往復移動する空間(以下、スライダ空間と記載する)を包囲して設けられる。なお、第3ボックス63も、ノズル52がスライダ空間からチャンバ空間へ突出して往復移動するための開口部S1が形成されている(図5参照)。また、第3ボックス63の上面には、第1〜第3供給部54a〜54cから有機EL材料をそれぞれノズル52a〜52cに供給するための配管(図示せず)を通すための開口部S2が形成される。また、ノズルユニット50に静圧軸受が設けられている場合、当該静圧軸受に気体を供給するための配管も開口部S2を通して接続される。第2ボックス62は、第1ボックス61の上部空間を包囲して設けられる。第2ボックス62の内部には、有機EL塗布機構5および第3ボックス63が設置され、第2ボックス62にもノズル52がスライダ空間からチャンバ空間へ突出して往復移動するための開口部S1が形成されている。なお、第2ボックス62で包囲された空間の内、スライダ空間を除いた空間をボックス空間と記載する。このように、塗布装置1は、第1〜第3ボックス61〜63によって、チャンバ空間、スライダ空間、およびボックス空間にそれぞれ仕切られて設置される。なお、第1〜第3ボックス61〜63は、全て上面が形成されているが、図3においては内部との関係をわかりやすくするために上面や下面を省略し、斜線または交線領域で側壁のみを示している。
第1〜第3ボックス61〜63には、その内部空間に窒素等の不活性ガス(以下、単に窒素と記載する)を供給するための供給管71と、その内部空間の気体を排出するための排気管72とが接続される。図3および図4の例では、供給管71が第1ボックス61のY軸負方向側の壁面(以下、Y軸負方向側の壁面を前面とする)に接続されている。なお、図4の例では、複数の供給管71a〜71cが第1ボックス61の壁面に接続されている。また、排気管72が第2ボックス62のY軸正方向側の壁面(以下、Y軸正方向側の壁面を背面と記載する)に接続されている。このように供給管71および排気管72を接続した場合、供給管71から供給された窒素は、チャンバ空間へ供給され、開口部S1を通ってスライダ空間へ流入し、開口部S2を通ってボックス空間へ流入した後、排気管72から流出するような流れとなる。
また、第1ボックス61には、基板Pの搬入および搬出を行うための投入口611が設けられている。投入口611は、回転軸を中心に回動(図示矢印方向)するゲートにより開閉可能となっている。基板Pは、投入口611が開放された状態で、搬送ロボット(図示せず)によりチャンバ空間内に搬入され、ステージ21上に載置される。また、塗布装置1によって塗布処理が行われるときは、上記ゲートを閉鎖してチャンバ空間内が外部から遮蔽される。
第1ボックス61と供給管71aおよび71bとを接続する付近には、拡散部73が設けられる。具体的には、拡散部73は、供給管71aおよび71bから第1ボックス61の内部空間に流入する入り口付近の当該内部空間側に設けられる。図6および図7に示すように、拡散部73は、拡散板731およびパンチングメタル732を含んでいる。拡散板731は、供給管71aおよび71bから上記内部空間へ流入する窒素を妨げる位置に固設された板状部材であり、その周囲に所定の隙間が形成されている。供給管71aおよび71bから上記内部空間へ流入する窒素は、拡散板731によって妨げられて直接的に上記内部空間に流入することなく、拡散板731の周囲へ流れる方向を変えて流動する。パンチングメタル732は、多数の孔が打ち抜き加工された板状部材であり、拡散板731に対して上記内部空間側に固設される。また、パンチングメタル732は、拡散板731の周囲から流動する窒素の流動路上に配置される。つまり、供給管71aおよび71bから供給された窒素は、必ずパンチングメタル732に形成された孔を通って上記内部空間内に流入することになる。したがって、拡散部73では、供給管71aおよび71bから供給された窒素を拡散して第1〜第3ボックス61〜63内に供給することができる。
また、投入口611付近に供給管71cが接続されている。一般的に、投入口611付近は、基板Pの搬入/搬出の際の開閉によって外気が侵入しやすく酸素濃度が高くなりやすいが、そのような箇所に窒素を供給することによって、侵入した酸素を拡散することができる。なお、供給管71cから内部空間に流入する入り口付近は、その流路が曲げられており、当該入り口付近に拡散部は設けられていない。
排気管72と第1〜第3ボックス61〜63との接続部には、パンチングメタル733が設けられる。このパンチングメタル733は、排気管72の内部空間側に固設され、排気管72に向かって流動する気体の流動路上に配置される。つまり、排気管72へ排出される気体は、必ずパンチングメタル733に形成された孔を通って排出されることになる。このように、排出口付近にパンチングメタル733を配置することによって、気体が排出される箇所が集中することを防止することができ、内部空間全体の気体をバラツキなく排出することができる。
供給管71から第1〜第3ボックス61〜63内に窒素を供給しながら第1〜第3ボックス61〜63内の気体を排気管72から排出することによって、第1〜第3ボックス61〜63内部が窒素雰囲気となり、内部の酸素濃度が低下する。これによって、塗布装置1は、有機EL材料を基板Pに塗布する際の酸化を防止することができる。ここで、有機EL材料の酸化を防止するためにはチャンバ空間内全ての酸素濃度を低下させればよいが、最も酸素濃度を低下させなければならない空間は、ノズル52から有機EL材料を吐出する空間および塗布後の基板P面がY軸正方向側に順次送られていく空間(図4に示すポイントC)である。例えば、有機EL材料を基板Pに塗布する際の酸素濃度上限を酸素濃度管理値とした場合、少なくともポイントCにおける酸素濃度が酸素濃度管理値を満たさなければならない。
ポイントCにおける酸素濃度が酸素濃度管理値を満たした状態で塗布処理を行うためには、ポイントCにおける酸素濃度を酸素濃度管理値以下に低下させた後、塗布処理を開始しなければならない。したがって、基板Pを搬入してからポイントCにおける酸素濃度が酸素濃度管理値以下に低下するまでの時間(図8に示す「到達時間」)を短縮することによって、塗布装置1を効率よく稼働させることができる。また、塗布処理中において、ポイントCにおける酸素濃度が酸素濃度管理値を越えることを防止しなければならないため(図8に示す「塗布処理時間」)、塗布処理中においても供給管71からの窒素供給および排気管72からの気体排出が継続される。ここで、ノズルユニット50やノズル52がX軸方向に往復移動することによって、スライダ空間内の気体や開口部S1付近の気体が攪拌される。したがって、例えばスライダ空間内に酸素が残存している場合、当該酸素が攪拌によってポイントCへ流出してポイントCにおける酸素濃度を上昇させることがある。つまり、ポイントCにおける酸素濃度の管理においては、塗布処理前および塗布処理中の流体バランスを考慮する必要がある。後述する実施例においては、スライダ空間内やボックス空間内も低酸素雰囲気に置換することによって、塗布処理中における酸素濃度の上昇を防止している。
また、ポイントCにおける酸素濃度を安定させるためには、第1〜第3ボックス61〜63内の圧力も重要である。例えば、第1〜第3ボックス61〜63が外部に対して完全密閉構造でない場合、第1〜第3ボックス61〜63内の圧力が大気圧未満(つまり、外部より低い圧力)に維持されると外部の気体が第1〜第3ボックス61〜63内に流入する。したがって、本実施形態では、第1〜第3ボックス61〜63内の圧力を大気圧以上(つまり、外部と同じまたは高い圧力)に維持できるように、塗布処理前および塗布処理中の流体バランスが調整される。これによって、第1〜第3ボックス61〜63が外部に対して完全密閉構造でなくても、ポイントCにおける酸素濃度の管理を行うことができる。このように、第1〜第3ボックス61〜63内は、局所的な雰囲気を管理することが可能となり、特に低下させた内部の酸素濃度を管理することが可能となる。
図9において、局所雰囲気生成機構は、上述した構成部の他に、窒素ボンベ81、フィルタ83、圧力調整部84、供給側の流量調整部85、排気側の流量調整部86、および吸引部87を備えており、互いに配管等で接続されている。ここで、窒素ボンベ81、フィルタ83、圧力調整部84、および流量調整部85が、供給管71から窒素を供給するための供給系に相当する。一方、流量調整部86および吸引部87が、排気管72から気体を排出するための排気系に相当する。なお、これらの機構は、塗布装置1に内蔵してもいいし、塗布装置1の外部装置として設けてもかまわない。塗布装置1の外部装置として設ける場合、設置場所に予め設けられている設備(例えば、工場の窒素供給装置や吸引装置)を用いてもかまわない。
窒素ボンベ81には、液体窒素等がその内部に貯蔵されている。窒素ボンベ81から窒素は、気体状態で取り出され、工場の用力として供給されてフィルタ83へ流動する。フィルタ83は、流動する窒素中の異物を除去して圧力調整部84および流量調整部85に送る。そして、圧力調整部84によって塗布装置1へ供給する窒素圧力が調整され、流量調整部85によって塗布装置1へ供給する窒素流量が調整された後、供給管71に窒素が供給される。一方、吸引部87は、排気管72から気体を吸引して第1〜第3ボックス61〜63内の気体を外部へ排出する。そして、流量調整部86によって、排気管72から気体を吸引して外部へ排出する流量が調整される。ユーザは、圧力調整部84、流量調整部85、および流量調整部86に設けられた流路の絞りや設定値等を調整することによって、上述した塗布装置1に対する流体バランスを調整することができる。
次に、図4および図10を参照して、塗布装置1が塗布処理を行う際の動作について説明する。まず、投入口611が開放される(ステップS51)。次に、開放された投入口611から搬送ロボット等によって基板Pが搬入され、ステージ21上に基板Pが載置される(ステップS52)。そして、投入口611が閉鎖され(ステップS53)、チャンバ空間が外部から遮蔽された空間となる。
次に、供給管71から第1〜第3ボックス61〜63内へ窒素の供給が開始され、排気管72へ第1〜第3ボックス61〜63内の気体の排出が開始される(ステップS54)。そして、第1〜第3ボックス61〜63内(例えば、ポイントC)の酸素濃度が酸素濃度管理値以下に到達したとき(ステップS55でYes)、基板Pに対して塗布処理が行われる(ステップS56)。
基板Pに対する塗布処理が終了したとき(ステップS57でYes)、供給管71からの窒素の供給が停止され、排気管72への気体の排出が停止される(ステップS58)。次に、投入口611が開放され(ステップS59)、開放された投入口611からステージ21上に載置された塗布処理後の基板Pが搬送ロボット等によって搬出される(ステップS60)。そして、塗布処理を継続する場合(ステップS61でYes)、上記ステップS52に戻って動作が繰り返される。一方、塗布処理を終了する場合(ステップS61でNo)、当該フローチャートによる動作を終了する。
(第1の実施形態)
以下、図面を参照して、本発明の第1の実施形態に係る塗布装置1について説明する。第1の実施形態は、チャンバ空間には排気管を設けずにボックス空間またはスライダ空間に排気管を設けた塗布装置1である。なお、塗布装置1の概要については説明を省略し、主に第1の実施形態の特徴である供給管および排気管の接続箇所について説明を行う。なお、図11は、第1の実施形態に係る塗布装置1における窒素流動フローの第1の例を示す模式図である。図12は、第1の実施形態に係る塗布装置1における窒素流動フローの第2の例を示す模式図である。図13は、第1の実施形態に係る塗布装置1における窒素流動フローの第3の例を示す模式図である。図14は、第1の実施形態に係る塗布装置1における窒素流動フローの第4の例を示す模式図である。なお、図11〜図14においては、説明を簡単にするために、それぞれの塗布装置1について、第1〜第3ボックス61〜63、チャンバ空間、ボックス空間、およびチャンバ空間のみを図示して簡略化している。
図11において、第1ボックス61の前面に供給管71が接続され、供給管71を介して窒素がチャンバ空間に供給される(図示矢印Ci1;供給Ci1とする)。また、第2ボックス62の背面に排気管72が接続され、排気管72を介してボックス空間内の気体が排出される(図示矢印Bo;排出Boとする)。例えば、供給Ci1は図4に示した供給管71aに相当し、排出Boは図4に示した排気管72に相当する。
供給Ci1から供給された窒素は、チャンバ空間に流入した後、開口部S1→スライダ空間→開口部S2→ボックス空間へ流動して、排出Boから排出される。したがって、図11に示した接続態様では、供給Ci1→チャンバ空間→開口部S1→スライダ空間→開口部S2→ボックス空間→排出Boという逆流のない一連のフローを形成することができ、チャンバ空間を効率よく窒素雰囲気に変化させることができる。また、当該接続態様では、チャンバ空間の一方側から供給された窒素が開口部S1を通ってスライダ空間へ抜ける流れが形成されている。つまり、ノズルユニット50の往復移動によってスライダ空間内の気体が攪拌されても、チャンバ空間→開口部S1→スライダ空間の気体フローが形成されているため、スライダ空間内の気体がチャンバ空間へ流出することが少ない。したがって、仮にスライダ空間に酸素が残存していたとしてもチャンバ空間へ酸素が流出することを防止することができ、図8で示した塗布処理時間中の酸素濃度が上昇することを防止することができる。
図12において、第1ボックス61の前面および背面に供給管71がそれぞれ接続され、2つの供給管71を介して窒素がチャンバ空間に供給される(図示矢印Ci1、Ci2;供給Ci1、Ci2とする)。さらに、第3ボックス63の前面に供給管71が接続され、供給管71を介して窒素がスライダ空間に供給される(図示矢印Si;供給Siとする)。また、第2ボックス62の背面に排気管72が接続され、排気管72を介してボックス空間内の気体が排出される(図示矢印Bo;排出Boとする)。図12に示す接続態様では供給口が3箇所設けられるが、全て図6を参照して説明した構造と同様の接続方式で供給管71がそれぞれ接続される。
供給Ci1およびCi2から供給された窒素は、チャンバ空間内で合流して開口部S1からスライダ空間へ流入し、当該スライダ空間内で供給Siから供給された窒素と合流する。そして、合流した窒素は、スライダ空間→開口部S2→ボックス空間へ流動して、排出Boから排出される。したがって、当該接続態様では、チャンバ空間の一方側および他方側からそれぞれ供給された窒素が開口部S1を通ってスライダ空間へ抜ける流れが形成されている。このように、第1ボックス61の前後から窒素を供給することによって、チャンバ空間内の酸素濃度のバラツキを低減することができ、ポイントCにおける酸素濃度が安定する。
図13において、第1ボックス61の前面および背面に供給管71がそれぞれ接続され、2つの供給管71を介して窒素がチャンバ空間に供給される(図示矢印Ci1、Ci2;供給Ci1、Ci2とする)。さらに、第3ボックス63の前面に供給管71が接続され、供給管71を介して窒素がスライダ空間に供給される(図示矢印Si;供給Siとする)。また、第3ボックス63の背面に排気管72が接続され、排気管72を介してスライダ空間内の気体が排出される(図示矢印So;排出Soとする)。図13に示す接続態様では排出口が第3ボックス63に設けられるが、排気管72が直接第3ボックス63に接続されることを意味しており、例えば排気管72が外部からボックス空間内を貫装して第3ボックス63に接続される。また、第3ボックス63の背面に接続される排気管72については、図4を参照して説明した構造と同様の接続方式で接続され、以下も同様である。
供給Ci1およびCi2から供給された窒素は、チャンバ空間内で合流して開口部S1からスライダ空間へ流入し、当該スライダ空間内で供給Siから供給された窒素と合流する。そして、合流した窒素は、排出Soから排出される。したがって、当該接続態様では、チャンバ空間の一方側および他方側からそれぞれ供給された窒素が開口部S1を通ってスライダ空間へ抜ける流れが形成されている。ここで、ボックス空間内は、窒素フローの流路に含まれないため、積極的な窒素雰囲気への置換は行われない。しかしながら、スライダ空間から開口部S2を介して窒素の流出があるため、ボックス空間では装置外部空間より酸素濃度は低下している。したがって、積極的な窒素雰囲気への置換が行わなくても、第2ボックス62を設けることによって外部空間と同様の酸素がスライダ空間へ流入することを防止することができる。
図14を参照して説明する接続態様は、第3ボックス63を省略した例である。つまり、有機EL塗布機構5は、ボックス空間内に設置されることになる。図14において、第1ボックス61の前面に供給管71が接続され、供給管71を介して窒素がチャンバ空間に供給される(図示矢印Ci1;供給Ci1とする)。また、第2ボックス62の背面に排気管72が接続され、排気管72を介してボックス空間内の気体が排出される(図示矢印Bo;排出Boとする)。例えば、図14に示した供給管71および排気管72の接続箇所は図4で示した供給管71aおよび排気管72であり、図4で示した構造に対して第3ボックス63を省略した態様となる。
供給Ci1から供給された窒素は、チャンバ空間に流入した後、開口部S1→ボックス空間へ流動して、排出Boから排出される。したがって、図14に示した接続態様では、供給Ci1→チャンバ空間→開口部S1→ボックス空間→排出Boという逆流のない一連のフローを形成することができ、チャンバ空間を効率よく窒素雰囲気に変化させることができる。また、当該接続態様では、チャンバ空間の一方側から供給された窒素が開口部S1を通ってボックス空間へ抜ける流れが形成されている。つまり、また、ノズルユニット50の往復移動によってスライダ空間内の気体が攪拌されても、チャンバ空間→開口部S1→スライダ空間の気体フローが形成されているため、スライダ空間内の気体がチャンバ空間へ流出することが少ない。したがって、仮にスライダ空間に酸素が残存していたとしてもチャンバ空間へ酸素が流出することを防止することができる。さらに、図14に示した接続態様では、第3ボックス63を省略して供給管および排気管を最小限とした最も単純な局所雰囲気生成機構を構成することができる。
(第2の実施形態)
以下、図面を参照して、本発明の第2の実施形態に係る塗布装置1について説明する。第2の実施形態は、チャンバ空間には排気管を設けずにボックス空間およびスライダ空間にそれぞれ排気管を設けた塗布装置1である。なお、塗布装置1の概要については説明を省略し、主に第2の実施形態の特徴である供給管および排気管の接続箇所について説明を行う。なお、図15は、第2の実施形態に係る塗布装置1における窒素流動フローの第1の例を示す模式図である。図16は、第2の実施形態に係る塗布装置1における窒素流動フローの第2の例を示す模式図である。図17は、第2の実施形態に係る塗布装置1における窒素流動フローの第3の例を示す模式図である。なお、図15〜図17においても、説明を簡単にするために、それぞれの塗布装置1について、第1〜第3ボックス61〜63、チャンバ空間、ボックス空間、およびチャンバ空間のみを図示して簡略化している。
図15において、第1ボックス61の前面に供給管71が接続され、供給管71を介して窒素がチャンバ空間に供給される(図示矢印Ci1;供給Ci1とする)。さらに、第3ボックス63の前面に供給管71が接続され、供給管71を介して窒素がスライダ空間に供給される(図示矢印Si;供給Siとする)。また、第2ボックス62の背面に排気管72が接続され、排気管72を介してボックス空間内の気体が排出される(図示矢印Bo;排出Boとする)。さらに、第3ボックス63の背面に排気管72が接続され、排気管72を介してスライダ空間内の気体が排出される(図示矢印So;排出Soとする)。図15に示す接続態様では供給口が2箇所設けられるが、全て図6を参照して説明した構造と同様の接続方式で供給管71がそれぞれ接続される。また、図15に示す接続態様では排出口が第3ボックス63に設けられるが、上述したように排気管72が直接第3ボックス63に接続されることを意味しており、以下も同様である。また、第1ボックス61の背面および第3ボックス63の背面にそれぞれ接続される排気管72については、図4を参照して説明した構造と同様の接続方式で接続され、以下も同様である。
供給Ci1から供給された窒素は、チャンバ空間に流入した後、開口部S1からスライダ空間へ流入し、当該スライダ空間内で供給Siから供給された窒素と合流する。そして、合流した窒素は、排出Soから排出される、または開口部S2からボックス空間へ流入して排出Boから排出される。したがって、当該接続態様では、チャンバ空間の一方側から供給された窒素が開口部S1を通ってスライダ空間へ抜ける流れが形成されている。
図16において、第1ボックス61の背面に供給管71が接続され、供給管71を介して窒素がチャンバ空間に供給される(図示矢印Ci2;供給Ci2とする)。さらに、第3ボックス63の前面に供給管71が接続され、供給管71を介して窒素がスライダ空間に供給される(図示矢印Si;供給Siとする)。また、第2ボックス62の背面に排気管72が接続され、排気管72を介してボックス空間内の気体が排出される(図示矢印Bo;排出Boとする)。さらに、第3ボックス63の背面に排気管72が接続され、排気管72を介してスライダ空間内の気体が排出される(図示矢印So;排出Soとする)。図16に示す接続態様では供給口が2箇所設けられるが、図6を参照して説明した構造と同様の接続方式で接続される。
供給Ci2から供給された窒素は、チャンバ空間に流入した後、開口部S1からスライダ空間へ流入し、当該スライダ空間内で供給Siから供給された窒素と合流する。そして、合流した窒素は、排出Soから排出される、または開口部S2からボックス空間へ流入して排出Boから排出される。したがって、当該接続態様では、チャンバ空間の他方側から供給された窒素が開口部S1を通ってスライダ空間へ抜ける流れが形成されている。
図17において、第1ボックス61の前面および背面に供給管71がそれぞれ接続され、2つの供給管71を介して窒素がチャンバ空間に供給される(図示矢印Ci1、Ci2;供給Ci1、Ci2とする)。さらに、第3ボックス63の前面に供給管71が接続され、供給管71を介して窒素がスライダ空間に供給される(図示矢印Si;供給Siとする)。また、第2ボックス62の背面に排気管72が接続され、排気管72を介してボックス空間内の気体が排出される(図示矢印Bo;排出Boとする)。さらに、第3ボックス63の背面に排気管72が接続され、排気管72を介してスライダ空間内の気体が排出される(図示矢印So;排出Soとする)。図17に示す接続態様では供給口が3箇所設けられるが、図6を参照して説明した構造と同様の接続方式で接続される。
供給Ci1およびCi2から供給された窒素は、チャンバ空間内で合流して開口部S1からスライダ空間へ流入し、当該スライダ空間内で供給Siから供給された窒素と合流する。そして、合流した窒素は、排出Soから排出される、または開口部S2からボックス空間へ流入して排出Boから排出される。したがって、当該接続態様では、チャンバ空間の一方側および他方側からそれぞれ供給された窒素が開口部S1を通ってスライダ空間へ抜ける流れが形成されている。このように、第1ボックス61の前後から窒素を供給することによって、チャンバ空間内の酸素濃度のバラツキを低減することができ、ポイントCにおける酸素濃度が安定する。
(第3の実施形態)
以下、図面を参照して、本発明の第3の実施形態に係る塗布装置1について説明する。第3の実施形態は、チャンバ空間にも排気管を設け、ボックス空間またはチャンバ空間に排気管を設けた塗布装置1である。なお、塗布装置1の概要については説明を省略し、主に第3の実施形態の特徴である供給管および排気管の接続箇所について説明を行う。なお、図18は、第3の実施形態に係る塗布装置1における窒素流動フローの第1の例を示す模式図である。図19は、第3の実施形態に係る塗布装置1における窒素流動フローの第2の例を示す模式図である。図20は、第3の実施形態に係る塗布装置1における窒素流動フローの第3の例を示す模式図である。なお、図18〜図20においても、説明を簡単にするために、それぞれの塗布装置1について、第1〜第3ボックス61〜63、チャンバ空間、ボックス空間、およびチャンバ空間のみを図示して簡略化している。
図18において、第1ボックス61の前面に供給管71が接続され、供給管71を介して窒素がチャンバ空間に供給される(図示矢印Ci1;供給Ci1とする)。さらに、第3ボックス63の前面に供給管71が接続され、供給管71を介して窒素がスライダ空間に供給される(図示矢印Si;供給Siとする)。また、第1ボックス61の背面に排気管72が接続され、排気管72を介してチャンバ空間内の気体が排出される(図示矢印Co;排出Coとする)。さらに、第2ボックス62の背面に排気管72が接続され、排気管72を介してボックス空間内の気体が排出される(図示矢印Bo;排出Boとする)。図18に示す接続態様では供給口が2箇所設けられるが、図6を参照して説明した構造と同様の接続方式で接続される。また、第1ボックス61の背面に接続される排気管72についても、図4を参照して説明した構造と同様の接続方式で接続され、以下も同様である。
供給Ci1から供給された窒素は、チャンバ空間に流入した後、第1ボックス61の背面にある排出Coから排出される。また、供給Ci1から供給された窒素は、チャンバ空間に流入した後、開口部S1からスライダ空間へ流入し、当該スライダ空間内で供給Siから供給された窒素と合流する。そして、スライダ空間内で合流した窒素は、開口部S2からボックス空間へ流入して排出Boから排出される。したがって、当該接続態様では、チャンバ空間の一方側から供給された窒素がチャンバ空間の他方側へおよび開口部S1を通ってスライダ空間へそれぞれ抜ける流れが形成されている。このように、第3の実施形態では、チャンバ空間に窒素を供給しながら直接的にチャンバ空間内の気体を排出するため、チャンバ空間内における気体が窒素雰囲気に置換される速度が速くなる。つまり、図4に示したポイントCにおける酸素濃度の低下も速やかに行われるため、図8に示した到達時間を短縮することができる。
図19において、第1ボックス61の前面に供給管71が接続され、供給管71を介して窒素がチャンバ空間に供給される(図示矢印Ci1;供給Ci1とする)。さらに、第3ボックス63の前面に供給管71が接続され、供給管71を介して窒素がスライダ空間に供給される(図示矢印Si;供給Siとする)。また、第1ボックス61の背面に排気管72が接続され、排気管72を介してチャンバ空間内の気体が排出される(図示矢印Co;排出Coとする)。さらに、第3ボックス63の背面に排気管72が接続され、排気管72を介してスライダ空間内の気体が排出される(図示矢印So;排出Soとする)。図19に示す接続態様では供給口が2箇所設けられるが、図6を参照して説明した構造と同様の接続方式で接続される。
供給Ci1から供給された窒素は、チャンバ空間に流入した後、第1ボックス61の背面にある排出Coから排出される。また、供給Ci1から供給された窒素は、チャンバ空間に流入した後、開口部S1からスライダ空間へ流入し、当該スライダ空間内で供給Siから供給された窒素と合流する。そして、スライダ空間内で合流した窒素は、排出Soから排出される。したがって、当該接続態様では、チャンバ空間の一方側から供給された窒素がチャンバ空間の他方側へおよび開口部S1を通ってスライダ空間へそれぞれ抜ける流れが形成されている。ここで、ボックス空間内は、窒素フローの流路に含まれないため、積極的な窒素雰囲気への置換は行われない。しかしながら、スライダ空間から開口部S2を介して窒素の流出があるため、ボックス空間では装置外部空間より酸素濃度は低下している。したがって、積極的な窒素雰囲気への置換が行わなくても、第2ボックス62を設けることによって外部空間と同様の酸素がスライダ空間へ流入することを防止することができる。
図20を参照して説明する接続態様は、第3ボックス63を省略した例である。つまり、有機EL塗布機構5は、ボックス空間内に設置されることになる。図20において、第1ボックス61の前面に供給管71が接続され、供給管71を介して窒素がチャンバ空間に供給される(図示矢印Ci1;供給Ci1とする)。さらに、第2ボックス62の前面における有機EL塗布機構5が設置されている付近に供給管71が接続され、供給管71を介して窒素がボックス空間に供給される(図示矢印Si;供給Siとする)。また、第1ボックス61の背面に排気管72が接続され、排気管72を介してチャンバ空間内の気体が排出される(図示矢印Co;排出Coとする)。さらに、第2ボックス62の背面に排気管72が接続され、排気管72を介してボックス空間内の気体が排出される(図示矢印Bo;排出Boとする)。図20に示す接続態様では供給口が2箇所設けられるが、図6を参照して説明した構造と同様の接続方式で接続される。
供給Ci1から供給された窒素は、チャンバ空間に流入した後、第1ボックス61の背面にある排出Coから排出される。また、供給Ci1から供給された窒素は、チャンバ空間に流入した後、開口部S1からボックス空間へ流入し、当該ボックス空間内で供給Siから供給された窒素と合流する。そして、ボックス空間内で合流した窒素は、排出Boから排出される。したがって、当該接続態様では、チャンバ空間の一方側から供給された窒素がチャンバ空間の他方側へおよび開口部S1を通ってボックス空間へそれぞれ抜ける流れが形成されている。図20に示した接続態様では、第3ボックス63を省略しながら、チャンバ空間およびボックス空間に排気管を設けた第3の実施形態に係る局所雰囲気生成機構を構成することができる。
(第4の実施形態)
以下、図面を参照して、本発明の第4の実施形態に係る塗布装置1について説明する。第4の実施形態は、チャンバ空間にも排気管を設け、ボックス空間およびチャンバ空間にそれぞれ排気管を設けた塗布装置1である。なお、塗布装置1の概要については説明を省略し、主に第4の実施形態の特徴である供給管および排気管の接続箇所について説明を行う。なお、図21は、第4の実施形態に係る塗布装置1における窒素流動フローの第1の例を示す模式図である。図22は、第4の実施形態に係る塗布装置1における窒素流動フローの第2の例を示す模式図である。図23は、第4の実施形態に係る塗布装置1における窒素流動フローの第3の例を示す模式図である。図24は、第4の実施形態に係る塗布装置1における窒素流動フローの第4の例を示す模式図である。図25は、第4の実施形態に係る塗布装置1における窒素流動フローの第5の例を示す模式図である。なお、図21〜図25においても、説明を簡単にするために、それぞれの塗布装置1について、第1〜第3ボックス61〜63、チャンバ空間、ボックス空間、およびチャンバ空間のみを図示して簡略化している。
図21において、第1ボックス61の前面に供給管71が接続され、供給管71を介して窒素がチャンバ空間に供給される(図示矢印Ci1;供給Ci1とする)。第1ボックス61の背面に排気管72が接続され、排気管72を介してチャンバ空間内の気体が排出される(図示矢印Co;排出Coとする)。また、第2ボックス62の背面に排気管72が接続され、排気管72を介してボックス空間内の気体が排出される(図示矢印Bo;排出Boとする)。さらに、第3ボックス63の背面に排気管72が接続され、排気管72を介してスライダ空間内の気体が排出される(図示矢印So;排出Soとする)。例えば、供給Ci1は、図4に示す供給管71aに相当する。
供給Ci1から供給された窒素は、チャンバ空間に流入した後、第1ボックス61の背面にある排出Coから排出される。また、供給Ci1から供給された窒素は、チャンバ空間に流入した後、開口部S1からスライダ空間へ流入する。そして、スライダ空間内に流入した窒素は、排出Soから排出される、または開口部S2からボックス空間へ流入して排出Boから排出される。したがって、当該接続態様では、チャンバ空間の一方側から供給された窒素がチャンバ空間の他方側へおよび開口部S1を通ってスライダ空間へそれぞれ抜ける流れが形成されている。このように、第4の実施形態でも、チャンバ空間に窒素を供給しながら直接的にチャンバ空間内の気体を排出するため、チャンバ空間内における気体が窒素雰囲気に置換される速度が速くなる。また、内部空間から排出される流路も多数設けられているため、さらに内部空間全体が窒素雰囲気に置換される速度が速くなる。つまり、図4に示したポイントCにおける酸素濃度の低下も速やかに行われるため、図8に示した到達時間を短縮することができる。
図22において、第1ボックス61の前面に供給管71が接続され、供給管71を介して窒素がチャンバ空間に供給される(図示矢印Ci1;供給Ci1とする)。さらに、第3ボックス63の前面に供給管71が接続され、供給管71を介して窒素がスライダ空間に供給される(図示矢印Si;供給Siとする)。第1ボックス61の背面に排気管72が接続され、排気管72を介してチャンバ空間内の気体が排出される(図示矢印Co;排出Coとする)。また、第2ボックス62の背面に排気管72が接続され、排気管72を介してボックス空間内の気体が排出される(図示矢印Bo;排出Boとする)。さらに、第3ボックス63の背面に排気管72が接続され、排気管72を介してスライダ空間内の気体が排出される(図示矢印So;排出Soとする)。図22に示す接続態様では供給口が2箇所設けられるが、図6を参照して説明した構造と同様の接続方式で接続される。
供給Ci1から供給された窒素は、チャンバ空間に流入した後、第1ボックス61の背面にある排出Coから排出される。また、供給Ci1から供給された窒素は、チャンバ空間に流入した後、開口部S1からスライダ空間へ流入し、当該スライダ空間内で供給Siから供給された窒素と合流する。そして、スライダ空間内で合流した窒素は、排出Soから排出される、または開口部S2からボックス空間へ流入して排出Boから排出される。したがって、当該接続態様では、チャンバ空間の一方側から供給された窒素がチャンバ空間の他方側へおよび開口部S1を通ってスライダ空間へそれぞれ抜ける流れが形成されている。
図23において、第1ボックス61の前面に複数の供給管71が接続され、複数の供給管71を介して窒素がチャンバ空間に供給される(図示矢印Ci1×n;供給Ci1×nとする)。例えば、供給Ci1×nは、図4に示した供給管71a〜71cに相当する。具体的には、横に並列して接続される3本の供給管71aおよび横に並列して接続される3本の供給管71bで構成される合計6本の供給管71が第1ボックス61の前面に接続される。これらの供給管71は、図6を参照して説明した構造と同様の接続方式で接続される。なお、上記6本の供給管71に供給管71cを加えて第1ボックス61の前面に接続してもかまわない。
また、第1ボックス61の背面に複数の排気管72が接続され、複数の排気管72を介してチャンバ空間内の気体が排出される(図示矢印Co×n;排出Co×nとする)。例えば、第1ボックス61の前面に接続される供給管71と同様に合計6本の排気管72が第1ボックス61の背面に接続される。なお、第1ボックス61の背面に接続される複数の排気管72については、図4を参照して説明した構造と同様の接続方式で接続され、以下も同様である。また、第2ボックス62の背面に排気管72が接続され、排気管72を介してボックス空間内の気体が排出される(図示矢印Bo;排出Boとする)。さらに、第3ボックス63の背面に排気管72が接続され、排気管72を介してスライダ空間内の気体が排出される(図示矢印So;排出Soとする)。
供給Ci1×nから供給された窒素は、チャンバ空間に流入した後、第1ボックス61の背面にある排出Co×nから排出される。また、供給Ci1×nから供給された窒素は、チャンバ空間に流入した後、開口部S1からスライダ空間へ流入する。そして、スライダ空間内に流入した窒素は、排出Soから排出される、または開口部S2からボックス空間へ流入して排出Boから排出される。したがって、当該接続態様では、チャンバ空間の一方側の複数箇所から供給された窒素がチャンバ空間の他方側の複数箇所へおよび開口部S1を通ってスライダ空間へそれぞれ抜ける流れが形成されている。このように、図23に示した接続態様では、複数の供給管を介してチャンバ空間に窒素を供給しながら直接的にチャンバ空間内の気体を複数の排気管から排出するため、チャンバ空間内に流入/排出される気体量が多くなり、チャンバ空間内における気体が窒素雰囲気に置換される速度がさらに速くなる。つまり、図4に示したポイントCにおける酸素濃度の低下もさらに速やかに行われるため、図8に示した到達時間をさらに短縮することができる。
図24において、第1ボックス61の前面に複数の供給管71が接続され、複数の供給管71を介して窒素がチャンバ空間に供給される(図示矢印Ci1×n;供給Ci1×nとする)。さらに、第3ボックス63の前面に供給管71が接続され、供給管71を介して窒素がスライダ空間に供給される(図示矢印Si;供給Siとする)。第1ボックス61の背面に複数の排気管72が接続され、複数の排気管72を介してチャンバ空間内の気体が排出される(図示矢印Co×n;排出Co×nとする)。また、第2ボックス62の背面に排気管72が接続され、排気管72を介してボックス空間内の気体が排出される(図示矢印Bo;排出Boとする)。さらに、第3ボックス63の背面に排気管72が接続され、排気管72を介してスライダ空間内の気体が排出される(図示矢印So;排出Soとする)。なお、図24で示した供給Ci1×nおよび排出Co×nは、図23で示した接続態様と同様であり、図24で示す接続態様は図23で示した接続態様に対して供給Siを追加した態様である。
供給Ci1×nから供給された窒素は、チャンバ空間に流入した後、第1ボックス61の背面にある排出Co×nから排出される。また、供給Ci1×nから供給された窒素は、チャンバ空間に流入した後、開口部S1からスライダ空間へ流入し、当該スライダ空間内で供給Siから供給された窒素と合流する。そして、スライダ空間内で合流した窒素は、排出Soから排出される、または開口部S2からボックス空間へ流入して排出Boから排出される。したがって、当該接続態様では、チャンバ空間の一方側の複数箇所から供給された窒素がチャンバ空間の他方側の複数箇所へおよび開口部S1を通ってスライダ空間へそれぞれ抜ける流れが形成されている。
図25において、第1ボックス61の前面上部および背面上部に供給管71がそれぞれ接続され、2つの供給管71を介して窒素がチャンバ空間に供給される(図示矢印Ci1u、Ci2u;供給Ci1u、Ci2uとする)。さらに、第3ボックス63の前面に供給管71が接続され、供給管71を介して窒素がスライダ空間に供給される(図示矢印Si;供給Siとする)。また、第1ボックス61の前面底部近傍および背面底部近傍に排気管72がそれぞれ接続され、2つの排気管72を介してチャンバ空間内の気体が排出される(図示矢印Co1d、Co2d;排出Co1d、Co2dとする)。また、第2ボックス62の背面に排気管72が接続され、排気管72を介してボックス空間内の気体が排出される(図示矢印Bo;排出Boとする)。さらに、第3ボックス63の背面に排気管72が接続され、排気管72を介してスライダ空間内の気体が排出される(図示矢印So;排出Soとする)。図17に示す接続態様では供給口が3箇所設けられるが、図6を参照して説明した構造と同様の接続方式で接続される。
供給Ci1uおよびCi2uから供給された窒素は、チャンバ空間内に流入して排出Co1dおよびCo2dから排出される。また、供給Ci1uおよびCi2uから供給された窒素は、チャンバ空間内で合流して開口部S1からスライダ空間へ流入し、当該スライダ空間内で供給Siから供給された窒素と合流する。そして、スライダ空間内で合流した窒素は、排出Soから排出される、または開口部S2からボックス空間へ流入して排出Boから排出される。したがって、当該接続態様では、チャンバ空間の一方側および他方側からそれぞれ供給された窒素が、チャンバ空間の一方側へ、他方側の複数箇所へ、および開口部S1を通ってスライダ空間へそれぞれ抜ける流れが形成されている。図25に示した接続態様では、チャンバ空間から排出する排気管72が、第1ボックス61の底部に設けられている。これによって、チャンバ空間内に落下する粉塵をチャンバ空間外へ排出することができ、チャンバ空間内の粉塵対策としての効果も期待できる。
このように、本発明の塗布装置は、ノズルが塗布液を吐出する空間および塗布液が塗布された基板(塗布部位)が送られていく空間を含む塗布空間に対して局所的に窒素を供給して、塗布液の塗布を低酸素雰囲気で行うことにより、塗布処理における塗布液の酸化を防止している。したがって、限られた空間を低酸素雰囲気に置換するため、置換のために供給される窒素等の消費量を抑えることができる。また、空間内の流体バランスを調整することによって、ボックス自体を完全密閉構造にする必要がないため、装置自体の構成も単純となる。また、限られた範囲の空間を低酸素雰囲気にするため、人間がその空間に入り込むことによる窒息等の危険要素を排除することができる。さらに、塗布処理の際にノズル等が往復移動することによって局所的な低酸素雰囲気が阻害されることが考えられるが、当該往復移動のための空間も低酸素雰囲気に置換することによってノズル動作中における酸素濃度の上昇を防止しているため、安定した品質を確保することができる。
なお、上述した実施形態では、局所的に低酸素雰囲気にする空間をボックスで包囲することによって形成したが、他の構成によって局所雰囲気を生成してもかまわない。以下、図26および図27を参照して、他の構成によって局所的な低酸素雰囲気を形成する一例を説明する。なお、図26は、仕切板64によって局所的な低酸素雰囲気を形成する塗布装置1の正面図である。図27は、仕切板64によって設けられる局所雰囲気生成機構の概略構成を示す側断面図である。
図26および図27において、塗布装置1は、仕切板64によって、基板載置装置2が設置される空間と有機EL塗布機構5が設置される空間とが仕切られる。仕切板64は、ノズル52が基板P側へ突出して往復移動するための開口部S4を除いて、上記2つの空間を仕切るように設置される。
仕切板64の前後には、仕切板64の下部空間に窒素等の不活性ガスを供給するための供給管71と、仕切板64の下部空間の気体を排出するための排気管72とが接続される。図27の例では、供給管71が仕切板64のY軸負方向側(前側)の下部に接続されている。また、排気管72が第2ボックス62のY軸正方向側(後側)の下部に接続されている。このように供給管71および排気管72を接続した場合、供給管71から供給された窒素は、仕切板64の下部空間へ供給され、当該下部空間から排気管72へ排出される、または開口部S4を通って仕切板64の上部空間へ流出するような流れとなる。また、供給管71の開口部には、図6を用いて説明した拡散部と同様の拡散部を設けるのが好ましい。さらに、排気管72の開口部には、パンチングプレートを設けるのが好ましい。
供給管71から仕切板64の下部空間に窒素を供給しながら当該下部空間の気体を排気管72から排出することによって、当該下部空間が窒素雰囲気となって酸素濃度が低下する。これによって、塗布装置1は、有機EL材料を基板Pに塗布する際の酸化を防止することができる。ここで、上述した実施形態と同様に有機EL材料の酸化を防止するために、最も酸素濃度を低下させなければならない空間は、ノズル52から有機EL材料を吐出する空間および塗布後の基板P面がY軸正方向側に順次送られていく空間(図27に示すポイントC)である。したがって、上述した実施形態と同様に、有機EL材料を基板Pに塗布する際の酸素濃度上限を酸素濃度管理値とした場合、少なくともポイントCにおける酸素濃度が酸素濃度管理値を満たすように窒素の流動バランスを調整すればよい。
また、上述した実施形態においては、基板Pを搬入してからポイントCにおける酸素濃度が酸素濃度管理値以下に低下するまでの到達時間を短縮する効果に優れた実施例と、塗布処理時間中におけるポイントCの酸素濃度が安定する効果に優れた実施例とがある。具体的には、前者の効果を上げるためにはチャンバ空間から直接排出することが要求され、後者の効果を上げるためにはチャンバ空間から開口部S1を通ってスライダ空間(ボックス空間)への気体流動を積極的に形成することが要求される。
また、上述したボックス空間やスライダ空間に設けられる供給管および排気管(すなわち、供給Si、排出So、排出Bo)は、それぞれ複数本であってもかまわない。上述したような流体バランスを調整すれば、1本の配管であっても複数本の配管であっても本発明の効果を得ることができる。
また、ノズルユニット50に静圧軸受が設けられている場合、当該静圧軸受に窒素等の不活性ガスを供給してもかまわない。これによって、静圧軸受を構成するために供給する気体に酸素が含まれないため、さらにスライダ空間内の酸素濃度を低下させることができる。
また、上述した実施形態では、赤、緑、および青色のうち、赤色の有機EL材料を3個1組のノズル52a〜52cで基板Pの溝内に流し込んでいるが、この塗布工程は、有機EL表示装置を製造する途中工程である。有機EL表示装置を製造するときの処理手順は、正孔輸送材料(PEDOT)塗布→乾燥→赤色の有機EL材料塗布→乾燥→緑色の有機EL材料塗布→乾燥→青色の有機EL材料塗布→乾燥という手順となる。この場合、本発明の塗布装置は、正孔輸送材料、赤色の有機EL材料、緑色の有機EL材料、および青色の有機EL材料をそれぞれ塗布する工程に用いることができる。
また、ノズル52a〜52cから赤、緑、および青色の有機EL材料をそれぞれ吐出してもかまわない。この場合、赤、緑、および青色の順に配列された、いわゆる、ストライプ配列が1つの塗布工程で形成される。また、上述した実施形態では、3個1組のノズル52a〜52cで基板Pの各溝内に有機EL材料を流し込んでいるが、この3個1組のノズル52a〜52cを複数組設けて基板Pの各溝内に有機EL材料を流し込んでもかまわない。
また、上述した実施形態では、塗布液として有機EL材料や正孔輸送材料を塗布液とした有機EL表示装置の製造装置を一例にして説明したが、本発明は他の塗布装置にも適用できる。例えば、レジスト液やSOG(Spin On Glass)液やPDP(プラズマディスプレイパネル)を製造するのに使用される蛍光材料を塗布する装置にも適用することができる。また、液晶カラーディスプレイをカラー表示するために液晶セル内に構成されるカラーフィルタを製造するために使用される色材を塗布する装置にも適用することができる。
本発明に係る途方方法および塗布装置は、コスト面および安全面を考慮しながら塗布液の酸化を防止することができ、様々な塗布液をノズルから吐出する方法や装置等として有用である。
本発明の一実施形態に係る塗布装置1の要部概略構成を示す平面図および正面図 図1の塗布装置1の制御機能および供給部を示すブロック図 図1の塗布装置1に設けられる局所雰囲気生成機構の概略構成を示す平面図 図1の塗布装置1に設けられる局所雰囲気生成機構の概略構成を示す側断面図 第3ボックス63の外観を示す斜視図 窒素投入口の構造を示す断面図 拡散板731の構造を示す斜視図 ポイントCにおける酸素濃度管理値を説明するためのグラフ 局所雰囲気生成機構における窒素供給の流れを示すブロック図 塗布装置1が塗布処理を行う際の動作の一例を示すフローチャート 本発明の第1の実施形態に係る塗布装置1における窒素流動フローの第1の例を示す模式図 本発明の第1の実施形態に係る塗布装置1における窒素流動フローの第2の例を示す模式図 本発明の第1の実施形態に係る塗布装置1における窒素流動フローの第3の例を示す模式図 本発明の第1の実施形態に係る塗布装置1における窒素流動フローの第4の例を示す模式図 本発明の第2の実施形態に係る塗布装置1における窒素流動フローの第1の例を示す模式図 本発明の第2の実施形態に係る塗布装置1における窒素流動フローの第2の例を示す模式図 本発明の第2の実施形態に係る塗布装置1における窒素流動フローの第3の例を示す模式図 本発明の第3の実施形態に係る塗布装置1における窒素流動フローの第1の例を示す模式図 本発明の第3の実施形態に係る塗布装置1における窒素流動フローの第2の例を示す模式図 本発明の第3の実施形態に係る塗布装置1における窒素流動フローの第3の例を示す模式図 本発明の第4の実施形態に係る塗布装置1における窒素流動フローの第1の例を示す模式図 本発明の第4の実施形態に係る塗布装置1における窒素流動フローの第2の例を示す模式図 本発明の第4の実施形態に係る塗布装置1における窒素流動フローの第3の例を示す模式図 本発明の第4の実施形態に係る塗布装置1における窒素流動フローの第4の例を示す模式図 本発明の第4の実施形態に係る塗布装置1における窒素流動フローの第5の例を示す模式図 仕切板64によって局所的な低酸素雰囲気を形成する塗布装置1の正面図 仕切板64によって設けられる局所雰囲気生成機構の概略構成を示す側断面図
符号の説明
1…塗布装置
2…基板載置装置
21…ステージ
22…旋回部
23…平行移動テーブル
24…ガイド受け部
25、511…ガイド部材
3…制御部
5…有機EL塗布機構
50…ノズルユニット
51…ノズル移動機構部
52a、52b、52c…ノズル
521…フィルタ部
53…液受部
54…供給部
541…供給源
542…ポンプ
543…流量計
61…第1ボックス
611…投入口
62…第2ボックス
63…第3ボックス
64…仕切板
71…供給管
72…排気管
73…拡散部
731…拡散板
732、733…パンチングメタル
81…窒素ボンベ
83…フィルタ
84…圧力調整部
85、86…流量調整部
87…吸引部

Claims (7)

  1. ステージ上方に配置されたノズルから吐出された塗布液を当該ステージ上面に載置された基板に塗布する塗布方法であって、
    前記ノズルが塗布液を吐出する空間および前記塗布液が塗布された基板の塗布部位を含む包囲されたチャンバ空間で塗布空間に対して局所的に所定気体を供給して、前記塗布液の塗布を所定の雰囲気で行う局所雰囲気生成工程を含み、
    前記ノズルは、前記チャンバ空間の上方で前記チャンバ空間と連通する包囲された空間に設置され、ノズル移動機構に支持されて当該ステージ面を横断する方向に前記ステージ上方で前記包囲された空間で往復移動し、
    前記局所雰囲気生成工程は、前記塗布空間に対して、当該塗布空間の一方側から前記所定気体を供給し、当該塗布空間内の気体を当該塗布空間から前記ノズルおよび前記ノズル移動機構が配置された前記包囲された空間内へ流入させることによって、当該塗布空間内の気体を前記ステージ上方部から当該塗布空間外へ排出することを特徴とする、塗布方法。
  2. 前記局所雰囲気生成工程は、前記塗布空間に対して、当該塗布空間の一方側から前記所定気体を供給し、当該塗布空間の他方側から当該塗布空間内の気体を排出する、請求項1に記載の塗布方法。
  3. 前記局所雰囲気生成工程は、前記塗布空間の一方側の複数箇所から前記所定気体を供給し、当該塗布空間の他方側の複数箇所から当該塗布空間内の気体を排出する、請求項2に記載の塗布方法。
  4. 前記局所雰囲気生成工程は、前記塗布空間に対して、当該塗布空間の一方側から前記所定気体を供給し、当該塗布空間内の気体を、前記ノズルおよび前記ノズル移動機構が配置された前記包囲された空間内へ流入させることによって前記ステージ上方部から、ならびに当該塗布空間の他方側から、それぞれ当該塗布空間外へ排出する、請求項1に記載の塗布方法。
  5. 前記局所雰囲気生成工程は、前記塗布空間に対して、当該塗布空間の一方側および他方側からそれぞれ前記所定気体を供給し、当該塗布空間内の気体を当該塗布空間から前記ノズルおよび前記ノズル移動機構が配置された前記包囲された空間内へ流入させることによって、当該塗布空間内の気体を前記ステージ上方部から当該塗布空間外へ排出する、請求項1に記載の塗布方法。
  6. 前記ノズルは、前記ノズル移動機構に支持されて当該ステージ面を横断する方向に前記ステージ上方で前記包囲された空間で往復移動し、
    前記局所雰囲気生成工程は、前記塗布空間に加え、前記ノズルおよび前記ノズル移動機構が配置された前記包囲された空間に前記所定気体を供給する、請求項1に記載の塗布方法。
  7. 基板上に塗布液を塗布する塗布装置であって、
    前記基板をその上面に載置するステージと、
    前記ステージ上の空間において、その先端部から前記塗布液を吐出するノズルと、
    前記ノズルが塗布液を吐出する空間および前記塗布液が塗布された基板の塗布部位を含む包囲されたチャンバ空間で塗布空間に対して局所的に所定気体を供給して、前記塗布液の塗布を所定の雰囲気で行う局所雰囲気生成機構とを備え、
    前記ノズルは、前記チャンバ空間の上方で前記チャンバ空間と連通する包囲された空間に設置され、ノズル移動機構に支持されて当該ステージ面を横断する方向に前記ステージ上方で前記包囲された空間で往復移動し、
    前記局所雰囲気生成機構は、前記塗布空間に対して、当該塗布空間の一方側から前記所定気体を供給し、当該塗布空間内の気体を当該塗布空間から前記ノズルおよび前記ノズル移動機構が配置された前記包囲された空間内へ流出させることによって、当該塗布空間内の気体を前記ステージ上方部から当該塗布空間外へ排出することを特徴とする、塗布装置。
JP2006050727A 2006-02-27 2006-02-27 塗布方法および塗布装置 Expired - Fee Related JP5116978B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006050727A JP5116978B2 (ja) 2006-02-27 2006-02-27 塗布方法および塗布装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006050727A JP5116978B2 (ja) 2006-02-27 2006-02-27 塗布方法および塗布装置
KR1020060124240A KR100840482B1 (ko) 2006-02-27 2006-12-08 도포 장치 및 도포 방법
TW096104999A TWI350213B (ja) 2006-02-27 2007-02-12
CN200710084320XA CN101028617B (zh) 2006-02-27 2007-02-27 涂布装置
CN2010102668071A CN101912833B (zh) 2006-02-27 2007-02-27 涂布装置

Publications (2)

Publication Number Publication Date
JP2007229542A JP2007229542A (ja) 2007-09-13
JP5116978B2 true JP5116978B2 (ja) 2013-01-09

Family

ID=38550673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006050727A Expired - Fee Related JP5116978B2 (ja) 2006-02-27 2006-02-27 塗布方法および塗布装置

Country Status (1)

Country Link
JP (1) JP5116978B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5335514B2 (ja) 2009-03-27 2013-11-06 大日本スクリーン製造株式会社 塗布装置
JP6044352B2 (ja) * 2013-01-10 2016-12-14 株式会社デンソー 有機材料塗布装置およびその装置を用いた有機材料塗布方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076872A (ja) * 1999-06-28 2001-03-23 Semiconductor Energy Lab Co Ltd 電気光学装置の作製方法
JP4827294B2 (ja) * 1999-11-29 2011-11-30 株式会社半導体エネルギー研究所 成膜装置及び発光装置の作製方法
JP3868280B2 (ja) * 2001-12-04 2007-01-17 株式会社美和製作所 有機電界発光素子の製造装置
JP2005218899A (ja) * 2004-02-03 2005-08-18 Toshiba Corp 塗布装置及びこれを備えた表示装置製造装置

Also Published As

Publication number Publication date
JP2007229542A (ja) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4716509B2 (ja) 塗布装置および塗布方法
US9732424B2 (en) Gas injection apparatus and substrate processing apparatus using same
JP4789652B2 (ja) 塗布装置
JP5116978B2 (ja) 塗布方法および塗布装置
JP4964023B2 (ja) 塗布装置
JP4127096B2 (ja) 塗布ヘッドならびに塗液の塗布装置および塗布方法
JP4656578B2 (ja) 塗布装置および塗布方法
JP4780656B2 (ja) 塗布装置
JP4656580B2 (ja) 塗布装置
TWI535495B (zh) 塗佈裝置
TW201338868A (zh) 塗佈裝置
JP2015157270A (ja) ノズルおよび塗布装置
KR101807598B1 (ko) 듀얼 디스펜서
KR101213965B1 (ko) 스핀노즐 방식의 가스분사 유닛 및 이를 구비하는 직립방식 증착장치
JP4544470B2 (ja) 塗布装置
KR20130026053A (ko) 평면디스플레이용 박막 증착장치
KR20190115583A (ko) 기판 처리 장치
JP2007232268A (ja) 減圧乾燥装置及び塗布体の製造方法
JP2007144312A (ja) 塗布装置
KR101635761B1 (ko) 공정챔버 및 이를 포함하는 화소 형성 장치
JP5808927B2 (ja) 塗布装置
KR20140007623A (ko) 리니어 소스 및 이를 구비하는 증착장치
KR101522611B1 (ko) 기판 코터 장치
KR20200006241A (ko) 기판 처리 장치
JP2012209155A (ja) 印刷装置及び印刷方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees